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Combinatorics of Beacon-Based Routing and Coverage

Michael Biro∗ Jie Gao† Justin Iwerks∗ Irina Kostitsyna† Joseph S. B. Mitchell∗

Abstract

We consider combinatorial problems motivated by sen-
sor networks for beacon-based point-to-point routing
and covering. A beacon b is a point that can be ac-
tivated to effect a ‘magnetic pull’ toward itself every-
where in a polygonal domain P . The routing problem
asks how many beacons are required to route between
any pair of points in a polygonal domain P . In simple
polygons with n vertices we show that

⌊

n

2

⌋

− 1 beacons
are sometimes necessary and always sufficient. In poly-
gons with h holes, we establish that

⌊

n

2

⌋

−h−1 beacons

are sometimes necessary while
⌊

n

2

⌋

+ h− 1 beacons are
always sufficient. Loose bounds for simple orthogonal
polygons are also shown. We consider art gallery prob-
lems where beacons function as guards. Loose bounds
are given for covering simple polygons, polygons with
holes and simple orthogonal polygons.

1 Introduction

The model of beacon-based routing in this paper is an
analog of geographical greedy routing in sensor networks
in the continuous setting. A comparison of our model
with others found in the literature can be found in the
the current authors’ related paper on beacon-based al-
gorithms [1]. We consider two main questions in this pa-
per: “How many beacons are required to allow for point-
to-point routing between any two points in a polygonal
domain P?” and “How many beacons are required to
cover P?”
In our model, a beacon can occupy a point location on

the interior or the boundary of P , ∂P . When a beacon
is activated, an object p in P moves along a straight line
toward b until either it reaches b or makes contact with
∂P . If contact is made with ∂P , p will follow along
∂P as long as its straight line distance to b decreases
monotonically. p may alternate between moving in a
straight line path toward b on the interior of P and
following along ∂P . If p is unable to move so that its
distance to b decreases monotonically, we say p is ‘stuck’
and has reached a local minimum at a dead point. If an
object p originating at a point q reaches b we say that b

∗Department of Applied Mathematics and Statis-

tics, Stony Brook University, mbiro@ams.stonybrook.edu,

jiwerks@ams.stonybrook.edu, jsbm@ams.stonybrook.edu
†Department of Computer Science, Stony Brook University,

jgao@cs.stonybrook.edu, ikost@cs.stonybrook.edu

attracts q. A point s is routed to t if there is a sequence
of beacons that can be activated and then deactivated,
one at a time in order, such that an object beginning
at a source s visits each beacon in the sequence after it
is activated and terminates at a destination t, which we
always assume to be a beacon itself, but is not counted.
We restrict each beacon to be activated at most one time
during a routing. We say that a polygon P is covered
by a set of beacons if every point of P is attracted by
at least one beacon in the set.

2 Routing in Simple Polygons

Suppose first that P is a simple polygon. Then we show
tight bounds on the number of beacons necessary to
route between a pair s, t of points in P and the number
of beacons sufficient to route between any pair of points
s, t in P .

Theorem 1 Given a simple polygon P ,
⌊

n

2

⌋

−1 beacons
are sometimes necessary and always sufficient to route
between any pair of points in P .

Proof. We can see from Figure 1 that
⌊

n

2

⌋

− 1 beacons
are sometimes necessary to route between a specific pair
s and t.

s

t

Figure 1:
⌊

n

2

⌋

− 1 beacons are sometimes necessary to
route between a pair of points in a simple polygon. Here,
n = 19 and 8 beacons are required to route from s to t.

To establish the upper bound, we first triangulate P

and construct the dual graph G of the resulting triangu-
lation, rooted at an arbitrary triangle. Beginning with
a lowest leaf node of G, we begin to peel off adjacent
triangles. Suppose the leaf triangle is σ1 and its neigh-
bor is σ2. The analysis depends on the degree of σ2 in
the triangulation.
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Figure 2: (i) The beacon b is placed at a vertex common
to three triangles; (ii) The beacon b is placed appropri-
ately on the edge BD. Any point in the four triangles
can then navigate to b and vice-versa without any ad-
ditional beacons needed.

(i) σ2 has only one additional adjacent triangle σ3.
Suppose σ1 = △ABC, σ2 = △BCD. σ3 is then
either △BDE or △CDE. If σ3 = △CDE, then
we place a beacon b at the vertex C and otherwise
we place b at B. In either case, since b is contained
in each of the three triangles, any point p in these
three triangles can navigate to b and vice-versa (see
Figure 2 (i)).

(ii) σ2 has two additional adjacent triangles σ3, σ4.
Assume that σ1 = △ABC, σ2 = △BCD, σ3 =
△BDE, σ4 = △CDF . Suppose that the path
from σ1 to the root passes through triangle σ3.
Since σ1 = △ABC was a lowest leaf, σ4 = CDF

is also a leaf. We place a beacon on the diago-
nal BD. The location b along BD is chosen so
the pentagon ABDFC is visible to b. This is al-
ways possible, by placing b on the correct side of
lines CF and AC. Then, any point in triangles
△ABC,△BCD,△CDF can be routed to or from
b as b is visible to each point in those triangles.
Hence, the claim is true (see Figure 2 (ii)).

Given the basic steps as shown above, we will place
beacons in a recursive manner: We take any lowest leaf
triangle σ1 of the triangulation of P and place a beacon
at points described above.

1. If P is a single triangle, we do nothing. If P has
at most one more triangle besides σ1 and σ2 or P

has only two more triangles but both are adjacent
to σ2, then we are done after placing one more bea-
con (see Figure 3 (ii) or (iii)). By the above argu-
ments we can navigate from any starting point to
any destination point by using the single beacon:
First route from the start to the beacon and then

route from the beacon to the destination (which is
always a beacon).

Figure 3: Inductive placement of beacons. (i): Base
case; (ii): Peeling off σ1 and σ2 leaves a simple polygon;
(iii): Peeling off σ1, σ2, and σ4, leaves a simple polygon.

2. Otherwise, we peel off σ1 at least one more triangle.
There are two subcases to consider:

(a) σ2 is only adjacent to one more triangle σ3

(i.e., σ2 has degree 2 in the dual graph; see
Figure 3 (ii)). In this case peeling off σ1 and
σ2 will still leave a simple polygon P ′. We
can recursively ‘beaconize’ P ′. Now we argue
that one can navigate with the union of these
beacons. In particular, if the start and desti-
nation pair are both in σ1 ∪ σ2, we may route
from s to b and from b to t as b is visible to
both s and t. If both s and t are in P ′, then
we can navigate by induction hypothesis. If
the start and destination pair are separated
in σ1 ∪ σ2 and P ′, we can route from s to the
beacon b and then from b to t by the induc-
tion hypothesis and the analysis above. Thus
navigation works in this case.

(b) σ2 is adjacent to two other triangles σ3 and
σ4, with σ4 also a leaf. Thus peeling off σ1,
σ2, and σ4 will still leave a simple polygon
P ′; see Figure 3 (iii)). We can recursively
‘beaconize’ P ′. Now we argue that one can
navigate with the union of these beacons. In
particular, if the start and destination pair are
both in σ1 ∪ σ2 ∪ σ4, we may route from s to
b and then from b to t as t is visible to both
s and t. If both s and t are in P ′, we can
navigate by the induction hypothesis. If the
start and destination pair are separated, we
route from s to b and then from b to t, again
by the induction hypothesis and the analysis
above. Thus, navigation works in this case as
well.

With the algorithm, we can see that each time we
place a beacon we peel off at least two triangles. There
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are n−2 triangles in any triangulation of a simple poly-
gon with n vertices. Thus the total number of beacons
we place would be at most ⌊n−2

2 ⌋ = ⌊n

2 ⌋ − 1. �

3 Routing in Polygons with Holes

If P has n vertices and h holes, then we give bounds
on the number of beacons that are sometimes necessary
and always sufficient to route between any pair of points
in P .

Theorem 2 Given a polygon P with n vertices and h

holes,
⌊

n

2

⌋

− h − 1 beacons are sometimes necessary to

route between a pair of points in P . Conversely,
⌊

n

2

⌋

+
h− 1 beacons are always sufficient to route between any
pair of points in P .

Proof. Figure 5 illustrates that
⌊

n

2

⌋

− h − 1 beacons
are sometimes necessary to route between a specific
pair of points s and t. The figure shows the poly-
gon from Figure 1, with another copy of that polygon
placed where s was originally in Figure 1, as in Fig-
ure 4. The original polygon requires 19 vertices and
the additional hole polygon has 19 vertices, plus one
extra to close the hole, so 20 vertices, and 39 total.
We have that 8 beacons are required for the original,
and an additional 9 for the hole, so 17 beacons are re-
quired to route from s to t in this polygon. That is
⌊

n

2

⌋

− h− 1 =
⌊

39
2

⌋

− 1− 1 = 19− 2 = 17. This process

may be iteratively repeated to achieve the
⌊

n

2

⌋

− h− 1
bound for large numbers of holes and vertices.

Figure 4: Closing a copy of the polygon in Figure 1 with
an additional vertex to create a hole with 20 vertices
that requires 9 beacons.

To establish the upper bound, we first triangulate P

and construct the dual graph G of the resulting trian-
gulation. Since P is not simple, there may be cycles in
the dual graph and so, for each cycle in G we remove
an edge. This leaves the dual graph connected and is
equivalent to cutting a thin channel in the polygon to
remove a hole, thus adding 2 vertices. After h cuts, the
resulting polygon is simple and has n+2h vertices. We
then utilize Theorem 1, to say that the resulting polygon
may be routed with

⌊

n+2h
2

⌋

−1 =
⌊

n

2

⌋

+h−1 beacons, as
the beacons placed do not depend on the rigidity of the

Figure 5:
⌊

n

2

⌋

− h− 1 beacons are sometimes necessary
to route between a pair of points. Here, n = 39, h = 1,
and 17 beacons are required to route from s to t.

edges of the polygon. Then, a valid routing sequence
in the modified simple polygon corresponds to a valid
routing sequence in the original polygon P . �

Conjecture 1 Given a polygon P with n vertices and
h holes,

⌊

n

2

⌋

− h − 1 beacons are always sufficient to
route between any pair of points in P .

4 Routing in Simple Orthogonal Polygons

In simple orthogonal polygons we give loose bounds for
the number of beacons necessary to route between a
pair of points s, t in P and the number of beacons suf-
ficient to route between any two points s, t in P . We
were unsuccessful in attempting to mimic the proof of
Theorem 1 with a peeling process on a convex quadri-
lateralization of P in order to improve the upper bound.

Theorem 3 Given a simple orthogonal polygon P with
n vertices,

⌊

n

4

⌋

− 1 beacons are sometimes necessary

while
⌊

n

2

⌋

− 1 beacons always sufficient to route between
any pair of points in P .

Proof. We can see that
⌊

n

4

⌋

−1 beacons are sometimes
necessary to route between any pair of points in P by
constructing an orthogonal ‘zig-zag’ polygon as in Fig-
ure 6. The upper bound carries over from Theorem 1
for general simple polygons. �

5 Coverage in Simple Polygons and Polygons with

Holes

Define the attraction region of a beacon b to be the
locus of points in P that can reach b when b is activated.
Also, let the inverse attraction region of point p be the
locus of points that can attract p. Then we say that
a set of beacons B covers a polygon P if P is entirely
contained in the union of the attraction regions of the
beacons in B. In this section, we give bounds on the
number of beacons that are sometimes necessary and
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Figure 6:
⌊

n

4

⌋

− 1 beacons are sometimes necessary to
route between a pair of points in an orthogonal polygon.
Here, n = 20 and 4 beacons (light filled circles) are
required to route from s to t.

always sufficient to cover a simple polygon.

Figure 7 depicts a small polygon with 9 vertices that
requires 3 beacons to cover. Due to the angles involved,
this small example cannot easily be extended to larger
n.

Figure 7: Here, n = 9 and 9
3 = 3 beacons are required

to cover. The (red) independent witnesses and their
disjoint inverse attraction regions are shaded.

In order to get around the angle issue, we try to make
multiple copies of the above figure in a linear pattern.
This yields a polygon with a repeating spike gadget,
requiring

⌊

3n
10

⌋

beacons to cover.

In order to further improve this lower bound, we
iteratively ‘glue’ spikes together. We distinguish be-
tween spike trunks that are ‘angled-in’ and those that
are ‘angled-out’, and proceed to glue two copies of an
angled-in spike to form an angled-out spike, as in Figure
9. The next operation takes two such angled-out spikes
and glues them together to form a new angled-in spike.
This process can then be iterated to generate larger and
larger examples.

Note the additional barb added when creating the
angled-in spike, which should be removed before start-

Figure 8: Here, we have a repeatable spike with n = 10

and 3(10)
10 = 3 beacons are required to guard. The (red)

independent witness points and their disjoint inverse at-
traction regions are shaded.

Figure 9: Two copies of the ‘angled-in’ spike from Figure
8 glued together to form an ‘angled-out’ spike.

ing the next iteration. The procedure takes an angled-in
spike (with barb) and proceeds as follows:

1. Remove the barb.

2. Glue two copies of the ‘angled-in’ (barb-less) spike
together by merging a corresponding pair of angled-
in edges and adding new angled-out edges to make
an ‘angled-out’ spike.

3. Glue two copies of the ‘angled-out’ spike together
by merging a corresponding pair of angled-out
edges and adding new angled-in edges to make an
‘angled-in’ spike.

4. Add the barb.
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Figure 10: We took two copies of the ‘angled-out’ spike
from Figure 9, and glued them together with new ver-
tices to form an ‘angled-in’ spike. Note the extra barb
added where the spike attaches to the shaft. It has 36
vertices and requires 11 beacons and may be arbitrarily
repeated along the line. Iterating the procedure with
this spike as input yields a new spike with 140 vertices
that requires 43 beacons.

With respect to the number of vertices, we have that
step 1 removes two vertices; step 2 doubles the number
of vertices, then merges two edges (deleting two vertices)
and adds two new vertices; step 3 doubles the number
of vertices again, merges edges (deleting two vertices),
then adds two new vertices; step 4 adds two new ver-
tices. Altogether, if the initial spike has n vertices, then
after the above procedure we are left with a new closed
spike with 4n− 4 vertices.
With respect to the number of independent witness

points, we have that step 1 deletes one witness point,
step 2 doubles the number of witness points, step 3 dou-
bles the number of witness points then adds two new
witness points, and step 4 adds a new witness point.
Altogether, if the original spike has b independent wit-
ness points, the new spike has 4b−1 independent witness
points.
We can now analyze the number of beacons required

to cover the above polygons, starting with the closed
spike in Figure 8.

Lemma 4 Starting with the spike depicted in Figure
8, after k iterations of the operation, we are left with
an angled-in spike having 1

3 (26 · 4k + 4) vertices and
1
3 (8 · 4

k + 1) independent witness points.

Proof. Define a function T (k) to be the number of ver-
tices after k iterations. We start with the above spike,
so T (0) = 10. Using the observations above, we have the
recursion T (k) = 4T (k − 1) − 4. Solving this recursion
yields T (k) = 1

3 (26 · 4
k + 4) vertices.

Define a function W (k) to be the number of indepen-
dent witness points after k iterations. We start with

the above spike, so W (0) = 3. Using the observations
above, we have the recursion W (k) = 4W (k − 1) − 1.
Solving this recursion yields W (k) = 1

3 (8 · 4
k + 1) inde-

pendent witness points. �

Using the preceding lemma we may now give an
asymptotic lower bound on the number of beacons
sometimes necessary to cover arbitrarily large polygons.

Theorem 5 For an arbitrary polygon P with n vertices
and h holes (possibly 0), we may need arbitrarily close
to

⌊

4n
13

⌋

beacons to cover P . Conversely,
⌊

n+h

3

⌋

beacons
are always sufficient to cover P .

Proof. We have shown a gluing approach that gives
1
3 (8·4

k+1) independent witness points and 1
3 (26·4

k+4)
vertices for arbitrary k. The ratio of these as k goes to

infinity is lim
k→∞

1
3 (8 · 4

k + 1)
1
3 (26 · 4

k + 4)
=

4

13
. In simple polygons,

we can then arrange an arbitrary number of angled-in
spikes in a line, whereas for polygons with h holes, h
angled-out spikes may be closed with an additional ver-
tex and then placed in a convex h-gon. Therefore, we
can display a family of polygons that display a require-
ment for a number of beacons arbitrarily close to

⌊

4n
13

⌋

.
The proof of the always sufficient bound is derived

from standard art gallery theorems:
⌊

n

3

⌋

or
⌊

n+h

3

⌋

beacons are always sufficient since if a set of beacons
‘sees’ the entire polygon they must also cover the poly-
gon [4, 7]. �

6 Coverage in Orthogonal Polygons

In this section, we show that, unlike in arbitrary poly-
gons, beacons seem significantly stronger than standard
visibility guards in orthogonal polygons. Specifically,
we show that if P is an orthogonal polygon, then

⌊

n+4
8

⌋

beacons are sometimes necessary, while
⌊

n

4

⌋

beacons al-
ways suffice, due to the standard art gallery bound.
The following figure displays an example of a family

of orthogonal polygons that require
⌊

n+4
8

⌋

beacons to
cover.

Figure 11:
⌊

n+4
8

⌋

beacons are sometimes necessary to
guard an orthogonal polygon. Here, n = 20 and 20+4

8 =
3 beacons are required to guard.

There is a gap between the sometimes necessary and
always sufficient bounds proved in the above theorem.



We conjecture that the sometimes necessary bound is
also sufficient.

Conjecture 2 Given a simple orthogonal polygon P

with n vertices,
⌊

n+4
8

⌋

beacons are sometimes necessary
and always sufficient to cover P .
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