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Combinatorics of open covers (VII): Groupability

by

Ljubǐsa D. R. Kočinac (Nǐs) and Marion Scheepers (Boise, ID)

Abstract. We use Ramseyan partition relations to characterize:

• the classical covering property of Hurewicz;
• the covering property of Gerlits and Nagy;
• the combinatorial cardinal numbers b and add(M).

Let X be a T3 1
2
-space. In [9] we showed that Cp(X) has countable strong fan tightness as

well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits–
Nagy covering property. Now we show that the following are equivalent:

1. Cp(X) has countable fan tightness and the Reznichenko property.
2. All finite powers of X have the Hurewicz property.

We show that for Cp(X) the combination of countable fan tightness with the Reznichenko
property is characterized by a Ramseyan partition relation. Extending the work in [9], we
give an analogous Ramseyan characterization for the combination of countable strong fan
tightness with the Reznichenko property on Cp(X).

Introduction. We continue the investigation of combinatorial proper-
ties of open covers. The main theme in this paper, as in the previous ones,
will be to show that certain concepts appearing in mathematical literature
can be characterized by simple selection principles. These selection princi-
ples are then characterized game-theoretically and Ramsey-theoretically.

To ease the reader into our topic we recall the important basic defini-
tions here in the introduction. Directly after that we give in Section 1 an
abstract setting for the typical arguments used to derive Ramsey-theoretic
results from game-theoretic circumstances. This, once and for all, will codify
arguments that have repeatedly shown up in the study of selection princi-
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ples. In Section 2 we give an abstract treatment of one of the typical argu-
ments for deriving a selection hypothesis from a Ramseyan partition relation.
Though the setting developed here may not codify all circumstances under
which selection hypotheses can be derived from Ramseyan hypotheses, it
does cover the situations arising in the context of covering properties. In
Section 3 we introduce the main combinatorial property featured in this
paper—groupability. To be sure, this property is not new to us or the litera-
ture either. Only, we finally realized its significance in some classical notions.
In Section 4 we give some examples to illustrate the concepts and ideas
from the first three sections. Then in Section 5 we characterize the classical
Hurewicz property (introduced in 1925) by a selection principle analogous
to one that Hurewicz used to characterize a property that was introduced
in 1924 by Menger. It is also characterized game-theoretically and Ramsey-
theoretically. The combinatorial cardinal b is closely related to the Hurewicz
property. We use the techniques developed here to give a new game-theoretic
characterization, as well as a Ramsey-theoretic characterization of b. In Sec-
tion 6 we characterize a covering property of Gerlits and Nagy (introduced
in 1981) by a selection principle analogous to one introduced by Rothberger
(in 1938) and we also give game-theoretic and Ramsey-theoretic character-
izations. This property is closely related to add(M), the additivity of the
ideal of first category subsets of the real line. We use the techniques from
this section to give a new game-theoretic, as well as a Ramsey-theoretic,
characterization of add(M).

Experience shows that certain covering properties of a Tikhonov space X
manifest themselves as closure properties of the corresponding space Cp(X)
of real-valued continuous functions on X, endowed with the topology of
pointwise convergence. In Section 7 we connect the Hurewicz property on X
with Arkhangel’skĭı’s property of countable fan tightness, and a property
of Reznichenko (from Section 3), on Cp(X). In particular we prove the ex-
pected “duality” between X and Cp(X) for these properties, including a
Ramseyan characterization of the closure property on Cp(X). In Section 8
we connect the Gerlits–Nagy property (from Section 5) with Sakai’s prop-
erty of countable strong fan tightness, and a property of Reznichenko, on
Cp(X). Also here the expected duality is proven, and game-theoretic and
Ramsey-theoretic characterizations are given.

And now for the promised basic definitions:

The selection hypothesis S1(A,B). Let S be an infinite set and let A
and B be collections of subsets of S. Then the symbol S1(A,B) denotes the
statement:

For each sequence (An :n<∞) of elements of A there is a sequence
(bn :n<∞) such that for each n we have bn∈An, and {bn :n<∞}∈B.
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Here are some examples from the literature. Let O denote the collection
of all open covers of X. Rothberger introduced the property S1(O,O) in
[17].

According to [5] a cover U of X is an ω-cover if: X is not a member of U ,
each element of U is an open set, and for each finite subset F of X there is a
U ∈ U such that F ⊂ U . We shall use the symbol Ω to denote the collection
of ω-covers of X. Sakai introduced the property S1(Ω,Ω) in [18] and showed
that a space has property S1(Ω,Ω) if, and only if, it has property S1(O,O)
in all finite powers. Throughout we shall assume that each ω-cover of the
space on which we consider it, has a countable subset which is an ω-cover.
According to [5] spaces with this property are called ε-spaces. It was shown
in [5] that these are the spaces which have the Lindelöf property in all their
finite powers.

For X a space and for x ∈ X the symbol Ωx denotes the set {A ⊂
X \ {x} : x ∈ A}. A space is said to have countable tightness at x if each
element of Ωx has a countable subset which is in Ωx. According to [18],
X has countable strong fan tightness at x if S1(Ωx, Ωx) holds.

In Section 5 we show that a property of Gerlits and Nagy is charac-
terized by a hypothesis of the form S1(A,B). In Section 7 we show how to
characterize a corresponding property on Cp(X) by this selection hypothesis.

The selection hypothesis Sfin(A,B). The symbol Sfin(A,B) denotes:

For each sequence (An : n <∞) of elements of A there is a sequence
(Bn : n < ∞) of finite sets such that for each n we have Bn ⊂ An,
and

⋃
n<∞Bn ∈ B.

Here are examples from the literature: Hurewicz showed in [6] that a prop-
erty introduced by Menger in [12] is equivalent to the property
Sfin(O,O). To distinguish it from another covering property introduced by
Hurewicz, this is often called the Menger property. In [8] it was shown that
a space has property Sfin(Ω,Ω) if, and only if, it has property Sfin(O,O) in
all finite powers.

According to [1] a space has countable fan tightness at x if Sfin(Ωx, Ωx)
holds.

In Section 4 we characterize the Hurewicz property by a hypothesis of the
form Sfin(A,B), and we characterize in Section 6 the corresponding property
on Cp(X) by a selection hypothesis of this form.

Corresponding infinite games. Sometimes the two selection properties
introduced above are characterized by games. The symbol G1(A,B) denotes
the game where two players, ONE and TWO, play an inning per positive
integer. In the nth inning ONE chooses a set On from A, and TWO responds
by choosing an element Tn ∈ On. The play (O1, T1, . . . , On, Tn, . . .) is won
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by TWO if {Tn : n < ∞} is a member of B; otherwise, ONE wins. The
earliest published example of a game of this form appeared in [4], where
Galvin introduced the game G1(O,O). Pawlikowski proved in [14] that a
space has property S1(O,O) if, and only if, ONE has no winning strategy
in the game G1(O,O).

The symbol Gfin(A,B) denotes the game where ONE and TWO play
an inning per positive integer, and in the nth inning ONE chooses a set
On ∈ A, while TWO responds by choosing a finite set Tn ⊆ On. The play
(O1, T1, . . . , On, Tn, . . .) is won by TWO if

⋃
n<∞ Tn ∈ B; otherwise, ONE

wins. Though a game of this form was first explicitly defined by Telgársky
in [25], it was already considered in 1925 by Hurewicz when he proved in
Theorem 10 of [6] that a space has property Sfin(O,O) if, and only if, ONE
has no winning strategy in the game Gfin(O,O).

It is evident that if ONE does not have a winning strategy in the game
G1(A,B) then the selection hypothesis S1(A,B) is true. Similar remarks ap-
ply to Gfin(A,B) and Sfin(A,B). It is the converse implication—the selection
hypothesis implies that ONE has no winning strategy in the corresponding
game—which is not always true. When the converse implication is true, the
game characterizes the selection principle, and is a powerful tool to extract
additional information about A and B. If A has appropriate properties,
the game-theoretic characterization can be used to derive Ramsey-theoretic
statements.

Ramsey-theoretic statements. For positive integers n and k the symbol

A → (B)nk
denotes the following statement:

For each A ∈ A and for each function f : [A]n → {1, . . . , k} there
are a set B ⊆ A and a j ∈ {1, . . . , k} such that for each Y ∈ [B]n,
f(Y ) = j, and B ∈ B.

Here, as elsewhere, the symbol [A]n denotes the set of n-element subsets of
A. It is customary to call f a “coloring”, and to say that “B is homogeneous
of color j for f”.

This symbol is called the ordinary partition symbol and has a vast liter-
ature. It is one of several such partition symbols that have been extensively
studied. The area of mathematics dealing with partition symbols is called
Ramsey Theory after F. P. Ramsey who proved the first important partition
theorem. Ramsey’s famous theorem in [16] states: Let A be the collection of
infinite subsets of the integers. Then for each n and each k, A → (A)nk . The
ordinary partition symbol denotes a relation between A and B, and this re-
lation is customarily called the ordinary partition relation. Several selection
principles of the form S1(A,B) have been characterized by the ordinary par-
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tition relation. In [24] it was, for example, shown that a space has property
S1(O,O) if, and only if, for all k one has Ω → (O)2

k.
Another partition symbol that will be important for us comes from a

study of Baumgartner and Taylor in [3]. To be precise, the notion is defined
there, but the notation arose elsewhere. For each positive integer k,

A → dBe2k
denotes the following statement:

For each A in A and for each function f : [A]2 → {1, . . . , k} there is
a set B ⊂ A and a j ∈ {1, . . . , k}, and a partition B =

⋃
n<∞Bn of

B into pairwise disjoint finite sets such that for each {a, b} ∈ [B]2 for
which a and b are not from the same Bn, we have f({a, b}) = j, and
B ∈ B.

It is customary to say that “B is nearly homogeneous for f”. The rela-
tion between A and B denoted by this partition symbol will be called the
Baumgartner–Taylor partition relation. Several selection principles of the
form Sfin(A,B) have been characterized by the Baumgartner–Taylor parti-
tion relation. For example, in [24] it was shown that a space has property
Sfin(O,O) if, and only if, for each k one has Ω → dOe2k.

1. From games to partition relations. Call a family A of sets per-
sistent if: (i) No finite set is a member of A and (ii) for each A ∈ A and for
each partition of A into finitely many sets, at least one of these sets is again
a member of A.

The second requirement for persistence could be stated in the form: For
each k, A → (A)1

k.
For instance, Ω is a persistent family.

Theorem 1. If A is a persistent family of countable subsets of a set S,
and if ONE has no winning strategy in the game G1(A,B) played on S, then
for each k the ordinary partition relation A → (B)2

k holds.

Proof. Let A ∈ A as well as a positive integer k be given. Enumerate A
bijectively as (an : n <∞). Fix a function f : [A]2 → {1, . . . , k}. Recursively
define a sequence (An : n <∞) of subsets of A, and a sequence (in : n <∞)
of elements of {1, . . . , k} so that:

1. For each n, An ∈ A and An+1 ⊂ An.
2. For each n, An+1 = {aj ∈ An : j > n+ 1 and f({an+1, aj}) = in+1}.

To see that this can be done, first observe that putting Bj = {ai ∈ A :
i > 1 and f({a1, ai}) = j} we get a partition of A \ {a1} into finitely many
pieces. Since A is persistent there is a j for which Bj is in A. Fix such
a j and set i1 = j, A1 = Bj . Next observe that by similar argument the
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remaining terms of an infinite sequence as above can be selected consecu-
tively.

Next, for each j ∈ {1, . . . , k} define Ej = {an : in = j}. For each n,
An ∩ E1, . . . , An ∩ Ek partitions An into finitely many pieces, and so there
is a jn with An ∩ Ejn in A. Since for each n we have An ⊃ An+1, we may
assume that the same j works for all An’s. Fix such a j.

Now define the following strategy, σ, for ONE in the game G1(A,B): In
the first inning, σ(∅) = A1 ∩ Ej . If TWO responds by choosing an1 ∈ σ(∅),
then ONE plays σ(an1) = An1 ∩ Ej . If TWO responds with an2 ∈ σ(an1),
then ONE plays σ(an1 , an2) = An2 ∩Ej , and so on. (Observe that n1 < n2.)

Since ONE has no winning strategy in G1(A,B), there is a play during
which ONE used σ but lost. Let

σ(∅), an1, σ(an1), an2 , σ(an1, an2), an3 , . . .

be such a play lost by ONE. Then as TWO won we have B = {ani : i <∞}
∈ B. By the definition of the strategy σ we also find for r 6= s that nr 6= ns,
and f({anr , ans}) = j, and so B is homogeneous of color j for f .

Corollary 2. If A is a persistent family of countable sets and if ONE
has no winning strategy in the game G1(A,A), then for each n and k the
ordinary partition relation A → (A)nk holds.

Proof. By Theorem 1 we see that for each k, A → (A)2
k. Starting from

this case of the ordinary partition relation and the fact that A is persistent
one then uses a standard induction (see e.g. the proof of Theorem A of [16])
on n and k to prove A → (A)nk .

Theorem 3. If A is a persistent family and if ONE has no winning
strategy in the game Gfin(A,B), then for each k the Baumgartner–Taylor
partition relation A → dBe2k holds.

Proof. Let A ∈ A and f : [A]2 → {1, . . . , k} be given. Proceed as in the
proof of Theorem 1 to construct the An, and choose a j and Ej exactly as
there. Then change the argument as follows at the stage where a strategy
for ONE is defined:

Define a strategy σ for ONE as follows: σ(∅) = A1∩Ej . If TWO responds
with the finite set T1 ⊂ σ(∅), then one puts n1 = max{n : an ∈ T1},
and plays σ(T1) = An1 ∩ Ej . Should TWO now respond with the finite
set T2 ⊂ σ(T1), then ONE computes n2 = max{n : an ∈ T2} and plays
σ(T1, T2) = An2 ∩ Ej , and so on. Observe that by the definition of the Aj ’s
we will have n1 < n2 < . . ., and Tr ∩ Ts = ∅ whenever r 6= s, during any
σ-play of the game.

Then invoke the fact that ONE has no winning strategy in Gfin(A,B) to
obtain a σ-play

σ(∅), T1, σ(T1), T2, σ(T1, T2), T3, . . .
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lost by ONE. One then checks that TWO’s moves produce the required
nearly homogeneous set for f in B.

2. From partition relations to selection hypotheses. We now give
general arguments for deriving from a partition relation a selection hypoth-
esis of the form Sfin(A,B) or of the form S1(A,B). Let S be an infinite set.
The pair (A,B) is selectable if:

S1 A and B are subsets of P(P(S)).
S2 For each countably infinite A ∈ A and for each sequence (An : n <∞)

from A and for each 1-to-1 onto function f : A→ N the set

{U ∩ V : U ∈ A, V ∈ Af(U)} \ {∅}
is an element of A.

S3 Each element of A has a countable subset which is an element of A.
S4 For each A ∈ A and for each X ∈ A, P(P(X)) ∩ B = ∅.
S5 For each B ∈ B, for each finite F ⊂ B, also B \ F is in B.
S6 If C is a countable set of subsets of S which has the properties:

(1) there is a B in B such that {b ∈ B : (∃X ∈ C)(b ⊆ X)} ∈ B;
(2) for each X ∈ C there is an A ∈ A with X ∈ A;

then C is a member of B.

Observe that if C satisfies (1) and (2) of S6, then by S5 for each finite F ⊂ C,
also C \ F satisfies S6(1), (2).

Theorem 4. If (A,B) is a selectable pair and A → dBe22, then Sfin(A,B)
holds.

Proof. Let (Un : n <∞) be a sequence of elements of A. By S3 we may
assume each Un is countable, and enumerate it as (Un

k : k < ∞). Define V
to be the collection of nonempty sets of the form U 1

n ∩ Unk . By S2, V is an
element of A. Choose for each element of V a representation of the form
U1
n ∩ Unk .

Define a function f : [V]2 → {1, 2} by

f({U1
n1
∩ Un1

k , U1
n2
∩ Un2

j }) =
{

1 if n1 = n2,

2 otherwise.

Choose a W ⊆ V nearly homogeneous of color j with W ∈ B. Let (Wk :
k <∞) be a sequence of finite sets, disjoint from each other and with union
W, such that for A and B from distinct Wk’s, f({A,B}) = j.

Case 1: j = 1. Then there is an n such that for all A ∈ W we have
A ⊂ U1

n. Then S5 implies that W is not an element of B. Thus, Case 1 does
not hold.
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Case 2: j = 2. For each k > 1 define Gk to be the set of Uk
j which

occur as second coordinate in the chosen representations of elements of W.
Then each Gk is a finite subset of Uk. Put G =

⋃
k<∞ Gk.

Then W = {b ∈ W : (∃x ∈ G)(b ⊆ x)} is in B, and each element of G
is an element of some member of A. Thus by S6, G is an element of B. By
letting Gk be empty for those k for which no Gk was defined, we find that
the sequence (Gk : k <∞) witnesses Sfin(A,B) for (Uk : k <∞).

Theorem 5. If (A,B) is a selectable pair and A → (B)2
2 holds, then

S1(A,B) holds.

Proof. Let (Un : n <∞) be a sequence of elements of A. Argue as above
up to the definition of the coloring f .

Then choose a set W ⊆ V homogeneous of color j with W ∈ B. As in
the preceding proof we conclude that j = 2. Then for each k for which this
is possible, choose Uk

nk
to be the second term in the chosen representation

of a member of W. For each k such that none of the chosen sets is from Uk
choose a Uknk ∈ Uk arbitrarily. Let G be the set of U k

nk
’s. Then by S6, G is in

B, and it witnesses S1(A,B) for the sequence of Uk’s.

3. Groupability and countable distinct representatives. Let a
family A of subsets of the infinite set S be given. An element A of A is
said to be groupable if there is a partition A =

⋃
n<∞An of A into pairwise

disjoint finite sets such that for each infinite set N of positive integers, also⋃{An : n ∈ N} is in A. We shall use the notation Agp to denote the set of
groupable elements of A.

Lemma 6. (1) An ω-cover U of a space X is groupable if there is a
partition (Un : n <∞) of U into pairwise disjoint finite sets such that : For
each finite subset F of X, for all but finitely many n, there is a U ∈ Un
such that F is a subset of U .

(2) An element A of Ωx is groupable if there is a partition (An : n <∞)
of A into pairwise disjoint finite sets such that each neighborhood of x has
nonempty intersection with all but finitely many of the An.

(3) An open cover U is groupable if , and only if , there is a partition
U =

⋃
n<∞ Un where the Un’s are finite and disjoint from each other , such

that each point in the space belongs to all but finitely many of the sets ∪Un.

Proof. Exercise.

In 1996 Reznichenko introduced (in a seminar at Moscow State Univer-
sity) the following property: Each countable element of Ωx is a member of
Ωgp
x . The property was further studied in [9] and in [11]. In [9] we called

this the Reznichenko property at x. When X has the Reznichenko property
at each of its points, then X is said to have the Reznichenko property. In
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[6] Hurewicz introduced the following covering property on a space X (it is
nowadays called the Hurewicz property): For each sequence (Un : n <∞) of
open covers there is a sequence (Vn : n < ∞) such that each Vn is a finite
subset of Un, and each element of the space belongs to all but finitely many
of the sets ∪Vn. The Hurewicz game on a space X is played as follows. Play-
ers ONE and TWO play an inning per positive integer. In the nth inning
ONE chooses an open cover On of X, and TWO responds by choosing a
finite set Tn ⊂ On. A play (O1, T1, . . . , On, Tn, . . .) is won by TWO if for
each x ∈ X the set {n : x 6∈ ∪Tn} is finite. By [19, Theorem 27], X has
the Hurewicz property if, and only if, ONE has no winning strategy in the
Hurewicz game.

An open cover of a space is said to be large if there are for each point
infinitely many sets in the cover containing that point. The symbol Λ will
be used to denote the collection of large covers of a space.

Lemma 7. If X has the Hurewicz property then each countable large
cover of X is groupable—i.e., each countable element of Λ is in Λgp.

Proof. Let U be a (countable) large open cover of X. Consider the fol-
lowing strategy, σ, of ONE in the Hurewicz game on X. In the first inning
ONE plays σ(∅) = U . If TWO responds with the finite set T1, then ONE
plays σ(T1) = U \ T1. If TWO responds with the finite set T2 ⊂ σ(T1), then
ONE plays σ(T1, T2) = U \ (T1 ∪ T2), and so on.

Since σ is not a winning strategy for ONE, consider a play

σ(∅), T1, σ(T1), T2, σ(T1, T2), T3, . . .

which is lost by ONE. Then the sequence (Tn : n < ∞) of moves by TWO
are disjoint from each other (by the definition of the strategy σ) and each
element of X is in all but finitely many of the sets ∪Tn. Thus, TWO’s moves
witness the groupability of the large cover

⋃
n<∞ Tn of X. If any elements

of U are not present in the sequence of moves by TWO, then they can after
the construction of the play be distributed among TWO’s moves so that the
result witnesses the groupability of U .

In Lemma 5 of [9] we proved:

Lemma 8. If each finite power of X has the Hurewicz property , then
each ω-cover of X contains a groupable ω-cover of X—i.e., each countable
element of Ω is in Ωgp.

The combinatorial property CDRSub(A,B) was introduced in [19]: For
each sequence (An :n<∞) of elements of A there is a sequence (Bn :n<∞)
of pairwise disjoint elements of B such that for each n, Bn ⊆ An. We say
A is countably distinctly representable by B. At first glance this property
may appear somewhat unmotivated, but it is very useful in combinatorial
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arguments to follow. It is the “structure” counterpart of the well known fact
that given a countable collection of infinite sets, one can find inside each of
these sets a new infinite set such that the new sets are pairwise disjoint.

Lemma 9. For each family A of subsets of the infinite set S the state-
ment CDRSub(Agp,Agp) holds.

Proof. We may assume that Agp is nonempty. Let (An : n < ∞) be a
sequence of elements of Agp. For each n choose a partition (Anm : m <∞) of
An into pairwise disjoint finite sets such that the chosen partition witnesses
groupability of An. We must for each n choose a subset Bn of An such that
any two Bn’s are disjoint from each other, and each Bn is in Agp.

This is done by a standard zig-zag argument: We define for each n a
function fn : N → N as follows: To start, put f1(1) = 1 and f1(2) = 2.
Then let f2(1) be the least n such that for all j ≥ n, A2

j is disjoint from the
sets chosen so far—A1

f1(1) and A1
f1(2). Then let f1(3) be the least n > f1(2)

such that for all j ≥ n, A1
j is disjoint from all sets chosen so far. Then let

f2(2) > f2(1) be the least n such that for all j ≥ n, A2
j is disjoint from all

sets chosen so far. Then let f3(1) be the least n such that for all j ≥ n,
A3
j is disjoint from all sets chosen so far. Next choose f1(4) to be the least

n > f1(3) such that for all j ≥ n, A1
j is disjoint from all sets chosen so

far. Then choose f2(3) to be the least n > f2(2) such that for all j ≥ n,
A2
j is disjoint from all sets chosen so far. Then choose f3(2) to be the least

n > f3(1) so that for all j ≥ n, A3
j is disjoint from all sets chosen so far.

Choose f4(1) to be the least n such that for all j ≥ n, A4
j is disjoint from

all sets chosen so far, and so on.
For each n define Bn =

⋃
j<∞A

n
fn(j). For each n the sequence (Anfn(j) :

j < ∞) witnesses that Bn is in Agp. By construction any two Bn’s are
disjoint.

Corollary 10. (1) If X has the Reznichenko property at x, then
CDRsub(Ωx, Ωx) holds.

(2) If X has the Hurewicz property , then CDRsub(Λ,Λ) holds.
(3) If each finite power of X has the Hurewicz property , then

CDRsub(Ω,Ω) holds.

Now groupability is not the only property implying countable distinct
representability. In Proposition 21 of [10] it was shown that S1(Ω,Ω) implies
CDRsub(Ω,Ω); as we shall see, this could happen in the absence of groupa-
bility. In Theorem 16 of [19] it is shown that S1(O,O) implies CDRsub(Λ,Λ).

4. Illustrative examples. On request of a referee we include this sec-
tion. The purpose is to give illustrations and examples of the preceding
somewhat abstract treatment of how to derive Ramseyan statements from



Combinatorics of open covers 141

game-theoretic statements, and selection principles from Ramseyan state-
ments. We will not quote all examples known to us, but merely point to a
reasonable selection of examples.

For a space X define D = {U : (∀U ∈ U)(Uopen) and ∪ U is dense
in X}. We let DΩ denote the family of U ∈ D such that D 6∈ U whenever D
is a dense open subset of X, and for each finite family F of open sets there
is a U ∈ U such that for each F ∈ F we have F ∩ U 6= ∅.

From games to partition relations

Lemma 11. The families Ω, Ωx and DΩ are persistent.

Thus if for a family B of open sets ONE has no winning strategy in the
game G1(Ω,B), then by Theorem 1 the partition relation Ω → (B)2

k holds
for each finite k. Now the implication 1 ⇒ 2 of Theorem 4 of [24] states
that for appropriate spaces X: If X satisfies S1(O,O) then for each positive
integer k, Ω → (Λ)2

k. Theorem 1 gives this implication as follows: A result
of Pawlikowski in [14] implies that if X has S1(O,O), then ONE has no
winning strategy in G1(Ω,Λ). Then Theorem 1 gives the rest.

As a second example: If in a space of countable tightness ONE has no
winning strategy in the game G1(Ωx, Ωx), then by Corollary 2 the partition
relation Ωx → (Ωx)nk holds for all finite n and k. This is the implication
(b)⇒(e) in Theorem 13 of [20].

As a third example: Some earlier theorems can be derived more efficiently
using Theorem 1: Combined results of [19] (Theorem 24) and [8] (Theorem
6.1) show that S1(Ω,Ω)⇒ Ω → (Ω)nk for all n and k. This can be derived
as follows: By Theorem 2 of [20], S1(Ω,Ω) implies that ONE has no winning
strategy in G1(Ω,Ω). By Corollary 2 the partition relation Ω → (Ω)nk holds
for all n and k. Theorem 23 of [22] can be derived similarly since DΩ is
persistent.

Similarly, if for a family B ONE has no winning strategy in the game
Gfin(Ω,B), then by Theorem 3 the partition relation Ω → dBe2k holds for
each finite k.

Thus Theorem 3 gives the implication 1 ⇒ 2 in Theorem 6 of [24], as
well as the implication (b)⇒(f) of Theorem 11 of [20] and the implication
1⇒ 2 in Theorem 10 of [22].

From partition relations to selection principles. The reader could verify
the following lemmas:

Lemma 12. Let X be an ε-space. Then (Ω,Ω), (Ω,Λ), (Λ,Λ), (Ω,Ωgp),
(Ωgp, Ωgp), (Ωgp, Ω), (Ω,Λgp), (Λgp, Λgp), (Λgp, Λ) and (Λ,Λgp) are se-
lectable pairs.
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Lemma 13. If for a space X each element of DΩ has a countable subset
in DΩ then (DΩ,DΩ) and (DΩ,D) are selectable pairs.

The implication 2 ⇒ 1 in Theorem 4 of [24] follows directly from The-
orem 5 and the fact that (Ω,Λ) is a selectable pair, and similarly the im-
plication 2⇒ 1 of Theorem 6 of [24] follows from Theorem 4. Similarly, the
implication 2 ⇒ 1 in Theorem 23 of [22] is derived from Theorem 5 while
2⇒ 1 in Theorem 10 of [22] is derived from Theorem 4.

Note however that even when X has countable tightness at x the pair
(Ωx, Ωx) need not be a selectable pair. Different techniques were used in [20]
to derive the selection principles there from the corresponding Ramseyan
partition relations.

5. Characterizing the Hurewicz property. As mentioned in the in-
troduction, several classical properties have been characterized (or defined)
by selection principles of the form Sfin(A,B) or S1(A,B). No analogues of
these were known for the Hurewicz property. A careful examination of the
groupability property has led us to a characterization of the Hurewicz prop-
erty in terms of a simple selection principle of the form Sfin(A,B).

Theorem 14. For an ε-space X the following are equivalent :

(1) X has the Hurewicz property.
(2) X has the Menger property Sfin(Λ,Λ) and each countable large cover

of X is groupable.
(3) X has the property Sfin(Ω,Λ) and each countable large cover of X is

groupable.
(4) X has property Sfin(Λ,Λgp).
(5) X has property Sfin(Ω,Λgp).
(6) On X ONE has no winning strategy in the game Gfin(Ω,Λgp).
(7) X satisfies: For each n, Ω → dΛgpe2n.

Proof. (1)⇒(2). It is well known that the Hurewicz property implies
Sfin(Λ,Λ)—see for example [8]. And by Lemma 7 each countable large cover
of X is groupable.

(2)⇒(3). Since each ω-cover is a large cover, Sfin(Λ,Λ) implies Sfin(Ω,Λ).
(2)⇒(4). Let a sequence (Un : n <∞) of large covers of X be given. We

may assume that these are countable. Applying Sfin(Λ,Λ) we find for each
n a finite set Vn ⊂ Un such that

⋃
n<∞ Vn is a large cover of X. Since this

large cover of X is countable, it is groupable.
(3)⇒(5). This is like (2)⇒(4).
(4)⇒(5). Since an ω-cover is large, this implication is self-evident.
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(5)⇒(1). Let a sequence (Un : n <∞) of open covers of X be given. We
may assume that these are countable, and that none contains a finite cover
of X.

Replace each Un with Vn, the set of finite unions of elements of Un. Then
each Vn is an ω-cover of X. Enumerate each Vn bijectively as (V n

k : k <∞).
From these ω-covers define new ω-covers Wn as follows: W1 = V1, and for
n > 1, Wn = {V 1

m1
∩ V 2

m2
∩ . . .∩ V n

mn : n < m1 < m2 < . . . < mn} \ {∅}, and
for each element ofWn choose a representation, fixed for the duration of the
argument, of the form V 1

m1
∩V 2

m2
∩ . . .∩V n

mn with n < m1 < m2 < . . . < mn.
Apply Sfin(Ω,Λgp) to the sequence (Wn : n < ∞) to find for each n a

finite set Xn ⊂ Wn such that
⋃
n<∞Xn is a groupable large cover of X.

Choose for each n a finite set Yn such that these are disjoint from each
other,

⋃
n<∞Xn =

⋃
n<∞ Yn, and each element of X belongs to all but

finitely many of the sets ∪Yn.
Choose n1 > 1 so large that Yn1 ⊂

⋃
j>1Xj. Then let Z1 be the set of

V 1
k that appear as terms in the chosen representations of elements of Yn1.

Then choose n2 > n1 so large that Yn2 ⊂
⋃
j>2Xj and let Z2 be the set of

V 2
k that appear as terms in the chosen representations of elements of Yn2,

and so on. In this way we obtain finite sets Zn ⊂ Vn such that each element
of X belongs to all but finitely many of the sets

⋃Zn.
Finally, for each element A of Zn choose finitely many elements of Un

whose union produces A and let An denote the finite set of elements of Un
chosen in this way. Then the sequence (An : n <∞) witnesses the Hurewicz
property of X for the given sequence (Un : n <∞) of open covers.

(1)⇒(6). Let τ be a strategy for ONE in the game Gfin(Ω,Λgp). Since
we are assuming that X has the Hurewicz property, we know ONE has no
winning strategy in the Hurewicz game. Use τ to define a strategy σ for
ONE of the Hurewicz game as follows:

σ(∅) = τ(∅). If TWO responds with T1 in the Hurewicz game, then ONE
first computes τ(T1), and then plays σ(T1) = τ(T1) \ T1. If TWO responds
in the Hurewicz game with T2, then ONE first computes τ(T1, T2), and then
responds with σ(T1, T2) = τ(T1, T2) \ (T1 ∪ T2), and so on. Observe that σ
is a legitimate strategy for ONE of the Hurewicz game—in fact, it directs
ONE to play ω-covers.

Since σ is not a winning strategy for ONE of the Hurewicz game, consider
a σ-play lost by ONE: σ(∅), T1, σ(T1), T2, σ(T1, T2), T3, . . . By the defini-
tion of σ the Tn’s are disjoint from each other. Since TWO wins, each ele-
ment of X belongs to all but finitely many of the ∪Tn’s. Thus, (Tn : n <∞)
witnesses that

⋃
n<∞ Tn is a groupable cover of X.

Since also τ(∅), T1, τ(T1), T2, τ(T1, T2), T3, . . . is a legitimate play of
Gfin(Ω,Λgp), we conclude that τ is not a winning strategy for ONE.
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(6)⇒(7). Apply Theorem 3 and the fact that Ω is a persistent family.
(7)⇒(5). By Lemma 12 the pair (Ω,Λgp) is selectable. Now apply The-

orem 4.

The point of the following lemma is that one can under its hypotheses
find for a given sequence of ω-covers a selector which is itself a witness of
the groupability of the ω-cover constituted by the selector.

Lemma 15. Let X satisfy both Sfin(Ω,Ω) and Ω = Ωgp. Then there is
for each sequence (Un : n < ∞) of ω-covers of X a sequence (Vn : n < ∞)
such that :

(1) For each n, Vn is a finite subset of Un.
(2) For m 6= n, Vm ∩ Vn = ∅.
(3) For each finite subset F of X, for all but finitely many n there is a

V ∈ Vn such that F ⊂ V .

Proof. Let (Un : n < ∞) be a sequence of ω-covers of X. Since X has
the property that Ω = Ωgp we may by Lemma 9 assume that the Un’s are
disjoint from each other. By Sfin(Ω,Ω) we may also assume that each Un is
countable. Enumerate each Un bijectively as (Un

k : k <∞).
For each n define Vn to be the collection of nonempty sets of the form

U1
m1
∩ . . . ∩ Unmn .

Then each Vn is an ω-cover of X. Apply Sfin(Ω,Ω) to this sequence to find
for each n a finite nonempty set V ′n ⊂ Vn such that V =

⋃
n<∞ V ′n is an

ω-cover of X.
Applying Ω = Ωgp again, select a partition V =

⋃
k<∞Wk of V such

that each Wk is finite, and for each finite subset F of X, for all but finitely
many k there is a W ∈ Wk such that F ⊂W . Put k1 = 1 and let H1 be the
set of U1

i ’s that occur as terms in the chosen representations of elements of
Wk1 . Next choose k2 > k1 so large that for all j ≥ k2 we have Wj disjoint
from V ′1. Let H2 consist of all sets of the form U 2

i that occur as a term in the
chosen representation of an element of Wk2 . Then choose k3 > k2 so large
that for all j ≥ k3 we have Wj ∩V ′2 = ∅, and let H3 consist of the U3

i ’s that
occur as terms in the chosen representations of elements of Wk3 , and so on.

In this way we obtain a sequence (Hn : n <∞) of finite sets as required.

Theorem 16. For an ε-space X the following are equivalent :

(1) Each finite power of X has the Hurewicz property.
(2) X has property Sfin(Ω,Ω) and Ω = Ωgp.
(3) X has property Sfin(Ω,Ωgp).
(4) ONE has no winning strategy in the game Gfin(Ω,Ωgp).
(5) For each n, X satisfies Ω → dΩgpe2n.
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Proof. (1)⇒(2). If each finite power of X has the Hurewicz property,
then each finite power of X has property Sfin(O,O). Then Theorem 3.9 of
[8] implies that X has property Sfin(Ω,Ω). Lemma 5 of [9] implies that X
satisfies Ω = Ωgp.

(2)⇔(3). This is clear.
(2)⇒(4). Let σ be a strategy for ONE in the game Gfin(Ω,Ωgp). Then

it is also a strategy in Gfin(Ω,Ω). By (2), X has property Sfin(Ω,Ω) and so
by Theorem 5 of [20] this is not a winning strategy for ONE in Gfin(Ω,Ω).
Consider a σ-play which is lost by ONE in Gfin(Ω,Ω). Then TWO’s moves
constitute an ω-cover of X. Again by (2), it is groupable. Thus, this play is
actually lost by ONE in the game Gfin(Ω,Ωgp).

(4)⇒(5). Apply Theorem 3.
(5)⇒(2). Since X satisfies Ω → dΩgpe2k for each k, it also satisfies Ω →

dΩe2k for each k. By Theorem 6.2 of [8], X then has property Sfin(Ω,Ω).
Moreover, the partition relation implies that each ω-cover contains a group-
able Ω-cover.

(2)⇒(1). Fix n and let (Uk : k <∞) be a sequence of large covers of Xn.
For each k let Vk be the collection of open subsets V of X such that V n is a
subset of a union of finitely many elements of Uk. Then each Vk is an ω-cover
of X: For let a finite subset F of X be given. Let UF,k be a finite subset
of Uk which covers F n. Since Fn is compact Wallace’s theorem implies that
there is an open set V ⊂ X such that F n ⊂ V n ⊂ ∪ UF,k. Thus, F ⊂ V
and V ∈ Vk. Apply (2) and Lemma 15 and choose for each k a finite set
V ′k ⊂ Vk such that the sequence (V ′k : k <∞) has the properties of Lemma
15. For each k choose for each element V of V ′k finitely many elements of Uk
which cover V n, and let Wk be the finite set of elements of Uk chosen like
this. Then the sequence (Wk : k < ∞) witnesses the Hurewicz property in
Xn for (Uk : k <∞).

Next we give a new characterization of the cardinal number b—the least
cardinality of an unbounded family in NN. A combinatorial ω-cover for a set
S is a collection of subsets of S such that each finite subset of S is a subset of
some member of the collection, but S itself is not a member of the collection.
Thus, for combinatorial open covers we do not require an ambient topology.
For ω-covers (no additional adjective) we require that the members of the
cover be open sets.

For a cardinal number κ we let Ωκ denote the collection of countable
combinatorial ω-covers of κ. Also, we let Ωgp

κ denote the groupable combi-
natorial ω-covers of κ.

Theorem 17. For an infinite cardinal number κ the following are equiv-
alent :
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(1) κ < b.
(2) Sfin(Ωκ, Ωκ) and Ωκ = Ωgp

κ hold.
(3) Sfin(Ωκ, Ω

gp
κ ) holds.

(4) ONE has no winning strategy in the game Gfin(Ωκ, Ω
gp
κ ).

(5) For each n, Ωκ → dΩgp
κ e2n holds.

Proof. (1)⇒(2). First we show that (1) implies that Ωκ = Ωgp
κ . Thus,

let U be an element of Ωκ, and enumerate it bijectively as (Un : n < ∞).
For each finite subset F of κ, define a function ΦF from N to N such that
for each n, ΦF (n) = min{k > n : F ⊂ Uk}.

Then {ΦF : F ⊂ κ finite} is a family of fewer than b functions. Choose
an increasing function g : N → N such that 1 < g(1), and for each finite
subset F of κ, for all but finitely many n we have ΦF (n) < g(n). Then put
n1 = g(1), and for each k put nk+1 = g(nk). Observe that now for each finite
F ⊂ κ, for all but finitely many k, we have nk < ΦF (nk) < nk+1. Thus, if
we set V1 = {Uj : j < n1} and Vk+1 = {Uj : nk ≤ j < nk+1} for each k,
then we have a partition of U into pairwise disjoint finite sets such that for
each finite F ⊂ κ, for all but finitely many k, there is a V ∈ Vk such that
F ⊂ V .

Next we show that (1) implies Sfin(Ωκ, Ωκ). Let (Un : n < ∞) be a
sequence of elements of Ωκ. By what we have just proved, choose for each n
a sequence (Unk : k < ∞) of pairwise disjoint finite subsets of Un such that
for each finite F ⊂ κ, for all but fintely many k there is a V ∈ Unk such that
F ⊂ V . Next, define for each finite set F ⊂ κ a function Ψ : N→ N so that
for each n, ΨF (n) is the least k such that for each j ≥ k there is a V ∈ Unj
with F ⊂ V .

Since {ΨF : F ⊂ κ finite} is a family of fewer than b such functions,
choose an increasing function g from N to N such that for each finite F ⊂ κ,
for all but finitely many n, ΨF (n) < g(n). Then define Vk = Ukg(k) for each k.
Then

⋃
k<∞ Vk is a member of Ωκ.

(2)⇒(3). This is left as an exercise.
(3)⇒(1). Let X be a set of real numbers of cardinality κ and let (Un :

n < ∞) be a sequence of ω-covers of X. Since each finite power of X is
Lindelöf, we may assume that each Un is countable, and thus a member
of Ωκ. Now apply (3) to choose from each Un a finite set Vn such that⋃
n<∞ Vn is in Ωgp

κ . Then in fact
⋃
n<∞ Vn is in Ωgp. This shows that each

set of real numbers of cardinality κ has the property Sfin(Ω,Ωgp), and thus
the Hurewicz property. It follows from a result of Hurewicz that κ < b.

(4)⇒(5). Ωκ is persistent, so that this implication follows from Theo-
rem 3.

(5)⇒(3). The pair (Ωκ, Ωκ) is selectable, and so this implication follows
from Theorem 4.
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It remains to show that (1) implies (4). In this proof we also use the
fact that (1) is equivalent to (2). Let σ be a strategy for ONE of the game
Gfin(Ωκ, Ω

gp
κ ). We shall assume that TWO’s moves are “initial segments” of

ONE’s, in the following sense:
Enumerate ONE’s first move, σ(∅), bijectively as (Un : n < ∞). For

any n1, enumerate σ({Uj : j < n1}) bijectively as (Un1,n : n < ∞) (thus,
we pretend TWO responded with {Uj : j < n1}). For any n2, enumerate
σ({Ui : i < n1}, {Un1,j : j < n2}) bijectively as (Un1,n2,j : j < ∞), and so
on.

For each finite set F ⊂ κ, and for each finite sequence τ of positive
integers, define ΨF (τ) to be the least k such that max(τ) < k and F ⊂ Uτ_k.
Since by (1) we have κ < b, we find a function g from the set of finite
sequences of elements of N to N such that for each finite subset F of κ and
for all but finitely many τ we have g(τ) > ΨF (τ).

Put n1 = g(1), and for each k, nk+1 = g(n1, . . . , nk).
For each finite F ⊂κ, for all but finitely many k we have ΨF (n1, . . . , nk−1)

< nk. To see this, fix F . Since the set of τk = (n1, . . . , nk), k <∞ is infinite,
for all but finitely many k we have ΨF (τk) < g(τk) = nk+1.

This means that the σ-play during which TWO chose consecutively the
sets T1 = {Uj : j < n1}, . . . , Tk = {Un1,...,nk−1,j : j < nk}, . . . is lost by
ONE since

⋃{Tj : j <∞} is a member of Ωκ, and by (2) it is groupable.

6. Characterizing the Gerlits–Nagy property. In [5] Gerlits and
Nagy introduced a property denoted (∗). Property (∗) was characterized in
[13] as follows: X has property (∗) if, and only if, it has Hurewicz’s property
as well as property S1(O,O). We shall take this characterization as our
official definition of the Gerlits–Nagy property.

Theorem 18. For an ε-space X the following are equivalent :

(1) X has the Gerlits–Nagy property.
(2) X has property S1(Λ,Λgp).
(3) X has property S1(Ω,Λgp).
(4) On X ONE has no winning strategy in the game G1(Ω,Λgp).
(5) For each n, X satisfies Ω → (Λgp)2

n.

Proof. (1)⇒(2). Since X has property S1(O,O) it also has property
S1(Λ,Λ) (by the proof of Theorem 17 of [19]). Since X has the Hurewicz
property, every countable large cover of X is groupable (Lemma 7). It follows
that X has property S1(Λ,Λgp).

(2)⇒(3). Every ω-cover is large.
(3)⇒(1). Since X has property S1(Ω,Λgp), it has property S1(Ω,Λ)

and thus property S1(O,O) (Theorem 17 of [19]). Since S1(Ω,Λgp) implies
Sfin(Ω,Λgp), Theorem 14 implies that X has the Hurewicz property.
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(1)⇒(4). By Theorem 3 of [24], ONE has no winning strategy in the
game G1(Ω,Λ). Let F be a strategy for ONE in G1(Ω,Λgp). Then F is
also a strategy for ONE in the game G1(Ω,Λ). Since ONE has no winning
strategy in the latter game, consider an F -play

F (∅), T1, F (T1), T2, F (T1, T2), T3, . . .

which is lost by ONE in G1(Ω,Λ). Then {Tn : n < ∞} is a large cover of
X. Since X has the Hurewicz property, this large cover of X is groupable
(Lemma 7). But then the given F -play is also lost by ONE in G1(Ω,Λgp).

(4)⇒(5). Since Ω is a persistent family, apply Theorem 1.
(5)⇒(3). Since (Ω,Λgp) is a selectable pair (Lemma 12), apply Theo-

rem 5.

The Gerlits–Nagy property in all finite powers is the main covering prop-
erty featured in [9]. We now characterize this property by a Ramseyan par-
tition relation:

Theorem 19. For an ε-space X the following are equivalent :

(1) Each finite power of X has the Gerlits–Nagy property.
(2) X has property S1(Ω,Ω) and Ω = Ωgp.
(3) X has property S1(Ω,Ωgp).
(4) On X ONE has no winning strategy in the game G1(Ω,Ωgp).
(5) For each n and k, X satisfies Ω → (Ωgp)nk .

Proof. The argument follows similar lines to that for Theorem 18, but
uses Theorem 16 instead of 14, Lemma 8 instead of 7, and Theorem 2 of
[20] instead of Theorem 3 of [24].

Next we give new characterizations of the cardinal number add(M). This
cardinal is the least cardinality of a family of first category sets whose union
is not first category. The symbol cov(M) denotes the least cardinality of a
family of first category sets whose union is the real line. Miller has shown
that add(M) = min{cov(M), b}. It was shown in [21] that the following are
equivalent for an infinite cardinal κ:

1. κ < cov(M).
2. For each n and k, Ωκ → (Ωκ)nk .

We shall use this information below. Also, note that Ωκ is a persistent
family, and the pair (Ωκ, Ω

gp
κ ) is selectable.

Theorem 20. For an infinite cardinal number κ the following are equiv-
alent :

(1) κ < add(M).
(2) ONE has no winning strategy in the game G1(Ωκ, Ω

gp
κ ).
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(3) For each n and k, Ωκ → (Ωgp
κ )nk .

(4) S1(Ωκ, Ω
gp
κ ) holds.

Proof. (1)⇒(2). Let F be a strategy for ONE in the game. Define a
family (Un1,n2,...,nk : n1, . . . , nk < ∞) of subsets of κ as follows: ONE’s
first move is F (∅), a countable combinatorial ω-cover of κ; enumerate it
bijectively by (Un : n <∞). If TWO chose Un1 ∈ F (∅), then ONE’s response
is another countable combinatorial ω-cover of κ—enumerate it bijectively as
(Un1,n : n <∞), and so on.

The family (Un1,...,nk : n1, . . . , nk < ∞) has the property that for each
(n1, . . . , nk) the set {Un1,...,nk,n : n < ∞} is a countable, combinatorial
ω-cover of κ. For each nonempty finite subset F of κ, define

SF = {f ∈ NN : for each n, F 6⊂ Ufdn}.
Then each SF is a nowhere dense subset of NN (where the topology is the
product topology and N has the discrete topology). But NN is homeomorphic
to the space of irrational numbers, and so as κ < add(M) we find that

⋃
{SF : F ⊂ κ finite}

is first category. Choose an f outside this union. Then the sequence

F (∅), Uf(1), F (Uf(1)), Uf(1),f(2), F (Uf(1), Uf(1),f(2)), Uf(1),f(2),f(3), . . .

shows that by the choice of f , {Ufdn : n < ∞} is a combinatorial ω-cover
of κ. We shall be done if we show that each countable combinatorial ω-cover
of κ is groupable.

Thus, let U = {Un : n < ∞} be a bijectively enumerated combinatorial
ω-cover of κ. For each nonempty finite subset F of κ define fF so that
for each n, fF (n) is the least m > fF (n − 1) for which there is a j with
fF (n) < j < m and F ⊂ Uj . Then {fF : F ⊂ κ finite} is a family of
≤ κ elements of NN. By Miller’s theorem there is an increasing mapping
g : N → N such that for each F , for all but finitely many n, we have
fF (n) < g(n). We may assume g(1) > 1.

Define h by h(n) = gexpn+1(2)(1) for all n (Here, exp0(2) = 2, and
expn+1(2) = 2expn(2)). Then for each nonempty finite F ⊂ κ, for all but
finitely many k there is a j with h(k) < fF (j) < h(k + 1). Thus, if for each
k we put Uk = {Uj : h(k) ≤ j < h(k + 1)} then the sequence (Uk : k < ∞)
witnesses the groupability of the combinatorial ω-cover U of κ.

(2)⇒(3). Since Ωκ is persistent, apply Theorem 1.
(3)⇒(4). Since (Ωκ, Ω

gp
κ ) is a selectable pair, apply Theorem 5.

(4)⇒(1). Consider a set X of real numbers of cardinality κ. Since count-
able ω-covers of X are also combinatorial ω-covers of X, (4) implies that
X has property S1(Ω,Ωgp). Thus, each set of real numbers of cardinality
κ has the Gerlits–Nagy property. But in [13] it was shown that the least



150 L. D. R. Kočinac and M. Scheepers

cardinality of a set of real numbers not having the Gerlits–Nagy property is
add(M).

7. Countable fan tightness and the Reznichenko property in
Cp(X). Cp(X) denotes the space of real-valued continuous functions on X,
endowed with the topology of pointwise convergence. Since this space is
homogeneous we may, when studying local properties, confine attention to
any particular element of Cp(X). For computational convenience we single
out 0, the constantly zero function. In [9] we characterized those Cp(X)
which have both the Reznichenko property and countable strong fan tight-
ness in terms of classical covering properties of X. We now do the same for
those Cp(X) which have both the Reznichenko property and countable fan
tightness.

Theorem 21. For a Tikhonov space X the following are equivalent :

(1) Each finite power of X has the Hurewicz property.
(2) Cp(X) has countable fan tightness as well as Reznichenko’s property.
(3) On Cp(X) ONE has no winning strategy in the game Gfin(Ω0, Ω

gp
0 ).

(4) For each k, Cp(X) satisfies Ω0 → dΩgp
0 e2k.

(5) Cp(X) has property Sfin(Ω0, Ω
gp
0 ).

Proof. (1)⇒(2). Since each finite power of X has the Hurewicz property,
each finite power of X has the Menger property. By Theorem 3.9 of [8], X
has property Sfin(Ω,Ω). By [1], Cp(X) has countable fan tightness.

We must show that Cp(X) has the Reznichenko property. Thus, let A be
an element of Ω0. We shall use the fact that ONE has no winning strat-
egy in the game Gfin(Ω,Ωgp) on X (Theorem 16). Define the following
strategy, σ, for ONE in Gfin(Ω,Ωgp): For each finite subset F of X the
neighborhood W (0, F, 1) of 0 has a nonempty intersection with A. Choose
fF ∈ A. Since fF is continuous, choose for each x ∈ F an open set Vx
such that fF [Vx] ⊂ (−1, 1), and then set VF =

⋃
x∈F Vx. ONE’s first move

is σ(∅) = {VF : F ⊂ X finite}, an ω-cover of X. Supposing that the fi-
nite set T1 = {VF1 , . . . , VFk} is TWO’s response, ONE first associates with
each element of TWO’s response a corresponding function fFj ∈ A for which
fFj [VFj ] ⊂ (−1, 1); let this finite set of functions be B1. Then ONE considers
A\B1, still an element ofΩ0, and for each finite set F ⊂ X chooses an fF ∈ A
in the neighborhood W (0, F, 1/2) of 0, then for each x in F chooses a neigh-
borhood Vx with fF [Vx] ⊂ (−1/2, 1/2), and finally defines VF =

⋃
x∈F Vx.

Then ONE plays σ(T1) = {VF : F ⊂ X finite}\T1, an ω-cover of X. Should
TWO now choose a finite set T2 ⊂ σ(T1), then ONE selects for each VF ∈ T2
an fF ∈ A \B1 for which fF [VF ] ⊂ (−1/2, 1/2), and let B2 be the finite set
of functions thus selected. Then ONE considers A \ (B1 ∪ B2), still an ele-
ment of Ω0, and for each finite subset F of X chooses an fF ∈ A \ (B1∪B2)



Combinatorics of open covers 151

which is in the neighborhood W (0, F, 1/3) of 0. For each x ∈ F choose a
neighborhood Vx such that fF [Vx] ⊂ (−1/3, 1/3), and put VF =

⋃
x∈F Vx.

Then ONE plays the ω-cover σ(T1, T2) = {VF : F ⊂ X finite} \ (T1 ∪ T2),
and so on.

Since σ is not a winning strategy for ONE, consider a σ-play lost by
ONE, say

σ(∅), T1, σ(T1), T2, σ(T1, T2), T3, . . .

and let B1, B2, . . . be the corresponding disjoint finite subsets of A con-
structed during the play. By the definition of σ:

1. the sequence (T1, T2, . . .) is pairwise disjoint;
2. the sequence (B1, B2, . . .) is pairwise disjoint;
3. for each VF ∈ Tn there is an f ∈ Bn with f [VF ] ⊂ (−1/n, 1/n).

Moreover, since ONE lost the play,
⋃
n<∞ Tn is a groupable ω-cover of X.

This implies that we may choose an infinite sequence n1 < n2 < . . . such
that if we put Uk =

⋃
nk≤j<nk+1

Tj for each k, then the Uk’s are disjoint
from each other (because the Tn’s are) and for each finite F ⊂ X, for all
but finitely many n there is a V ∈ Un with F ⊂ V . Correspondingly define
Ck =

⋃
nk≤j<nk+1

Bj . Then the Ck’s are disjoint finite sets. Let W (0, F, 1/n)
be a neighborhood of 0. For each k for which this is possible, choose a
Vk ∈ Uk with F ⊂ Vk, and then choose a corresponding fk ∈ Ck with
fk[Vk] ⊂ (−1/k, 1/k). Since this can be done for all but finitely many k, we
find that for all but finitely many k we have fk ∈W (0, F, 1/n)—i.e., for all
but finitely many k we have Ck ∩W (0, F, 1/n) 6= ∅. Since A is countable,
any points in A \⋃k<∞Ck may be distributed among the Ck so that after
distribution each is still finite. Thus, we may assume that A =

⋃
k<∞ Ck,

completing the proof that A is groupable. (Remark : we made the detour
through a strategy of ONE in the game Gfin(Ω,Ωgp) on X to ensure that
the Bn’s we came up with are disjoint from each other.)

(2)⇒(3). Let F be a strategy for ONE in the game Gfin(Ω0, Ω
gp
0 ) Then

F is also a strategy for ONE in the game Gfin(Ω0, Ω0). Since Cp(X) has
countable fan tightness, Theorem 11 of [20] implies that ONE has no win-
nig strategy in the game Gfin(Ω0, Ω0). Consider a play lost by ONE, say
F (∅), T1, F (T1), T2, F (T1, T2), . . . Then

⋃
n<∞ Tn is a countable member of

Ω0. Since Cp(X) also has the Reznichenko property,
⋃
n<∞ Tn is also group-

able, and so this play is also lost by ONE in Gfin(Ω0, Ω
gp
0 ).

(3)⇒(4). Since Ω0 is persistent, apply Theorem 3.
(4)⇒(5). Since Ω0 → dΩgp

0 e2k implies that each A ∈ Ω0 contains a count-
able B ⊂ A with B ∈ Ωgp

0 , it follows that each countable element of Ω0

is groupable. Moreover, the partition relation also implies Ω0 → dΩ0e2k. By
Theorem 11 of [20] the latter implies that Cp(X) has countable fan tightness,
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i.e., Sfin(Ω0, Ω0) holds. But since each countable element of Ω0 is groupable,
this implies that Sfin(Ω0, Ω

gp
0 ) holds.

(5)⇒(2). This is left as an exercise.
(2)⇒(1). We show that X satisfies Sfin(Ω,Ωgp). Since Cp(X) has count-

able fan tightness we know by a theorem of Arkhangel’skĭı in [1] that finite
powers of X have the Menger property, and thus by Theorem 3.9 of [8] that
X has property Sfin(Ω,Ω). By Theorem 5 of [20], ONE has no winning strat-
egy in the game Gfin(Ω,Ω) on X. We shall be done if we can show that each
countable ω-cover of X is groupable. Let U be a countable ω-cover of X.

For each finite set F ⊂ X pick a U ∈ U with F ⊂ U , and let fF,U
be a continuous function from X to [0,1] such that fU,F [F ] = {0}, and
fU,F [X \U ] = {1}. Then put A = {fU,F : F ⊂ X finite and U ∈ U}. Then A
is in Ω0. We may assume that A is countable (else, replace it by a countable
subset still in Ω0). Correspondingly, we may thin out U so that it contains
only those sets for which corresponding functions are in the thinned out A.
Since A is in Ω0 one can check that the thinned out U is still an ω-cover
of X. Thus, each element of U has a function from A associated with it.
Since A is groupable we may partition it as A =

⋃
n<∞Bn, where each Bn

is finite, any two Bn’s are disjoint from each other, and each neighborhood
of 0 meets all but finitely many of the Bn’s.

Define the strategy σ for ONE in the game Gfin(Ω,Ω) on X as follows:
σ(∅) = U . Should TWO now respond with the finite set T1 ⊂ σ(∅), ONE
first finds a finite set of functions fU,F , U ∈ T1 in A, and then chooses the
least n1 such that this set of functions are among the ones in C1 =

⋃
j≤n1

Bj .
Then ONE plays σ(T1) to be all sets in U \T1 not associated with any of the
functions in C1. If TWO now chooses the finite set T2 ⊂ σ(T1), then ONE
first finds a finite set of functions in A \ C1 of the form fU,F , U ∈ T2, and
then chooses the least n2 > n1 such that this set of functions are among
the functions in C2 =

⋃
n1<j≤n2

Bj ; next ONE plays σ(T1, T2) to be the set
of U ∈ U \ (T1 ∪ T2) that are not associated with any of the functions in
C1 ∪ C2, and so on.

Since σ is not a winning strategy for ONE, consider a σ-play

σ(∅), T1, σ(T1), T2, σ(T1, T2), T3, . . .

which was won by TWO, together with the corresponding finite subsets
C1, C2, . . . of A. Now expand T1 to a larger finite set by including for each
function in C1 a corresponding set from U into T1. Notice that this does not
require moving an element of a later Tn to T1. Similarly, for each n expand, if
necessary, Tn to include from U a set corresponding to each function in Cn.
Again, this requires no reassignment of sets already in some Tj to Tn. The
resulting sequence of Tn’s are finite and disjoint. We claim that

⋃
n<∞ Tn is

groupable. For let F be a finite subset of X, and consider the neighborhood
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W = W (0, F, 1) of 0. For all but finitely many n we have Cn ∩ W 6= ∅.
Choose for any such n an fU,G ∈ Cn ∩ W , where now U ∈ Tn. Then, as
fU,G[F ] ⊂ (−1, 1), and as fU,G[X \ U ] = {1}, it follows that F ⊂ U . Thus,
for all but finitely many n there are U ∈ Tn with F ⊂ Tn. Since the Tn’s
are pairwise disjoint, the set

⋃
n<∞ Tn is a groupable ω-cover of X. Thus, U

contains a groupable ω-cover, and as it is countable, it is itself groupable.

Remarks. 1. If a space X has property Sfin(Ωx, Ω
gp
x ), then X has count-

able fan tightness at x. But the converse is not true. Recall that a set of
real numbers is a Lusin set if it is uncountable and its intersection with ev-
ery first category set is countable. Lusin proved that under CH there exists
a Lusin set. In [8] it was shown that CH implies the existence of a Lusin
set L all of whose finite powers have Rothberger’s property. By a theorem
of Sakai [18], Cp(L) has countable strong fan tightness and thus countable
fan tightness. But by a result of Hurewicz no Lusin set has the Hurewicz
property. By Theorem 21, Cp(L) does not have property Sfin(Ω0, Ω

gp
0 ).

2. By Theorem 21 and a result from [23] if X is a perfectly normal space
and Cp(X) has property Sfin(Ω0, Ω

gp
0 ), then Cp(X) also has the monotonic

sequence selection property. The converse need not be true. A Sierpiński set
is an uncountable set of real numbers whose intersection with every set of
Lebesgue measure zero is countable. Sierpiński proved that under CH there
is a Sierpiński set. Let S be the (special) Sierpiński set constructed under CH
in [8]. Then Cp(S) has the sequence selection property (and thus the mono-
tonic sequence selection property) but does not have property Sfin(Ω0, Ω

gp
0 ),

because it does not have countable fan tightness (see [23]).

According to [2] spaces X and Y are t-equivalent if the spaces Cp(X)
and Cp(Y ) are homeomorphic.

Corollary 22. If X and Y are t-equivalent and if all finite powers of
X have the Hurewicz property , then all finite powers of Y have the Hurewicz
property.

If all finite powers of X have the Hurewicz property, then all finite powers
of X ×N have the Hurewicz property. Since Cp(X ×N) is homeomorphic to
Cp(X)ω, we have:

Corollary 23. If Cp(X) has property Sfin(Ω0, Ω
gp
0 ), then so does

Cp(X)ω.

By Theorem 21 and a result from [7] we also have

Corollary 24. The minimal cardinality of a set X of real numbers
such that Cp(X) does not have Sfin(Ω0, Ω

gp
0 ) is b.
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8. Countable strong fan tightness and the Reznichenko prop-
erty in Cp(X). The main result in [9] is:

Theorem 25. For a Tikhonov space X the following are equivalent.

(1) Each finite power of X has both the Hurewicz property and S1(O,O).
(2) Cp(X) has countable strong fan tightness as well as Reznichenko’s

property.

Using the techniques of this paper that result can be extended to the
following:

Theorem 26. For a Tikhonov space X the following are equivalent :

(1) X has property S1(Ω,Ωgp).
(2) Cp(X) has property S1(Ω0, Ω

gp
0 ).

(3) ONE has no winning strategy in the game G1(Ω0, Ω
gp
0 ).

(4) For each n and k, Cp(X) satisfies Ω0 → (Ωgp
0 )nk .
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