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Abstract. The toric Hilbert scheme is a parameter space for all ideals with the same
multigraded Hilbert function as a given toric ideal. Unlike the classical Hilbert scheme, it

is unknown whether toric Hilbert schemes are connected. We construct a graph on all the
monomial ideals on the scheme, called the flip graph, and prove that the toric Hilbert scheme
is connected if and only if the flip graph is connected. These graphs are used to exhibit curves
in P* whose associated toric Hilbert schemes have arbitrary dimension. We show that the
flip graph maps into the Baues graph of all triangulations of the point configuration defining
the toric ideal. Inspired by the recent discovery of a disconnected Baues graph, we close
with results that suggest the existence of a disconnected flip graph and hence a disconnected
toric Hilbert scheme.

1. Introduction

Let A=[a;---a,] be ad x ninteger matrix of rankl such that kefA) "N" = {0} and
letNA:= (3", mia;: m; € N} C Z9 be the non-negative integer span of the columns
of A. The symboIN denotes the set of natural numbers including zero. Consider the
NA-graded polynomial ring := Kk[x, ..., X,] over a fieldk with degx; := & for all
i and an ideal C Sthat is homogeneous with respect to the gradind\Nidy We say
that| is A-homogeneouand call thek-algebraR = S/1 an A-graded algebraf its
Hilbert function Hgr(b) := dim(R,) = 1 for allb € NA. Note that ifb lies in Z9\NA,
thenR, = {0}. If S/I is anA-graded algebra, thenis called anA-graded ideal If | is
generated by monomials it islmonomial A-graded ideal

A-graded algebras were introduced by Arnold [1] who investigated matrices of the
form A =[1 p q] where p andq are positive integers. A complete classification of all
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A-graded algebras arising fromx13 matrices can be found in [1], [12], and [13]. The
generalization ta x n matrices is due to Sturmfels [21]. The canonical example of an
A-graded ideal is théoric ideal of A, denoted ad 4. Initial ideals of | [22] are also
A-graded.

In[21] Sturmfels constructed a parameter space whose points are in bijection with the
distinct A-graded ideals irs. This scheme has the same underlying reduced scheme as
thetoric Hilbert schemef A, denoted a$la, which has been defined recently by Peeva
and Stillman [14], [15]. The classical Hilbert scheme parameterizes all homogeneous,
saturated ideals iB with a fixed Hilbert polynomial, wher&is graded by total degree.
However, unlike classical Hilbert schemes which are known to be connected [9], it
is unknown whether toric Hilbert schemes are connected. Several of the techniques
applied to classical Hilbert schemes cannot be used in the toric situation. In particular,
the multigraded Hilbert function used to defidegraded ideals is not preserved under
a change of coordinates. See [15] for further discussions. The only cases in which
Ha is known to be connected are whénhas corank one (i.en — d = 1) or two.

In the former case the connectivity is trivial, and in the latter it follows from results
in [8].

In Section 2 we define a graph on all the mononfiajraded ideals ir§, called the
flip graphof A, by defining an adjacency relation among these ideals. This generalizes
the notion of adjacency between two monomial initial ideals of the toric ilgaliven
by the edges of thetate polytopef | o [3]. Our main result in Section 3 reduces the
connectivity of the toric Hilbert scheme to a combinatorial problem.

Theorem 3.1. The toric Hilbert scheme Kis connected if and only if the flip graph
of A is connected

The flip graph ofA provides information on the structure Efy. In Section 4 we use
these graphs to prove that5 matrices can have toric Hilbert schemes of arbitrarily
high dimension. The projective toric variety of such a matrix is a cun@tin

Theorem 4.1. For each je N\{0}, there exists & x 5matrix A(j) such that its toric
Hilbert scheme K, has an irreducible component of dimension at least j

In Section 5 we relate the flip graph afto theBaues graplof .4 which is a graph on
all the triangulations of the point configuratigh:= {ay, ..., a,} C Z consisting of the
columns ofA. The edges of the Baues graph are givehistellar flips This graph and its
relatives have been studied extensively in discrete geometry [17]. Sturmfels proved that
the radical of a monomiaA-graded ideal is theStanley—Reisneadeal of a triangulation
of A, which we denote a& (rad(l)) (see Theorem 4.1 in [21] or Theorem 10.10 in [22]).
This gives a map from the vertices of the flip graph into the vertices of the Baues graph.
We extend this map to the edges of the flip graph.

Theorem 5.2. If | and |’ are adjacent monomial A-graded ideals in the flip graph of A
then either they have the same radical and hetngad(l)) = A(rad(1’)) or A(rad(l))
differs fromA (rad(1")) by a bistellar flip
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In [18] Santos constructed a configuratidrwith a disconnected Baues graph, thus
settling a central question that remained from d¢le@eralized Baues problefsee [17]
for a survey) which in its full generality was settled earlier by Rambau and Ziegler
[16]. Although Santos’s example does not immediately give a disconnected flip graph,
it strongly supports the possibility of one. In Section 6 we explain this connection and
provide results that point toward a disconnected flip graph and hence, by Theorem 3.1,
a disconnected toric Hilbert scheme.

2. The Flip Graph of A

In this section we define an adjacency relation on all mono#igtaded ideals which,
in turn, defines the flip graph @&. This graph is the main combinatorial object and tool
in this paper. We first recall the definition of @&agraded ideal.

Definition 2.1. Let A = [a; - --an] € Z%" be a matrix of rankd such that kefA) N
N" = {0} and |etNA = {Zi”:l mig: m; € N}. Anideall in S = K[xy, ..., X,] with
degx; = g is called anA-graded ideal ifl is A-homogeneous an® = S/I has the
73-graded Hilbert function:

if beNA,

Hr(b) := dime(Ry) = 0  otherwise

Note thatifb € Z4\NA, thenR, = {0} and hencélr(b) = 0. The canonical example
of an A-graded ideal is the toric ideéj which is the kernel of the ring homomorphism
@1 S— K[t ..., t31] given byx; > t¥. See [22] for more information. To see that
I a is A-graded, recall thaty = (x" — x": Au = Ay, u,v € N"), and is henceA-
homogeneous. For eabhe NA, any two monomialg" andx® in Sof A-degreeb (i.e.,
with Au = Av = b) arek-linearly dependent modulpy, making dink((S/1a)p) = 1. If
b e Z9\NA, then(l a)p, is zero.

Given aweight vectorw € N", the initial ideal of an ideal < S with respect to
w is the ideal ip, (1) := (in,(f): f € |) where in,(f) is the sum of all terms irf
of maximalw-weight. Our assumption that kek) N N" = {0} implies that there is a
strictly positive integer vectaw’ in the row space oA. Using the binomial description
of 15 given above, we then see thi{ is homogeneous with respect to the grading
degx) = w{. Hence, th&Grobner fanof | » coversR" and each cell in this fan contains
a non-zero non-negative integer vector in its relative interior (see Proposition 1.12 in
[22]). Therefore, for any weight vectar € Z", the initial ideal in, (1) is well defined
as it coincides with ig(la) wherew is a non-negative integer vector in the relative
interior of the Gobner cone ofv. Since the Hilbert function is preserved when passing
from an ideal to one of its initial ideals, all initial ideals bf are alsoA-graded.

If M is a monomialA-graded ideal, then for eathe NA there is a unique monomial
of degreeb that does not lie itM and is hence standardmonomial ofM. Definition 2.1
implies that allA-graded ideals are generated Ayhomogeneoubinomials(polyno-
mials with at most two terms) since any two monomials of the sartiegree have to
bek-linearly dependent modulo ar-graded ideal.
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There is a natural action of the algebraic to¢i®" on Sgiven by - x; = A;x; for
A€ (k9"

Definition 2.2. An A-graded ideal is said to lmherenif it is of the formA - in,, (1)
for somex € (k*)" andw € Z".

We recall the definition of th&raver basiof A [22]. Foru, v € N" we writeu < v
if foreachi =1,...,n,u; < v andu # v.

Definition 2.3. A binomial xY — x? with Au = Avis a Graver binomialif there do
not existu’, v’ € N" with AU = AV andu’ < u, v’ < v. The collection of all Graver
binomials is called th&raver basisGr a.

The following lemma is a strengthening of Lemma 10.5 in [22] and was also inde-
pendently discovered by Peeva and Stillman [15]. By the universabi&r basis of an
ideal we always mean the union of all the finitely many reduceacb@ef bases of the
ideal.

Lemma2.4. Let | be an A-graded idealand let G = {x® — cixf, ...,
x% — ¢gxP} be the universal Gibner basis of | Here the ¢ may be zero and for
each binomialx% and % are not bothin LIf ¢; = 0, chooses; so that Ay = A and
xPi & |. Then for all i, x4 — x# is a Graver binomialHence every minimal generator
of | is of this form

Proof. If x4 — ¢xf e G, then there is some term ordersuch that one ok% and
xP is a minimal generator of in(1), and the other is standard for.i(l ). Since in.(I)

is also A-graded, it suffices to prove the lemma for mononfAafiraded ideals, where
¢ =0foralli.

Suppose there exists arsuch thatx® — x# is not a Graver binomial. Then there
existsu, v € N" with Au = Avsuch thatl < «; andv < ;. Sincel is A-graded, one
of x4 orx¥isin I. If we havex! € |, thenx® would not be a minimal generator of
and ifx” e |, thenx® would not be standard. Therefosei — x# is a Graver binomial
for alli. O

Definition 2.5.  An A-homogeneous idedlin Sisweakly A-gradedf Hs (b) € {0, 1}
forallb € NA.

Lemma 2.6. Let| be anideal which for every Graver binomial x x? contains either
a binomial of the form % — cx?, where ¢ may be zeyor the monomial %. Then | is
weakly A-graded

Proof. It suffices to prove thal = in_(l) is weakly A-graded, wherex is any term
order, since in(1) has the same Hilbert function &slf x¢ — x# is a Graver binomial,
then since there is sonmawith x* — cx? e |, one ofx* andx? lies in M. Let xY and
X" be two monomials oA-degreeb, and letx* — x# be a Graver binomial with®|x"
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andx?|x". Since one ok andx” lies in M, one ofx" andx? lies in M. It thus follows
that there is at most one standard monomidifoin each degreb, and soM is weakly
A-graded. O

We now define a “flipping” procedure on a monomiagraded ideal which transforms
this ideal into an “adjacent” monomi&l-graded ideal. The idea is motivated by a similar
procedure for toric initial ideals which we describe briefly.

The distinct monomial initial ideals dfy are in bijection with the vertices of the state
polytope ofl 5, an(n — d)-dimensional polytope ifR" [3]. Two initial ideals are said
to be adjacent if they are indexed by adjacent vertices of the state polytope. The edges
of the state polytope are labeled by the binomials in the universabigr basis of a,
UGBA C Gra.

Supposd and |’ are two adjacent monomial initial ideals bf connected by the
edgex® —x?. The closure of the inner normal cone at the veit¢sespectivelyl’) is the
Grobner cone K(respectivelyK’) of | (respectivelyl ), the interior of which contains
all the weight vectorsw such that ip,(14) = | (respectively in (Ia) = 1’). The linear
span of the common facet & andK’ is the hyperplan¢u € R": (o« — 8) - u = 0}.
Whenuw is in the interior ofK, in,,(x* — x#) = x%, x¥ is a minimal generator df and
x8 & |. Whenw is in the interior ofK’, in,,(x* — x#) = x#, x# is a minimal generator
of I” andx® ¢ I’. For aw in the relative interior of the common facet &f and K’,
in, (x* —x#) = x* — xf. Hence passing fromhto I’ involves “flipping” the orientation
of the binomialx® — x#. No other binomial inUGB, changes orientation during this
passage. See [11] for details. We extend this notion of “flip” to all mono#igtaded
ideals. Two monomial-graded ideal$! and M’ differ by a “flip” in this more general
sense, if there is exactly one binomidél — x# in Gr, that changes orientation during
the flip.

Definition 2.7. Let | be a monomialA-graded ideal and lex* — x# be a Graver
binomial with x* a minimal generator of andx? ¢ 1. We definelyp, the result of
flipping over this binomial, to be

lfip i= (XY | 38: X¥ —x* € Gra, x” € I, X’ & |,y # a) + (xF).
Lemma 2.8. The ideal |, is weakly A-graded

Proof. Letx* — x# be a Graver binomial, with® < |. By Lemma 2.6 it suffices to
show that eithek® e lgip or X € Igip. Sincex® e I, there is some Graver binomial
x*" — xP" with x*" a minimal generator of, andx?" ¢ |, andx®" | x¥'. It is possible
thate” = o’ andp” = '. If &” # a, thenx®" € lgp, and sox¥ € lyip. If &” = a, then
B” = B. We divide this situation into three cases:

Casel: xf ¢ | ando’ = @’ (= a). In this cases’ = B and hence? = x# € Iyp.
Case2: x¥ ¢ | anda’ # a” (= a). In this case® € Iy, by definition.

Case3: x” e |.Sincex®” = x“ dividesx*', andx® andx”?" have disjoint supports, there
must be a minimal generator bfdifferent fromx® that dividesx?. Since this minimal
generator is i, by definition,x? € Igp. O
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As defined above, to construbi, requires knowledge of the entire Graver basis.
However, the local change algorithm in [11] can be used to condlggct

Lemma 2.9. The ideal };, is the initial ideal with respect to% < xB of W,—p = (X¥ |
y # a, X¥ is a minimal generator of )l + (x# — x*).

We note first that this initial ideal is well defined. The only non-trivBgbairs formed
during its construction are those of a monomial with— x¢, in which case the result
is a monomial multiple ok, so there is never any question of what the leading term
of a polynomial is. This means théiy, is in fact the initial ideal ofW,_g with respect
to any term order in whichx® < xf. We callW,_z awall ideal since in the coherent
situation it is the initial ideal of any weight vector in the relative interior of the common
faceywall between the Griner cones of and Iy [11].

Proof. LetK be the initial ideal ofW,_z with respect tox* < x#. We first show the
containmentK C lgjp. Let X” be a minimal generator df. If x” = xf, orx? is a
minimal generator of other tharx®, thenx” e lgjp. So we need only consider the case
thaty = ra 4+ g, wherer > 0 ande, 8 £ @, as this is the only other form minimal
generators oK can have. In order to show that is in Iy, it suffices to show that
x” —x% is a Graver binomial, whene is the unique standard monomiallobf the same
A-degree ax”.

Supposex” — x° is not a Graver binomial, so we can wrife= > u; + ¢, § =
> v + ¢, where for each, x! — x¥ is a Graver binomial. Since’ ¢ |, we must
havex e | andx" ¢ | foralli. If u; # « for somei, this would mean thax",
and hence”, was inlgjp. We can thus reduce to the case whgre= g andv; = g
for all i, and so§ = rg8 + g. Now sincex” is a minimal generator oK, there must
be a chain ofS-pairs and reductions leading t&'. The chain must start with some
minimal generatok** # x* of |, and continue tx2, which is the result of reduction
by x# — x* of S(x%, x# — x¥). The chain continues, witk® being the result of the
reduction byx? — x® of S(x¥-1, x# — x%), until reachingx® = x”. We observe that
X% = x"iet9 forall2 <i <k, withr; € N,ry =r, andg; € N". Sincex* andx?
have disjoint supports, thg-pair of x*-1 = x'i-1#+9-1 gndx?f — x is the monomial
[lem(x%-1, x#) /xP]x"i-1*x*, This monomial is reduced t&* = x"**td by xf — x*.
Hence; > ri_1+1 > r;_;. The monomiak¥ is the remainder of lciix%-*, x#) /x? after
reduction byx? —x*. Since lcnix%-1, x#) /x# dividesx%-1, we see that9 dividesx9-1.
The monomiak¥%-1~9% gotreduced to zero ¥’ —x* and hencg_1—g < (ri —ri_1)B.
Repeating this argument, we see that#f j, then O<r; <rj,x9 | X%, andg; — gj <
(rj —ri)B. The last fact implies that''#*9 dividesx"#+9 . Further, since* = x"2%+9
is the result of reducing(x*:, x# — x*) = (Ilem(x%, x#)/x#)x* by x — x*, we get
S(x2, xP —x) = x"'et"B+% wherer'+r” = rpand lemx®, xf) = x~Det"+Dp+0
However, sincer; # o anda and B have disjoint supports, we must have- 1 = 0
andr” 4+ 1 = r,. Hencex* dividesx"2#+%, Combining this with the fact that'i#+9
dividesx'i#+9 wheneveli < j and we can conclude that: dividesx"#*9 = x?. This
implies thatx® € 1, a contradiction. Therefore, this case cannot occur and we conclude
thatK C I fiip -
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We now show the reverse inclusion. Supp’$es a minimal generator df;p, notequal
to x#, andx” — x® is the corresponding Graver binomial with & | . We may assume
thatx” is a multiple ofx*, as otherwise it lies i, _g, and thus is irK automatically.
Write y = ra + y/, wherea £ y'. Suppose that”?**" ¢ |. Thens =rp + y/, so we
must havey’ = 0 andr = 1 to preservex” — x° being a Graver binomial. However,
theny = «, contradicting<” being a minimal generator dfi,. Thusx#*”" € 1, and
so there is some’ # o with x* a minimal generator of such thaty’ < rg + y’. This
means thax"#+"" € W,_z, and sax"**”" = x” € W,_g because’ — x* € W,_z. Any
monomial inW,_; is in K, so we conclude that” € K. O

Definition 2.10. We say that a binomiat* — x# in the Graver basis lippablefor a
monomialA-graded ideal if x* is a minimal generator df, x? ¢ I, and the idealsp
obtained by flipping overx® — x# is again a monomial-graded ideal.

We now give a characterization of when a binomial is flippable.

Theorem 2.11. Let | be a monomial A-graded ideadnd let ¥ — x? be a Graver
binomial Then ¥ — x# is flippable for | if and only if I is the initial ideal with respect
to x# < x* of the wall ideal W_g = (X” | y # a,X” is a minimal generator of
) + (x* — x5).

Proof. SinceW,_z is A-homogeneous], is the initial ideal ofW,_gz if and only if
W,z is anA-graded ideal. However, by Lemma 24}, is an initial ideal ofW,_g, so
is A-graded exactly wheWV, g is. O

Definition 2.12. Theflip graph of A has as its vertices all the monomiatgraded
ideals inS. There is an edge labeled by the Graver binomta x? between two
verticesl andl’, if 1’ can be obtained frorh by flipping overx* — x#.

Remark 2.13. The edge graph of the state polytopel@fis a subgraph of the flip
graph of A. Since the state polytope df, is (n — d)-dimensional, this subgraph is
(n — d)-connected and so every vertex in this subgraph has valency ableast

Let Flips, denote the set of binomials labeling the edges of the flip graph 8ince
the edges of the state polytope lof are labeled by the elements WGB,, we have
UGB, C Flips, € Gra.

Remark 2.14. (i) Gasharov and Peeva [8] proved that all mononfiagraded ideals
of corank two matrices are coherent. Hence, in this case, the flip graplsgirecisely
the edge graph of the state polytopelgf which is a polygon since — d = 2, and
UGB, = Flips,. However, even in this casElips, may be properly contained @r a:
for A=[1 3 7],UGB, = Flips, = {a’c—b3,a®—b,ac®—b® b’ —c3 c—a’, ak’—c}
while Grp = Flips, U {a*b — c}.

(ii) For A = [1 3 4],UGBa = Flips, = Gra = {ac® — b% a’c — b?,b* — ¢, b —
a%, ab—c,a*—cJ.
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(iii) For A =[3 4 5 1314],UGBA C Flipsy € Gra. In this caseFlips,\UGBp =
{a?bcd— €2} while Gra\Flips, = {d* —bc’e?, ad® — be?, &3 — bbed, b3cd® — e, €3 —
a?c2d?, e? — ab’c, € — ab’cd?, €3 — a*bd?).

For fixed A, let Sy be the intersection of all the monomiatgraded ideals irs and
let Py = (x*xP: x* —xP e Gra). ThenP, is contained, sometimes strictly, 8 since
for each Graver binomiat® — x#, at least one ok or x# belongs to each monomial
A-graded ideal.

Lemma 2.15. If x* — x# e Gra has at least one of%or x? in Pa, then » — x# e
Gra\Flips,. The converse is false

Proof. Suppos&® — x# is a flippable binomial for a monomi&-graded ideal such
thatx® € | andx? ¢ |.If X* € Pa C Sa, thenx® € Igp and if X € Pa C Sa, then
x# e | both of which are contradictions. To see that the converse is false, consider

A:

o ON

1
1
0

o N O

10
010
11

which has 29 monomiah-graded ideals, all of which are coherent. The binomilxs—
XoX3Xs € Gra\Flips,, but neitherx;Xsxs nor Xxsxs lies in Py = (x1x§x4, xlxgxe,
XaX2X6, X1X2X3X5, XoX3X4X5, X2XgX5X6, X1 X5 XEXe, XaXZXaXe, X1X3XaX2, X1XoX3XaX5Xe) . (]

3. Connection to the Toric Hilbert Scheme

In this section we explain the relevance of flips for the toric Hilbert schémmeWe
begin by describing the toric Hilbert scheme.

A parameter space for the set Afgraded ideals was first described by Sturmfels
[21]. Peeva and Stillman improved on this construction by producing the toric Hilbert
scheme ofA [14], [15], which they show satisfies an important universal property. It is
a version of their equations we explain below.

A degreeb € NA is a Graver degree if there is some Graver binomfal- x# with
Ax = AB = b. We denote by, ..., by the Graver degrees and by the number of
monomials of degreb, . Let

X =Pt Pl .. x PN

We now describeH as a subscheme &f. The coordinates of ead?™ 1 can be
labeled by the monomials of degrbeas{&,: Au= bj}. A point p € X corresponds to
a weakly A-graded ideal, by the following procedure: For each pait, x” of degree
bi, we place the binomiaj,x" — &,x" in |,. For each Graver binomia® — x? there
thus is either a binomial of the form* — cx? in the resulting ideal, where may
be zero, orx? = x# — 0x* is in the ideal. This is immediate except in the case that
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& = &g = 0. Inthat case, choosewith Ay = Aa such that, # 0. Then the binomial
£,X* —£,X” € lp, S0X” € |, andx* — 0-x* is the required binomial. Lemma 2.6 now
implies thatl, is weakly A-graded.

We note that the toric idedl, corresponds to the point i with &, = 1 for allu. A
monomial A-graded ideal corresponds to a popin X where, foreach ki < N, p
restricted to thé®™ ~! factor has one coordinatg, = 1, and all othek, in this factor
equal to zero. In general, Ku = b;, thenx" € |, exactly if§, = 0.

We now give equations fdt 4, which guarantee that the resulting idelgJsre in fact
A-graded. For each € NA we construct the matrii, whosed, rows are labeled by
the monomials of degre® Theny, columns ofMy, are labeled by pairg!, x¥ of degree
b such that there is some binomigl — x# whose degree is a Graver degree such that
U= v — « + B. The corresponding column consistségfin the x" row, —&; in the x”
row, and zeros elsewhere.

The global equations fdf 5 are now given by the maximal minors bfy, for every
b € NA. To see that these equations guaranteelthist A-graded, note that if, is not
A-graded, there is some degree= NA with all monomials of degreb contained in
I,. Now homogeneous polynomials of degkeare in one-to-one correspondence with
vectors ink®. The bijection takes the basis vector with a one in the row corresponding
to x" and zeros elsewhere #d', and is defined on other vectors by linear extension.
Homogeneous polynomials of degieeontained inl, are those corresponding to the
image of the map: k™ — k% given byo: x = Mpx. Thus if all monomials of degree
b are inl,, My must have full rank, which means that there is a maximal minor which
does not vanish.

While these equations fd, are not binomial, it follows from [14] that each irre-
ducible component of the scheme is given by binomial equations. In [14] Peeva and
Stillman give an explicit binomial description of the local equationsHararound each
monomial ideal. The work of Eisenbud and Sturmfels on binomial ideals [5] now im-
plies that the radical of the ideal defining each component is also a binomial ideal, and
so the reduced structure on each irreducible component is a toric variety. It should be
emphasized here that the components are not necessarily normal, and we are using a
wider definition of toric variety than that found, for example, in [7]. We denotéy
the underlying reduced schemeldf.

The main result of this section is:

Theorem 3.1. The toric Hilbert scheme Kis connected if and only if the flip graph
of A is connected

The remainder of this section builds up to the proof of Theorem 3.1. By the support
of a pointv € A" we mean supf) := {i: v # 0}. In what follows we assume some
familiarity with toric varieties, such as that given in [6] or [7].

Corollary 2.6 of [5] says that every prime binomial ideal determines a (not necessarily
normal) toric variety. The next lemma gives a property of such varieties. \\hisna
prime ideal ofSwe denote by (Q) the zero set of) in A".

Lemma 3.2. Consider the point configuratiofpy, . .., p,} € Z% and its toric ideal
Q = ker(p: K[Xq, ..., X%n] = K[tP:, ..., tP]) which is a prime binomial idealLet v,
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andwv; be two points in Q) € A". Thenv; andw;, lie in the same torus orbit of ¥Q)
if and only if they have the same support

Proof. The dense torus i (Q) is V (Q) N (k*)", and the action of this torus dn(Q)
is by coordinatewise multiplication. It thus follows thavif andv, are in the same torus
orbit, they have the same support.

Supposev1, vz € V(Q) have the same support. If this support is the entire set
{1, ..., n}, then definas; = (v1)i /(v2);. Then ifx* — x# is a binomial inQ, u* —uf =
v /g —of vl = @/ugud) wivh —vPug) = 0, souisinV(Q) N (k*)", and sov; and
vy are in the same torus orbit.

Suppose now that; and v, have the same supportC {1, ..., n}. Sincev; and
v are inV (Q), this means that there is no binomial@of the formx* — x# where
supfa) € t and suppB) Z t. This is because if such a binomial were@n we will
havev” = 0 fori = 1,2, andv® # 0 fori = 1, 2, which contradictsy, v; € V(Q).
This means that there is no affine dependency betWpeni € t} and{p: i & t}.
However, this implies that cop;: i € 7) is a face of congp;: 1 <i < n), and if
pj € conM(p;i: i € 1), thenj e t. This means that; andv; lie in an invariant toric
subvariety, and so by a similar argument to above are torus isomorphic. O

The action of(k*)" on A-graded ideals gives an action @)" on Ha. Then-torus
acts by mapping € Hatot - v via the map(t - v), = tUv,. We refer to this action as
then-torus action. Since each irreducible componénif H, is a toric variety, there is
also an action of a div )-dimensional torus on a point for every irreducible component
V of the reduced toric Hilbert scheme the point belongs to. We refer to these actions
as the ambient torus actions. We note that these torus actions are usually different from
then-torus action, as each of the finitely many irreducible componenksxdias only
finitely many ambient torus orbits, but there can be an infinite numbestofus orbits.
An example of this situation is given in Theorem 10.4 of [22]. Theorus orbit of a
point is, however, contained inside all ambient torus orbits of that point.

Corollary 3.3. Letv be a point onHa. Then the n-torus orbit of is contained in any
ambient torus orbit ob.

Proof It is straightforward to see that v lies in every irreducible component bfa
in which v does (this follows from the fact th&l]/(1, + (1 — 1) (l;.,)) is a flatk[l]
module). All points in then-torus orbit ofv have the same support, and thus lie on the
same ambient torus orbit by Lemma 3.2. O

Fix an irreducible compone of Ha. SinceV is a projective toric variety, there is a
polytopeP corresponding t& . An ambient torus orbit of a pointe H, corresponds to
a face ofP. In the case of the coherent component, this polytope is the state polytope of
I o. As the coherent component is not necessarily normal [20], however, the toric variety
traditionally associated to the state polytope is only the normalization of the coherent
component. The next two lemmas build up to showing that the edges of the poBtope
correspond exactly to flips.
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Lemma 3.4. Vertices of P correspond exactly to the monomial A-graded ideals in V

Proof. Let| be the ideal corresponding to a vertpxof P. The orbit ofl under the
ambient torus corresponding Bis just the ideal . By Corollary 3.3 then-torus orbit
of | is contained in any ambient torus orbit, Eds n-torus fixed as well, and thus is a
monomial ideal.

For the other implication, let be a monomialA-graded ideal corresponding to a
pointv in V. As a point inX, v is the product of unit vectors. It is thus invariant under
any scaling of its coordinates in any fashion, and so is invariant under any ambient torus
action. The poinb is therefore a vertex oP. O

Lemma 3.5. Let | be an A-graded idealf | has exactly two initial idealsthen | is
n-torus isomorphic to an ideal of the form=3 (x* — x#, x"1, ..., x").

Proof. Let My andM, be the two initial ideals of, and letG be the universal Gdner
basis ofl . The setj contains a reduced Gloher basis fot with respect to a term order
for which My is the initial ideal, and so there exist binomiafs— cx® € G with ¢ £ 0
for whichx® is a minimal generator dfl;, x? ¢ M;. Suppose for all such binomials we
havex® € M,. ThenM; C M; is an inclusion of distinct monomiah-graded ideals,
which is impossible. So we conclude that there is some binaxfiial c;x: € G with

c; # 0,x% € M1\ My, andx? e M2\ M;.

Suppose there is some other binomi&l — c,x2 e G with ¢, # 0. Without loss
of generality we may assume the? € M; andx?> ¢ M;. We note thata; — B1) #
(a2 — B2), as by Lemma 2.6 the two binomiaks: — xf1 andx*2 — x#2 are Graver
binomials, and they must be distinct singés the universal Gabner basis of . We can
thus find a supporting hyperplane for pes— B1, B2 — a2), which intersects the cone
only atthe origin. This implies the existence of a veatavhich satisfies - («¢1— 1) > 0
andw - (8, —ap) > 0. LetM = in, (). This is well defined as the @Gbner region of
| is all of R". Thenx® € M andx?> € M, soM # M; andM # M,. This means that
| has a third initial ideal, which contradicts our assumption, and so we conclude that
X% — ¢y xP1 is the only binomial ing.

Picki € supgBy). Definex; = 1/cy, andrj = 1for j #i. Thenal is in the desired
form. O

Theorem 3.6. Let M; and M, be monomial A-graded ideals corresponding to vertices
p: and p of P. My and M, are connected by a single flip if and only if there is an edge
e of P connecting pand p.

Proof. Supposep; andp, are connected by an edgd_et | be the ideal corresponding
to a pointp in the relative interior ofe. By Corollary 3.3 then-torus closure ofp is
contained ire. Thus| has at most two initial ideals. If had only one initial ideal, it
would be a monomial ideal and thus corresponds to a vertBxloy Lemma 3.4. We thus
conclude that has exactly two initial idealdyl; and M,, corresponding tg; and pa,
respectively. Now by Lemma 315is n-torus isomorphic td = (x* —x#, x, ..., x"),
wherex® € M;\M;andx? € M,\M;. Sincel is A-gradedx® —x” is a Graver binomial.
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Because) has initial idealsM, and My, it is their wall idealW,_g, and soM; and M,
are connected by a flip ovaf — x5.

Conversely, suppodd; andM, are connected by a single flip. Then there is an ideal
W,_p = (x* —xP, x7, ..., x) which has as its two initial ideal§l; andM,. Let J be
an A-graded ideal which is isomorphic #,_z under the action of the ambient torus
corresponding td. Let x* be a minimal generator dfl;, with § # «, andx? — x¢ the
corresponding Graver binomial witf ¢ M. Thenx® € W,_z, and thus<’ € J, as the
ambient torus action preserves the monomials irAagraded ideal. S@ contains all
minimal generators d¥1; andM, exceptx® andx”?. Supposel has a minimal generator
x¥ —cx?', wherex® —x#' is a Graver binomiak®', x#" ¢ J, anda’, 8’ # «, 8. Without
loss of generality we may assume ti&t € M. If X ¢ My, thenx® € W,_4 by the
definition of W,_g, and thus alsa® e J. We thus conclude that®” € M;. However,

this means there exist’ < o/, 8” < 8/, such thax®’ andx? " are minimal generators
of M;. Sincex® andx?" have disjoint support, we cannot haveé= g” = «, so at least
one ofx?" andx? isin W,_ 4. However, this means at least onexsf andx? is in J,
giving a contradiction. Hence the only binomial minimal generatod @ of the form
x* — c¢’xP, so as in the proof of Lemma 3.5is n-torus isomorphic td\,_s. We thus
see that all ambient torus closuresWif_z are the same as timetorus closure, and so
p; and p, are connected by an edge. O

Proof of Theoren8.1. It suffices to show that the reduced schetingis connected if
and only if the flip graph ofA is connected. Since passing to an initial ideal is a flat
deformation, each irreducible component contains a monofzgdaded ideal. It thus
suffices to show that all monomialgraded ideals lie in the same connected component
of Ha if and only if the flip graph is connected. The “if” direction follows from the
fact that if I, and I, are connected by a single flip, then they are both initial ideals
of a single wall ideaW,_g, and so lie in the same connected componeritigf The
“only-if” direction follows from Lemma 3.4 and Theorem 3.6, which imply that the flip
graph restricted to an irreducible componenthfis the edge skeleton of the polytope
corresponding to that component, whose vertices are the mondagedded ideals in
that component, and so is connected. As the intersection of two irreducible components
of Ha contains a monomiah-graded ideal by Gitiner deformation, this means that if
Ha is connected, the flip graph @ is connected. O

Remark 3.7. We close this section by noting that Peeva and Stillman [15] have shown
that the dimension of the tangent spacétoat a monomialA-graded ideal is equal
to the number of flippable binomials of

4. Toric Hilbert Schemes of Arbitrarily High Dimension from Curves in P*

In this section we exhibit toric Hilbert schemes of arbitrarily high dimensions for which
the associated toric varieties are curve®inWhen A has corank one, its Graver basis
consists of precisely one binomii—x#, and the flip graph oA has only the two vertices

I = (x¥) andl’ = (x#) which are connected by the flx* — x#. HenceH, is one-
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dimensional and connected. Agraded ideals of a corank two matrix are coherent [8]
which implies that the flip graph dk is connected since it coincides with the edge graph

of the state polytope dfa. In this caseH has exactly one irreducible component which

is two-dimensional and smooth [15]. The toric Hilbert scheme of a corank three matrix
is at least three-dimensional since the irreducible component containing the coherent
A-graded ideals has dimension three. In contrast to the results in coranks one and two,
Theorem 4.1 gives a family ofs25 matrices of corank three whose toric Hilbert schemes
can have arbitrarily high dimensions. The projective toric variety of each matrix in the
family is a curve inP*. Note that both the corank— d and the number of columms

are fixed for these matrices.

Theorem 4.1. For each je N\{0}, the toric Hilbert scheme K;, of

, 11 1 1 1
A()) = . . .
0 1 3+3] 4+43] 6+3j
has an irreducible component of dimension at least |

These matrices were motivated by Example 5.11 in [23], and the theorem was inspired
by computer experiments on their flip graphs. We first define the following monomial
ideals and sets of binomials that will be used in the proof of Theorem 4.1. For each
j € N\{0}, let

P, = (c%e, bc, a%e, ace aelt?), R = (a5l a8l 1, ..., a%3i ),
Qj — (bei+1, aZCH'l, b4ej , Cj+2), S — (b7ej‘1, blOej —2, o b7+3(j—1))

and

P, = (c’e— d° bc— ad, a%e — b’d, ace— be?, aé ™2 — ¢! d?},
Q; = {be ™ —cltd, a%c! ! — b, b'e! —a’cld, c/*? —ad ™,
R = {a>H3cIt —ptel D t=0,1,...,] - 1),

S = (b el bt _gbt3tei-Dtg t=0,1,..., ) —1).

Lemma4.2. Theideal M = P, 4+ Q; + R, + § is the initial ideal of I5;, with respect
to the weight vectow = (1, 1, 2,0, 2).

Proof. By computing theA(j)-degree of both terms in each binomial@f:= P; U
QjUR;US;, itcan be seenthg; is a subset of5(j. It can also be checked that for each
binomial ing;, the positive term is the leading term with respeciute= (1, 1, 2, 0, 2).
HenceM; = (in,(9): g € G;) is contained in the initial ideal offa;, with respect to
w and no generator d¥l; is redundant. The monomial idell; will equal in, (1))

if G is the reduced @tiner basis of 5j, with respect taw. Consider the elimination
orderx, y > a, b, ¢, d, erefined by the graded reverse lexicographic osder y on the
first block of variables and the weight vectoron the second block of variables. Then
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the reduced Giiner basis of o(j, with respect tow is the intersection of the reduced
Grobner basis of

J()) = (@a—x,b—xy,c—xy**3 d — c xy**3 e — xyf*3)

with respect to- with k[a, b, ¢, d, €] (see Algorithm 4.5 in [22]). By a laborious check
it can be shown that the reduceddBner basis ofl (j) with respect to- is

Gi U {x—a,ya—b,ybd—ae yc— d,yd® —ce y’d —e,

ypH2eit _ g3ttt ¢ .

y2b3Hlei~t _ g3tcth—t ¢ —q ],

yipdtePt ¥ 1Pl 1 =1 ., t=1...,p:=(+1 I,
yI+ipdt-lep—t _ g¥=2cp—t+1 | —1 . j, t=1,...,p,
yIrpdt—2gh—t _ g¥=3ch—t+1 | —1 . j, t=1,...,pk O

Lemma 4.3. Foreach je N\{0} the monomial Aj)-graded ideal M from Lemma.2
has exactly2j + 4 flippable binomials

Proof.  We will show that the binomials i®; UR; US; are flippable foM; while those
in Pj are not. In order to show that a binomiel — x* is flippable forM; we need to
show that eveng-polynomial (monomial in our case) formed from the binonxiak- x#
(with x* as leading term) and a minimal generatérof M; different fromx“ reduces
to zero moduldN,_g = (X”: y # a, X” a minimal generator oi;) + (x* — xPy.

We first consideR; . A binomiala®*3 ¢/t —p5+3e~D-tin R, can form a non-trivial
S-pair (S monomial) with

(i) c%e,
(i) be,
(i) ae,
(iv) ace
(v) aelt?,
(vi) a%ci+l,
(vii) ¢i*2, and
(viii) a monomiala®3c!~! from R; such that # 1.

The remaining generators bf; (excepa® 3¢l itself) are relatively prime ta>+3cl
and so theS-pairs formed reduce to zero by Buchberger’s first criterion. We consider
each case separately.

(i) The SS'monomials formed frona?e anda®3¢ci—t — p8+3te(—D-t grepS+3tcPel
O<t<j—1,wherep=1ifj—t=1andp=0if j —t > 1.

(a) Ift =0,bScPel is a multiple ofb*el € Q. .
(b) Ift > 0, b%"3cPel~! reduces to zero moduly 3t-bel~t ¢ §.

(ii) The S-monomials formed fronbc areb’+3el-Y-t 0 <t < j — 1, all of which
lie in § and hence reduce to zero modwly_g.
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(iii) The S-monomials betweea?e anda®+3¢cl—t — p®+3teli—D-t grepb+3el-t for
0<t < j—1.Ift = 0,thenb® isamultiple obb*el € Q;, andift > 0, thenb® el
is divisible byb™3t-Delt ¢ §.

(iv) The S-monomials fromaceareb®+3ei~t for0 <t < j — 1, all of which reduce
to zero as in (jii).

(v) The monomiahel +2 giveshb®+3e?i+1-t for0 < t < j — 1, all of which reduce to
zero modulche ™ € Q;.

(vi) Froma?ci+! we geth®+3tcttleli—D-t 0 <t < j — 1, all of which are multiples
ofbce Pj.

(vii) The S-monomials fromci+2 areb+3ct*+2e~1-t which are also multiples of
bce PiforO<t<j—-1

(viii) For this last case, suppose first that< t € {0,1,2,...,j — 1}. Then
lem(@>t3ci-!, a5t3tci-t)y = a®t3ci-! and the Smonomial betweera®3¢ci~! and
ast3tci—t—pB+3tel-D-tjgpS+3tct-leli—D-t whichis amultiple obc € Pj.If| > t, then
the Smonomial isa®! -V b&+3teli =Dt which is divisible byae € Pj sincet <1 < j—1
and hence < j — 1.

Similarly, one can check that the binomials@p U S; are all flippable foiM;, which
shows thatl; has at least P+ 4 flippable binomials. To finish the proof, we argue that
no binomial inP; is flippable forM;.

(i) The S-binomial betweer?e—d* € P; andbc € P is bd® which is not divisible
by any generator oM; .

(i) The binomialsbc — ad, a%e — b?d, andace— bd? € P; form the S-binomials
ade ™, b*de, andb?d?el, respectively wittbe! * € Q;. None of them can be
divided by a minimal generator ofl; .

(iii)y The S-binomial ofag*2 —cld® e Q; anda®e e P; is ac' d® which does not lie
in Mj.

HenceM; has exactly 2 + 4 flippable binomials. O

Proof of Theoren#.1. The same proof as in Lemma 4.3 shows that the generators of
T(pos - - s j—1) = P+ Qj + (@It — b3t t =0,...,] -1+ §
form a Gobner basis with respect io = (1, 1, 2, 0, 2) with initial ideal M;, for every
choice of scalarpy, . . ., nj—1 from the underlying fieldk. Lemma 4.3 proved this claim
for the case whem; = 1 forsome 0<i < j —1andu; = O forall j # i. Since
M; is A(j)-graded, theA(j)-homogeneous idedl(uo, . .., nj—1) is alsoA(j)-graded
for every choice of scalarg,, ..., uj—1. Hence there is an injective polynomial map
from A} — Ha(jy, such thatu, . . ., 1j—1) maps to the point ot zj, corresponding
(uniquely) taZ (uo, . . ., f4j—1)- SinceA| isirreducible, the image of this map lies entirely
in one irreducible component of the toric Hilbert schehhg;j, and the dimension of
this component is at least d'(mi) =j. O

Remark 4.4. In [23] it was conjectured that the maximum valency of a vertex in the
state polytope ofl 5 is bounded above by a function of just the corank/ofAs a
particular case, it was also conjectured thakifs of corank three, then every vertex in
the state polytope dfa has at most four neighbors. This latter conjecture was recently
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disproved by Heten and Maclagan [10] who have found vertices with up to six neighbors.
Lemma 4.3 shows that even in corank three, a vertex in the flip graghaain have
arbitrarily many neighbors.

5. Connection to the Baues Problem

In this section we elaborate a connection betwaagraded ideals and the Baues problem
for triangulations. A good reference for all forms of the Baues problem is [17].

A triangulation of a point configuratiosl = {ay,...,a,} € Z% is a geometric
simplicial complex covering corfay, . . ., a,) with the vertices of each simplex being a
subset ofd. Each simplex is indexed by the sdt: g; is a vertex ofv}.

A basic operation on triangulations of a point configuration ishiséellar flip. The
two basic types of non-degenerate bistellar flips in the plane are shown in Fig. 1.

Intuitively, a bistellar flip should be thought of as gluing in a higher-dimensional
simplex, and then turning that simplex over and viewing it from the other side. This can
be seen most clearly in the second example in Fig.1, which can be viewed as the top and
bottom of a tetrahedron. The first example can also be thought of as two opposite views
of a tetrahedron.

More formally, a bistellar flip interchanges the two different triangulationsairicait
of A. A vectort € Z" is called a circuit of4 if it lies in the kernel of the matrix whose
columns are the points of, supgt) is minimal with respect to inclusion when compared
against the supports of all integral vectors in the kernel of this matrix, and its non-zero
entries do not have a common divisor. ltdte a circuit of the configuratiod, and let
T = {i: tj # 0} be its support. We denote Biy' the set{i: t; > 0} and byT~ the
set{i: ti < 0}. There are exactly two triangulations 6f= conug;: i € T). The first,

C™*, has|T*| simplices, which are the simplices indexed by the §&tgi}: i € T*}.

The secondC—, has|T ~| simplices, which are the setsfii\{i}: i € T~}. The unique
minimal non-face ofC* (C~) is T+ (T ™). If C is d-dimensional, and one @&* and
C~ is a subcomplex of the triangulatiax, then a bistellar flip over the circuiinvolves
replacing the subcompleX* by C~ or vice versa.

If C is lower-dimensional, we impose an additional conditiort fiarbe flippable. By
thelink of a simplexo in a simplicial complexA we mean the collection of simplices
{t: tNo =0, 7 Uo € A}. We sayt is flippable ifC* (or C™) is a subcomplex of

Nel
A0/

Fig. 1. Bistellar flips for triangulations of points in the plane.
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/ N

Fig. 2. Triangulations differing by bistellar flips.

A, and the link in A of every maximal simplex o€* (respectivelyC™) is the same
subcomplex.. This second condition is trivially satisfied@ is d-dimensional, as the
link of every maximal simplex is the empty set. A bistellar flip over the cirtdiitom
C* to C~ theninvolves replacing the simpliclsJo: o € C*,| € L} by the simplices
{flTuz: teC,l elL}.

Examples of bistellar flips are shown in Fig. 2.

We can form a graph, called tli&aues graphon the set of all triangulations of a
point configuration, with an edge connecting two triangulations when they differ by a
bistellar flip. Figure 2 is a subgraph of the Baues graph for a particular collection of six
points in the plane. An obvious question to ask is whether the Baues graph is connected.
Santos recently answered this question negatively [18], constructing a configuration of
324 points inZ® which has a disconnected Baues graph. For the original Baues problem,
the point configurations considered can have real coordinates and Santos’s main point
configuration lies irR®. However, he also exhibits a configuratiorzihiwith 324 points
that has a disconnected Baues graph.

The rest of this section relates the Baues graph to the flip graph and the toric Hilbert
scheme. The connection is through the following lemma, which is a special case of
Theorem 10.10in[22]. It links monomi&-graded ideals and triangulationséfwhere
Ais the matrix whose columns are the pointsdiywith an additional row of ones added.

We denote both thigh column ofA and thd th point of A by ;. We adopt the notational
conventionthatit C {1, ..., n}isaset, thex” = [];_, Xi. TheStanley—Reisner ideal
(see [19])] (A) of a simplicial complexA is the ideal generated by the monomiafs
where the sets are the minimal non-faces df. Similarly, every squarefree monomial
ideall in Sdefines a unique simplicial complex(l) on{1, ..., n}.

Lemma 5.1[22, Theorem 10.10]. Let | be a monomial A-graded idealhenA (rad
(1)), the simplicial complex associated tad(1) via the Stanley—Reisner correspon-
denceis a triangulation ofA. O

We can now state the main theorem of this section.

Theorem 5.2. Let | be a monomial A-graded ideal and let x x? be a flippable
binomial for I. Then eitherA(rad(l)) = A(rad(lqp)) or they differ by a bistellar flip
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The proof will be developed through the following series of lemmas. We need to show
that if I, andl, are monomialA-graded ideals which differ by a flip, then either their
radicals are the same ar(rad(l;)) and A(rad(l,)) differ by a bistellar flip. The latter
involves showing:

(1) t = « — B is acircuit of A (Lemma 5.3).

(2) C* is a subcomplex of\ (rad(1)) with the link of all maximal simplices o€ ™
the same (Lemma 5.4).

(3) A(rad(lsip)) differs from A(rad(1)) exactly by replacing* and its link byC~
and the corresponding link.

By a circuit of A we mean a binomiat* — x# such thatx — 8 is a circuit of.A. The
set of circuits is contained in the Graver basis®dP2, Proposition 4.11].

Lemma5.3. Let | be a monomial A-graded ideatith x* — x# a flippable binomial
with x* € 1. Then ¥ € rad(l) < rad(l) = rad(lsp). If X? & rad(l), then ¥ — xf is a
circuit of A.

Proof. The implication< is immediate in the first statement so we need only show
thatx? e rad(l) implies radl) = rad(lgip). Suppose? e rad(l). Letx” be a minimal
generator oflgi,. Then eithex” is a minimal generator of, y = 8, ory = « + g for
someg. In each casa” e rad(l), so radlqp) < rad(l). If the containment is proper,
Lemma 5.1 gives a proper containment of Stanley—Reisner ideals of triangulatidns of
which is not possible. So we conclude ¢apl= rad(lsip).

For the second statement, suppr$e- x? is not a circuit. Then there exists a circuit
x” — x® with supf(y) € suppe), and supgs) < supf8) where at least one of these
inclusions is proper. Sinoe® ¢ rad(l), we must haversP*® ¢ rad(l), and thus<® ¢ | .
This impliesx” e |. Because® — x# is not a circuit, whilex” — x® is, we knowy # «,
and thusx” e lyjp. This meansSUPRY) ¢ rad(lip), and sox* e rad(lsip). However,
this means, as above, that ¢&gh) = rad(l), which in turn implies thak” € rad(l),
contradicting the hypothesis. O

Let | be a monomialA-graded ideal, withx® — x? flippable, wherex* e I, x# ¢
radl). Lett = o — g andT = suppt). By Lemma 5.3 we know thdtis a circuit, so
we can consider the triangulati@’™ = {T\{i}: i e T*} of C.

Lemmab5.4. Let I, x* — x#, t, and Ct be as aboveThen C' is a subcomplex of
A = A(rad(l)), and there is a subcomplex afwhich is the common link of all maximal
simplices of C.

Proof. SinceT ™ is the only minimal non-face &€+, to show thaC™ is a subcomplex
of A we need to show that™ " is the only minimal generator of rat) with support
inT.

Supposex? is a minimal generator of rgdl), with supgy) <€ T. Then there is
somel > 1 such thax'” e |. Write y = o’ + 8/, where supfi’) € supga) and
suppB’) C supfB). If suppler’) # suppa), thenx® does not divided'” and sax'” is in
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the wall ideaMV,_g. We can choos& with supps’) < supp8) sothaty +8 = mg+ao’

for somem > 1. Sincex™+¢ = xr+9 ¢ W,_g, it follows thatx™+ ¢ W, _g,
because® — x? e W, _g. SoxMete’ ¢ Ifip, and there is thus some> m+ 1 such that
xP* € lgip. This implies thatx* e rad(lsp). However, by Lemma 5.3, this means that
rad(lsip) = rad(l), which in turn implies thax? € rad(l ), contradicting our hypothesis.
So suppe’) = suppe) = T+, and thusx™ | x”. This shows thak™ " is the only
minimal generator of rad) with support inT, as required. From this we conclude that
C™ is a subcomplex of\.

We now show that every maximal simplexe C* C A has the same link. We do
this by showing that any simplex not intersectifigand not in the link of one maximal
simplex ofC* is not in the link of any other maximal simplex 6f*.

Supposer C {1,...,n}\T is not a simplex in the link of a maximal simplex of
C* C A, wherey’ = T\{p} for somep € T+ ando N T = @. Thenx’"”" e rad(l),
becauser U y’ is not a face ofA, and so there exists > 1, andx®’, a minimal
generator ofl with «” # «, such thatx®” | (x*). Write «” = o' + g’ + o/,
where supf’) C supfw), supa8’) < suppB), and suppr’) € o. Chooses’ with
supp$’) < suppe) such thate” + 8" = ma + B’ 4+ o’ for somem > 0. Then because
x¥" € W,_g, we havex®'+% e W,_4, and sox™*#+" is in W,_4 and thus inl. So
XSUPRAUSUPIT) < raf|). Lett be another maximal simplex 6ff, sor = (y'U{pH\{p'}
for somep’ € T™. Then suppB) U supfo’) € t U, and sox* < rad(l), and thus
o is notin the link ofr in A. This shows that every maximal simplexe C* € A has
the same link, as required. O

Proof of Theoren®.2. If x# e rad(l), then radl) = rad(lsip) by Lemma 5.3, and so
A(rad(l)) = A(rad(lfiip))-

Supposex? & rad(l). Then Lemma 5.3 implies that= « — g is a circuit of A.
By Lemma 5.4C* is a subcomplex ofA(rad(l)) with each maximal simplex oE ™
having the same link im\ (rad(1)). It remains to show thah (rad(lqp)) is the result of
performing a bistellar flip o\ (rad(l)).

Let A’ be the result of performing the bistellar flip @nrad(l)) overt, and letM be
the Stanley—Reisner ideal of .

We claim thatM is the squarefree monomial ideal generatedxB{P"?), all the
generators of rad) exceptxsUP"@  and also all monomials of the forrf, such that
supfa) € o, ando\(T N o) is not in the link of the maximal simplices @™*. Let

a” € {1,...,n}. Thena” is a face ofA’ exactly when eithew” is a face ofA and
T-Za"ora” =TT Ut Uy, wherer C T—, andy’ is in the link of the maximal
simplices ofC*. This means tha8” C {1, ..., n} is not a face ofA’ exactly when either

T~ C B”orB”isnotaface ofA andg” # T Ut Uy’ foranyr C T~ andy’ in the
link of the maximal simplices o€ *. This proves the claim.

We now show that radsip) € M. Let x*" be a minimal generator dfip such that
XSUPR") s @ minimal generator of rdthi,). If x* is also a minimal generator df,
thenxs'Pre") js in the square free ideal generated by all the generators @fyragicept
XSUPHA)  goxSuPHe’) ¢ M. SincexSUPRA) ¢ M, the only case left to considerd$ = o +g
for someg # 0 with 8 £ g. Writeg = o’ + B8’ + y/, where supf’) C suppw),
supB’) € suppB), and suppy’) N T = @. Choose’’ so thats’ + o' = la + & for
somel > 0, where sup@) = T+\{p} for somep € T*. Sincex*" is a minimal
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generator oflg;, different fromx®, itis in W, _g. It thus follows thatxet9+d ¢ Wo—g,
and so, because® — xf € W,_z, we havex!+DA+e+8+v" ¢ W, 4 and thus inl .
Since supp(l + DB +a + B) = T\{p}, xT\PHUsupry) ¢ rad(1) and thus sup@’’) is
not in the link of the maximal simplices @ . Because sugp’) = suppga’)\T, this
meansx® € M, and therefore radiip) € M. Now becauseh (rad(lqp)) and A’ are
both triangulations of4, this inclusion cannot be proper. 36 = rad(lsi,), and thus
A(rad(lqp)) is the result of performing a bistellar flip ah(rad(l )). O

Theorem 5.2 gives a map from the flip graph of mononfagraded ideals and
their flips to the graph of triangulations of and their bistellar flips. Peeva [22, The-
orem 10.13] has shown that this map is not always surjective. There is, however, one
special case where there is an isomorphism between the two graphs. Recall that an
integer matrixA is unimodularif all maximal minors of A have the same absolute
value. A triangulation of4 is unimodular if all simplices haveormalizedvolume one
[22, Section 8].

Theorem 5.5. If A is a unimodular triangulation of4, then the Stanley—Reisner ideal
| (A) is A-gradedIf A is unimodulasthen its flip graph is isomorphic to its Baues graph

Proof. The first claim is what is actually proved in Lemma 10.14 of [22], although the
statement is weaker there. The second claim is an immediate consequenté/mgisf
A-graded, it must be the onlix-graded ideal with that radical. O

We note that this means that a unimodular triangulation with no flips gives rise to a
disconnected toric Hilbert scheme. This is true even if the whole configuration is not
unimodular.

6. Toward a Disconnected Toric Hilbert Scheme

We conclude with some results that suggest the existence of a disconnected toric Hilbert
scheme. As mentioned earlier, Santos [18] has recently constructed a six-dimensional
integral point configuration with 324 points for which there is a triangulation that ad-
mits no bistellar flips. Hence this configuration has a disconnected Baues graph. By the
results in [21] and the previous section, every monomigiraded ideal is supported

on a triangulation of4 via the correspondende— A(rad(l)), and if two monomial
A-graded ideals are adjacent in the flip graph?ptthen either they are supported on

the same triangulation or on two triangulations that are adjacent in the Baues graph of
A. Just as for monomial-graded ideals, there is a notion of coherence for triangu-
lations of A. Every coherenttriangulation of.4 (often called aregular triangulation

in the literature) supports at least one mononfAagraded ideal, and at least one of
these ideals is coherent (see Chapter 8 in [22]). On the other hand, Peeva has shown
that if a triangulation of4 is non-coherenton-regular then there may be no mono-

mial A-graded ideal whose radical is the Stanley—Reisner ideal of this triangulation (see
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Theorem 10.13 in [22]). Hence in order for Santos’s example to lift to an example of
a disconnected toric Hilbert scheme, it suffices to show that there is a monémial
graded ideal whose radical is the Stanley—Reisner ideal of his isolated (non-regular)
triangulation. A straightforward search for such a mononfiairaded ideal from his
6 x 324 matrix is, however, a daunting computational endeavor. Nonetheless, San-
tos’s disconnected Baues graph seems to be evidence in favor of a disconnected flip
graph.

Recall that every coherent monomi&lgraded ideal has at least- d neighbors in
the flip graph ofA. We say that a monomiai-graded ideal iflip deficientif its valency
in the flip graph ofA is strictly less tham — d. All flip deficient monomialA-graded
ideals are necessarily non-coherent. Before Santos constructed an isolated triangulation,
several examples of flip deficient triangulations (triangulations with valency less that
n — d in the Baues graph) were produced as evidence in support of the existence of a
disconnected Baues graph. The first such examples appear in [4]. We provide examples
of flip deficient monomialA-graded ideals.

Theorem 6.1. For each matrix An) :=[1237 8 9ay---a,] withg € Nand9 <
a; < --- < ap, there is a monomial &)-graded ideal with at mostr 3 <n—1=
corank A(n)) flips.

Proof. For the matrixA = [1 2 3 7 8 9], themonomial ideald = (X3 Xs, XoX4, X1 X4,
X1X2, X4X6, X2X6, X1X6, XaXa, X3X3, X1X3, XoXZ, X3X5, X2, X2, X35, XaX3, XaXZ, X3, XE, X4
x2) is A-graded. The flippable binomials dfarex$ — xsx3, XaXs — X3Xs andxg — x3.
In this example, there are 2910 monon¥agraded ideals in total and the flip graph of
A'is connected.

Consider the monomial idedl' = J + (X7,...,Xn) € K[Xy, ..., Xy] and a degree
b € NA(n) = NA = N. All the monomials irk[xy, ..., x,] of A(n)-degreeb that are
divisible by at least one ofy, ..., x, are inJ’ by construction. Among the monomials
in K[x, ..., Xe] Of degreeb (there is at least one such sirce NA), there is precisely
one that is not ind and hence not i)’ and hencel’ is A(n)-graded. Ifx* — x# ¢
K[X1, ..., Xg] is flippable ford’, then ine, ys ((x* — x#) 4+ (x”: x¥ minimal generator of
J,y #a)+ (X7, ..., X)) =J". The only non-trivialS-pairs that are produced during this
calculation are those betwert— x# and a monomial minimal generator of J. Since
the resulting initial ideal equald, it follows that ine, s ((X* — x#) + (x”: X minimal
generator of], y # «)) = J and hence® — x# is flippable forJ. Sox® — x# must be
one of the three flippable binomials df Additionally, each of the minimal generators
X7, ..., Xy Of J' provides a flippable binomial and hendéhas 3+ (n —6) = n—3
flippable binomials. O

Remark 6.2. We have not found matrices of corank three with flip deficiency in our
experiments. However, flip deficiency occursin corank four. Congider[3 6 8 10 15]
and its monomialA-graded ideal

(ae bd, ak?, be a2, d?, €2, b%, abd®).
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The neighboring monomigh-graded ideals are:

(ae bd, ab?, be de a2, d?, €2, b3) from de— abd?,
(ae bd, ab?, be, a2, d?, €2, b3, acd, abd) from acd — be, and
(ae bd, al?, ad?, be, b2c, a2, d3, €2, b3, ab, d2e) from b2c — d2.

Remark 6.3. It is interesting to note that flip-deficient triangulations do not exist for
d < 3 while there are flip-deficient monomi&lgraded ideals even wheh= 1.

Proposition 6.4. There are flip-deficient monomial A-graded ideals that are squarefree
(i.e, supported on unimodular triangulatiops

Proof. This result was pointed out to us by one of the referees and is based on Re-
mark 3.2 in [4]. LetA be the vertices of the cube-octahedron of volume-48 = 40
obtained by cutting the eight corners of the unit cubéd.[1]® plus the origin. Then

the flip-deficient triangulation off from Remark 3.2 in [4] has 20 tetrahedra, each of
volume two. The points i lie in the sublatticg((x, y,z) € Z3%: x +y + z € 27}.

Any affine transformation that sends this lattice bijectivelftanakes the triangulation
unimodular. The Stanley—Reisner idéalf this unimodular triangulation is A-graded
(Lemma 10.14in[22]). Since a unimodular triangulation supports exactly one monomial
A-graded ideal, no flip of leads to another monomi&-graded ideal supported ax.
Further, no two flips of can lead to monomiah-graded ideals supported on the same
neighboring triangulation oA in the Baues graph oh since all flips ofl are supported

on distinct circuits ofAd which yield distinct neighboring triangulations af. O

Remark 6.5. The above computations were made using two different programs. Start-
ing with a monomial initial ideal of the toric idedly one can compute all monomial
A-graded ideals in the same connected component as this initial ideal by using the results
in Section 2 to calculate all the neighbors of a monomdiajraded ideal. This compu-
tation can be done using the prograiGERS [11] with the commandigers -iAe

flename wherefilename is the standard input file foOFiGERS with the data of the
matrix A. In order to find all monomiaA-graded ideals, we resort to a second program
(available from the authors) that first computes the Graver bashsarfd then system-
atically constructs weakly-graded monomial ideals by choosing one monomial from
each Graver binomial to be in the ideal (see Lemma 2.6). The program then compares
the Hilbert series of each such ideal against that of an initial idegl td decide if itis
A-graded. Comparing the total number of ideals produced by the two programs gives a
convenient way to decide if the flip graph is connected. These algorithms are discussed
further in [20].

We conclude with an algorithmic issue concerning the enumeration éfgtaded
monomial ideals in the same connected component as a fixed one. The main program in
TIGERS enumerates the vertices of the state polytopkadfy using theeverse search
strategy of Avis and Fukuda [2], which requires only the current vertex to be stored at any
given time. The input to the program is any one monomial initial ide&hdfom which
the program reconstructs all the others without needing to consult the list of ideals it has
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already found. An essential requirement of this algorithm is a method by which the input
ideal can be distinguished from any other monomial initial ideal0by considering
only the edges of the state polytope. This is don&®ERS as follows:

SupposeM; and M, are two monomial initial ideals ofa induced by the weight
vectorsw; andw, respectively. Letj; andG, be the corresponding reduceddBnier
bases of . Then for each facet binomiaP — x° in G; we havew; - (a — b) > 0 and
for each facet binomiat® — x# € G, we havew; - (« — 8) > 0. The reduced @Gbner
basegj; andG, coincide if and only if each facet binomiat — x? of G, satisfies the
inequalityw; - (@ — 8) > 0. Suppose the input is a fixed initial ideal bf. By the
previous observation, every other monomial initial ideal gfwill have a mismarked
facet binomial with respect to the term order inducing the input initial ideal and hence
can be distinguished from it. The following example shows that monosiigtaded
ideals cannot be distinguished by checking the orientation of their flippable binomials.

Example 6.6. ConsiderA = [3 4 5 13 14] and itsion-coherent monomia-graded
ideal

M = (cd®, c?e®, be d°, b, ¢, &% bd, aé, ad®, ac, a’d, a?b, bc, a’e, a’c).

The flippable binomials oM areae? — cd?, ¢® — a°, andd® — ce®. With respect to the
weight vectorw = (0, 0, 1, 20, 22), each of these flippable binomials has its positive
term as the leading term and heriddecannot be distinguished from,jiil o) by checking
whether its flippable binomials are mismarked with respeat.to
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