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Abstract. The toric Hilbert scheme is a parameter space for all ideals with the same
multigraded Hilbert function as a given toric ideal. Unlike the classical Hilbert scheme, it
is unknown whether toric Hilbert schemes are connected. We construct a graph on all the
monomial ideals on the scheme, called the flip graph, and prove that the toric Hilbert scheme
is connected if and only if the flip graph is connected. These graphs are used to exhibit curves
in P4 whose associated toric Hilbert schemes have arbitrary dimension. We show that the
flip graph maps into the Baues graph of all triangulations of the point configuration defining
the toric ideal. Inspired by the recent discovery of a disconnected Baues graph, we close
with results that suggest the existence of a disconnected flip graph and hence a disconnected
toric Hilbert scheme.

1. Introduction

Let A = [a1 · · ·an] be ad× n integer matrix of rankd such that ker(A)∩Nn = {0} and
letNA := {∑n

i=1 mi ai : mi ∈ N} ⊆ Zd be the non-negative integer span of the columns
of A. The symbolN denotes the set of natural numbers including zero. Consider the
NA-graded polynomial ringS := k[x1, . . . , xn] over a fieldk with degxi := ai for all
i and an idealI ⊆ S that is homogeneous with respect to the grading byNA. We say
that I is A-homogeneousand call thek-algebraR = S/I an A-graded algebraif its
Hilbert functionHR(b) := dimk(Rb) = 1 for all b ∈ NA. Note that ifb lies inZd\NA,
thenRb = {0}. If S/I is anA-graded algebra, thenI is called anA-graded ideal. If I is
generated by monomials it is amonomial A-graded ideal.

A-graded algebras were introduced by Arnold [1] who investigated matrices of the
form A = [1 p q] where p andq are positive integers. A complete classification of all
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A-graded algebras arising from 1× 3 matrices can be found in [1], [12], and [13]. The
generalization tod × n matrices is due to Sturmfels [21]. The canonical example of an
A-graded ideal is thetoric ideal of A, denoted asI A. Initial ideals of I A [22] are also
A-graded.

In [21] Sturmfels constructed a parameter space whose points are in bijection with the
distinct A-graded ideals inS. This scheme has the same underlying reduced scheme as
thetoric Hilbert schemeof A, denoted asHA, which has been defined recently by Peeva
and Stillman [14], [15]. The classical Hilbert scheme parameterizes all homogeneous,
saturated ideals inSwith a fixed Hilbert polynomial, whereS is graded by total degree.
However, unlike classical Hilbert schemes which are known to be connected [9], it
is unknown whether toric Hilbert schemes are connected. Several of the techniques
applied to classical Hilbert schemes cannot be used in the toric situation. In particular,
the multigraded Hilbert function used to defineA-graded ideals is not preserved under
a change of coordinates. See [15] for further discussions. The only cases in which
HA is known to be connected are whenA has corank one (i.e.,n − d = 1) or two.
In the former case the connectivity is trivial, and in the latter it follows from results
in [8].

In Section 2 we define a graph on all the monomialA-graded ideals inS, called the
flip graphof A, by defining an adjacency relation among these ideals. This generalizes
the notion of adjacency between two monomial initial ideals of the toric idealI A, given
by the edges of thestate polytopeof I A [3]. Our main result in Section 3 reduces the
connectivity of the toric Hilbert scheme to a combinatorial problem.

Theorem 3.1. The toric Hilbert scheme HA is connected if and only if the flip graph
of A is connected.

The flip graph ofA provides information on the structure ofHA. In Section 4 we use
these graphs to prove that 2× 5 matrices can have toric Hilbert schemes of arbitrarily
high dimension. The projective toric variety of such a matrix is a curve inP4.

Theorem 4.1. For each j∈ N\{0}, there exists a2× 5 matrix A( j ) such that its toric
Hilbert scheme HA( j ) has an irreducible component of dimension at least j.

In Section 5 we relate the flip graph ofA to theBaues graphofAwhich is a graph on
all the triangulations of the point configurationA := {a1, . . . ,an} ⊂ Zd consisting of the
columns ofA. The edges of the Baues graph are given bybistellar flips. This graph and its
relatives have been studied extensively in discrete geometry [17]. Sturmfels proved that
the radical of a monomialA-graded idealI is theStanley–Reisnerideal of a triangulation
ofA, which we denote as1(rad(I )) (see Theorem 4.1 in [21] or Theorem 10.10 in [22]).
This gives a map from the vertices of the flip graph into the vertices of the Baues graph.
We extend this map to the edges of the flip graph.

Theorem 5.2. If I and I ′ are adjacent monomial A-graded ideals in the flip graph of A,
then either they have the same radical and hence1(rad(I )) = 1(rad(I ′)) or1(rad(I ))
differs from1(rad(I ′)) by a bistellar flip.
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In [18] Santos constructed a configurationA with a disconnected Baues graph, thus
settling a central question that remained from thegeneralized Baues problem(see [17]
for a survey) which in its full generality was settled earlier by Rambau and Ziegler
[16]. Although Santos’s example does not immediately give a disconnected flip graph,
it strongly supports the possibility of one. In Section 6 we explain this connection and
provide results that point toward a disconnected flip graph and hence, by Theorem 3.1,
a disconnected toric Hilbert scheme.

2. The Flip Graph of A

In this section we define an adjacency relation on all monomialA-graded ideals which,
in turn, defines the flip graph ofA. This graph is the main combinatorial object and tool
in this paper. We first recall the definition of anA-graded ideal.

Definition 2.1. Let A = [a1 · · ·an] ∈ Zd×n be a matrix of rankd such that ker(A) ∩
Nn = {0} and letNA := {∑n

i=1 mi ai : mi ∈ N}. An ideal I in S= k[x1, . . . , xn] with
degxi = ai is called anA-graded ideal ifI is A-homogeneous andR = S/I has the
Zd-graded Hilbert function:

HR(b) := dimk(Rb) =
{

1 if b ∈ NA,

0 otherwise.

Note that ifb ∈ Zd\NA, thenRb = {0} and henceHR(b) = 0. The canonical example
of an A-graded ideal is the toric idealI A which is the kernel of the ring homomorphism
ϕ: S→ k[t±1

1 , . . . , t±1
d ] given byxj 7→ taj . See [22] for more information. To see that

I A is A-graded, recall thatI A = 〈xu − xv: Au = Av, u, v ∈ Nn〉, and is henceA-
homogeneous. For eachb ∈ NA, any two monomialsxu andxv in Sof A-degreeb (i.e.,
with Au= Av= b) arek-linearly dependent moduloI A making dimk((S/I A)b) = 1. If
b ∈ Zd\NA, then(I A)b is zero.

Given aweight vectorw ∈ Nn, the initial ideal of an idealI ⊆ S with respect to
w is the ideal inw(I ) := 〈inw( f ): f ∈ I 〉 where inw( f ) is the sum of all terms inf
of maximalw-weight. Our assumption that ker(A) ∩ Nn = {0} implies that there is a
strictly positive integer vectorw′ in the row space ofA. Using the binomial description
of I A given above, we then see thatI A is homogeneous with respect to the grading
deg(xi ) = w′i . Hence, theGröbner fanof I A coversRn and each cell in this fan contains
a non-zero non-negative integer vector in its relative interior (see Proposition 1.12 in
[22]). Therefore, for any weight vectorw ∈ Zn, the initial ideal inw(I A) is well defined
as it coincides with in̄w(I A) wherew̄ is a non-negative integer vector in the relative
interior of the Gröbner cone ofw. Since the Hilbert function is preserved when passing
from an ideal to one of its initial ideals, all initial ideals ofI A are alsoA-graded.

If M is a monomialA-graded ideal, then for eachb ∈ NA there is a unique monomial
of degreeb that does not lie inM and is hence astandardmonomial ofM . Definition 2.1
implies that allA-graded ideals are generated byA-homogeneousbinomials(polyno-
mials with at most two terms) since any two monomials of the sameA-degree have to
bek-linearly dependent modulo anA-graded ideal.
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There is a natural action of the algebraic torus(k∗)n on S given byλ · xi = λi xi for
λ ∈ (k∗)n.

Definition 2.2. An A-graded ideal is said to becoherentif it is of the formλ · inw(I A)

for someλ ∈ (k∗)n andw ∈ Zn.

We recall the definition of theGraver basisof A [22]. Foru, v ∈ Nn we writeu < v

if for eachi = 1, . . . ,n, ui ≤ vi andu 6= v.

Definition 2.3. A binomial xu − xv with Au = Av is a Graver binomialif there do
not existu′, v′ ∈ Nn with Au′ = Av′ andu′ < u, v′ < v. The collection of all Graver
binomials is called theGraver basis, GrA.

The following lemma is a strengthening of Lemma 10.5 in [22] and was also inde-
pendently discovered by Peeva and Stillman [15]. By the universal Gr¨obner basis of an
ideal we always mean the union of all the finitely many reduced Gr¨obner bases of the
ideal.

Lemma 2.4. Let I be an A-graded ideal, and let G = {xα1 − c1xβ1, . . . ,

xαk − ckxβk} be the universal Gr̈obner basis of I. Here the ci may be zero and for
each binomial, xαi and xβi are not both in I. If ci = 0,chooseβi so that Aαi = Aβi and
xβi 6∈ I . Then for all i, xαi − xβi is a Graver binomial. Hence, every minimal generator
of I is of this form.

Proof. If xαi − ci xβi ∈ G, then there is some term order≺ such that one ofxαi and
xβi is a minimal generator of in≺(I ), and the other is standard for in≺(I ). Since in≺(I )
is alsoA-graded, it suffices to prove the lemma for monomialA-graded ideals, where
ci = 0 for all i .

Suppose there exists ani such thatxαi − xβi is not a Graver binomial. Then there
existsu, v ∈ Nn with Au= Av such thatu < αi andv < βi . SinceI is A-graded, one
of xu or xv is in I . If we havexu ∈ I , thenxαi would not be a minimal generator ofI ,
and if xv ∈ I , thenxβi would not be standard. Therefore,xαi − xβi is a Graver binomial
for all i .

Definition 2.5. An A-homogeneous idealI in Sisweakly A-gradedif HS/I (b) ∈ {0,1}
for all b ∈ NA.

Lemma 2.6. Let I be an ideal which for every Graver binomial xα−xβ contains either
a binomial of the form xα − cxβ , where c may be zero, or the monomial xβ . Then I is
weakly A-graded.

Proof. It suffices to prove thatM = in≺(I ) is weakly A-graded, where≺ is any term
order, since in≺(I ) has the same Hilbert function asI . If xα − xβ is a Graver binomial,
then since there is somec with xα − cxβ ∈ I , one ofxα andxβ lies in M . Let xu and
xv be two monomials ofA-degreeb, and letxα − xβ be a Graver binomial withxα|xu
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andxβ |xv. Since one ofxα andxβ lies in M , one ofxu andxv lies in M . It thus follows
that there is at most one standard monomial ofM in each degreeb, and soM is weakly
A-graded.

We now define a “flipping” procedure on a monomialA-graded ideal which transforms
this ideal into an “adjacent” monomialA-graded ideal. The idea is motivated by a similar
procedure for toric initial ideals which we describe briefly.

The distinct monomial initial ideals ofI A are in bijection with the vertices of the state
polytope of I A, an(n − d)-dimensional polytope inRn [3]. Two initial ideals are said
to be adjacent if they are indexed by adjacent vertices of the state polytope. The edges
of the state polytope are labeled by the binomials in the universal Gr¨obner basis ofI A,
UGBA ⊆ GrA.

SupposeI and I ′ are two adjacent monomial initial ideals ofI A connected by the
edgexα−xβ . The closure of the inner normal cone at the vertexI (respectivelyI ′) is the
Gröbner cone K(respectivelyK ′) of I (respectivelyI ′), the interior of which contains
all the weight vectorsw such that inw(I A) = I (respectively inw(I A) = I ′). The linear
span of the common facet ofK andK ′ is the hyperplane{u ∈ Rn: (α − β) · u = 0}.
Whenw is in the interior ofK , inw(xα − xβ) = xα, xα is a minimal generator ofI and
xβ 6∈ I . Whenw is in the interior ofK ′, inw(xα − xβ) = xβ , xβ is a minimal generator
of I ′ andxα 6∈ I ′. For aw in the relative interior of the common facet ofK and K ′,
inw(xα − xβ) = xα − xβ . Hence passing fromI to I ′ involves “flipping” the orientation
of the binomialxα − xβ . No other binomial inUGBA changes orientation during this
passage. See [11] for details. We extend this notion of “flip” to all monomialA-graded
ideals. Two monomialA-graded idealsM andM ′ differ by a “flip” in this more general
sense, if there is exactly one binomialxα − xβ in GrA that changes orientation during
the flip.

Definition 2.7. Let I be a monomialA-graded ideal and letxα − xβ be a Graver
binomial with xα a minimal generator ofI and xβ 6∈ I . We defineIflip, the result of
flipping over this binomial, to be

Iflip := 〈xγ | ∃δ: xγ − xδ ∈ GrA, xγ ∈ I , xδ 6∈ I , γ 6= α〉 + 〈xβ〉.

Lemma 2.8. The ideal Iflip is weakly A-graded.

Proof. Let xα
′ − xβ

′
be a Graver binomial, withxα

′ ∈ I . By Lemma 2.6 it suffices to
show that eitherxα

′ ∈ Iflip or xβ
′ ∈ Iflip. Sincexα

′ ∈ I , there is some Graver binomial
xα
′′ − xβ

′′
with xα

′′
a minimal generator ofI , andxβ

′′ 6∈ I , andxα
′′ | xα

′
. It is possible

thatα′′ = α′ andβ ′′ = β ′. If α′′ 6= α, thenxα
′′ ∈ Iflip, and soxα

′ ∈ Iflip. If α′′ = α, then
β ′′ = β. We divide this situation into three cases:

Case1: xβ
′ 6∈ I andα′ = α′′ (= α). In this caseβ ′ = β and hencexβ

′ = xβ ∈ Iflip.

Case2: xβ
′ 6∈ I andα′ 6= α′′ (= α). In this casexα

′ ∈ Iflip by definition.

Case3: xβ
′ ∈ I . Sincexα

′′ = xα dividesxα
′
, andxα

′
andxβ

′
have disjoint supports, there

must be a minimal generator ofI different fromxα that dividesxβ
′
. Since this minimal

generator is inIflip by definition,xβ
′ ∈ Iflip.
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As defined above, to constructIflip requires knowledge of the entire Graver basis.
However, the local change algorithm in [11] can be used to constructIflip.

Lemma 2.9. The ideal Iflip is the initial ideal with respect to xα ≺ xβ of Wα−β = 〈xγ |
γ 6= α, xγ is a minimal generator of I〉 + 〈xβ − xα〉.

We note first that this initial ideal is well defined. The only non-trivialS-pairs formed
during its construction are those of a monomial withxβ − xα, in which case the result
is a monomial multiple ofxα, so there is never any question of what the leading term
of a polynomial is. This means thatIflip is in fact the initial ideal ofWα−β with respect
to any term order in whichxα ≺ xβ . We callWα−β a wall ideal since in the coherent
situation it is the initial ideal of any weight vector in the relative interior of the common
facet/wall between the Gr¨obner cones ofI and Iflip [11].

Proof. Let K be the initial ideal ofWα−β with respect toxα ≺ xβ . We first show the
containmentK ⊆ Iflip. Let xγ be a minimal generator ofK . If xγ = xβ , or xγ is a
minimal generator ofI other thanxα, thenxγ ∈ Iflip. So we need only consider the case
thatγ = rα + g, wherer > 0 andα, β 6≤ g, as this is the only other form minimal
generators ofK can have. In order to show thatxγ is in Iflip, it suffices to show that
xγ −xδ is a Graver binomial, wherexδ is the unique standard monomial ofI of the same
A-degree asxγ .

Supposexγ − xδ is not a Graver binomial, so we can writeγ = ∑
ui + g′, δ =∑

vi + g′, where for eachi , xui − xvi is a Graver binomial. Sincexδ 6∈ I , we must
havexui ∈ I and xvi 6∈ I for all i . If ui 6= α for somei , this would mean thatxui ,
and hencexγ , was in Iflip. We can thus reduce to the case whereg′ = g andvi = β

for all i , and soδ = rβ + g. Now sincexγ is a minimal generator ofK , there must
be a chain ofS-pairs and reductions leading toxγ . The chain must start with some
minimal generatorxα1 6= xα of I , and continue toxα2, which is the result of reduction
by xβ − xα of S(xα1, xβ − xα). The chain continues, withxαi being the result of the
reduction byxβ − xα of S(xαi−1, xβ − xα), until reachingxαk = xγ . We observe that
xαi = xri α+gi , for all 2 ≤ i ≤ k, with ri ∈ N, rk = r , andgi ∈ Nn. Sincexα andxβ

have disjoint supports, theS-pair of xαi−1 = xri−1α+gi−1 andxβ − xα is the monomial
[lcm(xgi−1, xβ)/xβ ]xri−1αxα. This monomial is reduced toxαi = xri α+gi by xβ − xα.
Henceri ≥ ri−1+1> ri−1. The monomialxgi is the remainder of lcm(xgi−1, xβ)/xβ after
reduction byxβ−xα. Since lcm(xgi−1, xβ)/xβ dividesxgi−1, we see thatxgi dividesxgi−1.
The monomialxgi−1−gi got reduced to zero byxβ−xα and hencegi−1−gi ≤ (ri−ri−1)β.
Repeating this argument, we see that ifi < j , then 0< ri < r j , xgj | xgi , andgi − gj ≤
(r j − ri )β. The last fact implies thatxri β+gi dividesxr j β+gj . Further, sincexα2 = xr2α+g2

is the result of reducingS(xα1, xβ − xα) = (lcm(xα1, xβ)/xβ)xα by xβ − xα, we get
S(xα1, xβ−xα) = xr ′α+r ′′β+g2 wherer ′+r ′′ = r2 and lcm(xα1, xβ) = x(r

′−1)α+(r ′′+1)β+g2.
However, sinceα1 6= α andα andβ have disjoint supports, we must haver ′ − 1 = 0
andr ′′ + 1 = r2. Hencexα1 dividesxr2β+g2. Combining this with the fact thatxri β+gi

dividesxr j β+gj wheneveri < j and we can conclude thatxα1 dividesxrβ+g = xδ. This
implies thatxδ ∈ I , a contradiction. Therefore, this case cannot occur and we conclude
that K ⊆ Iflip.
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We now show the reverse inclusion. Supposexγ is a minimal generator ofIflip not equal
to xβ , andxγ − xδ is the corresponding Graver binomial withxδ 6∈ I . We may assume
thatxγ is a multiple ofxα, as otherwise it lies inWα−β , and thus is inK automatically.
Write γ = rα + γ ′, whereα 6≤ γ ′. Suppose thatxrβ+γ ′ 6∈ I . Thenδ = rβ + γ ′, so we
must haveγ ′ = 0 andr = 1 to preservexγ − xδ being a Graver binomial. However,
thenγ = α, contradictingxγ being a minimal generator ofIflip. Thusxrβ+γ ′ ∈ I , and
so there is someα′ 6= α with xα

′
a minimal generator ofI such thatα′ ≤ rβ + γ ′. This

means thatxrβ+γ ′ ∈ Wα−β , and soxrα+γ ′ = xγ ∈ Wα−β becausexβ − xα ∈ Wα−β . Any
monomial inWα−β is in K , so we conclude thatxγ ∈ K .

Definition 2.10. We say that a binomialxα − xβ in the Graver basis isflippablefor a
monomialA-graded idealI if xα is a minimal generator ofI , xβ 6∈ I , and the idealIflip

obtained by flippingI overxα − xβ is again a monomialA-graded ideal.

We now give a characterization of when a binomial is flippable.

Theorem 2.11. Let I be a monomial A-graded ideal, and let xα − xβ be a Graver
binomial. Then xα − xβ is flippable for I if and only if I is the initial ideal with respect
to xβ ≺ xα of the wall ideal Wα−β = 〈xγ | γ 6= α, xγ is a minimal generator of
I 〉 + 〈xα − xβ〉.

Proof. SinceWα−β is A-homogeneous,I is the initial ideal ofWα−β if and only if
Wα−β is anA-graded ideal. However, by Lemma 2.9Iflip is an initial ideal ofWα−β , so
is A-graded exactly whenWα−β is.

Definition 2.12. The flip graph of A has as its vertices all the monomialA-graded
ideals in S. There is an edge labeled by the Graver binomialxα − xβ between two
verticesI and I ′, if I ′ can be obtained fromI by flipping overxα − xβ .

Remark 2.13. The edge graph of the state polytope ofI A is a subgraph of the flip
graph of A. Since the state polytope ofI A is (n − d)-dimensional, this subgraph is
(n− d)-connected and so every vertex in this subgraph has valency at leastn− d.

Let FlipsA denote the set of binomials labeling the edges of the flip graph ofA. Since
the edges of the state polytope ofI A are labeled by the elements inUGBA, we have
UGBA ⊆ FlipsA ⊆ GrA.

Remark 2.14. (i) Gasharov and Peeva [8] proved that all monomialA-graded ideals
of corank two matrices are coherent. Hence, in this case, the flip graph ofA is precisely
the edge graph of the state polytope ofI A, which is a polygon sincen − d = 2, and
UGBA = FlipsA. However, even in this case,FlipsA may be properly contained inGrA:
for A = [1 3 7],UGBA = FlipsA = {a2c−b3,a3−b,ac2−b5,b7−c3, c−a7,ab2−c}
while GrA = FlipsA ∪ {a4b− c}.

(ii) For A = [1 3 4], UGBA = FlipsA = GrA = {ac2 − b3,a2c− b2,b4 − c3,b−
a3,ab− c,a4− c}.
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(iii) For A = [3 4 5 1314], UGBA ( FlipsA ( GrA. In this caseFlipsA\UGBA =
{a2bcd−e2}while GrA\FlipsA = {d4−bc4e2,ad3−bc2e2,e3−b6cd,b3cd3−e4,e3−
a2c2d2,e2− ab5c,e3− ab2cd2,e3− a4bd2}.

For fixed A, let SA be the intersection of all the monomialA-graded ideals inS and
let PA := 〈xαxβ : xα− xβ ∈ GrA〉. ThenPA is contained, sometimes strictly, inSA since
for each Graver binomialxα − xβ , at least one ofxα or xβ belongs to each monomial
A-graded ideal.

Lemma 2.15. If xα − xβ ∈ GrA has at least one of xα or xβ in PA, then xα − xβ ∈
GrA\FlipsA. The converse is false.

Proof. Supposexα − xβ is a flippable binomial for a monomialA-graded idealI such
that xα ∈ I andxβ 6∈ I . If xα ∈ PA ⊆ SA, thenxα ∈ Iflip and if xβ ∈ PA ⊆ SA, then
xβ ∈ I both of which are contradictions. To see that the converse is false, consider

A =

2 1 0 1 0 0

0 1 2 0 1 0

0 0 0 1 1 2


which has 29 monomialA-graded ideals, all of which are coherent. The binomialx1x4x6−
x2x3x5 ∈ GrA\FlipsA, but neitherx1x4x6 nor x2x3x5 lies in PA = 〈x1x2

2x4, x1x2
3x6,

x4x2
5x6,x1x2x3x5,x2x3x4x5,x2x3x5x6,x1x2

2x2
5x6,x2

2x2
3x4x6,x1x2

3x4x2
5,x1x2x3x4x5x6〉.

3. Connection to the Toric Hilbert Scheme

In this section we explain the relevance of flips for the toric Hilbert schemeHA. We
begin by describing the toric Hilbert scheme.

A parameter space for the set ofA-graded ideals was first described by Sturmfels
[21]. Peeva and Stillman improved on this construction by producing the toric Hilbert
scheme ofA [14], [15], which they show satisfies an important universal property. It is
a version of their equations we explain below.

A degreeb ∈ NA is a Graver degree if there is some Graver binomialxα − xβ with
Aα = Aβ = b. We denote byb1, . . . ,bN the Graver degrees and bymi the number of
monomials of degreebi . Let

X = Pm1−1× Pm2−1× · · · × PmN−1.

We now describeHA as a subscheme ofX. The coordinates of eachPmi−1 can be
labeled by the monomials of degreebi as{ξu: Au= bi }. A point p ∈ X corresponds to
a weaklyA-graded idealI p by the following procedure: For each pairxu, xv of degree
bi , we place the binomialξvxu − ξuxv in I p. For each Graver binomialxα − xβ there
thus is either a binomial of the formxα − cxβ in the resulting ideal, wherec may
be zero, orxβ = xβ − 0xα is in the ideal. This is immediate except in the case that
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ξα = ξβ = 0. In that case, chooseγ with Aγ = Aα such thatξγ 6= 0. Then the binomial
ξγ xα − ξαxγ ∈ I p, soxα ∈ I p, andxα −0 · xβ is the required binomial. Lemma 2.6 now
implies thatI p is weaklyA-graded.

We note that the toric idealI A corresponds to the point inX with ξu = 1 for all u. A
monomialA-graded ideal corresponds to a pointp in X where, for each 1≤ i ≤ N, p
restricted to thePmi−1 factor has one coordinateξui = 1, and all otherξv in this factor
equal to zero. In general, ifAu= bi , thenxu ∈ I p exactly if ξu = 0.

We now give equations forHA, which guarantee that the resulting idealsI p are in fact
A-graded. For eachb ∈ NA we construct the matrixMb whosedb rows are labeled by
the monomials of degreeb. Thenb columns ofMb are labeled by pairsxu, xv of degree
b such that there is some binomialxα − xβ whose degree is a Graver degree such that
u = v − α + β. The corresponding column consists ofξα in thexu row,−ξβ in thexv

row, and zeros elsewhere.
The global equations forHA are now given by the maximal minors ofMb for every

b ∈ NA. To see that these equations guarantee thatI p is A-graded, note that ifI p is not
A-graded, there is some degreeb ∈ NA with all monomials of degreeb contained in
I p. Now homogeneous polynomials of degreeb are in one-to-one correspondence with
vectors inkdb. The bijection takes the basis vector with a one in the row corresponding
to xu and zeros elsewhere toxu, and is defined on other vectors by linear extension.
Homogeneous polynomials of degreeb contained inI p are those corresponding to the
image of the mapσ : knb → kdb given byσ : x 7→ Mbx. Thus if all monomials of degree
b are in I p, Mb must have full rank, which means that there is a maximal minor which
does not vanish.

While these equations forHA are not binomial, it follows from [14] that each irre-
ducible component of the scheme is given by binomial equations. In [14] Peeva and
Stillman give an explicit binomial description of the local equations forHA around each
monomial ideal. The work of Eisenbud and Sturmfels on binomial ideals [5] now im-
plies that the radical of the ideal defining each component is also a binomial ideal, and
so the reduced structure on each irreducible component is a toric variety. It should be
emphasized here that the components are not necessarily normal, and we are using a
wider definition of toric variety than that found, for example, in [7]. We denote byH̃A

the underlying reduced scheme ofHA.
The main result of this section is:

Theorem 3.1. The toric Hilbert scheme HA is connected if and only if the flip graph
of A is connected.

The remainder of this section builds up to the proof of Theorem 3.1. By the support
of a pointv ∈ An we mean supp(v) := {i : vi 6= 0}. In what follows we assume some
familiarity with toric varieties, such as that given in [6] or [7].

Corollary 2.6 of [5] says that every prime binomial ideal determines a (not necessarily
normal) toric variety. The next lemma gives a property of such varieties. WhenQ is a
prime ideal ofSwe denote byV(Q) the zero set ofQ in An.

Lemma 3.2. Consider the point configuration{p1, . . . , pn} ⊆ Zd and its toric ideal
Q = ker(ϕ: k[x1, . . . , xn] → k[t p1, . . . , t pn ]) which is a prime binomial ideal. Let v1
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andv2 be two points in V(Q) ⊆ An. Thenv1 andv2 lie in the same torus orbit of V(Q)
if and only if they have the same support.

Proof. The dense torus inV(Q) is V(Q)∩ (k∗)n, and the action of this torus onV(Q)
is by coordinatewise multiplication. It thus follows that ifv1 andv2 are in the same torus
orbit, they have the same support.

Supposev1, v2 ∈ V(Q) have the same support. If this support is the entire set
{1, . . . ,n}, then defineui = (v1)i /(v2)i . Then ifxα − xβ is a binomial inQ, uα − uβ =
vα1/v

α
2 − vβ1 /vβ2 = (1/vα2vβ2 )(vα1vβ2 − vβ1vα2 ) = 0, sou is in V(Q)∩ (k∗)n, and sov1 and

v2 are in the same torus orbit.
Suppose now thatv1 andv2 have the same supportτ ( {1, . . . ,n}. Sincev1 and

v2 are inV(Q), this means that there is no binomial inQ of the formxα − xβ where
supp(α) ⊆ τ and supp(β) 6⊆ τ . This is because if such a binomial were inQ, we will
havevβi = 0 for i = 1,2, andvαi 6= 0 for i = 1,2, which contradictsv1, v2 ∈ V(Q).
This means that there is no affine dependency between{pi : i ∈ τ } and{pi : i 6∈ τ }.
However, this implies that conv(pi : i ∈ τ) is a face of conv(pi : 1 ≤ i ≤ n), and if
pj ∈ conv(pi : i ∈ τ), then j ∈ τ . This means thatv1 andv2 lie in an invariant toric
subvariety, and so by a similar argument to above are torus isomorphic.

The action of(k∗)n on A-graded ideals gives an action of(k∗)n on H̃A. Then-torus
acts by mappingv ∈ H̃A to t · v via the map(t · v)u = tuvu. We refer to this action as
then-torus action. Since each irreducible componentV of H̃A is a toric variety, there is
also an action of a dim(V)-dimensional torus on a point for every irreducible component
V of the reduced toric Hilbert scheme the point belongs to. We refer to these actions
as the ambient torus actions. We note that these torus actions are usually different from
then-torus action, as each of the finitely many irreducible components ofHA has only
finitely many ambient torus orbits, but there can be an infinite number ofn-torus orbits.
An example of this situation is given in Theorem 10.4 of [22]. Then-torus orbit of a
point is, however, contained inside all ambient torus orbits of that point.

Corollary 3.3. Letv be a point onH̃A. Then the n-torus orbit ofv is contained in any
ambient torus orbit ofv.

Proof. It is straightforward to see thatt · v lies in every irreducible component of̃HA

in which v does (this follows from the fact thatS[l ]/(l I v + (1− l )(It ·v)) is a flatk[l ]
module). All points in then-torus orbit ofv have the same support, and thus lie on the
same ambient torus orbit by Lemma 3.2.

Fix an irreducible componentV of H̃A. SinceV is a projective toric variety, there is a
polytopeP corresponding toV . An ambient torus orbit of a pointv ∈ H̃A corresponds to
a face ofP. In the case of the coherent component, this polytope is the state polytope of
I A. As the coherent component is not necessarily normal [20], however, the toric variety
traditionally associated to the state polytope is only the normalization of the coherent
component. The next two lemmas build up to showing that the edges of the polytopeP
correspond exactly to flips.
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Lemma 3.4. Vertices of P correspond exactly to the monomial A-graded ideals in V.

Proof. Let I be the ideal corresponding to a vertexp of P. The orbit of I under the
ambient torus corresponding toP is just the idealI . By Corollary 3.3 then-torus orbit
of I is contained in any ambient torus orbit, soI is n-torus fixed as well, and thus is a
monomial ideal.

For the other implication, letI be a monomialA-graded ideal corresponding to a
point v in V . As a point inX, v is the product of unit vectors. It is thus invariant under
any scaling of its coordinates in any fashion, and so is invariant under any ambient torus
action. The pointv is therefore a vertex ofP.

Lemma 3.5. Let I be an A-graded ideal. If I has exactly two initial ideals, then I is
n-torus isomorphic to an ideal of the form J= 〈xα − xβ, xγ1, . . . , xγr 〉.

Proof. Let M1 andM2 be the two initial ideals ofI , and letG be the universal Gr¨obner
basis ofI . The setG contains a reduced Gr¨obner basis forI with respect to a term order
for which M1 is the initial ideal, and so there exist binomialsxα − cxβ ∈ G with c 6= 0
for whichxα is a minimal generator ofM1, xβ 6∈ M1. Suppose for all such binomials we
havexα ∈ M2. ThenM1 ⊆ M2 is an inclusion of distinct monomialA-graded ideals,
which is impossible. So we conclude that there is some binomialxα1 − c1xβ1 ∈ G with
c1 6= 0, xα1 ∈ M1\M2, andxβ1 ∈ M2\M1.

Suppose there is some other binomialxα2 − c2xβ2 ∈ G with c2 6= 0. Without loss
of generality we may assume thatxα2 ∈ M1 andxβ2 6∈ M1. We note that(α1 − β1) 6=
(α2 − β2), as by Lemma 2.6 the two binomialsxα1 − xβ1 and xα2 − xβ2 are Graver
binomials, and they must be distinct sinceG is the universal Gr¨obner basis ofI . We can
thus find a supporting hyperplane for pos(α1 − β1, β2 − α2), which intersects the cone
only at the origin. This implies the existence of a vectorwwhich satisfiesw·(α1−β1) > 0
andw · (β2 − α2) > 0. Let M = inw(I ). This is well defined as the Gr¨obner region of
I is all ofRn. Thenxα1 ∈ M andxβ2 ∈ M , soM 6= M1 andM 6= M2. This means that
I has a third initial ideal, which contradicts our assumption, and so we conclude that
xα1 − c1xβ1 is the only binomial inG.

Pick i ∈ supp(β1). Defineλi = 1/c1, andλj = 1 for j 6= i . ThenλI is in the desired
form.

Theorem 3.6. Let M1 and M2 be monomial A-graded ideals corresponding to vertices
p1 and p2 of P. M1 and M2 are connected by a single flip if and only if there is an edge
e of P connecting p1 and p2.

Proof. Supposep1 andp2 are connected by an edgee. Let I be the ideal corresponding
to a point p in the relative interior ofe. By Corollary 3.3 then-torus closure ofp is
contained ine. Thus I has at most two initial ideals. IfI had only one initial ideal, it
would be a monomial ideal and thus corresponds to a vertex ofP, by Lemma 3.4. We thus
conclude thatI has exactly two initial ideals,M1 andM2, corresponding top1 and p2,
respectively. Now by Lemma 3.5I isn-torus isomorphic toJ = 〈xα−xβ, xγ1, . . . , xγr 〉,
wherexα ∈ M1\M2 andxβ ∈ M2\M1. SinceJ is A-graded,xα−xβ is a Graver binomial.
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BecauseJ has initial idealsM1 andM2, it is their wall idealWα−β , and soM1 andM2

are connected by a flip overxα − xβ .
Conversely, supposeM1 andM2 are connected by a single flip. Then there is an ideal

Wα−β = 〈xα − xβ, xγ1, . . . , xγr 〉 which has as its two initial idealsM1 andM2. Let J be
an A-graded ideal which is isomorphic toWα−β under the action of the ambient torus
corresponding toP. Let xδ be a minimal generator ofM1, with δ 6= α, andxδ − xε the
corresponding Graver binomial withxε 6∈ M1. Thenxδ ∈ Wα−β , and thusxδ ∈ J, as the
ambient torus action preserves the monomials in anA-graded ideal. SoJ contains all
minimal generators ofM1 andM2 exceptxα andxβ . SupposeJ has a minimal generator
xα
′ −cxβ

′
, wherexα

′ −xβ
′
is a Graver binomial,xα

′
, xβ

′ 6∈ J, andα′, β ′ 6= α, β. Without
loss of generality we may assume thatxα

′ ∈ M1. If xβ
′ 6∈ M1, thenxα

′ ∈ Wα−β by the
definition of Wα−β , and thus alsoxα

′ ∈ J. We thus conclude thatxβ
′ ∈ M1. However,

this means there existα′′ ≤ α′, β ′′ ≤ β ′, such thatxα
′′

andxβ
′′

are minimal generators
of M1. Sincexα

′
andxβ

′
have disjoint support, we cannot haveα′′ = β ′′ = α, so at least

one ofxα
′′

andxβ
′′

is in Wα−β . However, this means at least one ofxα
′
andxβ

′
is in J,

giving a contradiction. Hence the only binomial minimal generator ofJ is of the form
xα − c′′xβ , so as in the proof of Lemma 3.5J is n-torus isomorphic toWα−β . We thus
see that all ambient torus closures ofWα−β are the same as then-torus closure, and so
p1 and p2 are connected by an edge.

Proof of Theorem3.1. It suffices to show that the reduced schemeH̃A is connected if
and only if the flip graph ofA is connected. Since passing to an initial ideal is a flat
deformation, each irreducible component contains a monomialA-graded ideal. It thus
suffices to show that all monomialA-graded ideals lie in the same connected component
of H̃A if and only if the flip graph is connected. The “if” direction follows from the
fact that if I1 and I2 are connected by a single flip, then they are both initial ideals
of a single wall idealWα−β , and so lie in the same connected component ofH̃A. The
“only-if” direction follows from Lemma 3.4 and Theorem 3.6, which imply that the flip
graph restricted to an irreducible component ofH̃A is the edge skeleton of the polytope
corresponding to that component, whose vertices are the monomialA-graded ideals in
that component, and so is connected. As the intersection of two irreducible components
of H̃A contains a monomialA-graded ideal by Gr¨obner deformation, this means that if
H̃A is connected, the flip graph ofA is connected.

Remark 3.7. We close this section by noting that Peeva and Stillman [15] have shown
that the dimension of the tangent space toHA at a monomialA-graded idealI is equal
to the number of flippable binomials ofI .

4. Toric Hilbert Schemes of Arbitrarily High Dimension from Curves in P4

In this section we exhibit toric Hilbert schemes of arbitrarily high dimensions for which
the associated toric varieties are curves inP4. WhenA has corank one, its Graver basis
consists of precisely one binomialxα−xβ , and the flip graph ofAhas only the two vertices
I = 〈xα〉 and I ′ = 〈xβ〉 which are connected by the flipxα − xβ . HenceHA is one-
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dimensional and connected. AllA-graded ideals of a corank two matrix are coherent [8]
which implies that the flip graph ofA is connected since it coincides with the edge graph
of the state polytope ofI A. In this case,HA has exactly one irreducible component which
is two-dimensional and smooth [15]. The toric Hilbert scheme of a corank three matrix
is at least three-dimensional since the irreducible component containing the coherent
A-graded ideals has dimension three. In contrast to the results in coranks one and two,
Theorem 4.1 gives a family of 2×5 matrices of corank three whose toric Hilbert schemes
can have arbitrarily high dimensions. The projective toric variety of each matrix in the
family is a curve inP4. Note that both the corankn− d and the number of columnsn
are fixed for these matrices.

Theorem 4.1. For each j∈ N\{0}, the toric Hilbert scheme HA( j ) of

A( j ) =
(

1 1 1 1 1

0 1 3+ 3 j 4+ 3 j 6+ 3 j

)

has an irreducible component of dimension at least j.

These matrices were motivated by Example 5.11 in [23], and the theorem was inspired
by computer experiments on their flip graphs. We first define the following monomial
ideals and sets of binomials that will be used in the proof of Theorem 4.1. For each
j ∈ N\{0}, let

Pj = 〈c2e,bc,a2e,ace,aej+2〉, Rj = 〈a5cj ,a8cj−1, . . . ,a5+3( j−1)c〉,
Qj = 〈bej+1,a2cj+1,b4ej , cj+2〉, Sj = 〈b7ej−1,b10ej−2, . . . ,b7+3( j−1)〉

and

Pj = {c2e− d3,bc− ad,a2e− b2d,ace− bd2,aej+2− cj d3},
Qj = {bej+1− cj+1d,a2cj+1− b3ej ,b4ej − a3cj d, cj+2− aej+1},
Rj = {a5+3t c j−t − b6+3t e( j−1)−t , t = 0,1, . . . , j − 1},
Sj = {b7+3t e( j−1)−t − a6+3t c( j−1)−t d, t = 0,1, . . . , j − 1}.

Lemma 4.2. The ideal Mj = Pj +Qj +Rj +Sj is the initial ideal of IA( j ) with respect
to the weight vectorw = (1,1,2,0,2).

Proof. By computing theA( j )-degree of both terms in each binomial ofGj := Pj ∪
Qj ∪Rj ∪Sj , it can be seen thatGj is a subset ofI A( j ). It can also be checked that for each
binomial inGj , the positive term is the leading term with respect tow = (1,1,2,0,2).
HenceMj = 〈inw(g): g ∈ Gj 〉 is contained in the initial ideal ofI A( j ) with respect to
w and no generator ofMj is redundant. The monomial idealMj will equal inw(I A( j ))

if Gj is the reduced Gr¨obner basis ofI A( j ) with respect tow. Consider the elimination
orderx, y Â a,b, c,d,e refined by the graded reverse lexicographic orderx > y on the
first block of variables and the weight vectorw on the second block of variables. Then
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the reduced Gr¨obner basis ofI A( j ) with respect tow is the intersection of the reduced
Gröbner basis of

J( j ) := 〈a− x,b− xy, c− xy3+3 j ,d −⊂ xy4+3 j ,e− xy6+3 j 〉
with respect toÂ with k[a,b, c,d,e] (see Algorithm 4.5 in [22]). By a laborious check
it can be shown that the reduced Gr¨obner basis ofJ( j ) with respect toÂ is

Gj ∪ {x − a, ya− b, ybd− ae, yc− d, yd2− ce, y2d − e,

yb3t+2ej−t − a3t+1c( j+1)−t , t = 0, . . . , j,

y2b3t+1ej−t − a3t c( j+1)−t , t = 0, . . . , j,

y3l b3t epl−t − a3t−1cpl−t+1, l = 1, . . . , j, t = 1, . . . , pl := ( j + 1)− l ,

y3l+1b3t−1epl−t − a3t−2cpl−t+1, l = 1, . . . , j, t = 1, . . . , pl ,

y3l+2b3t−2epl−t − a3t−3cpl−t+1, l = 1, . . . , j, t = 1, . . . , pl }.

Lemma 4.3. For each j∈ N\{0} the monomial A( j )-graded ideal Mj from Lemma4.2
has exactly2 j + 4 flippable binomials.

Proof. We will show that the binomials inQj ∪Rj ∪Sj are flippable forMj while those
in Pj are not. In order to show that a binomialxα − xβ is flippable forMj we need to
show that everyS-polynomial (monomial in our case) formed from the binomialxα−xβ

(with xα as leading term) and a minimal generatorxγ of Mj different fromxα reduces
to zero moduloWα−β = 〈xγ : γ 6= α, xγ a minimal generator ofMj 〉 + 〈xα − xβ〉.

We first considerRj . A binomiala5+3t c j−t−b6+3t e( j−1)−t inRj can form a non-trivial
S-pair (S-monomial) with

(i) c2e,
(ii) bc,

(iii) a2e,
(iv) ace,
(v) aej+2,

(vi) a2cj+1,
(vii) cj+2, and

(viii) a monomiala5+3l c j−l from Rj such thatt 6= l .

The remaining generators ofMj (excepta5+3t c j−t itself) are relatively prime toa5+3t c j−t

and so theS-pairs formed reduce to zero by Buchberger’s first criterion. We consider
each case separately.

(i) The S-monomials formed fromc2eanda5+3t c j−t −b6+3t e( j−1)−t areb6+3t cpej−t ,
0≤ t ≤ j − 1, wherep = 1 if j − t = 1 andp = 0 if j − t > 1.

(a) If t = 0, b6cpej is a multiple ofb4ej ∈ Qj .
(b) If t > 0, b6+3t cpej−t reduces to zero modulob7+3(t−1)ej−t ∈ Sj .

(ii) The S-monomials formed frombc areb7+3t e( j−1)−t , 0≤ t ≤ j − 1, all of which
lie in Sj and hence reduce to zero moduloWα−β .
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(iii) The S-monomials betweena2e anda5+3t c j−t − b6+3t e( j−1)−t areb6+3t ej−t for
0≤ t ≤ j −1. If t = 0, thenb6ej is a multiple ofb4ej ∈ Qj , and ift > 0, thenb6+3t ej−t

is divisible byb7+3(t−1)ej−t ∈ Sj .
(iv) The S-monomials fromaceareb6+3t ej−t for 0≤ t ≤ j − 1, all of which reduce

to zero as in (iii).
(v) The monomialaej+2 givesb6+3t e2 j+1−t for 0≤ t ≤ j − 1, all of which reduce to

zero modulobej+1 ∈ Qj .
(vi) Froma2cj+1 we getb6+3t ct+1e( j−1)−t , 0≤ t ≤ j − 1, all of which are multiples

of bc∈ Pj .
(vii) The S-monomials fromcj+2 areb6+3t ct+2e( j−1)−t which are also multiples of

bc∈ Pj for 0≤ t ≤ j − 1.
(viii) For this last case, suppose first thatl < t ∈ {0,1,2, . . . , j − 1}. Then

lcm(a5+3l c j−l ,a5+3t c j−t ) = a5+3t c j−l and theS-monomial betweena5+3l c j−l and
a5+3t c j−t−b6+3t e( j−1)−t isb6+3t ct−l e( j−1)−t which is a multiple ofbc∈ Pj . If l > t , then
theS-monomial isa3(l−t)b6+3t e( j−1)−t which is divisible bya2e∈ Pj sincet < l ≤ j−1
and hencet < j − 1.

Similarly, one can check that the binomials inQj ∪Sj are all flippable forMj , which
shows thatMj has at least 2j + 4 flippable binomials. To finish the proof, we argue that
no binomial inPj is flippable forMj .

(i) The S-binomial betweenc2e−d3 ∈ Pj andbc∈ Pj is bd3 which is not divisible
by any generator ofMj .

(ii) The binomialsbc− ad, a2e− b2d, andace− bd2 ∈ Pj form theS-binomials
adej+1, b3dej , andb2d2ej , respectively withbej+1 ∈ Qj . None of them can be
divided by a minimal generator ofMj .

(iii) The S-binomial ofaej+2− cj d3 ∈ Qj anda2e∈ Pj is acj d3 which does not lie
in Mj .

HenceMj has exactly 2j + 4 flippable binomials.

Proof of Theorem4.1. The same proof as in Lemma 4.3 shows that the generators of
I(µ0, . . . , µj−1) := Pj + Qj + 〈a5+3t c j−t − µt b6+3t ej−1−t , t = 0, . . . , j − 1〉 + Sj

form a Gröbner basis with respect tow = (1,1,2,0,2) with initial ideal Mj , for every
choice of scalarsµ0, . . . , µj−1 from the underlying fieldk. Lemma 4.3 proved this claim
for the case whenµi = 1 for some 0≤ i ≤ j − 1 andµj = 0 for all j 6= i . Since
Mj is A( j )-graded, theA( j )-homogeneous idealI(µ0, . . . , µj−1) is alsoA( j )-graded
for every choice of scalarsµ0, . . . , µj−1. Hence there is an injective polynomial map
fromA j

k → HA( j ), such that(µ0, . . . , µj−1) maps to the point onHA( j ) corresponding
(uniquely) toI(µ0, . . . , µj−1). SinceA j

k is irreducible, the image of this map lies entirely
in one irreducible component of the toric Hilbert schemeHA( j ) and the dimension of
this component is at least dim(A j

k) = j .

Remark 4.4. In [23] it was conjectured that the maximum valency of a vertex in the
state polytope ofI A is bounded above by a function of just the corank ofA. As a
particular case, it was also conjectured that ifA is of corank three, then every vertex in
the state polytope ofI A has at most four neighbors. This latter conjecture was recently
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disproved by Ho¸sten and Maclagan [10] who have found vertices with up to six neighbors.
Lemma 4.3 shows that even in corank three, a vertex in the flip graph ofA can have
arbitrarily many neighbors.

5. Connection to the Baues Problem

In this section we elaborate a connection betweenA-graded ideals and the Baues problem
for triangulations. A good reference for all forms of the Baues problem is [17].

A triangulation of a point configurationA = {a1, . . . ,an} ⊆ Zd is a geometric
simplicial complex covering conv(a1, . . . ,an) with the vertices of each simplex being a
subset ofA. Each simplexσ is indexed by the set{i : ai is a vertex ofσ }.

A basic operation on triangulations of a point configuration is thebistellar flip. The
two basic types of non-degenerate bistellar flips in the plane are shown in Fig. 1.

Intuitively, a bistellar flip should be thought of as gluing in a higher-dimensional
simplex, and then turning that simplex over and viewing it from the other side. This can
be seen most clearly in the second example in Fig.1, which can be viewed as the top and
bottom of a tetrahedron. The first example can also be thought of as two opposite views
of a tetrahedron.

More formally, a bistellar flip interchanges the two different triangulations of acircuit
of A. A vectort ∈ Zn is called a circuit ofA if it lies in the kernel of the matrix whose
columns are the points ofA, supp(t) is minimal with respect to inclusion when compared
against the supports of all integral vectors in the kernel of this matrix, and its non-zero
entries do not have a common divisor. Lett be a circuit of the configurationA, and let
T = {i : ti 6= 0} be its support. We denote byT+ the set{i : ti > 0} and byT− the
set{i : ti < 0}. There are exactly two triangulations ofC = conv(ai : i ∈ T). The first,
C+, has|T+| simplices, which are the simplices indexed by the sets{T\{i }: i ∈ T+}.
The second,C−, has|T−| simplices, which are the sets in{T\{i }: i ∈ T−}. The unique
minimal non-face ofC+ (C−) is T+ (T−). If C is d-dimensional, and one ofC+ and
C− is a subcomplex of the triangulation1, then a bistellar flip over the circuitt involves
replacing the subcomplexC+ by C− or vice versa.

If C is lower-dimensional, we impose an additional condition fort to be flippable. By
the link of a simplexσ in a simplicial complex1 we mean the collection of simplices
{τ : τ ∩ σ = ∅, τ ∪ σ ∈ 1}. We sayt is flippable if C+ (or C−) is a subcomplex of

Fig. 1. Bistellar flips for triangulations of points in the plane.
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Fig. 2. Triangulations differing by bistellar flips.

1, and the link in1 of every maximal simplex ofC+ (respectivelyC−) is the same
subcomplexL. This second condition is trivially satisfied ifC is d-dimensional, as the
link of every maximal simplex is the empty set. A bistellar flip over the circuitt from
C+ to C− then involves replacing the simplices{l ∪σ : σ ∈ C+, l ∈ L} by the simplices
{l ∪ τ : τ ∈ C−, l ∈ L}.

Examples of bistellar flips are shown in Fig. 2.
We can form a graph, called theBaues graph, on the set of all triangulations of a

point configuration, with an edge connecting two triangulations when they differ by a
bistellar flip. Figure 2 is a subgraph of the Baues graph for a particular collection of six
points in the plane. An obvious question to ask is whether the Baues graph is connected.
Santos recently answered this question negatively [18], constructing a configuration of
324 points inZ6 which has a disconnected Baues graph. For the original Baues problem,
the point configurations considered can have real coordinates and Santos’s main point
configuration lies inR6. However, he also exhibits a configuration inZ6 with 324 points
that has a disconnected Baues graph.

The rest of this section relates the Baues graph to the flip graph and the toric Hilbert
scheme. The connection is through the following lemma, which is a special case of
Theorem 10.10 in [22]. It links monomialA-graded ideals and triangulations ofA, where
A is the matrix whose columns are the points inA, with an additional row of ones added.
We denote both thei th column ofA and thei th point ofA by ai . We adopt the notational
convention that ifσ ⊆ {1, . . . ,n} is a set, thenxσ =∏i∈σ xi . TheStanley–Reisner ideal
(see [19])I (1) of a simplicial complex1 is the ideal generated by the monomialsxσ

where the setsσ are the minimal non-faces of1. Similarly, every squarefree monomial
ideal I in Sdefines a unique simplicial complex1(I ) on {1, . . . ,n}.

Lemma 5.1[22, Theorem 10.10]. Let I be a monomial A-graded ideal. Then1(rad
(I )), the simplicial complex associated torad(I ) via the Stanley–Reisner correspon-
dence, is a triangulation ofA.

We can now state the main theorem of this section.

Theorem 5.2. Let I be a monomial A-graded ideal and let xα − xβ be a flippable
binomial for I. Then either1(rad(I )) = 1(rad(Iflip)) or they differ by a bistellar flip.
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The proof will be developed through the following series of lemmas. We need to show
that if I1 and I2 are monomialA-graded ideals which differ by a flip, then either their
radicals are the same or1(rad(I1)) and1(rad(I2)) differ by a bistellar flip. The latter
involves showing:

(1) t = α − β is a circuit ofA (Lemma 5.3).
(2) C+ is a subcomplex of1(rad(I )) with the link of all maximal simplices ofC+

the same (Lemma 5.4).
(3) 1(rad(Iflip)) differs from1(rad(I )) exactly by replacingC+ and its link byC−

and the corresponding link.

By a circuit of A we mean a binomialxα − xβ such thatα − β is a circuit ofA. The
set of circuits is contained in the Graver basis ofA [22, Proposition 4.11].

Lemma 5.3. Let I be a monomial A-graded ideal, with xα − xβ a flippable binomial
with xα ∈ I . Then xβ ∈ rad(I )⇔ rad(I ) = rad(Iflip). If xβ 6∈ rad(I ), then xα − xβ is a
circuit of A.

Proof. The implication⇐ is immediate in the first statement so we need only show
thatxβ ∈ rad(I ) implies rad(I ) = rad(Iflip). Supposexβ ∈ rad(I ). Let xγ be a minimal
generator ofIflip. Then eitherxγ is a minimal generator ofI , γ = β, or γ = α + g for
someg. In each casexγ ∈ rad(I ), so rad(Iflip) ⊆ rad(I ). If the containment is proper,
Lemma 5.1 gives a proper containment of Stanley–Reisner ideals of triangulations ofA,
which is not possible. So we conclude rad(I ) = rad(Iflip).

For the second statement, supposexα − xβ is not a circuit. Then there exists a circuit
xγ − xδ with supp(γ ) ⊆ supp(α), and supp(δ) ⊆ supp(β) where at least one of these
inclusions is proper. Sincexβ 6∈ rad(I ), we must havexsupp(δ) 6∈ rad(I ), and thusxδ 6∈ I .
This impliesxγ ∈ I . Becausexα− xβ is not a circuit, whilexγ − xδ is, we knowγ 6= α,
and thusxγ ∈ Iflip. This meansxsupp(γ ) ∈ rad(Iflip), and soxα ∈ rad(Iflip). However,
this means, as above, that rad(Iflip) = rad(I ), which in turn implies thatxβ ∈ rad(I ),
contradicting the hypothesis.

Let I be a monomialA-graded ideal, withxα − xβ flippable, wherexα ∈ I , xβ 6∈
rad(I ). Let t = α − β andT = supp(t). By Lemma 5.3 we know thatt is a circuit, so
we can consider the triangulationC+ = {T\{i }: i ∈ T+} of C.

Lemma 5.4. Let I, xα − xβ , t , and C+ be as above. Then C+ is a subcomplex of
1 = 1(rad(I )), and there is a subcomplex of1which is the common link of all maximal
simplices of C+.

Proof. SinceT+ is the only minimal non-face ofC+, to show thatC+ is a subcomplex
of 1 we need to show thatxT+ is the only minimal generator of rad(I ) with support
in T .

Supposexγ is a minimal generator of rad(I ), with supp(γ ) ⊆ T . Then there is
somel ≥ 1 such thatxlγ ∈ I . Write γ = α′ + β ′, where supp(α′) ⊆ supp(α) and
supp(β ′) ⊆ supp(β). If supp(α′) 6= supp(α), thenxα does not dividexlγ and soxlγ is in
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the wall idealWα−β . We can chooseδ′ with supp(δ′) ⊆ supp(β) so thatlγ+δ′ = mβ+α′
for somem ≥ 1. Sincexmβ+α′ = xlγ+δ′ ∈ Wα−β , it follows that xmα+α′ ∈ Wα−β ,
becausexα − xβ ∈ Wα−β . Soxmα+α′ ∈ Iflip, and there is thus somep ≥ m+ 1 such that
xpα ∈ Iflip. This implies thatxα ∈ rad(Iflip). However, by Lemma 5.3, this means that
rad(Iflip) = rad(I ), which in turn implies thatxβ ∈ rad(I ), contradicting our hypothesis.
So supp(α′) = supp(α) = T+, and thusxT+ | xγ . This shows thatxT+ is the only
minimal generator of rad(I ) with support inT , as required. From this we conclude that
C+ is a subcomplex of1.

We now show that every maximal simplexσ ∈ C+ ⊆ 1 has the same link. We do
this by showing that any simplex not intersectingT and not in the link of one maximal
simplex ofC+ is not in the link of any other maximal simplex ofC+.

Supposeσ ⊆ {1, . . . ,n}\T is not a simplex in the link of a maximal simplexγ ′ of
C+ ⊆ 1, whereγ ′ = T\{p} for somep ∈ T+ andσ ∩ T = ∅. Thenxσ∪γ

′ ∈ rad(I ),
becauseσ ∪ γ ′ is not a face of1, and so there existsl ≥ 1, andxα

′′
, a minimal

generator ofI with α′′ 6= α, such thatxα
′′ | (xσ∪γ ′)l . Write α′′ = α′ + β ′ + σ ′,

where supp(α′) ⊆ supp(α), supp(β ′) ⊆ supp(β), and supp(σ ′) ⊆ σ . Chooseδ′ with
supp(δ′) ⊆ supp(α) such thatα′′ + δ′ = mα + β ′ + σ ′ for somem ≥ 0. Then because
xα
′′ ∈ Wα−β , we havexα

′′+δ′ ∈ Wα−β , and soxmβ+β ′+σ ′ is in Wα−β and thus inI . So
xsupp(β)∪supp(σ ′) ∈ rad(I ). Letτ be another maximal simplex ofC+, soτ = (γ ′∪{p})\{p′}
for somep′ ∈ T+. Then supp(β) ∪ supp(σ ′) ⊆ τ ∪ σ , and soxτ∪σ ∈ rad(I ), and thus
σ is not in the link ofτ in 1. This shows that every maximal simplexσ ∈ C+ ⊆ 1 has
the same link, as required.

Proof of Theorem5.2. If xβ ∈ rad(I ), then rad(I ) = rad(Iflip) by Lemma 5.3, and so
1(rad(I )) = 1(rad(Iflip)).

Supposexβ 6∈ rad(I ). Then Lemma 5.3 implies thatt = α − β is a circuit ofA.
By Lemma 5.4C+ is a subcomplex of1(rad(I )) with each maximal simplex ofC+

having the same link in1(rad(I )). It remains to show that1(rad(Iflip)) is the result of
performing a bistellar flip on1(rad(I )).

Let1′ be the result of performing the bistellar flip on1(rad(I )) overt , and letM be
the Stanley–Reisner ideal of1′.

We claim thatM is the squarefree monomial ideal generated byxsupp(β), all the
generators of rad(I ) exceptxsupp(α), and also all monomials of the formxσ , such that
supp(α) ⊆ σ , andσ\(T ∩ σ) is not in the link of the maximal simplices ofC+. Let
α′′ ⊆ {1, . . . ,n}. Thenα′′ is a face of1′ exactly when eitherα′′ is a face of1 and
T− 6⊆ α′′ or α′′ = T+ ∪ τ ∪ γ ′, whereτ ( T−, andγ ′ is in the link of the maximal
simplices ofC+. This means thatβ ′′ ⊆ {1, . . . ,n} is not a face of1′ exactly when either
T− ⊆ β ′′ or β ′′ is not a face of1 andβ ′′ 6= T+ ∪ τ ∪ γ ′ for anyτ ( T− andγ ′ in the
link of the maximal simplices ofC+. This proves the claim.

We now show that rad(Iflip) ⊆ M . Let xα
′′

be a minimal generator ofIflip such that
xsupp(α′′) is a minimal generator of rad(Iflip). If xα

′′
is also a minimal generator ofI ,

thenxsupp(α′′) is in the square free ideal generated by all the generators of rad(I ) except
xsupp(α), soxsupp(α′′) ∈ M . Sincexsupp(β) ∈ M , the only case left to consider isα′′ = α+g
for someg 6= 0 with β 6≤ g. Write g = α′ + β ′ + γ ′, where supp(α′) ⊆ supp(α),
supp(β ′) ( supp(β), and supp(γ ′) ∩ T = ∅. Chooseδ′ so thatδ′ + α′ = lα + α̃ for
somel ≥ 0, where supp(α̃) = T+\{p} for some p ∈ T+. Sincexα

′′
is a minimal
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generator ofIflip different fromxα, it is in Wα−β . It thus follows thatxα+g+δ′ ∈ Wα−β ,
and so, becausexα − xβ ∈ Wα−β , we havex(l+1)β+α̃+β ′+γ ′ ∈ Wα−β and thus inI .
Since supp((l + 1)β + α̃ + β ′) = T\{p}, x(T\{p})∪supp(γ ′) ∈ rad(I ) and thus supp(γ ′) is
not in the link of the maximal simplices ofC+. Because supp(γ ′) = supp(α′′)\T , this
meansxα

′′ ∈ M , and therefore rad(Iflip) ⊆ M . Now because1(rad(Iflip)) and1′ are
both triangulations ofA, this inclusion cannot be proper. SoM = rad(Iflip), and thus
1(rad(Iflip)) is the result of performing a bistellar flip on1(rad(I )).

Theorem 5.2 gives a map from the flip graph of monomialA-graded ideals and
their flips to the graph of triangulations ofA and their bistellar flips. Peeva [22, The-
orem 10.13] has shown that this map is not always surjective. There is, however, one
special case where there is an isomorphism between the two graphs. Recall that an
integer matrixA is unimodular if all maximal minors of A have the same absolute
value. A triangulation ofA is unimodular if all simplices havenormalizedvolume one
[22, Section 8].

Theorem 5.5. If 1 is a unimodular triangulation ofA, then the Stanley–Reisner ideal
I (1) is A-graded. If A is unimodular, then its flip graph is isomorphic to its Baues graph.

Proof. The first claim is what is actually proved in Lemma 10.14 of [22], although the
statement is weaker there. The second claim is an immediate consequence as, ifI (1) is
A-graded, it must be the onlyA-graded ideal with that radical.

We note that this means that a unimodular triangulation with no flips gives rise to a
disconnected toric Hilbert scheme. This is true even if the whole configuration is not
unimodular.

6. Toward a Disconnected Toric Hilbert Scheme

We conclude with some results that suggest the existence of a disconnected toric Hilbert
scheme. As mentioned earlier, Santos [18] has recently constructed a six-dimensional
integral point configuration with 324 points for which there is a triangulation that ad-
mits no bistellar flips. Hence this configuration has a disconnected Baues graph. By the
results in [21] and the previous section, every monomialA-graded idealI is supported
on a triangulation ofA via the correspondenceI 7→ 1(rad(I )), and if two monomial
A-graded ideals are adjacent in the flip graph ofA, then either they are supported on
the same triangulation or on two triangulations that are adjacent in the Baues graph of
A. Just as for monomialA-graded ideals, there is a notion of coherence for triangu-
lations ofA. Every coherenttriangulation ofA (often called aregular triangulation
in the literature) supports at least one monomialA-graded ideal, and at least one of
these ideals is coherent (see Chapter 8 in [22]). On the other hand, Peeva has shown
that if a triangulation ofA is non-coherent/non-regular, then there may be no mono-
mial A-graded ideal whose radical is the Stanley–Reisner ideal of this triangulation (see
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Theorem 10.13 in [22]). Hence in order for Santos’s example to lift to an example of
a disconnected toric Hilbert scheme, it suffices to show that there is a monomialA-
graded ideal whose radical is the Stanley–Reisner ideal of his isolated (non-regular)
triangulation. A straightforward search for such a monomialA-graded ideal from his
6 × 324 matrix is, however, a daunting computational endeavor. Nonetheless, San-
tos’s disconnected Baues graph seems to be evidence in favor of a disconnected flip
graph.

Recall that every coherent monomialA-graded ideal has at leastn− d neighbors in
the flip graph ofA. We say that a monomialA-graded ideal isflip deficientif its valency
in the flip graph ofA is strictly less thann − d. All flip deficient monomialA-graded
ideals are necessarily non-coherent. Before Santos constructed an isolated triangulation,
several examples of flip deficient triangulations (triangulations with valency less that
n − d in the Baues graph) were produced as evidence in support of the existence of a
disconnected Baues graph. The first such examples appear in [4]. We provide examples
of flip deficient monomialA-graded ideals.

Theorem 6.1. For each matrix A(n) := [1 2 3 7 8 9a7 · · ·an] with ai ∈ N and9 <
a7 < · · · < an, there is a monomial A(n)-graded ideal with at most n− 3 < n− 1 =
corank(A(n)) flips.

Proof. For the matrixA = [1 2 3 7 8 9], themonomial idealJ = 〈x1x5, x2x4, x1x4,

x1x2, x4x6, x2x6, x1x6, x3x4, x2
2x3, x1x3, x2x2

5, x2
2x5, x2

1, x2
3, x4

2, x3x3
5, x2

4x2
5, x3

4, x6
5, x4

x4
5〉 is A-graded. The flippable binomials ofJ arex6

5 − x3x5
6, x2x6− x3x5 andx2

3 − x3
2.

In this example, there are 2910 monomialA-graded ideals in total and the flip graph of
A is connected.

Consider the monomial idealJ ′ = J + 〈x7, . . . , xn〉 ⊆ k[x1, . . . , xn] and a degree
b ∈ NA(n) = NA = N. All the monomials ink[x1, . . . , xn] of A(n)-degreeb that are
divisible by at least one ofx7, . . . , xn are inJ ′ by construction. Among the monomials
in k[x1, . . . , x6] of degreeb (there is at least one such sinceb ∈ NA), there is precisely
one that is not inJ and hence not inJ ′ and henceJ ′ is A(n)-graded. Ifxα − xβ ∈
k[x1, . . . , x6] is flippable forJ ′, then inxαÂxβ (〈xα− xβ〉+ 〈xγ : xγ minimal generator of
J,γ 6= α〉+〈x7, . . . , xn〉) = J ′. The only non-trivialS-pairs that are produced during this
calculation are those betweenxα−xβ and a monomial minimal generatorxγ of J. Since
the resulting initial ideal equalsJ ′, it follows that inxαÂxβ (〈xα − xβ〉+ 〈xγ : xγ minimal
generator ofJ, γ 6= α〉) = J and hencexα − xβ is flippable forJ. Soxα − xβ must be
one of the three flippable binomials ofJ. Additionally, each of the minimal generators
x7, . . . , xn of J ′ provides a flippable binomial and henceJ ′ has 3+ (n − 6) = n − 3
flippable binomials.

Remark 6.2. We have not found matrices of corank three with flip deficiency in our
experiments. However, flip deficiency occurs in corank four. ConsiderA = [3 6 8 10 15]
and its monomialA-graded ideal

〈ae,bd,ab2,be,a2,d2,e2,b3,abc2〉.
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The neighboring monomialA-graded ideals are:

〈ae,bd,ab2,be,de,a2,d2,e2,b3〉 from de− abc2,
〈ae,bd,ab2,b2e,a2,d2,e2,b3,acd,abc2〉 from acd− be, and
〈ae,bd,ab2,ad2,be,b2c,a2,d3,e2,b3,abc2,d2e〉 from b2c− d2.

Remark 6.3. It is interesting to note that flip-deficient triangulations do not exist for
d ≤ 3 while there are flip-deficient monomialA-graded ideals even whend = 1.

Proposition 6.4. There are flip-deficient monomial A-graded ideals that are squarefree
(i.e., supported on unimodular triangulations).

Proof. This result was pointed out to us by one of the referees and is based on Re-
mark 3.2 in [4]. LetA be the vertices of the cube-octahedron of volume 48− 8 = 40
obtained by cutting the eight corners of the unit cube [−1,1]3 plus the origin. Then
the flip-deficient triangulation ofA from Remark 3.2 in [4] has 20 tetrahedra, each of
volume two. The points inA lie in the sublattice{(x, y, z) ∈ Z3: x + y + z ∈ 2Z}.
Any affine transformation that sends this lattice bijectively toZ3 makes the triangulation
unimodular. The Stanley–Reisner idealI of this unimodular triangulation1 is A-graded
(Lemma 10.14 in [22]). Since a unimodular triangulation supports exactly one monomial
A-graded ideal, no flip ofI leads to another monomialA-graded ideal supported on1.
Further, no two flips ofI can lead to monomialA-graded ideals supported on the same
neighboring triangulation of1 in the Baues graph ofA since all flips ofI are supported
on distinct circuits ofA which yield distinct neighboring triangulations of1.

Remark 6.5. The above computations were made using two different programs. Start-
ing with a monomial initial ideal of the toric idealI A one can compute all monomial
A-graded ideals in the same connected component as this initial ideal by using the results
in Section 2 to calculate all the neighbors of a monomialA-graded ideal. This compu-
tation can be done using the programTiGERS [11] with the commandtigers -iAe
filename wherefilename is the standard input file forTiGERS with the data of the
matrix A. In order to find all monomialA-graded ideals, we resort to a second program
(available from the authors) that first computes the Graver basis ofA and then system-
atically constructs weaklyA-graded monomial ideals by choosing one monomial from
each Graver binomial to be in the ideal (see Lemma 2.6). The program then compares
the Hilbert series of each such ideal against that of an initial ideal ofI A to decide if it is
A-graded. Comparing the total number of ideals produced by the two programs gives a
convenient way to decide if the flip graph is connected. These algorithms are discussed
further in [20].

We conclude with an algorithmic issue concerning the enumeration of allA-graded
monomial ideals in the same connected component as a fixed one. The main program in
TiGERS enumerates the vertices of the state polytope ofI A by using thereverse search
strategy of Avis and Fukuda [2], which requires only the current vertex to be stored at any
given time. The input to the program is any one monomial initial ideal ofI A from which
the program reconstructs all the others without needing to consult the list of ideals it has
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already found. An essential requirement of this algorithm is a method by which the input
ideal can be distinguished from any other monomial initial ideal ofI A by considering
only the edges of the state polytope. This is done inTiGERS as follows:

SupposeM1 and M2 are two monomial initial ideals ofI A induced by the weight
vectorsw1 andw2, respectively. LetG1 andG2 be the corresponding reduced Gr¨obner
bases ofI A. Then for each facet binomialxa − xb in G1 we havew1 · (a− b) > 0 and
for each facet binomialxα − xβ ∈ G2 we havew2 · (α − β) > 0. The reduced Gr¨obner
basesG1 andG2 coincide if and only if each facet binomialxα − xβ of G2 satisfies the
inequalityw1 · (α − β) > 0. Suppose the input is a fixed initial ideal ofI A. By the
previous observation, every other monomial initial ideal ofI A will have a mismarked
facet binomial with respect to the term order inducing the input initial ideal and hence
can be distinguished from it. The following example shows that monomialA-graded
ideals cannot be distinguished by checking the orientation of their flippable binomials.

Example 6.6. ConsiderA = [3 4 5 13 14] and itsnon-coherent monomialA-graded
ideal

M = 〈cd5, c2e3,be,d9,b2, c3,a6,bd,ae2,ad3,ac2,a2d,a2b,bc,a3e,a3c〉.

The flippable binomials ofM areae2 − cd2, c3 − a5, andd9 − ce8. With respect to the
weight vectorw = (0,0,1,20,22), each of these flippable binomials has its positive
term as the leading term and henceM cannot be distinguished from inw(I A) by checking
whether its flippable binomials are mismarked with respect tow.
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