Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem - Source link

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce ...+1 more authors

Institutions: University of Pennsylvania, Alcatel-Lucent, French Institute for Research in Computer Science and Automation

Published on: 01 May 2007 - ACM Transactions on Programming Languages and Systems (ACM)
Topics: Combinatory logic, Functional programming and Data structure

Related papers:

- Update semantics of relational views
- Boomerang: resourceful lenses for string data
- Bidirectional Transformations: A Cross-Discipline Perspective
- Relational lenses: a language for updatable views
- Bidirectionalization transformation based on automatic derivation of view complement functions

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem

J. Foster, Michael Greenwald, Jonathan Moore, Benjamin Pierce, Alan

Schmitt

To cite this version:

J. Foster, Michael Greenwald, Jonathan Moore, Benjamin Pierce, Alan Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Transactions on Programming Languages and Systems (TOPLAS), ACM, 2007, ACM Transactions on Programming Languages and Systems, 29 (3), pp.17. 10.1145/1232420.1232424 . inria-00484971

HAL Id: inria-00484971 https://hal.inria.fr/inria-00484971

Submitted on 19 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Combinators for Bi-Directional Tree Transformations: A Linguistic Approach to the View Update Problem

J. NATHAN FOSTER
University of Pennsylvania
MICHAEL B. GREENWALD
Bell Labs, Lucent Technologies
JONATHAN T. MOORE
University of Pennsylvania
BENJAMIN C. PIERCE
University of Pennsylvania
ALAN SCHMITT
INRIA Rhône-Alpes

Abstract

We propose a novel approach to the view update problem for tree-structured data: a domainspecific programming language in which all expressions denote bi-directional transformations on trees. In one direction, these transformations-dubbed lenses-map a "concrete" tree into a simplified "abstract view"; in the other, they map a modified abstract view, together with the original concrete tree, to a correspondingly modified concrete tree. Our design emphasizes both robustness and ease of use, guaranteeing strong well-behavedness and totality properties for welltyped lenses.

We begin by identifying a natural mathematical space of well-behaved bi-directional transformations over arbitrary structures, studying definedness and continuity in this setting. We then instantiate this semantic framework in the form of a collection of lens combinators that can be assembled to describe bi-directional transformations on trees. These combinators include familiar constructs from functional programming (composition, mapping, projection, conditionals, recursion) together with some novel primitives for manipulating trees (splitting, pruning, copying, merging, etc.). We illustrate the expressiveness of these combinators by developing a number of bi-directional list-processing transformations as derived forms. An extended example shows how our combinators can be used to define a lens that translates between a native HTML representation of browser bookmarks and a generic abstract bookmark format.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-tions-Specialized application languages

General Terms: Languages
Additional Key Words and Phrases: Bi-directional programming, Harmony, XML, lenses, view update problem

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
(c) 2007 ACM XXX-XXX/XX/XXXX-XXXX \$XX.XX

1. INTRODUCTION

Computing is full of situations where some structure must be converted to a different form - a view - in such a way that changes made to the view can be reflected as updates to the original structure. This view update problem is a classical topic in the database literature, but has so far been little studied by programming language researchers.

This paper addresses a specific instance of the view update problem that arises in a larger project called Harmony [Foster et al. 2006]. Harmony is a generic framework for synchronizing tree-structured data-a tool for propagating updates between different copies of tree-shaped data structures, possibly stored in different formats. For example, Harmony can be used to synchronize the bookmark files of several different web browsers, allowing bookmarks and bookmark folders to be added, deleted, edited, and reorganized in any browser and propagated to the others. The ultimate aim of the project is to provide a platform on which a Harmony programmer can quickly assemble a high-quality synchronizer for a new type of tree-structured data stored in a standard low-level format such as XML. Other Harmony instances currently in daily use or under development include synchronizers for calendars (Palm DateBook, ical, and iCalendar formats), address books, slide presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize structures that may be stored in disparate concrete formats, we define a single common abstract format and a collection of lenses that transform each concrete format into this abstract one. For example, we can synchronize a Mozilla bookmark file with an Internet Explorer bookmark file by transforming each into an abstract bookmark structure and propagating changed information between these. Afterwards, we need to take the updated abstract structures and reflect the corresponding updates back into the original concrete structures. Thus, each lens must include not one but two functions-one for extracting an abstract view from a concrete one and another for putting an updated abstract view back into the original concrete view to yield an updated concrete view. We call these the get and putback components, respectively. The intuition is that the mapping from concrete to abstract is commonly some sort of projection, so the get direction involves getting the abstract part out of a larger concrete structure, while the putback direction amounts to putting a new abstract part into an old concrete structure. We show a concrete example of this process in Section 2.

The difficulty of the view update problem springs from a fundamental tension between expressiveness and robustness. The richer we make the set of possible transformations in the get direction, the more difficult it becomes to define corresponding functions in the putback direction in such as way that each lens is both well behaved-its get and putback behaviors fit together in a sensible way-and total - its get and putback functions are defined on all the inputs to which they may be applied.

To reconcile this tension, a successful approach to the view update problem must be carefully designed with a particular application domain in mind. The approach described here is tuned to the kinds of projection-and-rearrangement transformations on trees and lists that we have found useful for implementing Harmony in-
stances. It does not directly address some well-known difficulties with view update in the classical setting of relational databases - such as the difficulty of "inverting" queries involving joins. (We do hope that our work will suggest new attacks on these problems, however; a first step in this direction is described in [Bohannon et al. 2006].)

A second difficulty concerns ease of use. In general, there are many ways to equip a given get function with a putback function to form a well-behaved and total lens; we need some means of specifying which putback is intended that is natural for the application domain and that does not involve onerous proof obligations or checking of side conditions. We adopt a linguistic approach to this issue, proposing a set of lens combinators - a small domain-specific language - in which every expression simultaneously specifies both a get function and the corresponding putback. Moreover, each combinator is accompanied by a type declaration, designed so that the well-behavedness and (for non-recursive lenses) totality of composite lens expressions can be verified by straightforward, compositional checks. Proving totality of recursive lenses, like ordinary recursive programs, requires global reasoning that goes beyond types.

The first step in our formal development (Section 3) is identifying a natural mathematical space of well-behaved lenses over arbitrary data structures. There is a good deal of territory to be explored at this semantic level. First, we must phrase our basic definitions to allow the underlying functions in lenses to be partial, since there will in general be structures to which a given lens cannot sensibly be applied. The sets of structures to which we do intend to apply a given lens are specified by associating it with a type of the form $C \rightleftharpoons A$, where C is a set of concrete "source structures" and A is a set of abstract "target structures." Second, we define a notion of well-behavedness that captures our intuitions about how the get and putback parts of a lens should behave in concert. For example, if we use the get part of a lens to extract an abstract view a from a concrete view c and then use the putback part to push the very same a back into c, we should get c back. Third, we deploy standard tools from domain theory to define monotonicity and continuity for lens combinators parameterized on other lenses, establishing a foundation for defining lenses by recursion. (Recursion is needed because the trees that our lenses manipulate may in general have arbitrarily deep nested structure - e.g., when they represent directory hierarchies, bookmark folders, etc.) Finally, to allow lenses to be used to create new concrete structures rather than just updating existing ones (needed, for example, when new records are added to a database in the abstract view), we adjoin a special "missing" element to the structures manipulated by lenses and establish suitable conventions for how it is treated.

With these semantic foundations in hand, we proceed to syntax. In Section 4, we present a group of generic lens combinators (identities, composition, and constants), which can work with any kind of data. In Section 5, we focus attention on tree-structured data and present several more combinators that perform various manipulations on trees (hoisting, splitting, mapping, etc.); we also show how to assemble these primitives, along with the generic combinators from before, to yield some useful derived forms. Section 6 introduces another set of generic combinators implementing various sorts of bi-directional conditionals. Section 7 gives a more ambitious illustration of the expressiveness of these combinators by implementing
a number of bi-directional list-processing transformations as derived forms, including lenses for projecting the head and tail of a list, mapping over a list, grouping the elements of a list, concatenating two lists, and-our most complex exampleimplementing a bi-directional filter lens whose putback function performs a rather intricate "weaving" operation to recombine an updated abstract list with the concrete list elements that were filtered away by the get. This example also demonstrates the use of the reasoning techniques developed in Section 3 for establishing totality of recursive lenses. Section 8 further illustrates the use of our combinators in real-world lens programming by walking through a substantial example derived from the Harmony bookmark synchronizer.

Section 9 presents some first steps into a somewhat different region of the lens design space: lenses for dealing with relational data encoded as trees. We define three more primitives - a "flattening" combinator that transforms a list of (keyed) records into a bush, a "pivoting" combinator that can be used to promote a key field to a higher position in the tree, and a "transposing" combinator related to the outer join operation on databases. The first two combinators play an important role in Harmony instances for relational data such as address books encoded as XML trees.

Section 10 surveys related work and Section 11 sketches directions for future research.

To keep things moving, we defer all proofs to an electronic appendix, which is available on both the Harmony and TOPLAS web pages.

2. A SMALL EXAMPLE

Suppose our concrete tree c is a simple address book:

$$
c=\left\{\left\{\begin{array}{l}
\text { Pat } \mapsto\left\{\begin{array}{l}
\text { Phone } \mapsto \text { 333-4444 } \\
\text { URL } \mapsto \text { http://pat. com }
\end{array}\right\} \\
\text { Chris } \mapsto\left\{\begin{array}{l}
\text { Phone } \mapsto 888-9999 \\
\text { URL } \mapsto \text { http://chris. org }
\end{array}\right\}
\end{array}\right\}\right.
$$

We draw trees sideways to save space. Each set of hollow curly braces corresponds to a tree node, and each "X $\mapsto \ldots$.." denotes a child labeled with the string X . The children of a node are unordered. To avoid clutter, when an edge leads to an empty tree, we usually omit the braces, the \mapsto symbol, and the final childless nodee.g., "333-4444" above actually stands for "\{333-4444 $\mapsto\}\}\}$." When trees are linearized in running text, we separate children with commas for easier reading.

Now, suppose that we want to edit the data from this concrete tree in a yet simpler format where each name is associated directly with a phone number.

$$
a=\left\{\begin{array}{l}
\text { Pat } \mapsto 333-4444 \\
\text { Chris } \mapsto \text { 888-9999 }
\end{array}\right\}
$$

Why would we want this? Perhaps because the edits are going to be generated by synchronizing this abstract tree with another replica of the same address book in which no URL information is recorded. Or perhaps there is no synchronizer involved and the edits are going to be performed by a human who is only interested in phone information and doesn't want to see URLs. Whatever the reason, we are going to make our changes to the abstract tree a, yielding a new abstract tree a^{\prime} of
the same form but with modified content. ${ }^{1}$ For example, let us change Pat's phone number, drop Chris, and add a new friend, Jo.

$$
a^{\prime}=\left\{\begin{array}{l}
\text { Pat } \mapsto \text { 333-4321 } \\
\text { Jo } \mapsto 555-6666
\end{array}\right\}
$$

Lastly, we want to compute a new concrete tree c^{\prime} reflecting the new abstract tree a^{\prime}. That is, we want the parts of c^{\prime} that were kept when calculating a (e.g., Pat's phone number) to be overwritten with the corresponding information from a^{\prime}, while the parts of c that were filtered out (e.g., Pat's URL) have their values carried over from c.

$$
c^{\prime}=\left\{\begin{array}{l}
\text { Pat } \mapsto\left\{\begin{array}{l}
\text { Phone } \mapsto \text { 333-4321 } \\
\text { URL } \mapsto \text { http://pat.com }
\end{array}\right\} \\
\text { Jo } \mapsto\left\{\begin{array}{l}
\text { Phone } \mapsto 555-6666 \\
\text { URL } \mapsto \text { http://google.com }
\end{array}\right\}
\end{array}\right\}
$$

We also need to "fill in" appropriate values for the parts of c^{\prime} (in particular, Jo's URL) that were created in a^{\prime} and for which c therefore contains no information. Here, we simply set the URL to a constant default, though in general we might want to compute it from other information.

Together, the transformations from c to a and from a^{\prime} plus c to c^{\prime} form a lens. Our goal is to find a set of combinators that can be assembled to describe a wide variety of lenses in a concise, natural, and mathematically coherent manner. To whet the reader's appetite, the lens expression that implements the transformations above is map (focus Phone $\{U R L \mapsto$ http://google.com $\}$).

3. SEMANTIC FOUNDATIONS

Although many of our combinators work on trees, their semantic underpinnings can be presented in an abstract setting parameterized by the data structures (which we call "views") manipulated by lenses. ${ }^{2}$ In this section-and in Section 4, where we discuss generic combinators-we simply assume some fixed set \mathcal{V} of views; from Section 5 on, we will choose \mathcal{V} to be the set of trees.

Basic Structures

When f is a partial function, we write $f(a) \downarrow$ if f is defined on argument a and $f(a)=\perp$ otherwise. We write $f(a) \sqsubseteq b$ for $f(a)=\perp \vee f(a)=b$. We write $\operatorname{dom}(f)$ for $\{s \mid f(s) \downarrow\}$, the set of arguments on which f is defined. When $S \subseteq \mathcal{V}$, we write

[^0]$f(S)$ for $\{r \mid s \in S \wedge f(s) \downarrow \wedge f(s)=r\}$ and $\operatorname{ran}(f)$ for $f(\mathcal{V})$. We take function application to be strict: $f(g(x)) \downarrow$ implies $g(x) \downarrow$.
3.1 Definition [Lenses]: A lens l comprises a partial function $l \nearrow$ from \mathcal{V} to \mathcal{V}, called the get function of l, and a partial function $l \searrow$ from $\mathcal{V} \times \mathcal{V}$ to \mathcal{V}, called the putback function.

The intuition behind the notations $l \nearrow$ and $l \searrow$ is that the get part of a lens "lifts" an abstract view out of a concrete one, while the putback part "pushes down" a new abstract view into an existing concrete view. We often say "put a into c (using l)" instead of "apply the putback function (of l) to (a, c)."
3.2 Definition [Well-behaved lenses]: Let l be a lens and let C and A be subsets of \mathcal{V}. We say that l is a well behaved lens from C to A, written $l \in C \rightleftharpoons A$, if it maps arguments in C to results in A and vice versa

$$
\begin{align*}
& l \nearrow(C) \subseteq A \tag{GET}\\
& l \searrow(A \times C) \subseteq C \tag{Put}
\end{align*}
$$

and its get and putback functions obey the following laws:

$$
\begin{array}{lll}
l \searrow(l \nearrow c, c) \sqsubseteq c & \text { for all } c \in C & (\text { GETPUT) } \\
l \nearrow(l \searrow(a, c)) \sqsubseteq a & \text { for all }(a, c) \in A \times C & (\text { PUTGET })
\end{array}
$$

We call C the source and A the target in $C \rightleftharpoons A$. Note that a given l may be a well-behaved lens from C to A for many different C s and $A \mathrm{~s}$; in particular, every l is trivially a well-behaved lens from \emptyset to \emptyset, while the everywhere-undefined lens belongs to $C \rightleftharpoons A$ for every C and A.

Intuitively, the GetPut law states that, if we get some abstract view a from a concrete view c and immediately putback a (with no modifications) into c, we must get back exactly c if both operations are defined. PutGet, on the other hand, demands that the putback function must capture all of the information contained in the abstract view: if putting a view a into a concrete view c yields a view c^{\prime}, then the abstract view obtained from c^{\prime} is exactly a.

An example of a lens satisfying PutGet but not GetPut is the following. Suppose $C=$ string \times int and $A=$ string, and define l by:

$$
l \nearrow(s, n)=s \quad l \searrow\left(s^{\prime},(s, n)\right)=\left(s^{\prime}, 0\right)
$$

Then $l \searrow(l \nearrow(s, 1),(s, 1))=(s, 0) \nsubseteq(s, 1)$. Intuitively, the law fails because the putback function has "side effects": it modifies information in the concrete view that is not reflected in the abstract view.

An example of a lens satisfying GetPut but not PutGet is the following. Let $C=$ string and $A=$ string \times int, and define l by :

$$
l \nearrow s=(s, 0) \quad l \searrow\left(\left(s^{\prime}, n\right), s\right)=s^{\prime}
$$

PutGet fails here because some information contained in the abstract view does not get propagated to the new concrete view. For example, $l \nearrow\left(l \searrow\left(\left(s^{\prime}, 1\right), s\right)\right)=$ $l \nearrow s^{\prime}=\left(s^{\prime}, 0\right) \nsubseteq\left(s^{\prime}, 1\right)$.

The GetPut and PutGet laws reflect fundamental expectations about the behavior of lenses; removing either law significantly weakens the semantic foundation.

We may also consider an optional third law, called PutPut:

$$
l \searrow\left(a^{\prime}, l \searrow(a, c)\right) \sqsubseteq l \searrow\left(a^{\prime}, c\right) \quad \text { for all } a, a^{\prime} \in A \text { and } c \in C .
$$

This law states that the effect of a sequence of two putbacks is (modulo definedness) just the effect of the second: the first gets completely overwritten. Alternatively, a series of changes to an abstract view may be applied either incrementally or all at once, resulting in the same final concrete view. We say that a well-behaved lens that also satisfies PutPut is very well behaved. Both well-behaved and very well behaved lenses correspond to familiar classes of "update translators" from the classical database literature; see Section 10.

The foundational development in this section is valid for both well-behaved and very well behaved lenses. However, when we come to defining our lens combinators for tree transformations, we will not require PuTPUT because some of our lens combinators-in particular, map, flatten, merge, and conditionals-fail to satisfy it for reasons that seem pragmatically unavoidable (see Sections 5 and 9).

For now, a simple example of a lens that is well behaved but not very well behaved is as follows. Consider the following lens, where $C=$ string \times int and $A=$ string. The second component of each concrete view intuitively represents a version number.

$$
l \nearrow(s, n)=s \quad l \searrow\left(s,\left(s^{\prime}, n\right)\right)= \begin{cases}(s, n) & \text { if } s=s^{\prime} \\ (s, n+1) & \text { if } s \neq s^{\prime}\end{cases}
$$

The get function of l projects away the version number and yields just the "data part." The putback function overwrites the data part, checks whether the new data part is the same as the old one, and, if not, increments the version number. This lens satisfies both GetPut and PutGet but not PutPut, as we have $l \searrow\left(s, l \searrow\left(s^{\prime},(c, n)\right)\right)=(s, n+2) \nsubseteq(s, n+1)=l \searrow(s,(c, n))$.

Another critical property of lenses is totality with respect to a given source and target.
3.3 Definition [Totality]: A lens $l \in C \rightleftharpoons A$ is said to be total, written $l \in$ $C \Longleftrightarrow A$, if $C \subseteq \operatorname{dom}(l /)$ and $A \times C \subseteq \operatorname{dom}(l \searrow)$.

The reasons for considering both partial and total lenses instead of building totality into the definition of well-behavedness are much the same as the reasons for considering partial functions in conventional functional languages. In practice, we want lenses to be total: ${ }^{3}$ to guarantee that Harmony synchronizers will work predictably, lenses must be defined on the whole of the domains where they are used; the get direction should be defined for any structure in the concrete set, and the putback direction should be capable of putting back any possible updated version from the abstract set. ${ }^{4}$ All of our primitive lenses are designed to be total, and all of our lens

[^1]combinators map total lenses to total lenses-with the sole, but important, exception of lenses defined by recursion; as usual, recursive lenses must be constructed in the semantics as limits of chains of increasingly defined partial lenses. The soundness of the type annotations we give for our syntactic lens combinators guarantees that every well-typed lens expression is well-behaved, but only recursion-free expressions can be shown total by completely compositional reasoning with types; for recursive lenses, more global arguments are required, as we shall see.

Basic Properties

We now explore some simple but useful consequences of the lens laws. All the proofs can be found in the electronic appendix.
3.4 Definition: Let f be a partial function from $A \times C$ to C and $P \subseteq A \times C$. We say that f is semi-injective on P if it is injective (in the standard sense) in the first component of arguments drawn from P-i.e., if, for all views a, a^{\prime}, c, and c^{\prime} with $(a, c) \in P$ and $\left(a^{\prime}, c^{\prime}\right) \in P$, if $f(a, c) \downarrow$ and $f\left(a^{\prime}, c^{\prime}\right) \downarrow$, then $a \neq a^{\prime}$ implies $f(a, c) \neq f\left(a^{\prime}, c^{\prime}\right)$.
3.5 Lemma: If $l \in C \rightleftharpoons A$, then $l \searrow$ is semi-injective on $\{(a, c) \quad \mid \quad(a, c) \in$ $A \times C \wedge l /(l \searrow(a, c)) \downarrow\}$.

The main application of this lemma is the following corollary, which provides an easy way to show that a lens is not well behaved. We used it many times while designing our combinators, to quickly generate and test candidates.
3.6 Corollary: If $l \in C \Longleftrightarrow A$, then $l \searrow$ is semi-injective on $A \times C$.

An important special case arises when the putback function of a lens is completely insensitive to its concrete argument.
3.7 Definition: A lens l is said to be oblivious if $l \searrow(a, c)=l \searrow\left(a, c^{\prime}\right)$ for all $a, c, c^{\prime} \in \mathcal{V}$.

Oblivious lenses have some special properties that make them simpler to reason about than lenses in general. For example:
3.8 Lemma: If l is oblivious and $l \in C_{1} \rightleftharpoons A_{1}$ and $l \in C_{2} \rightleftharpoons A_{2}$, then $l \in$ $\left(C_{1} \cup C_{2}\right) \rightleftharpoons\left(A_{1} \cup A_{2}\right)$.

3.9 Lemma: If $l \in C \Longleftrightarrow A$ is oblivious, then $l \nearrow$ is a bijection from C to A.

Conversely, every bijection between C and A induces a total oblivious lens from C to A-that is, the set of bijections between subsets of \mathcal{V} forms a subcategory of the category of total lenses. Many of the combinators defined below actually live in this simpler subcategory, as does much of the related work surveyed in Section 10.

[^2]
Recursion

Since we will be interested in lenses over trees, and since trees in many application domains may have unbounded depth (e.g., a bookmark can be either a link or a folder containing a list of bookmarks), we will often want to define lenses by recursion. Our next task is to set up the necessary structure for interpreting such definitions.
The development follows familiar lines. We introduce an information ordering on lenses and show that the set of lenses equipped with this ordering is a complete partial order (CPO). We then apply standard tools from domain theory to interpret a variety of common syntactic forms from programming languages - in particular, functional abstraction and application ("higher-order lenses") and lenses defined by single or mutual recursion.

We say that a lens l^{\prime} is more informative than a lens l, written $l \prec l^{\prime}$, if both the get and putback functions of l^{\prime} have domains that are at least as large as those of l and their results agree on their common domains:
3.10 Definition: $l \prec l^{\prime}$ iff $\operatorname{dom}(l \nearrow) \subseteq \operatorname{dom}\left(l^{\prime} \nearrow\right), \operatorname{dom}(l \searrow) \subseteq \operatorname{dom}\left(l^{\prime} \searrow\right), l \nearrow c=$ $l^{\prime} \nearrow c$ for all $c \in \operatorname{dom}(l \nearrow)$, and $l \searrow(a, c)=l^{\prime} \searrow(a, c)$ for all $(a, c) \in \operatorname{dom}(l \searrow)$.
3.11 Lemma: \prec is a partial order on lenses.

A cpo is a partially ordered set in which every increasing chain of elements has a least upper bound in the set. If $l_{0} \prec l_{1} \prec \ldots \prec l_{n} \prec \ldots$ is an increasing chain, we write $\bigsqcup_{n \in \omega} l_{n}$ (often shortened to $\bigsqcup_{n} l_{n}$) for its least upper bound. A cpo with bottom is a cpo with an element \perp that is smaller than every other element. In our setting, the bottom element \perp_{l} is the lens whose get and putback functions are everywhere undefined. It is obviously the smallest lens according to \prec and is well-behaved at any lens type (it trivially satisfies all equations).
3.12 Lemma: Let $l_{0} \prec l_{1} \prec \ldots \prec l_{n} \prec \ldots$ be an increasing chain of lenses. The lens l defined by

$$
\begin{array}{clrl}
l \searrow(a, c) & =l_{i} \searrow(a, c) & & \text { if } l_{i} \searrow(a, c) \downarrow \text { for some } i \\
l \nearrow c & =l_{i} \nearrow c & & \text { if } l_{i} \nearrow c \downarrow \text { for some } i
\end{array}
$$

and undefined elsewhere is a least upper bound for the chain.
3.13 Corollary: Let $l_{0} \prec l_{1} \prec \ldots \prec l_{n} \prec \ldots$ be an increasing chain of lenses. For every $a, c \in \mathcal{V}$, we have:

$$
\begin{equation*}
\left(\bigsqcup_{n} l_{n}\right) \nearrow c=v \quad \text { iff } \quad \exists i . l_{i} \nearrow c=v . \tag{1}
\end{equation*}
$$

(2) $\left(\bigsqcup_{n} l_{n}\right) \searrow(a, c)=v \quad$ iff $\quad \exists i . l_{i} \searrow(a, c)=v$.
3.14 Lemma: Let $l_{0} \prec l_{1} \prec \ldots \prec l_{n} \prec \ldots$ be an increasing chain of lenses, and let $C_{0} \subseteq C_{1} \subseteq \ldots$ and $A_{0} \subseteq A_{1} \subseteq \ldots$ be increasing chains of subsets of \mathcal{V}. Then:
(1) Well-behavedness commutes with limits:
$\left(\forall i \in \omega . l_{i} \in C_{i} \rightleftharpoons A_{i}\right) \quad$ implies $\quad \bigsqcup_{n} l_{n} \in\left(\bigcup_{i} C_{i}\right) \rightleftharpoons\left(\bigcup_{i} A_{i}\right)$.
(2) Totality commutes with limits:
$\left(\forall i \in \omega . l_{i} \in C_{i} \Longleftrightarrow A_{i}\right) \quad$ implies $\quad \bigsqcup_{n} l_{n} \in\left(\bigcup_{i} C_{i}\right) \Longleftrightarrow\left(\bigcup_{i} A_{i}\right)$.
3.15 Theorem: Let \mathcal{L} be the set of well-behaved lenses from C to A. Then (\mathcal{L}, \prec) is a cpo with bottom.

When defining lenses, we will make heavy use of the following standard theorem from domain theory (e.g., [Winskel 1993]). Recall that a function f between two cpos is continuous if it is monotonic and if, for all increasing chains $l_{0} \prec l_{1} \prec \ldots \prec$ $l_{n} \prec \ldots$, we have $f\left(\bigsqcup_{n} l_{n}\right)=\bigsqcup_{n} f\left(l_{n}\right)$. A fixed point of f is a function $f x(f)$ satisfying $f i x(f)=f(f i x(f))$.
3.16 Theorem [Fixed-Point Theorem]: Let f be a continuous function from D to D, where D is a cpo with bottom. Define

$$
f i x(f)=\bigsqcup_{n} f^{n}(\perp)
$$

Then $f i x(f)$ is a fixed point, in fact the least fixed point, of f.
Theorem 3.15 tells us that we can apply Theorem 3.16 to continuous functions from lenses to lenses-i.e., it justifies defining lenses by recursion. The following corollary packages up this argument in a convenient form; we will appeal to it many times in later sections to show that recursive derived forms are well behaved and total.
3.17 Corollary: Suppose f is a continuous function from lenses to lenses.
(1) If $l \in C \rightleftharpoons A$ implies $f(l) \in C \rightleftharpoons A$ for all l, then $f i x(f) \in C \rightleftharpoons A$.
(2) Suppose $\emptyset=C_{0} \subseteq C_{1} \subseteq \ldots$ and $\emptyset=A_{0} \subseteq A_{1} \subseteq \ldots$ are increasing chains of subsets of \mathcal{V}. If $l \in C_{i} \Longleftrightarrow A_{i}$ implies $f(l) \in C_{i+1} \Longleftrightarrow A_{i+1}$ for all i and l, then $f i x(f) \in\left(\bigcup_{i} C_{i}\right) \Longleftrightarrow\left(\bigcup_{i} A_{i}\right)$.

We can now apply standard domain theory to interpret a variety of constructs for defining continuous lens combinators. We say that an expression e is continuous in the variable x if the function $\lambda x . e$ is continuous. An expression is said to be continuous in its variables, or simply continuous, if it is continuous in every variable separately. Examples of continuous expressions are variables, constants, tuples (of continuous expressions), projections (from continuous expressions), applications of continuous functions to continuous arguments, lambda abstractions (whose bodies are continuous), let bindings (of continuous expressions in continuous bodies), case constructions (of continuous expressions), and the fixed point operator itself. Tupling and projection let us define mutually recursive functions: if we want to define f as $F(f, g)$ and g as $G(f, g)$, where both F and G are continuous, we define $(f, g)=f i x(\lambda(x, y) \cdot(F(x, y), G(x, y)))$.

When proving the totality of recursive lenses, we sometimes need to use a more powerful induction scheme in which a lens is proved, simultaneously, to be total on a whole collection of different types (any of which can be used in the induction step). This is supported by a generalization of the proof technique in 3.17(2).

We specify a total type by a pair (C, A) of subsets of \mathcal{V}, and say that a lens l has this type, written $l \in(C, A)$ iff $l \in C \Longleftrightarrow A$. We use the variable τ to range over total types and \mathbb{T} for sets of total types. We write $(C, A) \subseteq\left(C^{\prime}, A^{\prime}\right)$ iff $C \subseteq C^{\prime}$ and $A \subseteq A^{\prime}$ and write $(C, A) \cup\left(C^{\prime}, A^{\prime}\right)$ for $\left(C \cup C^{\prime}, A \cup A^{\prime}\right)$.
3.18 Definition: The increasing chain $\tau_{0} \subseteq \tau_{1} \subseteq \ldots$ is an increasing instance of the sequence $\mathbb{T}_{0}, \mathbb{T}_{1}, \ldots$ iff $\tau_{i} \in \mathbb{T}_{i}$ for all i.

Note that $\mathbb{T}_{0}, \mathbb{T}_{1}, \ldots$ here is an arbitrary sequence of sets of total types - the sequence need not be increasing. This is the trick that makes this proof technique work: we start with a sequence of sets of total types $\mathbb{T}_{0}, \mathbb{T}_{1}, \ldots$ that, a priori, have nothing to do with each other; we then show that some continuous function f on lenses gets us from each \mathbb{T}_{i} to \mathbb{T}_{i+1}, in the sense that f takes any lens l that belongs to all of the total types in \mathbb{T}_{i} to a lens $f(l)$ that belongs to all of the total types in \mathbb{T}_{i+1}. Finally, we identify an increasing chain of particular total types $\tau_{0} \subseteq \tau_{1} \subseteq \ldots$ whose limit is the total type that we desire to show for the fixed point of f and such that each τ_{i} belongs to \mathbb{T}_{i}, and hence is a type for $f^{i}\left(\perp_{l}\right)$.

Here is the generalization of Corollary $3.17(2)$ to increasing instances of sequences of sets of total types. It will be used in Section 7.
3.19 Lemma: Suppose f is a continuous function from lenses to lenses and $\mathbb{T}_{0}, \mathbb{T}_{1}, \ldots$ is a sequence of sets of total types with $\mathbb{T}_{0}=\{(\emptyset, \emptyset)\}$. If for all l and i we have $\left(\forall \tau \in \mathbb{T}_{i} . l \in \tau\right)$ implies $\left(\forall \tau \in \mathbb{T}_{i+1} . f(l) \in \tau\right)$, then for every increasing instance $\tau_{0} \subseteq \tau_{1} \subseteq \ldots$ of $\mathbb{T}_{0}, \mathbb{T}_{1}, \ldots$ we have $f x(f) \in \bigcup_{i} \tau_{i}$.

Dealing with Creation

In practice, there will be cases where we need to apply a putback function, but where no old concrete view is available, as we saw with Jo's URL in Section 2. We deal with these cases by enriching the universe \mathcal{V} of views with a special placeholder Ω, pronounced "missing," which we assume is not already in \mathcal{V}. (There are other, formally equivalent, ways of handling missing concrete views. The advantages of this one are discussed in Section 5.) When $S \subseteq \mathcal{V}$, we write S_{Ω} for $S \cup\{\Omega\}$.
Intuitively, $l \searrow(a, \Omega)$ means "create a new concrete view from the information in the abstract view a." By convention, Ω is only used in an interesting way when it is the second argument to the putback function: in all of the lenses defined below, we maintain the invariants that (1) $l \nearrow \Omega=\Omega$, (2) $l \searrow(\Omega, c)=\Omega$ for any c, (3) $l \nearrow c \neq \Omega$ for any $c \neq \Omega$, and (4) $l \searrow(a, c) \neq \Omega$ for any $a \neq \Omega$ and any c (including Ω). We write $C \stackrel{\Omega}{=} A$ for the set of well-behaved lenses from C_{Ω} to A_{Ω} obeying these conventions and $C \stackrel{\Omega}{\Longleftrightarrow} A$ for the set of total lenses obeying these conventions. For brevity in the lens definitions below, we always assume that $c \neq \Omega$ when defining $l \nearrow c$ and that $a \neq \Omega$ when defining $l \searrow(a, c)$, since the results in these cases are uniquely determined by these conventions. A useful consequence of these conventions is that a lens $l \in C \stackrel{\Omega}{=} A$ also has type $C \rightleftharpoons A$.
3.20 Lemma: For any lens l and sets of views C and $A: l \in C \stackrel{\Omega}{\rightleftharpoons} A$ implies $l \in C \rightleftharpoons A$ and (2) $l \in C \Longleftrightarrow \Omega$ implies $l \in C \Longleftrightarrow A$.

4. GENERIC LENSES

With these semantic foundations in hand, we are ready to move on to syntax. We begin in this section with several generic lens combinators (we will usually say just lenses from now on), whose definitions are independent of the particular choice of universe \mathcal{V}. Each definition is accompanied by a type declaration asserting its wellbehavedness under certain conditions-e.g., "the identity lens belongs to $C \xlongequal{\Omega} C$ for any $C^{\prime \prime}$.

Many of the lens definitions are parameterized on one or more arguments. These may be of various types: views (e.g., const), other lenses (e.g., composition), predicates on views (e.g., the conditional lenses in Section 6), or - in some of the lenses for trees in Section 5 - edge labels, predicates on labels, etc.
Electronic Appendix A contains representative proofs that the lenses we define are well behaved (i.e., that the type declaration accompanying its definition is a theorem) and total, and that lenses that take other lenses as parameters are continuous in these parameters and map total lenses to total lenses. Indeed, nearly all of the lenses we define are very well behaved (if their lens arguments are), the only exceptions being map, flatten, merge, and conditionals; we do not prove very well behavedness, however, since we are mainly interested just in the well-behaved case.

Identity

The simplest lens is the identity. It copies the concrete view in the get direction and the abstract view in the putback direction.

$$
\begin{gathered}
\mathrm{id} \nearrow c=c \\
\mathrm{id} \searrow(a, c)=a
\end{gathered}
$$

Having defined id, we must prove that it is well behaved and total-i.e., that its type declaration is a theorem. We state the properties explicitly as lemmas and give proofs (in electronic Appendix A) for id and a few representative lenses. For the rest, we elide both the statements of the properties, which can be read off from each lens's definition, and the proofs, which are largely calculational.

4.1 Lemma [Well-behavedness]: $\forall C \subseteq \mathcal{V}$. id $\in C \stackrel{\Omega}{\rightleftharpoons} C$

4.2 Lemma [Totality]: $\forall C \subseteq \mathcal{V}$. id $\in C \stackrel{\Omega}{\Longleftrightarrow} C$

For each lens definition, the statements of the totality lemma and wellbehavedness lemmas are almost identical, just replacing $\stackrel{\Omega}{\rightleftharpoons}$ by $\stackrel{\Omega}{\Longleftrightarrow}$. In the case of id, we could just as well combine the two into a single lemma, because every lens with a total type is also well-behaved at that type. However, for lens definitions that are parameterized on other lenses (like composition, just below), the totality of the compound lens depends on the totality (not just well-behavedness) of its argument lenses, while we can establish the well-behavedness of the composite even if the arguments are only well-behaved and not necessarily total. Since we expect this situation will be common in practice - programmers will always want to check that their lenses are well-behaved, since the reasoning involved is simple and local, but may not want to go to the trouble of setting up the more intricate global reasoning needed to prove that their recursive lens definitions are total-we state the two lemmas (i.e., typings) separately.

Composition

The lens composition combinator $l ; k$ places l and k in sequence.

$$
\begin{aligned}
& (l ; k) \nearrow c=k \nearrow(l / c) \\
& (l ; k) \searrow(a, c)=l \searrow(k \searrow(a, l / c), c) \\
& \forall A, B, C \subseteq \mathcal{V} . \forall l \in C \xlongequal{\leftrightharpoons} B . \forall k \in B \xlongequal{\Omega} A . \quad l ; k \in C \xlongequal{\Omega} A \\
& \forall A, B, C \subseteq \mathcal{V} . \forall l \in C \Longleftrightarrow B . \forall k \in B \Longleftrightarrow \Omega A . \quad l ; k \in C \Longleftrightarrow A
\end{aligned}
$$

The get direction applies the get function of l to yield a first abstract view, on which the get function of k is applied. In the other direction, the two putback functions are applied in turn: first, the putback function of k is used to put a into the concrete view that the get of k was applied to, i.e., l / c; the result is then put into c using the putback function of l. (If the concrete view c is Ω, then, l / c will also be Ω by our conventions on the treatment of Ω, so the effect of $(l ; k) \searrow(a, \Omega)$ is to use k to put a into Ω and then l to put the result into Ω.) We record two different type declarations for composition: one for the case where the parameter lenses l and k are only known to be well behaved, and another for the case where they are also known to be total.
Once again, proofs that the composition operator has the types mentioned above are given in electronic Appendix A.

4.3 Lemma [Well-behavedness]:
 $\forall A, B, C \subseteq \mathcal{V} . \forall l \in C \xlongequal{\bumpeq} B . \forall k \in B \stackrel{\Omega}{\rightleftharpoons} A . \quad l ; k \in C \stackrel{\Omega}{=} A$

4.4 Lemma [Totality]:
 $\forall A, B, C \subseteq \mathcal{V} . \forall l \in C \Longleftrightarrow \Omega . \forall k \in B \Longleftrightarrow \Omega A . \quad l ; k \in C \Longleftrightarrow A$

Besides well-behavedness and totality, we must also show that lens composition is continuous in its arguments. This will justify using composition in recursive lens definitions: in order for a recursive lens defined as fix $\left(\lambda l . l_{1} ; l_{2}\right)$ (where l_{1} and l_{2} may both mention l) to be well formed, we need to apply Theorem 3.16, which requires that $\lambda l . l_{1} ; l_{2}$ be continuous in l. The following lemma shows that this will be the case whenever l_{1} and l_{2} are continuous in l.
4.5 Lemma [Continuity]: Let F and G be continuous functions from lenses to lenses. Then the function $\lambda l .(F(l) ; G(l))$ is continuous.

We have proved an analogous lemma for each of our lens combinators that takes other lenses as parameters, so that the continuity of every lens expression will follow from the continuity of its immediate constituents, but we will not bother to state these continuity lemmas explicitly in what follows.

Constant

Another simple combinator is const $v d$, which transforms any view into the constant view v in the get direction. In the putback direction, const simply restores the old concrete view if one is available; if the concrete view is Ω, it returns a default view d.

$$
\begin{aligned}
(\text { const } v d) \nearrow c= & v \\
(\text { const } v d) \searrow(a, c)= & c \text { if } c \neq \Omega \\
& d \text { if } c=\Omega \\
\hline \forall C \subseteq \mathcal{V} . \forall v \in \mathcal{V} . \forall d \in C . & \text { const } v d \in C \Longleftrightarrow\{v\}
\end{aligned}
$$

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Note that the type declaration demands that the putback direction only be applied to the abstract argument v.

We will define a few more generic lenses in Section 6; for now, though, let us turn to some lens combinators that work on tree-structured data, so that we can ground our definitions in specific examples.

5. LENSES FOR TREES

To keep the definitions of our lens primitives as straightforward as possible, we work with an extremely simple form of trees: unordered, edge-labeled trees with no repeated labels among the children of a given node. This model is a natural fit for applications where the data is unordered, such as the keyed address books described in Section 2. Unfortunately, unordered trees do not have all the structure we need for other applications; in particular, we will need to deal with ordered data such as lists and XML documents via an encoding (shown in Section 8). A more direct treatment of ordered trees is a worthwhile topic for future work, but, in the context of the Harmony system, where we are interested in both ordered and unordered data, the choice of a simpler foundation seems to have been a good one: the increase in complexity of lens programs that must manipulate ordered data in encoded form is more than made up by the reduction in the complexity of the definitions of lens primitives due to the simpler data model.

Notation

From this point on, we choose the universe \mathcal{V} to be the set \mathcal{T} of finite, unordered, edge-labeled trees with labels drawn from some infinite set \mathcal{N} of names-e.g., character strings - and with the children of a given node all labeled with distinct names. Trees of this form (often extended with labels on internal nodes as well as on children) are sometimes called deterministic trees or feature trees (e.g., [Niehren and Podelski 1993]). The variables a, c, d, and t range over \mathcal{T}; by convention, we use a for trees that are thought of as abstract and c or d for concrete trees.

A tree is essentially a finite partial function from names to other trees. It will be more convenient, though, to adopt a slightly different perspective: we will consider a tree $t \in \mathcal{T}$ to be a total function from \mathcal{N} to \mathcal{T}_{Ω} that yields Ω on all but a finite number of names. We write $\operatorname{dom}(t)$ for the domain of t-i.e., the set of the names for which it returns something other than Ω-and $t(n)$ for the subtree associated to name n in t, or Ω if $n \notin \operatorname{dom}(t)$.

Tree values are written using hollow curly braces. The empty tree is written $\{\mathbb{\}}$. (Note that $\}$, a node with no children, is different from Ω.) We often describe trees by comprehension, writing $\{n \mapsto F(n) \mid n \in N\}$, where F is some function from \mathcal{N} to \mathcal{T}_{Ω} and $N \subseteq \mathcal{N}$ is some set of names. When t and t^{\prime} have disjoint domains, we write $t \cdot t^{\prime}$ or $\left\{t t^{\prime}\right\}$ (the latter especially in multi-line displays) for the tree mapping n to $t(n)$ for $n \in \operatorname{dom}(t)$, to $t^{\prime}(n)$ for $n \in \operatorname{dom}\left(t^{\prime}\right)$, and to Ω otherwise.

When $p \subseteq \mathcal{N}$ is a set of names, we write \bar{p} for $\mathcal{N} \backslash p$, the complement of p. We write $\left.t\right|_{p}$ for the restriction of t to children with names from p-i.e., the tree $\{n \mapsto t(n) \mid n \in p \cap \operatorname{dom}(t)\}$ —and $t\rangle_{p}$ for $\{n \mapsto t(n) \mid n \in \operatorname{dom}(t) \backslash p\}$. When p is just a singleton set $\{n\}$, we drop the set braces and write just $\left.t\right|_{n}$ and $\left.t\right\rangle_{n}$ instead of $\left.t\right|_{\{n\}}$ and $t \backslash_{\{n\}}$. To shorten some of the lens definitions, we adopt the conventions that $\operatorname{dom}(\Omega)=\emptyset$ and that $\left.\Omega\right|_{p}=\Omega \backslash_{p}=\Omega$ for any p.

For writing down types, ${ }^{5}$ we extend these tree notations to sets of trees. If $T \subseteq \mathcal{T}$ and $n \in \mathcal{N}$, then $\{n \mapsto T\}$ denotes the set of singleton trees $\{\{n \mapsto t\} \mid t \in T\}$. If $T \subseteq \mathcal{T}$ and $N \subseteq \mathcal{N}$, then $\{N \mapsto T\}$ denotes the set of trees $\{t \mid \operatorname{dom}(t)=$ N and $\forall n \in N . t(n) \in T\}$ and $\{N \stackrel{?}{\mapsto} T\}$ denotes the set of trees $\{t \mid \operatorname{dom}(t) \subseteq$ N and $\left.\forall n \in N . t(n) \in T_{\Omega}\right\}$. We write $T_{1} \cdot T_{2}$ for $\left\{t_{1} \cdot t_{2} \mid t_{1} \in T_{1}, t_{2} \in T_{2}\right\}$ and $T(n)$ for $\{t(n) \mid t \in T\} \backslash\{\Omega\}$. If $T \subseteq \mathcal{T}$, then $\operatorname{doms}(T)=\{\operatorname{dom}(t) \mid t \in T\}$. Note that $\operatorname{doms}(T)$ is a set of sets of names, while $\operatorname{dom}(t)$ is a set of names.

A value is a tree of the special form $\{k \mapsto\}\}$, often written just k. For instance, the phone number $\{333-4444 \mapsto\{ \}\}$ in the example of Section 2 is a value. We write Val for the type whose denotation is the set of all values.

Hoisting and Plunging

Let's warm up with some combinators that perform simple structural transformations on trees. The lens hoist n is used to shorten a tree by removing an edge at the top. In the get direction, it expects a tree that has exactly one child, named n. It returns this child, removing the edge n. In the putback direction, the value of the old concrete tree is ignored and a new one is created, with a single edge n pointing to the given abstract tree. (Later we will meet a derived form, hoist_nonunique, that works on bushier trees.)

$($ hoist $n) \nearrow c$ $=c(n)$ $($ hoist $n) \searrow(a, c)$ $=\{n \mapsto a\}$
$\forall C \subseteq \mathcal{T} . \forall n \in \mathcal{N} . \quad$ hoist $n \in\{n \mapsto C\}$

Conversely, the plunge lens is used to deepen a tree by adding an edge at the top. In the get direction, a new tree is created, with a single edge n pointing to the given concrete tree. In the putback direction, the value of the old concrete tree is ignored and the abstract tree is required to have exactly one subtree, labeled n, which becomes the result of the plunge.

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { (plunge } n) \nearrow c=\{n \mapsto c\} \\
\text { (plunge } n) \searrow(a, c)=a(n)
\end{array} \\
& \hline \forall C \subseteq \mathcal{T} . \forall n \in \mathcal{N} . \quad \text { plunge } n \in C \stackrel{\Omega}{\Longleftrightarrow}\{n \mapsto C\} \\
& \hline
\end{aligned}
$$

Forking

The lens combinator xfork applies different lenses to different parts of a tree. More precisely, it splits the tree into two parts according to the names of its immediate children, applies a different lens to each, and concatenates the results. Formally, xfork takes as arguments two sets of names and two lenses. The get direction of xfork pc pa $l_{1} l_{2}$ can be visualized as in Figure 1 (the concrete tree is at the bottom). The triangles labeled $p c$ denote trees whose immediate children have labels in $p c$;

[^3]ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Fig. 1. The get direction of xfork
dotted arrows represent splitting or concatenating trees. The result of applying $l_{1} \nearrow$ to $\left.c\right|_{p c}$ (the tree formed by dropping the immediate children of c whose names are not in $p c$) must be a tree whose top-level labels are in the set $p a$; similarly, the result of applying $l_{2} \nearrow$ to $c _{p c}$ must be in $\overline{p a}$. That is, the lens l_{1} may change the names of immediate children of the tree it is given, but it must map the part of the tree with immediate children belonging to $p c$ to a tree with children belonging to $p a$. Likewise, l_{2} must map the part of the tree with immediate children belonging to $\overline{p c}$ to a tree with children in $\overline{p a}$. Conversely, in the putback direction, l_{1} must map from $p a$ to $p c$ and l_{2} from $\overline{p a}$ to $\overline{p c}$. Here is the full definition:

$$
\begin{aligned}
& \text { (xfork pc pa } \left.l_{1} l_{2}\right) ~ / c=\left(\left.l_{1} \nearrow c\right|_{p c}\right) \cdot\left(l_{2} \nearrow c \backslash_{p c}\right) \\
& \left(\text { xfork pc pa } l_{1} l_{2}\right) \searrow(a, c)=\left(l_{1} \searrow\left(\left.a\right|_{p a},\left.c\right|_{p c}\right)\right) \cdot\left(l_{2} \searrow\left(a \backslash_{p a}, c \backslash_{p c}\right)\right) \\
& \forall p c, p a \subseteq \mathcal{N} .\left.\forall C_{1} \subseteq \mathcal{T}\right|_{p c} .\left.\forall A_{1} \subseteq \mathcal{T}\right|_{p a} . \forall C_{2} \subseteq \mathcal{T} \backslash_{p c} . \forall A_{2} \subseteq \mathcal{T} \backslash_{p a} . \\
& \forall l_{1} \in C_{1} \stackrel{\Omega}{\rightleftharpoons} A_{1} . \forall l_{2} \in C_{2} \stackrel{\Omega}{\rightleftharpoons} A_{2} . \\
& \text { xfork pc pa } l_{1} l_{2} \in\left(C_{1} \cdot C_{2}\right) \stackrel{\Omega}{\rightleftharpoons}\left(A_{1} \cdot A_{2}\right) \\
& \forall p c, p a \subseteq \mathcal{N} .\left.\forall C_{1} \subseteq \mathcal{T}\right|_{p c} .\left.\forall A_{1} \subseteq \mathcal{T}\right|_{p a} . \forall C_{2} \subseteq \mathcal{T} \backslash_{p c} . \forall A_{2} \subseteq \mathcal{T} \backslash_{p a} . \\
& \forall l_{1} \in C_{1} \stackrel{\Omega}{\Longleftrightarrow} A_{1} . \forall l_{2} \in C_{2} \Longleftrightarrow A_{2} . \\
& \text { xfork pc pa } l_{1} l_{2} \in\left(C_{1} \cdot C_{2}\right) \stackrel{\Omega}{\Longleftrightarrow}\left(A_{1} \cdot A_{2}\right)
\end{aligned}
$$

We rely here on our convention that $\left.\Omega\right|_{p}=\Omega \backslash_{p}=\Omega$ to avoid explicitly splitting out the Ω case in the putback direction.

We have now defined enough basic lenses to implement several useful derived forms for manipulating trees.

In many uses of xfork, the sets of names specifying where to split the concrete tree and where to split the abstract tree are identical. We can define a simpler fork as:

$$
\begin{aligned}
& \text { fork } p l_{1} l_{2}=\text { xfork } p p l_{1} l_{2} \\
& \forall p \subseteq \mathcal{N} . \forall C_{1},\left.A_{1} \subseteq \mathcal{T}\right|_{p} . \forall C_{2}, A_{2} \subseteq \mathcal{T} \backslash_{p} . \forall l_{1} \in C_{1} \stackrel{\Omega}{\rightleftharpoons} A_{1} . \forall l_{2} \in C_{2} \stackrel{\Omega}{\rightleftharpoons} A_{2} . \\
& \quad \text { fork } p l_{1} l_{2} \in\left(C_{1} \cdot C_{2}\right) \stackrel{\Omega}{\rightleftharpoons}\left(A_{1} \cdot A_{2}\right) \\
& \forall p \subseteq \mathcal{N} . \forall C_{1},\left.A_{1} \subseteq \mathcal{T}\right|_{p} . \forall C_{2}, A_{2} \subseteq \mathcal{T} \backslash_{p} . \forall l_{1} \in C_{1} \stackrel{\Omega}{\Longleftrightarrow} A_{1} . \forall l_{2} \in C_{2} \stackrel{\Omega}{\Longleftrightarrow} A_{2} . \\
& \quad \text { fork } p l_{1} l_{2} \in\left(C_{1} \cdot C_{2}\right) \stackrel{\Omega}{\Longleftrightarrow}\left(A_{1} \cdot A_{2}\right)
\end{aligned}
$$

We can use fork to define a lens that discards all of the children of a tree whose names do not belong to some set p :

$$
\begin{aligned}
& \text { filter } p d=\text { fork } p \text { id }(\text { const }\} d) \\
& \forall C \subseteq \mathcal{T} . \forall p \subseteq \mathcal{N} . \forall d \in C \backslash_{p} . \\
& \quad \text { filter }\left.p d \in\left(\left.C\right|_{p} \cdot C \backslash_{p}\right) \Longleftrightarrow C\right|_{p}
\end{aligned}
$$

In the get direction, this lens takes a concrete tree, keeps the children with names in p (using id), and throws away the rest (using const $\} d$). The tree d is used when putting an abstract tree back into a missing concrete tree, providing a default for information that does not appear in the abstract tree but is required in the concrete tree. The type of filter follows directly from the types of the three primitive lenses used to define it: const $\left\} d\right.$, with type $C \backslash_{p} \stackrel{\Omega}{\Longleftrightarrow}\{\{ \}\}$, the lens id, with type $\left.\left.C\right|_{p} \stackrel{\Omega}{\Longleftrightarrow} C\right|_{p}$, and fork (with the observation that $\left.C\right|_{p}=\left.C\right|_{p} \cdot\{ \}$).

Let us see how filter behaves in an example. Let the concrete tree $c=$ $\{$ name \mapsto Pat, phone $\mapsto 333-4444\}$, and lens $l=$ filter \{name $\}\}$. We calculate $l \nearrow c$, underlining the next term to be simplifed at each step.

$$
\begin{aligned}
& l \nearrow c=(\text { fork }\{\text { name }\} \text { id }(\text { const }\{ \} d)) \nearrow\{\text { name } \mapsto \text { Pat, phone } \mapsto 333-444\} \\
& =\frac{\text { id } \nearrow\{\text { name definition of } l}{\text { by the definition of }\}} \cdot(\text { const }\{ \} d) \nearrow\{\text { phone } \mapsto 333-4444\} \\
& =\{\text { name } \mapsto \text { Pat }\} \cdot\{ \}=\{\text { name } \mapsto \text { Pat }\}\}=a \\
& \quad \text { by the definitions of id and const }
\end{aligned}
$$

Now suppose that we update this tree, a, to $\{$ name \mapsto Patty $\}$. Let us calculate the result of putting back a into c. To save space, we write k for (const $\}\}$).

$$
\begin{aligned}
& l \searrow(a, c) \\
& =\frac{(\text { fork }\{\text { name }\} \text { id } k) \searrow(\{\text { name } \mapsto \text { Pat }\},\{\text { name } \mapsto \text { Pat, phone } \mapsto 333-4444\})}{\text { by the definition of } l} \\
& =\frac{\text { id } \searrow(\{\text { name } \mapsto \text { Patty }\},\{\text { name } \mapsto \text { Pat }\})}{} \cdot k \searrow(\{ \},\{\text { phone } \mapsto 333-4444\})
\end{aligned}
$$

by the definition of fork and splitting a and c using \{name\}
$=\{$ name \mapsto Patty, phone $\mapsto 333-4444\}$
by the definition of id and const
Note that the putback function restores the filtered part of the concrete tree and propagates the change made to the abstract tree. In the case of creation-i.e., if we put back an abstract tree using Ω - then the default argument to const is concatenated to the abstract tree to form the result, since there is no filtered part of the concrete tree to restore.

Another way to thin a tree is to explicitly specify a child that should be removed if it exists:

$$
\begin{gathered}
\text { prune } n d=\text { fork }\{n\} \text { (const }\}\{n \mapsto d\}) \text { id } \\
\forall C \subseteq \mathcal{T} . \forall n \in \mathcal{N} . \forall d \in C(n) . \\
\text { prune } n d \in\left(\left.C\right|_{n} \cdot C \backslash_{n}\right) \Longleftrightarrow C \backslash_{n}
\end{gathered}
$$

This lens is similar to filter, except that (1) the name given is the child to be removed rather than a set of children to keep, and (2) the default tree is the one to go under n if the concrete tree is Ω.

Conversely, we can grow a tree in the get direction by explicitly adding a child. The type annotation disallows changes in the newly added tree, so it can be dropped in the putback.

$$
\begin{gathered}
\text { add } n t=\operatorname{xfork}\{ \}\{n\}(\text { const } t\{\{; \text { plunge } n) \text { id } \\
\forall \forall n \in \mathcal{N} . \forall C \subseteq \mathcal{T} \backslash n . \forall t \in \mathcal{T} . \\
\quad \text { add } n t \in C \stackrel{\Omega}{\Longleftrightarrow}\{n \mapsto\{t\}\} \cdot C
\end{gathered}
$$

Let us explore the behavior of add through an example. Let $c=\{\mathrm{a} \mapsto\{\{ \}\}$ and $l=$ add $\mathrm{b}\{\mathrm{x} \mapsto\}\}\}$. To save space, write k for const $\{\mathrm{x} \mapsto\}\}\}\}$ and p for plunge b . We calculate l / c directly, underlining the term to be simplifed at each step.

$$
\begin{aligned}
& l / c=(\text { xfork }\{ \}\{\mathrm{b}\}(k ; p) \mathrm{id}) \nearrow c \\
& \text { by the definition of } l \\
& =\underline{(k ; p) \nearrow\{ \}} \cdot \underline{i d \nearrow\{\mathrm{a} \mapsto\{ \}\}} \\
& \text { by the definition of xfork and splitting } c \text { using }\} \\
& =p \nearrow(k \nearrow\{\mathbb{Z}) \cdot\{\mathrm{a} \mapsto\{ \}\} \\
& \text { by the definitions of the composition and id } \\
& =(\underline{p \nearrow\{\mathrm{x} \mapsto\{ \}\}}) \cdot\{\mathrm{a} \mapsto\{ \}\}\} \\
& \text { by the definition of } k \\
& =\{\mathrm{a} \mapsto\{\{ \}, \mathrm{b} \mapsto\{\mathrm{x} \mapsto\{\mathbb{\}} \mid\}\} \\
& \text { by the definition of } p
\end{aligned}
$$

Now suppose we modify this tree by renaming the child a to c, obtaining $a=$ $\{\mathrm{c} \mapsto\}\}, \mathrm{b} \mapsto\{\mathrm{x} \mapsto\{ \}\}\}\}$. The result of the putback function, $l \searrow(a, c)$, is calculated as follows:

$$
\begin{aligned}
& l \searrow(a, c)=(\text { xfork }\{ \}\{\mathrm{b}\}(k ; p) \mathrm{id}) \searrow(a, c) \\
& \text { by the definition of } l \\
& =((k ; p) \searrow(\{\mathfrak{b} \mapsto\{\mathrm{x} \mapsto\{\mathbb{\}}\}\}\},\{\mathbb{\}})) \cdot(\underline{\text { id } \searrow(\{\mid \mathrm{c} \mapsto\{\mathbb{\}}\}\},\{\mathrm{a} \mapsto\{\mathbb{\}}\}\})}) \\
& \text { by the definition of xfork, splitting } a \text { using }\{\mathrm{b}\} \text { and } c \text { using }\} \\
& =(\underline{(k ; p) \searrow(\{\mathrm{b} \mapsto\{\mathrm{x} \mapsto\{\mathbb{\}}\}\}\},\{\mathbb{\}})) \cdot\{\mathrm{c} \mapsto\{\mathbb{\}}\}\}} \\
& \text { by the definition of id } \\
& =(k \searrow(p \searrow(\{\mathrm{~b} \mapsto\{\mathrm{x} \mapsto\{\mathbb{\}}\}\}\}, k \nearrow\{ \}),\{\mathbb{\}})) \cdot\{\mathrm{c} \mapsto\{ \}\}\} \\
& \text { by the definition of composition } \\
& =(\underline{k \searrow(\{\mathrm{x} \mapsto\{\{ \}\},\{ \})}) \cdot\{\mathrm{c} \mapsto\{ \}\}\} \\
& \text { by the definition of } p \\
& =\{\{ \} \cdot\{c \mapsto\{ \}\}=\{c \mapsto\{ \}\} \\
& \text { by the definition of } k
\end{aligned}
$$

Another derived lens focuses attention on a single child n :

$$
\begin{gathered}
\text { focus } n d=(\text { filter }\{n\} d) ;(\text { hoist } n) \\
\hline \forall n \in \mathcal{N} . \forall C \subseteq \mathcal{T} \backslash_{n} . \forall d \in C . \forall D \subseteq \mathcal{T} . \\
\quad \text { focus } n d \in(C \cdot\{n \mapsto D\}) \bumpeq D
\end{gathered}
$$

In the get direction, focus filters away all other children, then removes the edge n and yields n 's subtree. As usual, the default tree is only used in the case of creation, where it is the default for children that have been filtered away. The type of focus follows from the types of the lenses from which it is defined, observing that filter $\{n\} d \in(C \cdot\{n \mapsto D\}) \Longleftrightarrow\{n \mapsto D\}$ and that hoist $\mathrm{n} \in\{n \mapsto$ $D\} \stackrel{\Omega}{\Longleftrightarrow}$.
The hoist primitive defined earlier requires that the name being hoisted be the unique child of the concrete tree. It is often useful to relax this requirement, hoisting one child out of many. This generalized version of hoist is annotated with the set p of possible names of the grandchildren that will become children after the hoist, which must be disjoint from the names of the existing children.

$$
\begin{aligned}
& \text { hoist_nonunique } n p=\operatorname{xfork}\{n\} p \text { (hoist } n \text {) id } \\
& \forall n \in \mathcal{N} . \forall p \subseteq \mathcal{N} . \forall D \subseteq \mathcal{T} \backslash\{n\} \cup p .\left.\forall C \subseteq \mathcal{T}\right|_{p} . \\
& \text { hoist_nonunique } n p \in(\{n \mapsto C\} \cdot D) \bumpeq(C \cdot D)
\end{aligned}
$$

A last derived lens renames a single child.

```
rename mn = xfork {m} {n} (hoist m; plunge n) id
    \forallm,n\in\mathcal{N}.\forallC\subseteq\mathcal{T}.}\forallD\subseteq\mathcal{T}\{m,n}
    rename mn\in({m\mapstoC},D)\Longleftrightarrow \Omega({n\mapstoC},D)
```

In the get direction, rename splits the concrete tree in two. The first tree has a single child m (which is guaranteed to exist by the type annotation) and is hoisted up, removing the edge named m, and then plunged under n. The rest of the original tree is passed through the id lens. Similarly, the putback direction splits the abstract view into a tree with a single child n , and the rest of the tree. The tree under n is put back using the lens (hoist m; plunge n), which first removes the edge named n and then plunges the resulting tree under m. Note that the type annotation on rename demands that the concrete view have a child named m and that the abstract view have a child named n. In Section 6 we will see how to wrap this lens in a conditional to obtain a lens with a more flexible type.

Mapping

So far, all of our lens combinators do things near the root of the trees they are given. Of course, we also want to be able to perform transformations in the interior of trees. The map combinator is our fundamental means of doing this. When combined with recursion, it also allows us to iterate over structures of arbitrary depth.

The map combinator is parameterized on a single lens l. In the get direction, map applies $l /$ to each subtree of the root and combines the results together into a
new tree. (Later in this section, we will define a more general combinator, called wmap, that can apply a different lens to each subtree. Defining map first lightens the notational burden in the explanations of several fine points about the behavior and typing of both combinators.) For example, the lens map l has the following behavior in the get direction when applied to a tree with three children:

$$
\left\{\begin{array}{l}
n_{1} \mapsto t_{1} \\
n_{2} \mapsto t_{2} \\
n_{3} \mapsto t_{3}
\end{array}\right\} \text { becomes } \quad\left\{\begin{array}{l}
n_{1} \mapsto l / t_{1} \\
n_{2} \mapsto l / t_{2} \\
n_{3} \mapsto l / t_{3}
\end{array}\right\}
$$

The putback direction of map is more interesting. In the simple case where a and c have equal domains, its behavior is straightforward: it uses $l \searrow$ to combine concrete and abstract subtrees with identical names and assembles the results into a new concrete tree, c^{\prime} :

$$
(\operatorname{map} l) \searrow\left(\left\{\begin{array}{l}
n_{1} \mapsto t_{1} \\
n_{2} \mapsto t_{2} \\
n_{3} \mapsto t_{3}
\end{array}\right\},\left\{\left\{\begin{array}{l}
n_{1} \mapsto t_{1}^{\prime} \\
n_{2} \mapsto t_{2}^{\prime} \\
n_{3} \mapsto t_{3}^{\prime}
\end{array}\right\}\right\}=\left\{\begin{array}{l}
n_{1} \mapsto l \searrow\left(t_{1}, t_{1}^{\prime}\right) \\
n_{2} \mapsto l \searrow\left(t_{2}, t_{2}^{\prime}\right) \\
n_{3} \mapsto l \searrow\left(t_{3}, t_{3}^{\prime}\right)
\end{array}\right\}\right.
$$

In general, however, the abstract tree a in the putback direction need not have the same domain as c (i.e., the edits that produced the new abstract view may have involved adding and deleting children); the behavior of map in this case is a little more involved. Observe, first, that the domain of c^{\prime} is determined by the domain of the abstract argument to putback. Since we aim at building total lenses, we may suppose that $(\operatorname{map} l) \nearrow((\operatorname{map} l) \searrow(a, c))$ is defined, in which case $\operatorname{dom}((\operatorname{map} l) \nearrow((\operatorname{map} l) \searrow(a, c)))=\operatorname{dom}(a)$ by rule PutGet, and $\operatorname{dom}((\operatorname{map} l) \searrow(a, c))=\operatorname{dom}(a)$ as $(\operatorname{map} l) \nearrow$ does not change the domain of the tree. This means we can simply drop children that occur in dom (c) but not in $\operatorname{dom}(a)$. Children bearing names that occur both in $\operatorname{dom}(a)$ and dom (c) are dealt with as described above. This leaves the children that only appear in dom (a), which need to be passed through l so that they can be included in c^{\prime}; to do this, we need some concrete argument to pass to $l \searrow$. There is no corresponding child in c, so instead these abstract trees are put into the missing tree Ω-indeed, this case is precisely why we introduced Ω. Formally, the behavior of map is defined as follows. (It relies on the convention that $c(n)=\Omega$ if $n \notin \operatorname{dom}(c)$; the type declaration also involves some new notation, explained below.)

```
            \((\operatorname{map} l) \nearrow c=\{n \mapsto l \nearrow c(n) \mid n \in \operatorname{dom}(c)\}\)
\((\operatorname{map} l) \searrow(a, c)=\{n \mapsto l \searrow(a(n), c(n)) \mid n \in \operatorname{dom}(a)\}\)
\(\forall C, A \subseteq \mathcal{T}\) with \(C=C^{\circlearrowleft}, A=A^{\circlearrowleft}, \operatorname{doms}(C)=\operatorname{doms}(A)\).
\(\forall l \in\left(\bigcap_{n \in \mathcal{N}} \cdot C(n) \stackrel{\Omega}{\rightleftharpoons} A(n)\right)\).
    \(\operatorname{map} l \in C \stackrel{\Omega}{\rightleftharpoons} A\)
\(\forall C, A \subseteq \mathcal{T}\) with \(C=C^{\circlearrowleft}, A=A^{\circlearrowleft}, \operatorname{doms}(C)=\operatorname{doms}(A)\).
\(\forall l \in\left(\bigcap_{n \in \mathcal{N}} \cdot C(n) \stackrel{\Omega}{\Longleftrightarrow} A(n)\right)\).
    \(\operatorname{map} l \in C \Longleftrightarrow A\)
```

Because of the way that it takes the tree apart, transforms the pieces, and reassembles them, the typing of map is a little subtle. For example, in the get direction, map
does not modify the names of the immediate children of the concrete tree, and in the putback direction, the names of the abstract tree are left unchanged; we might therefore expect a simple typing rule stating that, if $l \in\left(\bigcap_{n \in \mathcal{N}} C(n) \stackrel{\Omega}{\rightleftharpoons} A(n)\right)$ i.e., if l is a well-behaved lens from the concrete subtree type $C(n)$ to the abstract subtree type $A(n)$ for each child $n-$ then map $l \in C \stackrel{\Omega}{\rightleftharpoons} A$. Unfortunately, for arbitrary C and A, the map lens is not guaranteed to be well-behaved at this type. In particular, if doms (C), the set of domains of trees in C, is not equal to doms (A), then the putback function can produce a tree that is not in C, as the following example shows. Consider the sets of trees

$$
C=\{\{\mathrm{x} \mapsto \mathrm{~m}\},\{\mathrm{y} \mapsto \mathrm{n} \mid\}\} \quad A=C \cup\{\{\mathrm{x} \mapsto \mathrm{~m}, \mathrm{y} \mapsto \mathrm{n}\}\}
$$

and observe that with trees

$$
a=\{\mathrm{x} \mapsto \mathrm{~m}, \mathrm{y} \mapsto \mathrm{n}\} \quad c=\{\mathrm{x} \mapsto \mathrm{~m}\}
$$

we have map id $\searrow(a, c)=a$, a tree that is not in C. This shows that the type of map must include the requirement that $\operatorname{doms}(C)=\operatorname{doms}(A)$. (Recall that, for any type T, the set $\operatorname{doms}(T)$ is a set of sets of names.)

A related problem arises when the sets of trees A and C have dependencies between the names of children and the trees that may appear under those names. Again, one might naively expect that, if l has type $C(m) \stackrel{\Omega}{\rightleftharpoons} A(m)$ for each name m, then map l would have type $C \stackrel{\Omega}{\rightleftharpoons} A$. Consider, however, the set

$$
A=\{\{\mathrm{x} \mapsto \mathrm{~m}, \mathrm{y} \mapsto \mathrm{p}\},\{\mathrm{x} \mapsto \mathrm{n}, \mathrm{y} \mapsto \mathrm{q}\}\},
$$

in which the value m only appears under x when p appears under y, and the set

$$
C=\{\{\mathrm{x} \mapsto \mathrm{~m}, \mathrm{y} \mapsto \mathrm{p}\},\{\mathrm{x} \mapsto \mathrm{~m}, \mathrm{y} \mapsto \mathrm{q}\},\{\mathrm{x} \mapsto \mathrm{n}, \mathrm{y} \mapsto \mathrm{p}\},\{\mathrm{x} \mapsto \mathrm{n}, \mathrm{y} \mapsto \mathrm{q}\}\}
$$

where both m and n appear with both p and q . When we consider just the projections of C and A at specific names, we obtain the same sets of subtrees: $C(\mathrm{x})=A(\mathrm{x})=\{\{\mathrm{m}\},\{\mathrm{n}\}\}$ and $C(\mathrm{y})=A(\mathrm{y})=\{\{\mathrm{p}\},\{\mathrm{q}\}\}$. The lens id has type $C(\mathrm{x}) \stackrel{\Omega}{\rightleftharpoons} A(\mathrm{x})$ and $C(\mathrm{y}) \stackrel{\Omega}{\rightleftharpoons} A(\mathrm{y})$ (and $C(z)=\emptyset \stackrel{\Omega}{\rightleftharpoons} \emptyset=A(z)$ for all other names z). But it is clearly not the case that map id $\in C \stackrel{\Omega}{\rightleftharpoons} A$.

To avoid this error, but still give a type for map that is precise enough to derive interesting types for lenses defined in terms of map, we require that the source and target sets in the type of map be closed under the "shuffling" of their children. Formally, if T is a set of trees, then the set of shuffings of T, denoted T^{\circlearrowleft}, is

$$
T^{\circlearrowleft}=\bigcup_{D \in \operatorname{doms}(T)}\{n \mapsto T(n) \mid n \in D\}
$$

where $\{n \mapsto T(n) \mid n \in D\}$ is the set of trees with domain D whose children under n are taken from the set $T(n)$. We say that T is shuffle closed iff $T=T^{\circlearrowleft}$. In the example above, $A^{\circlearrowleft}=C^{\circlearrowleft}=C$-i.e., C is shuffle closed, but A is not.

Alternatively, every shuffle-closed set T can be identified with a set of set of names D and a function f from names to types, such that $t \in T$ iff $\operatorname{dom}(t) \in D$ and $t(n) \in f(n)$ for every name $n \in \operatorname{dom}(t)$. Formally, the shuffle closed set T is defined as follows:

$$
T=\bigcup_{d \in D}\{n \mapsto f(n) \mid n \in d\}
$$

In the situations where map is used, shuffle closure is typically easy to check. For example, the restriction on tree grammars embodied by W3C Schema implies shuffle closure (informally, the restriction on W3C Schema is analogous to imposing shuffle closure on the schemas along every path, not just at the root). Additionally, any set of trees whose elements each have singleton domains is shuffle closed. Also, for every set of trees T, the encoding introduced in Section 7 of lists with elements in T is shuffle closed, which justifies using map (with recursion) to implement operations on lists. Furthermore, types of the form $\{n \mapsto T \mid n \in \mathcal{N}\}$ with infinite domain but with the same structure under each edge, which are heavily used in database examples (where the top-level names are keys and the structures under them are records) are shuffle closed.

Another point to note about map is that it does not obey the PutPut law. Consider a lens l and $(a, c) \in \operatorname{dom}(l \searrow)$ such that $l \searrow(a, c) \neq l \searrow(a, \Omega)$. We have

$$
\begin{aligned}
& (\operatorname{map} l) \searrow(\{\mathrm{n} \mapsto a\},((\operatorname{map} l) \searrow(\{\mathbb{\}},\{\mathrm{n} \mapsto c\}))) \\
= & (\operatorname{map} l) \searrow(\{\mathrm{n} \mapsto a\},\{\mathfrak{\}}) \\
= & \{\mathrm{n} \mapsto l \searrow(a, \Omega)\}
\end{aligned}
$$

whereas

$$
\{\mathrm{n} \mapsto l \searrow(a, c)\}=(\operatorname{map} l) \searrow(\{\mathrm{n} \mapsto a\},\{\mathrm{n} \mapsto c\}) .
$$

Intuitively, there is a difference between, on the one hand, modifying a child n and, on the other, removing it and then adding it back: in the first case, any information in the concrete view that is "projected away" in the abstract view will be carried along to the new concrete view; in the second, such information will be replaced with default values. This difference seems pragmatically reasonable, so we prefer to keep map and lose PutPut. ${ }^{6}$

A final point of interest is the relation between map and the missing tree Ω. The putback function of most lens combinators only results in a putback into the missing tree if the combinator itself is called on Ω. In the case of map l, calling its putback function on some a and c where c is not the missing tree may result in the application of the putback of l to Ω if a has some children that are not in c. In an earlier variant of map, we dealt with missing children by providing a default concrete child tree, which would be used when no actual concrete tree was available. However, we discovered that, in practice, it is often difficult to find a single default concrete tree that fits all possible abstract trees, particularly because of xfork (where different lenses are applied to different parts of the tree) and recursion (where the depth of a tree is unknown). We tried parameterizing this default concrete tree by the abstract tree and the lens, but noticed that most primitive lenses ignore the concrete tree when defining the putback function, as enough information is available in the abstract tree. The natural choice for a concrete tree parameterized by a and l was thus $l \searrow(a, \Omega)$, for some special tree Ω. The only lens for which the putback function needs to be defined on Ω is const, as it is the only lens that discards

[^4]information. This led us to the present design, where only the const lens (along with other lenses defined from it, such as focus) expects a default tree d. This approach is much more convenient to program with than the others we tried, since one only provides defaults at the exact points where information is discarded.

We now define a more general form of map that is parameterized on a total function from names to lenses rather than on a single lens.

```
    (wmap m)\nearrowc={nn\mapstom(n)\nearrowc(n)|n\in\operatorname{dom}(c)}
(wmap m)\searrow \searrow(a,c) ={n\mapstom(n)\searrow(a(n),c(n))|n\in\operatorname{dom}(a)}
    \forall,A\subseteq\mathcal{T}\mathrm{ with C=C C},A=A\circlearrowleft, doms(C)=\operatorname{doms}(A).
    \forallm\in(\Pin\in\mathcal{N}.C(n)\xlongequal{}{\Omega}A(n)).
    wmap m\inC \Omega}=
\forall,A\subseteq\mathcal{T}\mathrm{ with C=C CO},A=\mp@subsup{A}{}{\circlearrowleft},\operatorname{doms}(C)=\operatorname{doms}(A).
\forallm\in(\Pin\in\mathcal{N}.C(n)\stackrel{\Omega}{\Longleftrightarrow}A(n)).
    wmap m\inC \Omega}\Longleftrightarrow
```

In the type annotation, we use the dependent type notation $m \in \Pi n . C(n) \stackrel{\Omega}{\rightleftharpoons} A(n)$ to mean that m is a total function mapping each name n to a well-behaved lens from $C(n)$ to $A(n)$. Although m is a total function, we will often describe it by giving its behavior on a finite set of names and adopting the convention that it maps every other name to id. For example, the lens wmap $\{x \mapsto$ plunge a maps plunge a over trees under x and id over the subtrees of every other child. We can also easily define map as a derived form: $\operatorname{map} l=\operatorname{wmap}(\lambda n \in \mathcal{N} . l)$.

Since the typing of wmap is rather subtle, it is worth stating its well-behavedness lemma explicitly (and, in the appendix, giving the proof).

```
5.1 Lemma [Well-behavedness]:
    \forall,A\subseteq\mathcal{T}}\mathrm{ with }C=\mp@subsup{C}{}{\circlearrowleft},A=\mp@subsup{A}{}{\circlearrowleft},\operatorname{doms}(C)=\operatorname{doms}(A)
        \forallm\in(\Pin\in\mathcal{N}.C(n)\xlongequal{\rightleftharpoons}{\bumpeq}}A(n))
            wmap m\inC \Omega
```


Copying and Merging

We next consider two lenses that duplicate information in one direction and reintegrate (by performing equality checks) in the other.

A view of some underlying data structure may sometimes require that two distinct subtrees maintain a relationship, such as equality. For example, under the subtree representing a manager, Alice, an employee-manager database may list the name and ID number of every employee in Alice's group. If Bob is managed by Alice, then Bob's employee record will also list his name and ID number (as well as other information including a pointer to Alice, as his manager). If Bob's name changes at a later date, then we expect that it will be updated (identically) under both his record and Alice's record. If the concrete representation contains his name in only a single location, we need to duplicate the information in the get direction. To do this we need a lens that copies a subtree and then allows us to transform the copy into the shape that we want.

In the get direction, (copy $m n$) takes a tree, c, that has no child labeled n. If $c(m)$ exists, then (copy $m n$) duplicates $c(m)$ by setting both $a(m)$ and $a(n)$ equal to $c(m)$. In the putback direction, copy simply discards $a(n)$. The type of copy ensures that no information is lost, because $a(m)=a(n)$.

$$
\left.\begin{array}{l}
\quad(\text { copy } m n) \nearrow c=c \cdot\{n \mapsto c(m)\} \\
(\text { copy } m n) \searrow(a, c)=a \backslash_{n}
\end{array}\right] \begin{aligned}
& \forall m, n \in \mathcal{N} . \forall C \subseteq \mathcal{T} \backslash\{m, n\} . \forall D \subseteq \mathcal{T} . \\
& \quad \text { copy } m n \in\left(C \cdot\left\{m \mapsto D_{\Omega}\right\}\right) \Longleftrightarrow\left(C \cdot\left\{\{m \mapsto d, n \mapsto d\} \mid d \in D_{\Omega}\right\}\right)
\end{aligned}
$$

Because we want copy to be a total lens, the equality constraint in the abstract type of copy is essential to ensure well-behavedness. To see why, consider what would happen if the putback function were defined even when $a(m)$ and $a(n)$ were not equal and copy \backslash removed either $a(m)$ or $a(n)$. Then there would be no way for a subequent application of the get function to restore the discarded information. Consequently, PutGet would be violated.

Unfortunately, because of this constraint, the set of lenses that can be validly composed to the right of a copy is also restricted - the composed lenses must respect the equality. As an example of what can go wrong, consider (copy a b; prune b $\{\mathbb{\}}$) and suppose that we want to assign it a lens typing with concrete component $\{\mathrm{a} \mapsto D\}$. A simple calculation shows that get function behaves like id: the lens first copies a to b and then prunes away b . We run into problems, however, if we evaluate (copy a b; prune b $\}) \searrow\left(\left\{\mathrm{a} \mapsto d_{1}\right\},\left\{\mathrm{a} \mapsto d_{2}\right\}\right)$ with $d_{1} \neq d_{2}$. Unwinding the composition, we evaluate (copy a b) \searrow with an abstract argument $\left\{\mathrm{a} \mapsto d_{1}, \mathrm{~b} \mapsto d_{2}\right\}$. As argued above, the copy lens cannot be both defined and well-behaved on such an abstract argument because the copied data is not identical. As the example demonstrates, the lenses composed after a copy must preserve the equality of the copied data. Otherwise we cannot ensure that the type requirement $a(m)=a(n)$ will be satisfied.

In our intended application, using lenses to build synchronizers for tree-structured data, we have not found a need for copy. This is not surprising, because if a concrete representation demands that some invariant hold within the data structure, we assume that (1) each application will locally maintain the invariants in its own representation, and (2) the function of a synchronizer is to simply propagate changes from one well-formed replica to another. Moreover, if one field in a concrete representation is derivable from another (or a set of other fields), then we need not expose both fields in the abstract view. Instead, we can merge the fields (see below). Any change to the merged field will be pushed back down to all the derived fields in the concrete view. Thus, merge, the inverse of copy makes more sense for the views manipulated by a data synchronizer.

By contrast, some have argued for the need for more powerful forms of copy in settings such as editing a user-friendly view of a structured document [Hu et al. 2004; Mu et al. 2004a]. Consider a situation where a user edits a view of a document in which a table of contents is automatically generated from the section headings appearing in the source text (i.e., the concrete view is just some structured text, while the abstract view contains the text plus the table of contents). One might
feel that adding a new section to the text in the abstract view should cause an entry to be added to the table of contents, and similarly that adding an entry to the table of contents should create an empty section in the text. Such functionality is not consistent with our PutGet law: both adding a section heading and adding an entry in the table of contents will result in the same concrete document after a putback; such a putback function is not injective and cannot participate in a lens in our sense. However, in contexts where this kind of behavior is a primary goal, system designers may be willing to weaken the promises they make to programmers by guaranteeing weaker properties than PutGet. For example, Mu et al [2004a] only require their bidirectional transformations to obey a PUTGETPut law. PutGetPut is weaker than PutGet in two ways. First, it does not require that $l \nearrow(l \searrow(a, c))$ equals a. Rather, it requires that, if $c^{\prime}=l \searrow(a, c)$ and $a^{\prime}=l \nearrow\left(c^{\prime}\right)$, then a^{\prime} should "contain the same information as a," in the sense that $l \searrow\left(a^{\prime}, c^{\prime}\right)=c^{\prime}$. Second, PutGetPut allows get to be undefined over parts of the range of putback-PuTGetPut is only required to hold when the get is defined, but no requirements are made on how broadly get must be defined. (Given that their setting is interactive, it is reasonable to say, as they do, that if get after some putback is undefined, then the system can signal the user that the modification to a was illegal and cancel it). Hu et al [2004] go a step further and weaken both PutGet and GetPut by only requiring PutGet when a is $l \nearrow(c)$ and by only requiring GETPUT when c is $l \searrow\left(a, c^{\prime}\right)$ for some a and c^{\prime}.

Conversely, sometimes a concrete representation requires equality between two distinct subtrees. The following merge lens is one way to preserve this invariant when the abstract view is updated. In the get direction, merge takes a tree with two equal branches and deletes one of them. In the putback direction, merge copies the updated value of the remaining branch to both branches in the concrete view.

$$
\begin{aligned}
& \quad \text { (merge } m n) \nearrow c=c _{n} \\
& \text { (merge } m n) \searrow(a, c)=\left\{\begin{array}{l}
a \cdot\{n \mapsto a(m)\} \\
a \cdot\left\{\begin{array}{l}
\text { if } c(m)=c(n) \\
n \mapsto c(n)\} \\
\text { if } c(m) \neq c(n)
\end{array}\right. \\
\hline \forall m, n \in \mathcal{N} . \forall C \subseteq \mathcal{T} \backslash\{m, n\} . \forall D \subseteq \mathcal{T} . \\
\quad \text { merge } m n \in\left(C \cdot\left\{m \mapsto D_{\Omega}, n \mapsto D_{\Omega}\right\}\right) \Longleftrightarrow\left(C \cdot\left\{m \mapsto D_{\Omega}\right\}\right)
\end{array}\right.
\end{aligned}
$$

There is some freedom in the type of merge. On one hand, we can give it a precise type that expresses the intended equality constraint in the concrete view; the lens is well-behaved and total at that type. Alternatively, we can give it a more permissive type (as we do) by ignoring the equality constraint-even if the two original branches are unequal, merge is still defined and well-behavedness is preserved. This is possible because the old concrete view is an argument to the putback function, and can be tested to see whether the two branches were equal or not in c. If not, then the value in a does not overwrite the value in the deleted branch, allowing merge to obey PutGET.

Unlike copy, merge turns out to be quite useful in our synchronization framework. For example, our bookmark synchronizer must deal with the fact that the XML representation of Apple Safari bookmark files includes the URL data for every link
twice. By merging the appropriate children, we record this dependency and ensure that updates to the URL fields are consistently propagated to both locations.

6. CONDITIONALS

Conditional lens combinators, which can be used to selectively apply one lens or another to a view, are necessary for writing many interesting derived lenses. Whereas xfork and its variants split their input trees into two parts, send each part through a separate lens, and recombine the results, a conditional lens performs some test and sends the whole tree(s) through one or the other of its sub-lenses.

The requirement that makes conditionals tricky is totality: we want to be able to take a concrete view, put it through a conditional lens to obtain some abstract view, and then take any other abstract view of suitable type and push it back down. But this will only work if either (1) we somehow ensure that the abstract view is guaranteed to be sent to the same sub-lens on the way down as we took on the way up, or else (2) the two sub-lenses are constrained to behave coherently. Since we want reasoning about well-behavedness and totality to be compositional in the absence of recursion (i.e., we want the well-behavedness and totality of composite lenses to follow just from the well-behavedness and totality of their sub-lenses, not from special facts about the behavior of the sub-lenses), the second is unacceptable.

Interestingly, once we adopt the first approach, we can give a complete characterization of all possible conditional lenses: we argue that every binary conditional operator that yields well-behaved and total lenses is an instance of the general cond combinator presented below. Since this general cond is a little complex, however, we start by discussing two particularly useful special cases.

Concrete Conditional

Our first conditional, ccond, is parameterized on a predicate C_{1} on views and two lenses, l_{1} and l_{2}. In the get direction, it tests the concrete view c and applies the get of l_{1} if c satisfies the predicate and l_{2} otherwise. In the putback direction, ccond again examines the concrete view, and applies the putback of l_{1} if it satisfies the predicate and the putback of l_{2} otherwise. This is arguably the simplest possible way to define a conditional: it fixes all of its decisions in the get direction, so the only constraint on l_{1} and l_{2} is that they have the same target. (Since we are interested in using ccond to define total lenses, this condition can actually be rather hard to achieve in practice.)

$$
\begin{gathered}
\text { (ccond } \left.C_{1} l_{1} l_{2}\right) \nearrow c=\left\{\begin{array}{l}
l_{1} \nearrow c \text { if } c \in C_{1} \\
l_{2} \nearrow c \text { if } c \notin C_{1}
\end{array}\right. \\
\begin{array}{l}
\left(\text { ccond } C_{1} l_{1} l_{2}\right) \searrow(a, c)=\left\{\begin{array}{l}
l_{1} \searrow(a, c) \text { if } c \in C_{1} \\
l_{2} \searrow(a, c) \text { if } c \notin C_{1}
\end{array}\right. \\
\hline \forall C, C_{1}, A \subseteq \mathcal{V} . \forall l_{1} \in C \cap C_{1} \stackrel{\Omega}{\rightleftharpoons} A . \forall l_{2} \in C \backslash C_{1} \stackrel{\Omega}{\rightleftharpoons} A . \\
\quad \text { ccond } C_{1} l_{1} l_{2} \in C \xlongequal{\Omega} A
\end{array} \\
\forall C, C_{1}, A \subseteq \mathcal{V} . \forall l_{1} \in C \cap C_{1} \bumpeq A . \forall l_{2} \in C \backslash C_{1} \bumpeq A . \\
\quad \text { ccond } C_{1} l_{1} l_{2} \in C \stackrel{\Omega}{\Longleftrightarrow} A
\end{gathered}
$$

One subtlety in the definition is worth noting: we arbitrarily choose to putback Ω using l_{2} (because $\Omega \notin C_{1}$ for any $C_{1} \subseteq \mathcal{V}$). We could equally well arrange the
definition so as to send Ω through l_{1}. In fact, l_{1} need not be well-behaved (or even defined) on Ω; we can construct a well-behaved, total lens using ccond when $l_{1} \in C \cap C_{1} \Longleftrightarrow A$ and $l_{2} \in C \backslash C_{1} \stackrel{\Omega}{\Longleftrightarrow} A$.

Abstract Conditional

A quite different way of defining a conditional lens is to make it ignore its concrete argument in the putback direction, basing its decision whether to use $l_{1} \searrow$ or $l_{2} \searrow$ entirely on its abstract argument. This obliviousness to the concrete argument removes the need for any side conditions relating the behavior of l_{1} and l_{2} - everything works fine if we putback using the opposite lens from the one that we used to get - as long as, when we immediately put the result of get, we use the same lens that we used for the get. Requiring that the sources and targets of l_{1} and l_{2} be disjoint guarantees this.

$$
\begin{aligned}
& \left.\quad \text { (acond } C_{1} A_{1} l_{1} l_{2}\right) \nearrow c=\left\{\begin{array}{l}
l_{1} \nearrow c \text { if } c \in C_{1} \\
l_{2} \nearrow c \text { if } c \notin C_{1}
\end{array}\right. \\
& \text { (acond } \left.C_{1} A_{1} l_{1} l_{2}\right) \searrow(a, c)=\left\{\begin{array}{l}
l_{1} \searrow(a, c) \text { if } a \in A_{1} \wedge c \in C_{1} \\
l_{1} \searrow(a, \Omega) \text { if } a \in A_{1} \wedge c \notin C_{1} \\
l_{2} \searrow(a, c) \text { if } a \notin A_{1} \wedge c \notin C_{1} \\
l_{2} \searrow(a, \Omega) \text { if } a \notin A_{1} \wedge c \in C_{1}
\end{array}\right. \\
& \hline \forall C, A, C_{1}, A_{1} \subseteq \mathcal{V} . \forall l_{1} \in C \cap C_{1} \xlongequal{\Omega} A \cap A_{1} . \forall l_{2} \in\left(C \backslash C_{1}\right) \stackrel{\Omega}{\rightleftharpoons}\left(A \backslash A_{1}\right) .
\end{aligned} \quad \begin{aligned}
& \quad \text { acond } C_{1} A_{1} l_{1} l_{2} \in C \stackrel{\Omega}{\rightleftharpoons} A \\
& \forall C, A, C_{1}, A_{1} \subseteq \mathcal{V} . \forall l_{1} \in C \cap C_{1} \xlongequal{\Longleftrightarrow} A \cap A_{1} . \forall l_{2} \in\left(C \backslash C_{1}\right) \Longleftrightarrow \Omega\left(A \backslash A_{1}\right) . \\
& \quad \text { acond } C_{1} A_{1} l_{1} l_{2} \in C \xlongequal[\leftrightharpoons]{\Longleftrightarrow}
\end{aligned}
$$

In Section 5, we defined the lens rename $m n$, whose type demands that each concrete tree have a child named m and that every abstract tree have a child named n. Using this conditional, we can write a more permissive lens that renames a child if it is present and otherwise behaves like the identity.

```
rename_if_present \(m n=\) acond \(\left(\{m \mapsto \mathcal{T}\} \cdot \mathcal{T} \backslash_{\{m, n\}}\right)\left(\{n \mapsto \mathcal{T}\} \cdot \mathcal{T} \backslash_{\{m, n\}}\right)\)
    (rename \(m n\) )
    id
    \(\forall n, m \in \mathcal{N} . \forall C \subseteq \mathcal{T} . \forall D, E \subseteq\left(\mathcal{T} \backslash_{\{m, n\}}\right)\).
        rename_if_present \(m n \in(\{m \mapsto C\} \cdot D) \cup E \Longleftrightarrow(\{n \mapsto C\} \cdot D) \cup E\)
```


General Conditional

The general conditional, cond, is essentially obtained by combining the behaviors of ccond and acond. The concrete conditional requires that the targets of the two lenses be identical, while the abstract conditional requires that they be disjoint. Here, we let them overlap arbitrarily, behaving like ccond in the region where they do overlap (i.e., for arguments (a, c) to putback where a is in the intersection of the targets) and like acond in the regions where the abstract argument to putback belongs to just one of the targets. To this we can add one additional observation: that the use of Ω in the definition of acond is actually arbitrary. All that is required is that, when we use the putback of l_{1}, the concrete argument should come
from $\left(C_{1}\right)_{\Omega}$, so that l_{1} is guaranteed to do something reasonable with it. These considerations lead us to the following definition.

When a is in the targets of both l_{1} and l_{2}, cond \searrow chooses between them based solely on c (as does ccond, whose targets always overlap). If a lies in the range of only l_{1} or l_{2}, then cond's choice of lens for putback is predetermined (as with acond, whose targets are disjoint). Once $l \searrow$ is chosen to be either $l_{1} \searrow$ or $l_{2} \searrow$, if the old value of c is not in $\operatorname{ran}(l \searrow)_{\Omega}$, then we apply a "fixup function," f_{21} or f_{12}, to c to choose a new value from $\operatorname{ran}(l \searrow)_{\Omega}$. Ω is one possible result of the fixup functions, but in general we can compute a more interesting value, as we will see in the list_filter lens, defined in Section 7.

We argued above that cond captures all the power of ccond and acond-indeed, because of the fixup functions f_{12} and f_{21}, it captures even more. We now argue, informally, that this is the maximum generality possible-i.e., that any well-behaved and total lens combinator that behaves like a binary conditional can be obtained as a special case of cond. Of course, the argument hinges on what we mean when we say " l behaves like a conditional." We would like to capture the intuition that l should, in each direction, "test its input(s) and decide whether to behave like l_{1} or l_{2}." In the get direction, there is little choice about how to say this: since there is just one argument, the test just amounts to testing membership in a set (predicate) C_{1}. In the putback direction, there is some apparent flexibility, since the test might investigate both arguments. However, the requirements of well-behavedness (and the feeling that a conditional lens should be "parametric" in l_{1} and l_{2}, in the sense that the choice between l_{1} and l_{2} should not be made by investigating their behavior) actually eliminate most of this flexibility. If, for example, the abstract input a falls in $a \in A_{1} \cap A_{2}$, then the choice of whether to apply $l_{1} \searrow$ or $l_{2} \searrow$ is fully determined by c : if $c \in C_{1}$, then it may be that $a=l_{1} \nearrow c$; in this case, using $l_{1} \searrow$ guarantees that $l \searrow(a, c)=c$, as required by GETPUT, whereas $l_{2} \searrow$ gives us no such guarantee; conversely, if $c \in C \backslash C_{1}$, we must use l_{2}.

Similarly, if $a \in A_{1} \backslash A_{2}$, then we have no choice but to use l_{1}, since l_{2} 's type does not promise that applying it to an argument of this type will yield a result in C_{1}.

Similarly, if $a \in A_{2} \backslash A_{1}$, then we must use l_{2}. However, here we do have a little genuine freedom: if $a \in A_{1} \backslash A_{2}$ while $c \in C \backslash C_{1}$, then, by the type of l_{2}, there is no danger that $a=l_{2} \nearrow c$. In order to apply l_{1}, we need some element of $\left(C_{1}\right)_{\Omega}$ to use as the concrete argument, but it does not matter which one we pick; and conversely for l_{2}. The fixup functions f_{21} and f_{12} cover all possible (deterministic) ways of making this choice based on the given c. It is possible to be slightly more general by making f_{21} and f_{12} take both a and c as arguments, but pragmatically there seems little point in doing this, since either $l_{1} \searrow$ or $l_{2} \searrow$ is going to be called on their result, and these functions can just as well take a into account.

7. DERIVED LENSES FOR LISTS

XML and many other concrete data formats make heavy use of ordered lists. We describe in this section how we can represent lists as trees, using a standard conscell encoding, and introduce some derived lenses to manipulate them. We begin with very simple lenses for projecting the head and tail of a list. We then define recursive lenses implementing some more complex operations on lists: mapping, reversal, grouping, concatenating, and filtering. We give the proofs of the wellbehavedness and totality lemmas (in Appendix A) for these recursive lenses to demonstrate how the reasoning principles developed in Section 3 can be applied to practical examples.

Encoding

7.1 Definition: A tree t is said to be a list iff either it is empty or it has exactly two children, one named $* \mathrm{~h}$ and another named $* \mathrm{t}$, and $t(* \mathrm{t})$ is also a list. We use the lighter notation $\left[t_{1} \ldots t_{n}\right]$ for the tree

$$
\left\{\begin{array}{l}
* \mathrm{~h} \mapsto \mathrm{t}_{1} \\
\left.* \mathrm{t} \mapsto\left\{\begin{array}{l}
* \mathrm{~h} \mapsto \mathrm{t}_{2} \\
* \mathrm{t} \mapsto\left\{\left\{\left.\ldots \mapsto\left\{\begin{array}{l}
* \mathrm{~h} \mapsto \mathrm{t}_{n} \\
* \mathrm{t} \mapsto\}\}
\end{array}\right\} \right\rvert\,\right\}\right.
\end{array}\right\}\right\}
\end{array}\right\} .
$$

In types, we write [] for the set $\{\}\}$ containing only the empty list, $C:: D$ for the set $\{* \mathrm{~h} \mapsto C, * \mathrm{t} \mapsto D\}$ of "cons-cell trees" whose head belongs to C and whose tail belongs to D, and [C] for the set of lists with elements in C-i.e., the smallest set of trees satisfying $[C]=[] \cup(C::[C])$. We sometimes refine this notation to describe lists of specific lengths, writing [$D^{i . . j}$] for the set of lists of $D \mathrm{~s}$ whose length is at least i and at most j, and writing [D^{i}] for the set of lists whose length is exactly i (i.e., $\left[D^{i . . i}\right]$). Given two list values, l_{1} and l_{2}, the set of lists denoted by the interleaving $l_{1} \& l_{2}$ consists of all the lists formed by interleaving the elements of l_{1} with the elements of l_{2} in an arbitrary fashion. For example, [a, b] \& [c] is the set $\{[\mathrm{a}, \mathrm{b}, \mathrm{c}],[\mathrm{a}, \mathrm{c}, \mathrm{b}]$, $[\mathrm{c}, \mathrm{a}, \mathrm{b}]\}$. We lift the interleaving operator to list types in the obvious way: the interleaving of two list types, $[B]$ and $[C]$, is the union of all the interleavings of lists belonging to $[B]$ with lists belonging to $[C]$. Similarly, we lift the usual append operator, written ++, to list types: [C]++[D] denotes the set of lists obtained by appending any element of [C] to any element of [D].

Head and Tail Projections

Our first list lenses extract the head or tail of a cons cell.

$$
\begin{array}{|l|}
\hline \text { hd } d=\text { focus } * \mathrm{~h} \quad\{* \mathrm{t} \mapsto d\} \\
\forall C, D \subseteq \mathcal{T} . \forall d \in D . \quad \text { hd } d \in(C:: D) \stackrel{\Omega}{\Longleftrightarrow C}
\end{array}
$$

$$
\begin{array}{|l|}
\hline \mathrm{tl} d=\text { focus } * \mathrm{t} \quad\{* \mathrm{~h} \mapsto d\} \\
\forall C, D \subseteq \mathcal{T} . \forall d \in C . \quad \text { tl } d \in(C:: D) \stackrel{\Omega}{\Longleftrightarrow} \\
\hline
\end{array}
$$

The lens hd expects a default tree, which it uses in the putback direction as the tail of the created tree when the concrete tree is missing; in the get direction, it returns the tree under $*$ h. The lens tl works analogously. Note that the types of these lenses apply to both homogeneous lists (the type of hd implies $\forall C \subseteq \mathcal{T} . \forall d \in[C]$. hd $d \in[C] \Longleftrightarrow \Omega)$ as well as cons cells whose head and tail have unrelated types; both possibilities are used in the type of the bookmark lens in Section 8. The types of hd and tl follow from the type of focus.

List Map

The list_map lens applies a lens l to each element of a list:

list_map $l=$ wmap $\{* \mathrm{~h} \mapsto l$, *t \mapsto list_map $l\}$
$\forall C, A \subseteq \mathcal{T} . \forall l \in C \stackrel{\Omega}{\rightleftharpoons} A . \quad$ list_map $l \in[C] \stackrel{\Omega}{\rightleftharpoons}[A]$
$\forall C, A \subseteq \mathcal{T} . \forall l \in C \stackrel{\Omega}{\Longleftrightarrow} A . \quad$ list_map $l \in[C] \Longleftrightarrow \Omega$

The get direction applies l to the subtree under $* \mathrm{~h}$ and recurses on the subtree under $*$ t. The putback direction uses $l \searrow$ on corresponding pairs of elements from the abstract and concrete lists. The result has the same length as the abstract list; if the concrete list is longer, the extra tail is thrown away. If it is shorter, each extra element of the abstract list is putback into Ω.

Since list_map is our first recursive lens, it is worth noting how recursive calls are made in each direction. The get function of the wmap lens simply applies l to the head and list_map l to the tail until it reaches a tree with no children. Similarly, in the putback direction, wmap applies l to the head of the abstract tree and either the head of the concrete tree (if it is present) or Ω, and it applies list_map l to the tail of the abstract tree and the tail of the concrete tree (if it is present) or Ω. In both directions, the recursive calls continue until the entire tree - concrete (for the get) or abstract (for the putback) - has been traversed. (The recursion is controlled by the abstract argument in the putback direction because the map combinator uses the children of the abstract tree to determine how many times to call its argument lens.)

Because list map is defined recursively, proving it is well behaved requires just a little more work than than for non-recursive derived lenses: we need to show that it has a particular type assuming that the recursive use of list_map has the same type. This is no surprise: exactly the same reasoning process is used in typing recursive functional programs.

Recall that the type of wmap requires that both sets of trees in its type be shuffle closed. To prove that list_map is well-behaved and total, we will need a lemma showing that cons-cell and list types are shuffle closed.
7.2 Lemma: Let $S, T \subseteq \mathcal{T}$. Then
(1) $(S:: T)=(S:: T)^{\circlearrowleft}$
(2) $[T]=[T]^{\circlearrowleft}$.

With these pieces in hand, the well-behavedness lemma follows by a straightforward calculation using the type of wmap.

7.3 Lemma [Well-behavedness]:
 $\forall C, A \subseteq \mathcal{T} . \forall l \in C \xlongequal{\bumpeq} A . \quad$ list_map $l \in[C] \stackrel{\Omega}{\rightleftharpoons}[A]$

The proof of totality for list map is more interesting. We use Corollary 3.17(2), which requires that we (1) identify two chains of types, $\emptyset=C_{0} \subseteq C_{1} \subseteq \ldots$ and $\emptyset=A_{0} \subseteq A_{1} \subseteq \ldots$, and (2) from $k \in C_{i} \stackrel{\Omega}{\Longleftrightarrow} A_{i}$, prove that $f(k) \in C_{i+1} \stackrel{\Omega}{\Longleftrightarrow} A_{i+1}$ for all i. We can then conclude that $f i x(f) \in \bigcup_{i} C_{i} \stackrel{\Omega}{\Longleftrightarrow} \bigcup_{i} A_{i}$. For list_map we choose increasing chains of types as follows:

$$
\begin{aligned}
& C_{i}=\emptyset \subseteq[] \subseteq C::[] \subseteq C:: C::[] \subseteq \ldots \\
& A_{i}=\emptyset \subseteq[] \subseteq A::[] \subseteq A:: A::[] \subseteq \ldots
\end{aligned}
$$

The full argument is given in the proof of Lemma 7.4 in Appendix A.

7.4 Lemma [Totality]: $\forall C, A \subseteq \mathcal{T} . \forall l \in C \Longleftrightarrow$ ת A. list_map $l \in[C] \Longleftrightarrow \Omega[A]$

Reverse

Our next lens reverses the elements of a list. The algorithm we use to implement list reversal runs in quadratic time - we reverse the tail of the list and then use an auxiliary lens to rotate the head to the end of the reversed tail. Before presenting the list_reverse lens, we describe this auxiliary lens, called rotate.

```
rotate = acond ([] \cup (D:: [])) ([]\cup(D:: []))
    id
    (rename *h tmp;
    hoist_nonunique *t {*h, *t};
    fork {*h} id (rename tmp *h; rotate; plunge *t))
            \forallD\subseteq\mathcal{T}. rotate }\in[D]\stackrel{\Omega}{\Longleftrightarrow [D]
```

In the get direction, rotate has two cases. If the list is empty or a singleton, the acond applies id, which returns the original empty or singleton list unmodified. Otherwise, it (1) renames the head to tmp; (2) hoists up the tail, which yields children $* \mathrm{~h}$ and $* \mathrm{t}$ since the list is neither empty nor a singleton; and (3) splits the tree in two using fork, applying the id lens to the part of the tree consisting of the single child $*$ h (i.e., the second element in the original list), and puts the tmp element at the end of the list. To do this, it first renames tmp back to $* \mathrm{~h}$, yielding a list whose head is the head of the original list and whose tail is the tail of the tail of the original list. The recursive call to rotate puts the head of this list to the end of the list, yielding the original list with two differences: the first element is at
the end and the second element not present. Finally, the resulting list is plunged under *t, and (after the fork) the result is concatenated with the original second element.

The putback direction also has two cases, corresponding to the two arms of the acond lens. It first checks whether the abstract view is the empty list or a singleton list. If so, then it applies the id lens, which returns the abstract list unchanged. Otherwise, it applies the three steps given above in reverse order: it first splits the abstract and concrete lists as in the get direction, passing the head through the id lens and partially rotating the tail. To do this, it hoists the tail tag, recursively applies rotate (bringing the last element to the head of this list), and renames $* \mathrm{~h}$ to tmp. The result after the fork is the original list (under the names $* \mathrm{~h}$ and *t) without its original last element concatenated with the last element under the name tmp. Next the lens hoist_nonunique plunges the $* \mathrm{~h}$ and $* \mathrm{t}$ children under *t. Finally, tmp is renamed back to $*$ h. This has the effect of bringing the last element of the abstract list to the head of the result and shifting the position of every other element by one.

The well-behavedness proof is a simple calculation, using Corollary 3.17(1) and the types of the lenses that make up rotate.

7.5 Lemma [Well-behavedness]: $\forall D \subseteq \mathcal{T}$. rotate $\in[D] \stackrel{\Omega}{\rightleftharpoons}[D]$

The totality lemma is proved using Corollary 3.17(2), after establishing, by induction on i, that rotate $\in\left[D^{i}\right] \stackrel{\Omega}{\Longleftrightarrow}\left[D^{i}\right]$.

7.6 Lemma [Totality]: $\forall D \subseteq \mathcal{T}$. rotate $\in[D] \Longleftrightarrow[D]$

Using rotate, the definition of listreverse is straightforward:
$\begin{array}{|r|}\hline \text { list_reverse }= \\ \hline \forall D \subseteq \mathcal{T} .\end{array}$ list_reverse $\{*$ t \mapsto list_reverse $\} ;$ rotate $] \stackrel{\Omega}{\Longleftrightarrow}[D]$

In the get direction, we simply reverse the tail and rotate the head element to the end of the list. In the putback direction, we perform these steps in reverse order, first rotating the last element of the list to the head and then reversing the tail. Note also that list_reverse behaves like the identity when it is applied to the empty list, i.e., $\}$, since the get and putback components of wmap and rotate each $\operatorname{map}\}$ to $\}$.

The algorithm for computing the reversal of a list shown here runs in quadratic time. Interestingly, we have not been able to code the familiar, linear-time algorithm as a derived lens (of course, we could introduce a primitive lens for reversing lists that uses the efficient implementation internally, but it is more interesting to try to write the efficient version using our combinators). One difficulty arises if we use an accumulator to store the result: the putback function of such a transformation would be non-injective and so could not satisfy PutGet. To see this, consider putting the tree containing [c] under the accumulator child and [ba] as the rest of the list. This will yield the same result, [abc], as putting back a tree containing [] under the accumulator child and [a b c] as the rest of the list.

The well-behavedness lemma follows straightforwardly from the types of wmap and rotate, using Corollary $3.17(1)$.
7.7 Lemma [Well-behavedness]: $\forall D \subseteq \mathcal{T}$. list_reverse $\in[D] \stackrel{\Omega}{=}[D]$

For the totality lemma, we use Corollary $3.17(2)$, after proving, by induction on i, that list_reverse $\in\left[D^{i}\right] \Longleftrightarrow\left[D^{i}\right]$ for all i.

7.8 Lemma [Totality]: $\forall D \subseteq \mathcal{T}$. list_reverse $\in[D] \Longleftrightarrow[D]$

Grouping

Next we give the definition of a "grouping" lens that, in the get direction, takes a list of $D \mathrm{~s}$ and produces a list of lists of $D \mathrm{~s}$ where the elements have been grouped in pairs. It is used in our bookmark synchronizer as part of a transformation that takes dictionaries of user preferences stored in the particular XML format used by Apple's Safari browser and yields trees in a simplified abstract format. When the concrete list has an even number of elements, the behavior group lens is simple e.g., it maps $\left[d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right]$ to $\left[\left[d_{1}, d_{2}\right],\left[d_{3}, d_{4}\right],\left[d_{5}, d_{6}\right]\right.$. When there are an odd number of elements in the list, group places the final odd element in a singleton list-e.g., it maps $\left[d_{1}, d_{2}, d_{3}\right]$ to $\left[\left[d_{1}, d_{2}\right],\left[d_{3}\right]\right]$. The typing for group, given below, describes both the odd and even case.

Because it explicitly destroys and builds up cons cells, the definition of group is a little bit longer than the lenses we have seen so far. We explain the behavior of each part of the lens in detail below.

```
group =
    acond [] []
        id
        (acond (D :: []) ((D :: []):: [])
            (plunge *h; add *t [])
            (rename *h tmp;
            hoist_nonunique *t {*h, *t};
            fork {*t}
                    (map group)
                    (xfork {*h } {*t} (add *t {}; plunge *t) (rename tmp *h);
                    plunge *h)))
    \forallD\subseteq\mathcal{T}\quad\mathrm{ group }\in[D]\Longleftrightarrow [D::D::[]]++([]\cup ((D::[])::[]))
```

The get component of group has two cases, one for each branch of the two acond conditionals. If the concrete list is empty, then group behaves like the first branch, which is the identity. Otherwise, if the concrete list is a singleton, then group behaves like the second branch, which plunges the singleton list under *h and adds a child $*$ t leading to the empty list. That is, it transforms singleton lists c into the singleton list containing $c,\{* \mathrm{~h} \mapsto c, * \mathrm{t} \mapsto\{\{ \}\}$. Otherwise, if neither of the two previous cases apply, then group behaves like the third branch. There are three steps. First, it renames the head element, storing it away under a child named tmp. Next, it hoists up the tail of the list, yielding a tree with children tmp, *h, and *t (since the list is neither empty nor a singleton). In the third step, it recursively groups the tail, massages the other tree into a list of length two, and yields the cons cell made up of these trees as the result.
More specifically, in the third step of the final case, group splits the tree into a tree with a single child $* \mathrm{t}$ and a tree containing the $* \mathrm{~h}$ and tmp children. It then
recursively groups the tail using (map group). The other tree is split yet again, into $* \mathrm{~h}$ and tmp . The tree with ${ }^{*} \mathrm{~h}$ is made into a singleton list by adding a child $* \mathrm{t}$ leading to the empty view, and then plunged under $* \mathrm{t}$. The tree containing tmp is turned into the head of a cons cell by renaming tmp back to $* \mathrm{~h}$. After the xfork, these two trees are plunged under $* \mathrm{~h}$. Thus, $\left\{\operatorname{tmp} \mapsto \mathrm{d}_{i}, * \mathrm{~h} \mapsto \mathrm{~d}_{j}\right\}$ is transformed into the tree $\left\{* \mathrm{~h} \mapsto\left[\mathrm{~d}_{i}, \mathrm{~d}_{j}\right]\right\}$. The final result is obtained by merging the grouped tail with this head element.
Since each lens used in group is oblivious, ${ }^{7}$ the putback function is symmetric, with three cases corresponding to the branches of the acond. Its behavior can be calculated by evaluating the compositions in reverse order.
The well-behavedness of group follows from Corollary $3.17(1)$ and a simple, compositional argument using the types of each lens appearing in its definition.

7.9 Lemma [Well-behavedness]:
 $\forall D \subseteq \mathcal{T}$ group $\in[D] \xlongequal{\Omega}[D:: D::[]]++([] \cup((D::[])::[]))$

We prove the totality lemma using Corollary $3.17(2)$, using the increasing chains of types:

$$
\begin{aligned}
& C_{i}=\emptyset \subseteq[] \subseteq D::[] \subseteq D::(D::[]) \subseteq \ldots \\
& A_{i}=\emptyset \subseteq[] \subseteq(D::[])::[] \subseteq(D:: D::[])::[] \subseteq \ldots
\end{aligned}
$$

whose limit is the total type we want to show for group.

7.10 Lemma [Totality]:

$\forall D \subseteq \mathcal{T}$ group $\in[D] \bumpeq[D:: D::[]]++([] \cup((D::[])::[]))$

Concatenation

The concat lens takes a tree t as an argument. It transforms lists containing two sublists of $D \mathrm{~s}$ and concatenates them into a single list using a single element t to track the position where the first list ends and the second begins. For example, given the tree $[[\mathrm{C}, \mathrm{h}, \mathrm{r}, \mathrm{i}, \mathrm{s}],[\mathrm{S}, \mathrm{m}, \mathrm{i}, \mathrm{t}, \mathrm{h}]]$, the get component of (concat $\{$ " " $\mapsto\{\mathbb{Z}\}$) produces the single list $[C, h, r, i, s, " ", \mathrm{~S}, \mathrm{~m}, \mathrm{i}, \mathrm{t}, \mathrm{h}]$. Conversely, the putback function takes a list containing exactly one t and splits the list in two, producing lists containing the elements to the left and right of t respectively. The definition is as follows.

```
concat t = acond ([]:: [D]:: []) (t:: [D])
    (wmap {*h \mapsto const t [],*t \mapsto hd []})
    (fork {*t} id (hoist *h; rename *t tmp);
    fork {*h} id (rename tmp *h; concat t; plunge *t))
\forallD\subseteq\mathcal{T},t\in\mathcal{T}. with }t\not\inD.\quad\mathrm{ concat }t\in[D]::[D]::[]\Longleftrightarrow\Omega\mp@code{[D]++(t::[D])
```

[^5]In the get direction, there are two cases, one for each branch of the acond. If the concrete list is of the form ([]$:: l::[]$), where $l \in[D]$, then concat t produces the result $(t++l)$ by applying (const t []) to the head and (hd []) to extract l from the tail. Otherwise, the first element of the concrete list is non-empty and the acond selects the second branch. The first fork splits the outermost cons cell according to $\{* \mathrm{t}\}$. The id lens is applied to the tail component, which has the form $\left\{* \mathrm{t} \mapsto\left(l_{2}::[]\right)\right\}$. The other component has the form $\left\{* \mathrm{~h} \mapsto\left\{* \mathrm{~h} \mapsto d, * \mathrm{t} \mapsto l_{1}\right\}\right\}$. The edge labeled $*$ h is clipped out using hoist, yielding children $*$ h and $*$ t (i.e., the head and tail of the first sublist) and the $*$ t child is renamed to tmp. These two steps yield a tree $\left\{* \mathrm{~h} \mapsto d, \operatorname{tmp} \mapsto l_{1}\right\}$. The second fork splits the tree according to $\{* \mathrm{~h}\}$. The id lens is applied to the tree $\{* \mathrm{~h} \mapsto d\}$. The other part of the tree is $\left\{\operatorname{tmp} \mapsto l_{1}, * \mathrm{t} \mapsto\left(l_{2}::[]\right)\right\}$. By renaming tmp to $* \mathrm{~h}$, recursively concatenating, and plunging the result under $* \mathrm{t}$, we obtain the tree $\left\{* \mathrm{t} \mapsto\left(l_{1}++\left(t:: l_{2}\right)\right)\right\}$. Combining these two results into a single tree, we obtain the list $\left(d:: l_{1}\right)++\left(t:: l_{2}\right)$.

The putback function is oblivious; its behavior is symmetric to the get function.
Once again, the well-behavedness lemma for concat t follows by a simple, compositional calculation, using Corollary $3.17(1)$.

7.11 Lemma [Well-behavedness]:

$\forall D \subseteq \mathcal{T}, t \in \mathcal{T}$. with $t \notin D$. concat $t \in[D]::[D]::[] \xlongequal{\Omega}[D]++(t::[D])$
The totality lemma follows from Corollary $3.17(2)$, using the increasing chains of types:

$$
\begin{aligned}
& C_{i}=\emptyset \subseteq[]::[D]::[] \subseteq(D::[])::[D]::[] \subseteq(D:: D::[])::[D]::[] \subseteq \ldots \\
& A_{i}=\emptyset \subseteq[]++(t::[D]) \subseteq(D::[])++(t::[D]) \subseteq(D:: D::[])++(t::[D]) \subseteq \ldots
\end{aligned}
$$

whose limit is the total type we want to show for concat t.

7.12 Lemma [Totality]:

$\forall D \subseteq \mathcal{T}, t \in \mathcal{T}$. with $t \notin D$. concat $t \in[D]::[D]::[] \stackrel{\Omega}{\Longleftrightarrow}[D]++(t::[D])$

Filter

Our most interesting derived list processing lens, list_filter, is parameterized on two sets of views, D and E, which we assume to be disjoint and non-empty. In the get direction, it takes a list whose elements belong to either D or E and projects away those that belong to E, leaving an abstract list containing only D; ; in the putback direction, it restores the projected-away Es from the concrete list. Its definition utilizes our most complex lens combinators-wmap and two forms of conditionals - and recursion, yielding a lens that is well-behaved and total on lists of arbitrary length.

In the get direction, the desired behavior of list_filter $D E$ (for brevity, let us call it l) is clear. In the putback direction, things are more interesting because there are many ways that we could restore projected elements from the concrete list. The lens laws impose some constraints on the behavior of $l \searrow$. The GetPut law forces the putback function to restore each of the filtered elements when the abstract list is put into the original concrete list. For example (letting d and e be elements of D and E) we must have $l \searrow([d]$, [ed]) $=$ [e d]. The PutGEt law forces the putback function to include every element of the abstract list in the
resulting concrete list in the same order, and these elements must be the only D s in the result; there is, however, no restriction on the E s when the abstract tree is not the filtered concrete tree.

In the general case, where the abstract list a is different from the filtered concrete list $l \nearrow c$, there is some freedom in how $l \searrow$ behaves. First, it may selectively restore only some of the elements of E from the concrete list (or indeed, even less intuitively, it might add some new elements of E that it somehow makes up). Second, it may interleave the restored E s with the D s from the abstract list in any order, as long as the order of the D s is preserved from a. From these possibilities, the behavior that seems most natural to us is to overwrite elements of D in c with elements of D from a, element-wise, until either c or a runs out of elements of D. If c runs out first, then $l \searrow$ appends the rest of the elements of a at the end of c. If a runs out first, then $l \searrow$ restores the remaining E s from the end of c and discards any remaining $D \mathrm{~s}$ in c (as it must to satisfy PutGet).

These choices lead us to the following specification for a single step of the putback part of a recursively defined lens implementing l. If the abstract list a is empty, then we restore all the E s from c. If c is empty and a is not empty, then we return a. If a and c are both cons cells whose heads are in D, then we return a cons cell whose head is the head of a and whose tail is the result obtained by recursing on the tails of both a and c. Otherwise (i.e., c has type $E::([D] \&[E])$) we restore the head of c and recurse on a and the tail of c. Translating this into lens combinators leads to the definition below of a recursive lens inner_filter, which filters lists containing at least one D, and a top-level lens list_filter that handles arbitrary lists of $D \mathrm{~s}$ and Es.

```
inner_filter D E=
    ccond (E::([DD'..\omega}]&[E])
        (tl any ; ; inner_filter D E)
        (wmap {*h\mapstoid,
            *t \mapsto(cond [E] [] [D D...\omega] fltr 
                                    (const [] [])
                                    (inner_filter D E))})
list_filter D E =
    cond [E] [] [D 1..\omega] fltre
        (const [] [])
        (inner_filter D E)}
    \forall, E\subseteq\mathcal{T}}\mathrm{ . with }D\capE=\emptyset\mathrm{ and }D\not=\emptyset\mathrm{ and }E\not=\emptyset\mathrm{ .
        inner_filter D E [ [D D'..\omega]& [E] \Omega}\Longleftrightarrow [D D..\omega
        list_filter D E\in[D]&[E] \Omega
```

The "choice operator" $a n y_{D}$ denotes an arbitrary element of the (non-empty) set $D .{ }^{8}$ The function fltr $_{E}$ is the usual list-filtering function, which for present purposes

[^6]we simply assume has been defined as a primitive. (In our actual implementation, we use list_filter $/$; but for expository purposes, and to simplify the totality proofs, we avoid this extra bit of recursiveness.) Finally, the function $\lambda c . c^{++}\left[a n y_{D}\right]$ appends some arbitrary element of D to the right-hand end of a list c. These "fixup functions" are applied in the putback direction by the cond lens.

The behavior of the get function of list_filter can be described as follows. If $c \in[E]$, then the outermost cond selects the const [] [] lens, which produces []. Otherwise the cond selects inner_filter, which uses a ccond instance to test if the head of the list is in E. If this test succeeds, it strips away the head using tl and recurses; if not, it retains the head and filters the tail using wmap.

In the putback direction, if $a=[]$ then the outermost cond lens selects the const [] [] lens, with c as the concrete argument if $c \in[E]$ and $\left(f l t r_{E} c\right)$ otherwise. This has the effect of restoring all of the Es from c. Otherwise, if $a \neq[]$ then the cond instance selects the putback of the inner_filter lens, using c as the concrete argument if c contains at least one D, and $\left(\lambda c . c^{++}\left[a n y_{D}\right]\right) c$, which appends a dummy value of type D to the tail of c, if not. The dummy value, $a n y_{D}$, is required because inner_filter expects a concrete argument that contains at least one D. Intuitively, the dummy value marks the point where the head of a should be placed.

To illustrate how all this works, let us step through some examples in detail. In each example, the concrete type is $[D] \&[E]$ and the abstract type is $[D]$. We will write d_{i} and e_{j} to stand for elements of D and E respectively. To shorten the presentation, we will write l for list_filter $D E$ (i.e., for the cond lens that it is defined as) and i for inner_filter $D E$. In the first example, the abstract tree a is $\left[d_{1}\right]$, and the concrete tree c is $\left[\begin{array}{lll}e_{1} & d_{2} & e_{2}\end{array}\right]$. At each step, we underline the term that is simplified in the next step.

$$
\begin{aligned}
& \frac{l \searrow(a, c)}{\text { by the }}=\frac{i \searrow(a, c)}{\text { definition of cond, as } a \in\left[D^{1 . . \omega}\right] \text { and } c \in([D] \&[E]) \backslash[E]} \\
&= \frac{\left(\mathrm{tl} a n y_{E} ; i\right) \searrow(a, c)}{\text { by the definition of ccond, as } c \in E::\left(\left[D^{1 . . \omega}\right] \&[E]\right)} \\
&=\left(\mathrm{tl} a n y_{E}\right) \searrow\left(i \searrow\left(a,\left(\mathrm{tl} a n y_{E}\right) / c\right), c\right)
\end{aligned}
$$

by the definition of composition
$=\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\underline{i \searrow\left(a,\left[\mathrm{~d}_{2} \mathrm{e}_{2}\right]\right)}, c\right)$ reducing ($\mathrm{tl} a n y_{E}$) $/ c$

$$
=\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\underline{\left.\left.\mathrm{wmap}\{* \mathrm{~h} \mapsto \mathrm{id}, * \mathrm{t} \mapsto l\} \searrow\left(a,\left[\mathrm{~d}_{2} \mathrm{e}_{2}\right]\right), c\right)\right) ~}\right.
$$

by the definition of ccond, as $\left[\mathrm{d}_{2} \mathrm{e}_{2}\right] \notin E::\left(\left[D^{1 . . \omega}\right] \&[E]\right)$
$=\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\mathrm{d}_{1}::\left(\underline{l} \searrow\left([],\left[\mathrm{e}_{2}\right]\right), c\right)\right.$
by the definition of wmap with id $\searrow\left(d_{1}, d_{2}\right)=d_{1}$
$=\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\mathrm{d}_{1}::\left((\right.\right.$ const [] [] $\left.\left.) \searrow\left([],\left[\mathrm{e}_{2}\right]\right)\right), c\right)$ by the definition of cond, as []$\in[]$ and $\left[e_{2}\right] \in[E]$
$=\underline{\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\mathrm{d}_{1}::\left[\mathrm{e}_{2}\right], c\right)}$ by the definition of const
$=\left[\begin{array}{lll}e_{1} & d_{1} & e_{2}\end{array}\right]$ by the definition of $t l$.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Our next two examples illustrate how the "fixup functions" supplied to the cond lens are used. The first function, fltr $_{E}$, is used when the abstract list is empty and the concrete list is not in $[E]$. Let $a=[]$ and $c=\left[\mathrm{d}_{1} \mathrm{e}_{1}\right]$.

$$
\begin{aligned}
& \frac{l \searrow(a, c)=(\text { const }[][]) \searrow\left([], \operatorname{fltr}_{E}\left[\mathrm{~d}_{1} \mathrm{e}_{1}\right]\right.}{\text { by the definition of cond, as } a=[] \text { but } c \notin[E]} \\
& =\frac{(\text { const }[][]) \searrow\left([],\left[\mathrm{e}_{1}\right]\right)}{\text { by the definition of } f l r_{E}} \\
& =\left[\mathrm{e}_{1}\right] \text { by definition of const. }
\end{aligned}
$$

The other fixup function, ($\left.\lambda c . c^{++}\left[a n y_{D}\right]\right)$, inserts a dummy D element when list_filter is called with a non-empty abstract list and a concrete list whose elements are all in E. Let $a=\left[\mathrm{d}_{1}\right]$ and $c=\left[\mathrm{e}_{1}\right]$ and assume that $a n y_{D}=\mathrm{d}_{0}$.

$$
\begin{aligned}
& \underline{\searrow(a, c)}=i \searrow\left(a, \underline{\left(\lambda c . c^{++}\left[a n y_{D}\right]\right) c}\right) \\
& \text { by the definition of cond, as } a \in\left[D^{1 . . \omega}\right] \text { and } c \in[E] \\
& =\underline{i \searrow\left(a,\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right]\right)} \\
& \text { by the definition of }\left(\lambda c . c++\left[a n y_{D}\right]\right) \\
& =\underline{\left(\mathrm{tl} a n y_{E} ; i\right) \searrow\left(a,\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right]\right)} \\
& \text { by the definition of ccond, as }\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right] \in E::\left(\left[D^{1 . . \omega}\right] D \&[E]\right) \\
& =\left(\mathrm{tl} a n y_{E}\right) \searrow\left(i \searrow\left(a,\left(\mathrm{tl} a n y_{E}\right) \nearrow\left[\begin{array}{ll}
\mathrm{e}_{1} \mathrm{~d}_{0}
\end{array}\right]\right),\left[\begin{array}{ll}
\mathrm{e}_{1} \mathrm{~d}_{0}
\end{array}\right]\right) \\
& \text { by the definition of composition } \\
& \left.=\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\underline{i \searrow\left(a,\left[\mathrm{~d}_{0}\right]\right.}\right),\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right]\right) \\
& \text { reducing (} \mathrm{tl} a n y_{E} \text {) } \nearrow\left[\begin{array}{ll}
\mathrm{e}_{1} & \mathrm{~d}_{0}
\end{array}\right] \\
& =\left(\mathrm{tl} a n y_{E}\right) \\
& \searrow\left(\underline{\text { wmap }\{* \mathrm{~h} \mapsto \mathrm{id}, * \mathrm{t} \mapsto l\} \searrow\left(a,\left[\mathrm{~d}_{0}\right]\right)},\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right]\right) \\
& \text { by the definition of ccond, as }\left[\mathrm{d}_{0}\right] \notin E::\left(\left[D^{1 . . \omega}\right] \&[E]\right) \\
& =\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\mathrm{d}_{1}::(\underline{(l \searrow([],[])}),\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right]\right) \\
& \text { by the definition of wmap with id } \searrow\left(d_{1}, d_{0}\right)=d_{1} \\
& =\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\mathrm{d}_{1}::((\text { const [] [] }) \searrow([],[])),\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right]\right) \\
& \text { by the definition of cond, as }[] \in[] \text { and }[] \in[E] \\
& =\underline{\left(\mathrm{tl} a n y_{E}\right) \searrow\left(\mathrm{d}_{1}::[],\left[\mathrm{e}_{1} \mathrm{~d}_{0}\right]\right)} \\
& \text { by the definition of const } \\
& =\left[\begin{array}{ll}
e_{1} & d_{1}
\end{array}\right] \text { by the definition of } t l .
\end{aligned}
$$

The well-behavedness proof for inner_filter is straightforward: we simply decide on a type for the recursive use of inner filter and then show that, under this assumption, the body of the lens has this type. Since list_filter is not recursive, both its well-behavedness and totality lemmas both follow straightforwardly from the types of the lenses that are used in its definition.

7.13 Lemma [Well-behavedness]:

$\forall D, E \subseteq \mathcal{T}$. with $D \cap E=\emptyset$ and $D \neq \emptyset$ and $E \neq \emptyset$.
inner_filter $D E \in\left[D^{1 . . \omega}\right] \&[E] \stackrel{\Omega}{\rightleftharpoons}\left[D^{1 . . \omega}\right]$
list_filter $D E \in[D] \&[E] \stackrel{\Omega}{\rightleftharpoons}[D]$
The totality proof for inner_filter, on the other hand, is somewhat challenging, involving detailed reasoning about the behavior of particular subterms under particular conditions. The proof uses Lemma 3.19, with sequences of sets of total types

$$
\begin{aligned}
\mathbb{T}_{0} & =\{(\emptyset, \emptyset)\} \\
\mathbb{T}_{i+1} & =\left\{\left(\left[D^{1 \ldots x}\right] \&\left[E^{0 . . y}\right],\left[D^{1 \ldots x}\right]\right) \mid x+y=i\right\} .
\end{aligned}
$$

The complete argument is given in electronic Appendix A.

7.14 Lemma [Totality]:

$$
\begin{aligned}
\forall D, & E \subseteq \mathcal{T} \text {. with } D \cap E=\emptyset \text { and } D \neq \emptyset \text { and } E \neq \emptyset . \\
& \text { inner_filter } D E \in\left[D^{1 . . \omega}\right] \&[E] \stackrel{\Omega}{\Longleftrightarrow}\left[D^{1 . . \omega}\right] \\
& \text { list_filter } D E \in[D] \&[E] \stackrel{\Omega}{\Longleftrightarrow}[D]
\end{aligned}
$$

8. EXTENDED EXAMPLE: A BOOKMARK LENS

In this section, we develop a larger and more realistic example of programming with our lens combinators. The example comes from a demo application of our data synchronization framework, Harmony, in which bookmark information from diverse browsers, including Internet Explorer, Mozilla, Safari, Camino, and OmniWeb, is synchronized by transforming each format from its concrete native representation into a common abstract form. We show here a slightly simplified form of the Mozilla lens, which handles the HTML-based bookmark format used by Netscape and its descendants.

The overall path taken by the bookmark data through the Harmony system can be pictured as follows.

We first use a generic HTML reader to transform the HTML bookmark file into an isomorphic concrete tree. This concrete tree is then transformed, using the get direction of the bookmark lens, into an abstract "generic bookmark tree." The abstract tree is synchronized with the abstract bookmark tree obtained from some other bookmark file, yielding a new abstract tree, which is transformed into a new concrete tree by passing it back through the putback direction of the bookmark

```
ALink \(_{1} \quad=\quad\) name \(\mapsto\) Val url \(\mapsto\) Val \(\}\)
ALink \(=\left\{\right.\) link \(\mapsto A\) Link \(\left._{1}\right\}\)
AFolder \(_{1}=\{\) name \(\mapsto\) Val contents \(\mapsto\) AContents \(\}\)
AFolder \(=\left\{\right.\) folder \(\mapsto\) AFolder \(\left._{1}\right\}\)
AContents \(=\) [AItem]
AItem \(=\) ALink \(\cup\) AFolder
```

Fig. 2. Abstract Bookmark Types
lens (supplying the original concrete tree as the second argument). Finally, the new concrete tree is written back out to the filesystem as an HTML file. We now discuss these transformations in detail.

Abstractly, the type of bookmark data is a name pointing to a value and a contents, which is a list of items. An item is either a link, with a name and a url, or a folder, which has the same type as bookmark data. Figure 2 formalizes these types.

Concretely, in HTML (see Figure 3), a bookmark item is represented by a <dt> element containing an <a> element whose href attribute gives the link's url and whose content defines the name. The <a> element also includes an add_date attribute, which we have chosen not to reflect in the abstract form because it is not supported by all browsers. A bookmark folder is represented by a <dd> element containing an <h3> header (giving the folder's name) followed by a <dl> list containing the sequence of items in the folder. The whole HTML bookmark file follows the standard <head>/<body> form, where the contents of the <body> have the format of a bookmark folder, without the enclosing <dd> tag. (HTML experts will note that the use of the <dl>, <dt>, and <dd> tags here is not actually legal HTML. This is unfortunate, but the conventions established by early versions of Netscape have become a de-facto standard.)

The generic HTML reader and writer know nothing about the specifics of the bookmark format; they simply transform between HTML syntax and trees in a mechanical way, mapping an HTML element named tag, with attributes attr1 to attrm and sub-elements subelt1 to subeltn,

```
<tag attr1="val1" ... attrm="valm">
    subelt1 ... subeltn
</tag>
```

into a tree of this form:

$$
\left\{\left\{\begin{array}{l}
\operatorname{tag} \mapsto\left\{\begin{array}{c}
\operatorname{attr} 1 \mapsto \text { val1 } \\
\vdots \\
\text { attrm } \mapsto \text { valm } \\
*\left[\begin{array}{c}
\text { subelt1 } \\
\vdots \\
\text { subeltn }
\end{array}\right]
\end{array}\right]
\end{array}\right]\right\}
$$

Note that the sub-elements are placed in a list under a distinguished child named *. This preserves their ordering from the original HTML file. (The ordering of sub-elements is sometimes important-e.g., in the present example, it is important

```
<html>
    <head> <title>Bookmarks</title> </head>
    <body>
        <h3>Bookmarks Folder</h3>
        <dl>
            <dt> <a href="www.google.com"
                add_date="1032458036">Google</a> </dt>
            <dd>
            <h3>Conferences Folder</h3>
            <dl>
                <dt> <a href="www.cs.luc.edu/icfp"
                        add_date="1032528670">ICFP</a> </dt>
            </dl>
        </dd>
    </dl>
    </body>
</html>
```

Fig. 3. Sample Bookmarks (HTML)

```
{html -> {* ->
    [{head -> {* -> [{title -> {* ->
            [{PCDATA -> Bookmarks}]}}]}}
    {body -> {* ->
        [{h3 -> {* -> [{PCDATA -> Bookmarks Folder}]}}
        {dl -> {* ->
            [{dt -> {* ->
            [{a -> {* -> [{PCDATA -> Google}]
                        add_date -> 1032458036
                            href -> www.google.com}}]}}
            {dd -> {* ->
                        [{h3 -> {* -> [{PCDATA ->
                            Conferences Folder}]}}
                        {dl -> {* ->
                        [{dt -> {* ->
                        [{a ->
                        {* -> [{PCDATA -> ICFP}]
                            add_date -> 1032528670
                            href -> www.cs.luc.edu/icfp
                        }}[}}{}}}{}}}}}]}}}}}
```

Fig. 4. Sample Bookmarks (concrete tree)

Val		$\{\mathcal{N}\}$
PCDATA	$=$	$\{$ PCDATA \mapsto Val $\}$
CLink	$=$	<dt> CLink ${ }_{1}:$: [] </dt>
$C L^{\text {ink }} 1$	$=$	<a add_date href> PCDATA:: []
CFolder		<dd> CContents </dd>
CContents	$=$	CContents 1 :: CContents ${ }_{2}$:: []
CContents ${ }_{1}$	=	<h3> PCDATA :: [] </h3>
CContents2	$=$	<dl> [CItem] </dl>
CItem	$=$	CLink \cup CFolder
CBookmarks	$=$	<html> CBookmarks 1 :: CBookmarks2 $2:$ [] </html>
CBookmarks $_{1}$	$=$	<head> (<title> PCDATA </title> :: []) </head>
CBookmarks2	$=$	<body> CContents </body>

Fig. 5. Concrete Bookmark Types

```
{name -> Bookmarks Folder
    contents ->
        [{link -> {name -> Google
                url -> www.google.com}}
        {folder ->
        {name -> Conferences Folder
            contents ->
                [{link ->
                    {name -> ICFP
                        url -> www.cs.luc.edu/icfp}}]}}]}
```

Fig. 6. Sample Bookmarks (abstract tree)
to maintain the ordering of the items within a bookmark folder. Since the HTML reader and writer are generic, they always record the ordering from the the original HTML in the tree, leaving it up to whatever lens is applied to the tree to throw away ordering information where it is not needed.) A leaf of the HTML document-i.e., a "parsed character data" element containing a text string str-is converted to a tree of the form \{PCDATA $->$ str\}. Passing the HTML bookmark file shown in Figure 3 through the generic reader yields the tree in Figure 4.

Figure 5 shows the type CBookmarks of concrete bookmark structures. For readability, the type relies on a notational shorthand that reflects the structure of the encoding of HTML as trees. We write <tag attr1....attrn> C </tag> for $\{\operatorname{tag} \mapsto\{$ attr1 \mapsto Val \ldots attrn $\mapsto V a l * \mapsto C\}\}$. Recall that Val is the set of all values (trees with a single childless child). For elements with no attributes, this degenerates to simply <tag> $</ \mathrm{tag}>=\{\operatorname{tag} \mapsto\{* \mapsto C\}\}$.

The transformation between this concrete tree and the abstract bookmark tree shown in Figure 6 is implemented by means of the collection of lenses shown in Figure 7. Most of the work of these lenses (in the get direction) involves stripping out various extraneous structure and then renaming certain branches to have the desired "field names." Conversely, the putback direction restores the original names and rebuilds the necessary structure.

To aid in checking well-behavedness, we annotate each lens with its source and target type, writing $\in C l \xlongequal{\Omega} A$. (This infix notation-where l is written between its source and target types, instead of the more conventional $l \in C \stackrel{\Omega}{\rightleftharpoons} A$-looks strange in-line, but it works well for multi-line displays such as Figure 7.) and annotate each composition with a suitable "cut type," writing $l ;: B k$ instead of just $l ; k$.

It is then straightforward to check, using the type annotations supplied, that bookmarks $\in C$ Bookmarks $\xlongequal{\Omega}$ AFolder $_{1}$. (We omit the proof of totality, since we have already seen more intricate totality arguments in Section 7).

In practice, composite lenses are developed incrementally, gradually massaging the trees into the correct shape. Figure 8 shows the process of developing the link lens by transforming the representation of the HTML under a <dt> element containing a link into the desired abstract form. At each level, tree branches are relabeled with rename, undesired structure is removed with prune, hoist, and/or hd, and then work is continued deeper in the tree via wmap.

The putback direction of the link lens restores original names and structure automatically, by composing the putback directions of the constituent lenses of link in turn. For example, Figure 9 shows an update to the abstract tree of the link in Figure 8. The concrete tree beneath the update shows the result of applying putback to the updated abstract tree. The putback direction of the hoist PCDATA lens, corresponding to moving from step viii to step vii in Figure 8, puts the updated string in the abstract tree back into a more concrete tree by replacing Search-Engine with $\{\mid$ PCDATA $->$ Search-Engine |\}. In the transition from step $v i$ to step v, the putback direction of prune add_date $\{\mid \$$ today $\mid\}$ utilizes the concrete tree to restore the value, add_date -> 1032458036, projected away in the abstract tree. If the concrete tree had been Ω-i.e., in the case of a new bookmark added in the new abstract tree - then the default argument $\{\mid \$$ today $\mid\}$ would have been used to fill in today's date. (Formally, the whole set of lenses is parameterized on the variable \$today, which ranges over names.)

The get direction of the folder lens separates out the folder name and its contents, stripping out undesired structure where necessary. Finally, we use wmap to iterate over the contents.

The item lens processes one element of a folder's contents; this element might be a link or another folder, so we want to either apply the link lens or the folder lens. Fortunately, we can distinguish them by whether they are contained within a <dd> element or a <dt> element; we use the wmap operator to wrap the call to the correct sublens. Finally, we rename dd to folder and dt to link.

The main lens is bookmarks, which (in the get direction) takes a whole concrete bookmark tree, strips off the boilerplate header information using a combination of hoist, hd, and tl, and then invokes folder to deal with the rest. The huge default tree supplied to the tl lens corresponds to the head tag of the HTML document, which is filtered away in the abstract bookmark format. This default tree would be used to recreate a well-formed head tag if it was missing in the original concrete tree.

```
link =
        hoist *;
    hd [];
    hoist a;
    rename * name;
    rename href url;
    prune add_date {$today};
    wmap {name -> (hd [];
    hoist PCDATA)}
folder =
    hoist *;
    xfork {*h} {name}
        (hoist *h;
        rename h3 name)
        (hoist *t;
            hd []; : {dl\mapsto{*\mapsto[CItem]}}
        rename dl contents)
    wmap {name -> (hoist *;
                hd [];
                hoist PCDATA)
            contents -> (hoist *;
        \in{*\mapsto\mp@subsup{Clink}{1}{:: [] }}
        : CLink
        CLink
        : {*\mapstoPCDATA:: [], add_date\mapstoVal,
        href}\mapstoVal
    : {name\mapstoPCDATA:: [], add_date\mapstoVal,
        href}\mapstoVal
    : {name\mapstoPCDATA:: [], add_date\mapstoVal,
        url\mapstoVal}
    : {name\mapstoPCDATA:: [], url\mapstoVal}
    : PCDATA
    \stackrel { \Omega } { \rightleftharpoons } \{ \text { name } \mapsto \text { Val, url } \mapsto \text { Val\} = ALink }
    \in{*\mapstoCContents}
    : CContents
            : {h3\mapsto{*\mapstoPCDATA:: []}}
            : CContents_:: []
            : {dl\mapsto{{*\mapsto[CItem]}}
    : {name\mapsto{*\mapstoPCDATA:: []},
        contents\mapsto{*\mapsto[CItem]}}
                    : PCDATA:: []
                    : PCDATA
                    : [CItem]
                    list_map item)}
                    \stackrel { \Omega } { \rightleftharpoons } \{ \text { name } \mapsto \text { Val,}
                        contents}\mapsto[\mathrm{ AItem ]} = AFolder }
item =
    G CItem
    wmap {dd -> folder, dt -> link };
    :{dd\mapstoA\mp@subsup{F}{0lder }{1}\mp@code{}}\cup{\textrm{dt}\mapstoA\mp@subsup{\mathrm{ Link }}{1}{}}
    rename_if_present dd folder;
    :{folder }\mapsto\mp@subsup{\mathrm{ AFolder }}{1}{}}\cup{\textrm{dt}\mapstoA\mp@subsup{L_Nink}{1}{}
    rename_if_present dt link
    : \Omega
bookmarks = \in CBookmarks
bookmarks = \in CBookmarks
    hoist html; : {*\mapstoCBookmarks 1 :: CBookmarks冒:: []}
    hoist *;
        : CBookmarks :: CBookmarks2 :: []
    tl{lhead\mapsto{|*\mapsto[{|title\mapsto{{*\mapsto
            [{|PCDATA \mapsto Bookmarks {}] } }]|}|;
        : CBookmarks2 :: []
    hd []; : CBookmarks_
    hoist body; : {*\mapstoCContents}
    folder
    : {*\mapstoCContents}
\Omega
```

Fig. 7. Bookmark lenses

9. LENSES FOR RELATIONAL DATA

We close our technical development by presenting a few additional lenses that we use in Harmony to deal with preparing relational data - trees (or portions of trees) consisting of "lists of records" -for synchronization. These lenses do not constitute a full treatment of view update for relational data, but may be regarded as a small step in that direction. (A later and more comprehensive proposal is reported

[^7]| Step | Lens expression | Resulting abstract tree (from 'get') |
| :---: | :---: | :---: |
| i : | id | ```{* -> [{a -> {* -> [{PCDATA -> Google}] add_date -> 1032458036 href -> www.google.com}}]}}``` |
| i : | hoist * | $\begin{aligned} \hline[\{\mathrm{a}-> & \{* ~-> \\ & \text { add_date }->1032458036 \\ & \text { href }->\text { www.google.com }\}\}] \end{aligned}$ |
| iii: | ```hoist *; hd []``` | $\begin{aligned} & \text { \{a -> }\{* ~->~[\{P C D A T A ~->~ G o o g l e\}] ~ \\ & \text { add_date -> 1032458036 } \\ &\text { href -> www. google.com\} }\} \end{aligned}$ |
| $i v:$ | ```hoist *; hd []; hoist a;``` | $\begin{aligned} & \text { \{* -> [\{PCDATA -> Google\}] } \\ & \text { add_date -> 1032458036 } \\ & \text { href -> www. google.com\} } \end{aligned}$ |
| v : | ```hoist *; hd []; hoist a; rename * name; rename href url``` | ```{name -> [{PCDATA -> Google}] add_date -> 1032458036 url -> www.google.com}``` |
| $v i$: | ```hoist *; hd []; hoist a; rename * name; rename href url; prune add_date {$today}``` | ```{name -> [{PCDATA -> Google}] url -> www.google.com}``` |
| vii: | ```hoist *; hd []; hoist a; rename * name; rename href url; prune add_date {$today}; wmap { name -> (hd {}) }``` | ```{name -> {PCDATA -> Google} url -> www.google.com}``` |
| viii: | ```hoist *; hd []; hoist a; rename * name; rename href url; prune add_date {$today}; wmap { name -> (hd {}; h``` | ```{name -> Google url -> www.google.com} ist PCDATA) }``` |

Fig. 8. Building up a link lens incrementally.

```
{link -> {name -> Google
```

 url -> www.google.com\}\}
 \{link -> \{name -> Search-Engine
url \rightarrow www.google.com\}\}
yields (after putback)...
\{dt -> \{* ->
[\{a -> \{* -> [\{PCDATA -> Search-Engine\}]
add_date -> 1032458036
href -> www.google.com\}\}]\}\}

Fig. 9. Update of abstract tree, and resulting concrete tree
in [Bohannon et al. 2006]). In particular, the join lens performs a transformation related to the outer join operation in database query languages.

Flatten

The most critical (and complex) of these lenses is flatten, which takes an ordered list of "keyed records" and flattens it into a bush, as in the following example:

$$
\begin{aligned}
& \text { flatten } \nearrow
\end{aligned}
$$

The importance of this transformation in the setting of the Harmony system is that it makes the "intended alignment" of the data structurally obvious. This frees Harmony's synchronization algorithm from needing to understand that, although the data is presented in an ordered fashion, order is actually not significant here. Synchronization simply proceeds child-wise-i.e., the record under Pat is synchronized with the corresponding record under Pat from the other replica, and similarly for Chris. If one of the replicas happens to place Chris before Pat in its concrete, ordered form, exactly the same thing happens.

The flatten lens handles concrete lists in which the same key appears more than once by placing all the records with the same key (in the same order as they appear in the concrete view) in the list under that key in the abstract view:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

In the putback direction, flatten distributes elements of each list from the abstract bush into the concrete list, maintaining their original concrete positions. If there are more abstract elements than concrete ones, the extras are simply appended at the end of the resulting concrete list in some arbitrary order, using the auxiliary function listify:

$$
\begin{aligned}
\operatorname{listify}(\})= & {[] } \\
\operatorname{listify}(t)= & \left\{k \mapsto t k_{1}\right\}:: \cdots::\left\{k \mapsto t k_{n}\right\}:: \operatorname{listify}\left(t \backslash_{k}\right) \\
& \text { where } k=\operatorname{any} y_{\operatorname{dom}(t)} \text { and } t(k)=\left[t k_{1}, \ldots, t k_{n}\right]
\end{aligned}
$$

In the type of flatten, we write $\operatorname{AList}_{K}(D)$ for the set of lists of "singleton views" of the form $\{\mathrm{k} \mapsto d\}$, where $k \in K$ is a key and $d \in D$ is the value of that key-i.e., $\operatorname{AList}_{K}(D)$ is the smallest set of trees satisfying $\operatorname{AList}_{K}(D)=$ []$\cup\left(\{\{\mathrm{k} \mapsto D\} \mid k \in K\}:: \operatorname{AList}_{K}(D)\right)$.

This definition can be simplified if we assume that all the k s in the concrete list are pairwise different-i.e., that they are truly keys. In this case, the abstract view need not be a bush of lists: each k can simply point directly to its associated subtree from the concrete list. In practice, this assumption is often reasonable: the concrete view is a (linearized) database and the k s are taken from a key field in each record. However, the type of this "disjoint flatten" becomes more complicated to write down, since it must express the constraint that, in the concrete list, each k occurs at most once. Since we eventually intend to implement a mechanical typechecker for our combinators, we prefer to use the more complex definition with the more elementary type.

An obvious question is whether either variant of flatten can be expressed in terms of more primitive combinators plus recursion, as we did for the list mapping,
reversing, and filtering derived forms in Section 7. We feel that this ought to be possible, but we have not yet succeeded in doing it.

One final point about flatten is that it does not obey PutPut. Let

$$
a_{1}=\{\mathrm{a} \mapsto[\{ \}], \mathrm{b} \mapsto[\{ \}]\} \quad a_{2}=\{\mathrm{b} \mapsto[\{ \}]\} \quad c=[\mathrm{a}, \mathrm{~b}] .
$$

If flatten were very well behaved then we would have

$$
\text { flatten } \searrow\left(a_{1}, \text { flatten } \searrow\left(a_{2}, c\right)\right)=\text { flatten } \searrow\left(a_{1}, c\right)
$$

However, the left hand side of the equality is [b, a] but the right hand side is [a, b].

Pivot

The lens pivot n rearranges the structure at the top of a tree, transforming $\left\{\begin{array}{l}n \mapsto k \\ t\end{array}\right\}$ to $\{k \mapsto t\}$. Intuitively, the value k (i.e., $\{k \mapsto\}\}$) under n represents a key k for the rest of the tree t. The get function of pivot returns a tree where k points directly to t. The putback function performs the reverse transformation, ignoring the old concrete tree.

We use pivot heavily in Harmony instances where the data being synchronized is relational (sets of records) but its concrete format is ordered (e.g., XML). We first apply pivot within each record to bring the key field to the outside. Then we apply flatten to smash the list of keyed records into a bush indexed by the keys. As an example, consider the following transformation on a concrete piece of data where $l=$ list_map (pivot Name):
which, as we saw above, can then be flattened into:

$$
\left\{\begin{array}{l}
\text { Pat } \mapsto\left[\begin{array}{l}
\left\{\begin{array}{l}
\text { Phone } \mapsto \text { 333-4444 } \\
\text { URL } \mapsto \text { http: //pat.com }
\end{array}\right\} \\
\left\{\begin{array}{l}
\text { Phone } \mapsto 123-4321 \\
\text { URL } \mapsto \text { http: //p2.com }
\end{array}\right\}
\end{array}\right] \\
\text { Chris } \mapsto\left[\left\{\begin{array}{l}
\text { Phone } \mapsto 888 \text {-9999 } \\
\text { URL } \mapsto \text { http://x.org }
\end{array}\right\}\right]
\end{array}\right\}
$$

In the type of pivot, we extend our conventions about values (i.e., the fact that we write k instead of $\{k \mapsto\}\})$ to types. If $K \subseteq \mathcal{N}$ is a set of names, then $\{n \mapsto K\}$ means $\{\{n \mapsto k\} \mid k \in K\}$-i.e., $\{\{n \mapsto\{\mid k \mapsto\{ \}\}\}\} \mid k \in K\}$.

$$
\begin{gathered}
(\text { pivot } n) \nearrow c=\{k \mapsto t\} \text { if } c=\left\{\begin{array}{l}
n \mapsto k \\
t
\end{array}\right\} \\
(\text { pivot } n) \searrow(a, c)=\left\{\begin{array}{l}
n \mapsto k \\
t
\end{array}\right\} \text { if } a=\{k \mapsto t\} \\
\begin{array}{l}
\forall n \in \mathcal{N} . \forall K \subseteq \mathcal{N} . \forall C \subseteq\left(\mathcal{T} \backslash_{n}\right) . \\
\text { pivot } n \in(\{n \mapsto K\} \cdot C) \Longleftrightarrow\{\{\mid k \mapsto C\} \mid k \in K\}
\end{array} \\
\hline
\end{gathered}
$$

Join
Our final lens combinator, based on an idea by Daniel Spoonhower [2004], is inspired by the full outer join operator from databases. For example, applying the get component of $l=$ (join addr phone) to a tree containing a collection of addresses and a collection of phone numbers (both keyed by names) yields a tree where the address and phone information is collected under each name.

Note that no information is lost in this transformation: names that are missing from either the addr or phone collection are mapped to views with just a phone or addr child. In the putback direction, join performs the reverse transformation, splitting the addr and phone information associated with each name into separate collections. (The transformation is bijective - since no information is lost by get, the putback function can ignore its concrete argument.)

$$
\begin{aligned}
& \text { (join } m n) \nearrow c=\left\{k \mapsto\left\{\begin{array}{l}
m \mapsto c(m)(k) \\
n \mapsto c(n)(k)
\end{array}\right\}|k \in \operatorname{dom}(c(m)) \cup \operatorname{dom}(c(n))|\right\} \\
& (\text { join } m n) \searrow(a, c)=\left\{\begin{array}{l}
m \mapsto\{k \mapsto a(k)(m) \mid k \in \operatorname{dom}(a)\} \\
n \mapsto\{k \mapsto a(k)(n) \mid k \in \operatorname{dom}(a)\}
\end{array}\right\} \\
& \forall K \subseteq \mathcal{N} . \forall T \subseteq \mathcal{T} . \\
& \text { join } \left.\left.\left.\left.m \quad n \in\left\{\begin{array}{l}
m \mapsto\{K \stackrel{?}{\mapsto} T \\
n \mapsto\{
\end{array}\right\} \right\rvert\,\right\} \stackrel{?}{\mapsto} T\right\} \mid\right\} \Longleftrightarrow\left\{\left.K \stackrel{?}{\mapsto}\left\{\left.\begin{array}{l}
m \mapsto \\
n \stackrel{?}{\mapsto} T
\end{array} \right\rvert\,\right\} \cup\left\{\left.\begin{array}{l}
m \stackrel{?}{\mapsto} T \\
n \mapsto T
\end{array} \right\rvert\,\right\} \right\rvert\,\right\}
\end{aligned}
$$

10. RELATED WORK

Our lens combinators evolved in the setting of the Harmony data synchronizer. The overall architecture of Harmony and the role of lenses in building synchronizers for various forms of data are described elsewhere [Foster et al. 2006; Pierce et al. 2003], along with a detailed discussion of related work on synchronization.

Our foundational structures-lenses and their laws - are not new: closely related structures have been studied for decades in the database community. However, our treatment of these structures is arguably simpler (transforming states rather than "update functions") and more refined (treating well-behavedness as a form of
type assertion). Our formulation is also novel in addressing the issues of totality, offering programmers a static guarantee that lenses cannot fail at run time, and of continuity, supporting a rich variety of surface language structures including definition by recursion.

The idea of defining programming languages for constructing bi-directional transformations of various sorts has also been explored previously in diverse communities. We appear to be the first to take totality as a primary goal (while connecting the language with a formal semantic foundation, choosing primitives that can be combined into composite lenses whose totality is guaranteed by construction), and the first to emphasize types-i.e., compositional reasoning about well-behavedness and totality - as an organizing design principle.

Foundations of View Update

The foundations of view update translation were studied intensively by database researchers in the late ' 70 s and ' 80 s . This thread of work is closely related to our semantics of lenses in Section 3. We discuss here the main similarities and differences between our work and these classical approaches to view update - in particular Dayal and Bernstein's notion [1982] of "correct update translation," Bancilhon and Spyratos's [1981] notion of "update translation under a constant complement," Gottlob, Paolini, and Zicari's "dynamic views" [1988], and the basic view update and "relational triggers" mechanisms offered by commercial database systems such as Oracle [Fogel and Lane 2005; Lorentz 2005]

The view update problem concerns translating updates on a view into "reasonable" updates on the underlying database. It is helpful to structure the discussion by breaking this broad problem statement down into more specific questions. First, how is a "reasonable" translation of an update defined? Second, what should we do about the possibility that, for some update, there may be no reasonable way of translating its effect to the underlying database? And third, how do we deal with the possibility that there are many reasonable translations from which we must choose? We consider these questions in order.

One can imagine many possible ways of assigning a precise meaning to "reasonable update translation," but in fact there is a remarkable degree of agreement in the literature, with most approaches adopting one of two basic positions. The stricter of these is enunciated in Bancilhon and Spyratos's [1981] notion of complement of a view, which must include at least all information missing from the view. When a complement is fixed, there exists at most one update of the database that reflects a given update on the view while leaving the complement unmodified-i.e., that "translates updates under a constant complement." The constant complement approach has influenced numerous later works in the area, including recent papers by Lechtenbörger [2003] and Hegner [2004].

The other, more permissive, definition of "reasonable" is elegantly formulated by Gottlob, Paolini, and Zicari, who call it "dynamic views" [1988]. They present a general framework and identify two special cases, one being formally equivalent to Bancilhon and Spyratos's constant complement translators and the other-which they advocate on pragmatic grounds-being their own dynamic views.

Our notion of lenses adopts the same, more permissive, attitude towards reasonable behavior of update translation. Indeed, modulo some technical refinements, we

[^8]have sketched that the correspondence is tight: the set of all well-behaved lenses is isomorphic to the set of dynamic views in the sense of Gottlob, Paolini, and Zicari. Moreover, the set of very well-behaved lenses is isomorphic to the set of translators under constant complement in the sense of Bancilhon and Spyratos. ${ }^{9}$

Dayal and Bernstein's [1982] seminal theory of "correct update translation" also adopts the more permissive position on "reasonableness." Their notion of "exactly performing an update" corresponds, intuitively, to our PutGet law.

The pragmatic tradeoffs between these two perspectives on reasonable update translations are discussed by Hegner [1990; 2004], who introduces the term closed view for the stricter constant complement approach and open view for the looser approach adopted by dynamic views and in the present work. Hegner himself works in a closed-world framework, but notes that both choices may have pragmatic advantages in different situations, open-world being useful when the users are aware that they are actually using a view as a convenient way to edit an underlying database, while closed-world is preferable when users should be isolated from the existence of the underlying database, even at the cost of offering them a more restricted set of possible updates.
Hegner [2004] also formalizes an additional condition on reasonableness (which has also been noted by others - e.g., [Dayal and Bernstein 1982]): monotonicity of update translations, in the sense that an update that only adds records from the view should be translated just into additions to the database, and that an update that adds more records to the view should be translated to a larger update to the database (and similarly for deletions).

Commercial databases such as Oracle [Fogel and Lane 2005; Lorentz 2005], SQL Server [Microsoft 2005], and DB2 [International Business Machines Corporation 2004] typically provide two quite different mechanisms for updating through views. First, some very simple views - defined using select, project, and a very restricted form of join (where the key attributes in one relation are a subset of those in the other) - are considered inherently updatable. For these, the notion of reasonableness is essentially the constant complement position. Alternatively, programmers can support updates to arbitrary views by adding relational triggers that are invoked

[^9]whenever an update is attempted on the view and that can execute arbitrary code to update the underlying database. In this case, the notion of reasonableness is left entirely to the programmer.

The second question posed at the beginning of the section was how to deal with the possibility that there are no reasonable translations for some update. The simplest response is just to let the translation of an update fail, if it sees that its effect is going to be unreasonable; this is Dayal and Bernstein's approach, for example. Its advantage is that we can determine reasonableness on a case-by-case basis, allowing translations that usually give reasonable results but that might fail under rare conditions. The disadvantage is that we lose the ability to perform updates to the view offline - we need the concrete database in order to tell whether an update is going to be allowed. Another possibility is to restrict the set of operations to just the ones that can be guaranteed to correspond to reasonable translations; this is the position taken by most papers in the area. A different approach - the one we have taken in this work - is to restrict the view schema so that arbitrary (schema-respecting) updates are guaranteed to make sense.

The third question posed above was how to deal with the possibility that there may be multiple reasonable translations for a given update.

One attractive idea is to somehow restrict the set of reasonable translations so that this possibility does not arise - i.e., so that every translatable update has a unique translation. For example, under the constant complement approach, for a particular choice of complement, there will be at most one translation. Hegner's additional condition of monotonicity [2004] ensures that (at least for updates consisting of only inserts or only deletes), the translation of an update is unique, independent of the choice of complement.

Another possibility is to place an ordering on possible translations of a given update and choose one that is minimal in this ordering. This idea plays a central role, for example, in Johnson, Rosebrugh, and Dampney's account of view update in the Sketch Data Model [2001]. Buneman, Khanna, and Tan [2002] have established a variety of intractability results for the problem of inferring minimal view updates in the relational setting for query languages that include both join and either project or union.

The key idea in the present work is to allow the programmer to describe the update policy at the same time as the view definition, by enriching the relational primitives with enough annotations to select among a variety of reasonable update policies.

In the literature on programming languages, laws similar to our lens laws (but somewhat simpler, dealing only with total get and putback functions) appear in Oles' category of "state shapes" [Oles 1985] and in Hofmann and Pierce's work on "positive subtyping" [1995].

Languages for Bi-Directional Transformations

At the level of syntax, different forms of bi-directional programming have been explored across a surprisingly diverse range of communities, including programming languages, databases, program transformation, constraint-based user interfaces, and quantum computing. One useful way of classifying these languages is by
the "shape" of the semantic space in which their transformations live. We identify three major classes:
-Bi-directional languages, including ours, form lenses by pairing a get function of type $C \rightarrow A$ with a putback function of type $A \times C \rightarrow C$. In general, the get function can project away some information from the concrete view, which must then be restored by the putback function.
-In bijective languages, the putback function has the simpler type $A \rightarrow C$, being given no concrete argument to refer to. To avoid loss of information, the get and putback functions must form a (perhaps partial) bijection between C and A.
-Reversible languages go a step further, demanding only that the work performed by any function to produce a given output can be undone by applying the function "in reverse" working backwards from this output to produce the original input. Here, there is no separate putback function at all: instead, the get function itself is constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most similar to ours is Meertens's formal treatment of constraint maintainers for constraint-based user interfaces [1998]. Meertens's semantic setting is actually even more general: he takes get and putback to be relations, not just functions, and his constraint maintainers are symmetric: get relates pairs from $C \times A$ to elements of A and putback relates pairs in $A \times C$ to elements of C; the idea is that a constraint maintainer forms a connection between two graphical objects on the screen so that, whenever one of the objects is changed by the user, the change can be propagated by the maintainer to the other object such that some desired relationship between the objects is always maintained. Taking the special case where the get relation is actually a function (which is important for Meertens because this is the case where composition [in the sense of our ; combinator] is guaranteed to preserve well-behavedness), yields essentially our very well behaved lenses. Meertens proposes a variety of combinators for building constraint maintainers, most of which have analogs among our lenses, but does not directly deal with definition by recursion; also, some of his combinators do not support compositional reasoning about well-behavedness. He considers constraint maintainers for structured data such as lists, as we do for trees, but here adopts a rather different point of view from ours, focusing on constraint maintainers that work with structures not directly but in terms of the "edit scripts" that might have produced them. In the terminology of synchronization, he switches from a state-based to an operation-based treatment at this point.

Recent work of Mu, Hu, and Takeichi on "injective languages" for view-updatebased structure editors [2004a] adopts a similar perspective. Although their transformations obey our GETPUT law, their notion of well-behaved transformations is informed by different goals than ours, leading to a weaker form of the PutGet law. A primary concern is using the view-to-view transformations to simultaneously restore invariants within the source view as well as update the concrete view. For example, an abstract view may maintain two lists where the name field of each element in one list must match the name field in the corresponding element in the other list. If an element is added to the first list, then not only must the change be propagated to the concrete view, it must also add a new element to the second list in the abstract view. It is easy to see that PutGet cannot hold if the abstract
view, itself, is - in this sense - modified by the putback. Similarly, they assume that edits to the abstract view mark all modified fields as "updated." These marks are removed when the putback lens computes the modifications to the concrete viewanother change to the abstract view that must violate PutGet. Consequently, to support invariant preservation within the abstract view, and to support edit lists, their transformations only obey a much weaker variant of PutGet (described above in Section 5).
Another paper by Hu, Mu, and Takeichi [2004] applies a bi-directional programming language quite closely related to ours to the design of "programmable editors" for structured documents. As in [Mu et al. 2004a], they support preservation of local invariants in the putback direction. Here, instead of annotating the abstract view with modification marks, they assume that a putback or a get occurs after every modification to either view. They use this "only one update" assumption to choose the correct inverse for the lens that copied data in the get direction-because only one branch can have been modified at any given time. Consequently, they can putback the data from the modified branch and overwrite the unmodified branch. Here, too, the notion of well-behavedness needs to be weakened, as described in Section 5.
The TRIP2 system (e.g., [Matsuoka et al. 1992]) uses bidirectional transformations specified as collections of Prolog rules as a means of implementing directmanipulation interfaces for application data structures. The get and putback components of these mappings are written separately by the user.

Languages for Bijective Transformations

An active thread of work in the program transformation community concerns program inversion and inverse computation - see, for example, Abramov and Glück [2000; 2002] and many other papers cited there. Program inversion [Dijkstra 1979] derives the inverse program from the forward program. Inverse computation [McCarthy 1956] computes a possible input of a program from a particular output. One approach to inverse computation is to design languages that produce easily invertible expressions - for example, languages that can only express injective functions, where every program is trivially invertible.
In the database community, Abiteboul, Cluet, and Milo [1997] defined a declarative language of correspondences between parts of trees in a data forest. In turn, these correspondence rules can be used to translate one tree format into another through non-deterministic Prolog-like computation. This process assumes an isomorphism between the two data formats. The same authors [1998] later defined a system for bi-directional transformations based around the concept of structuring schemas (parse grammars annotated with semantic information). Thus their get functions involved parsing, whereas their putbacks consisted of unparsing. Again, to avoid ambiguous abstract updates, they restricted themselves to lossless grammars that define an isomorphism between concrete and abstract views.

Ohori and Tajima [1994] developed a statically-typed polymorphic record calculus for defining views on object-oriented databases. They specifically restricted which fields of a view are updatable, allowing only those with a ground (simple) type to be updated, whereas our lenses can accommodate structural updates as well.
A related idea from the functional programming community, called views [Wadler

1987], extends algebraic pattern matching to abstract data types using programmersupplied in and out operators.

Languages for Reversible Transformations

Our work is the first of which we are aware in which totality and compositional reasoning about totality are taken as primary design goals. Nevertheless, in all of the languages discussed above there is an expectation that programmers will want their transformations to be "total enough"-i.e., that the sets of inputs for which the get and putback functions are defined should be large enough for some given purpose. In particular, we expect that putback functions should accept a suitably large set of abstract inputs for each given concrete input, since the whole point of these languages is to allow editing through a view. A quite different class of languages have been designed to support reversible computation, in which the putback functions are only ever applied to the results of the corresponding get functions. While the goals of these languages are quite different from ours-they have nothing to do with view update - there are intriguing similarities in the basic approach.

Landauer [1961] observed that non-injective functions were logically irreversible, and that this irreversibility requires the generation and dissipation of some heat per machine cycle. Bennet [1973] demonstrated that this irreversibility was not inevitable by constructing a reversible Turing machine, showing that thermodynamically reversible computers were plausible. Baker [1992] argued that irreversible primitives were only part of the problem; irreversibility at the "highest levels" of computer usage cause the most difficulty due to information loss. Consequently, he advocated the design of programs that "conserve information." Because deciding reversibility of large programs is unsolvable, he proposed designing languages that guaranteed that all well-formed programs are reversible, i.e., designing languages whose primitives were reversible and whose combinators preserved reversibility. A considerable body of work has developed around these ideas (e.g. [Mu et al. 2004b]).

Update Translation for Tree Views

There have been many proposals for query languages for trees (e.g., XQuery [XQuery 2005] and its forerunners, UnQL, StruQL, and Lorel), but these either do not consider the view update problem at all or else handle update only in situations where the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [2001], and Braganholo, Davidson, and Heuser [2003] studied the problem of updating relational databases "presented as XML." Their solution requires a 1:1 mapping between XML view elements and objects in the database, to make updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [2001] described a mechanism for translating updates on XML structures that are stored in an underlying relational database. In this setting there is again an isomorphism between the concrete relational database and the abstract XML view, so updates are unambiguous-rather, the problem is choosing the most efficient way of translating a given XML update into a sequence of relational operations.

The view update problem has also been studied in the context of object-oriented databases. School, Laasch, and Tresch [1991] restrict the notion of views to queries
that preserve object identity. The view update problem is greatly simplified in this setting, as the objects contained in the view are the objects of the database, and an update on the view is directly an update on objects of the database.

Update Translation for Relational Views

Research on view update translation in the database literature has tended to focus on taking an existing language for defining get functions (e.g., relational algebra) and then considering how to infer corresponding putback functions, either automatically or with some user assistance. By contrast, we have designed a new language in which the definitions of get and putback go hand-in-hand. Our approach also goes beyond classical work in the relational setting by directly transforming and updating tree-structured data, rather than flat relations. (Of course, trees can be encoded as relations, but it is not clear how our tree-manipulation primitives could be expressed using the recursion-free relational languages considered in previous work in this area.)

Recent work by Bohannon, Pierce, and Vaughan [2006] extends the framework presented here to obtain lenses that operate natively on relational data. Their lenses are based on the primitives of classical relational algebra, with additional annotations that specify the desired "update policy" in the putback direction. They develop a type system, using record predicates and functional dependencies, to aid compositional reasoning about well-behavedness. The chapter on view update in Date's textbook [Date 2003] articulates a similar perspective on translating relational updates.

Masunaga [1984] described an automated algorithm for translating updates on views defined by relational algebra. The core idea was to annotate where the "semantic ambiguities" arise, indicating they must be resolved either with knowledge of underlying database semantic constraints or by interactions with the user.

Keller [1985] catalogued all possible strategies for handling updates to a select-project-join view and showed that these are exactly the set of translations that satisfy a small set of intuitive criteria. These criteria are:
(1) No database side effects: only update tuples in the underlying database that appear somehow in the view.
(2) Only one-step changes: each underlying tuple is updated at most once.
(3) No unnecessary changes: there is no operationally equivalent translation that performs a proper subset of the translated actions.
(4) Replacements cannot be simplified (e.g., to avoid changing the key, or to avoid changing as many attributes).
(5) No delete-insert pairs: for any relation, you have deletions or insertions, but not both (use replacements instead).

These criteria apply to update translations on relational databases, whereas our state-based approach means only criteria (1), (3), and (4) might apply to us. Keller later [1986] proposed allowing users to choose an update translator at view definition time by engaging in an interactive dialog with the system and answering questions about potential sources of ambiguity in update translation. Building on this foundation, Barsalou, Siambela, Keller, and Wiederhold [1991] described a
scheme for interactively constructing update translators for object-based views of relational databases.
Medeiros and Tompa [1985] presented a design tool for exploring the effects of choosing a view update policy. This tool shows the update translation for update requests supplied by the user; by considering all possible valid concrete states, the tool predicts whether the desired update would in fact be reflected back into the view after applying the translated update to the concrete database. Miller et al. [2001] describe Clio, a system for managing heterogeneous transformation and integration. Clio provides a tool for visualizing two schemas, specifying correspondences between fields, defining a mapping between the schemas, and viewing sample query results. They only consider the get direction of our lenses, but their system is somewhat mapping-agnostic, so it might eventually be possible to use a framework like Clio as a user interface supporting incremental lens programming like that in Figure 8.

Atzeni and Torlone [1997; 1996] described a tool for translating views and observed that if one can translate any concrete view to and from a meta-model (shared abstract view), one then gets bi-directional transformations between any pair of concrete views. They limited themselves to mappings where the concrete and abstract views are isomorphic.
Complexity bounds have also been studied for various versions of the view update inference problem. In one of the earliest, Cosmadakis and Papadimitriou [Cosmadakis 1983; Cosmadakis and Papadimitriou 1984] considered the view update problem for a single relation, where the view is a projection of the underlying relation, and showed that there are polynomial time algorithms for determining whether insertions, deletions, and tuple replacements to a projection view are translatable into concrete updates. More recently, Buneman, Khanna, and Tan [2002] established a variety of intractability results for the problem of inferring "minimal" view updates in the relational setting for query languages that include both join and either project or union.
The designers of the RIGEL language [Rowe and Schoens 1979] argued that programmers should specify the translations of abstract updates. However, they did not provide a way to ensure consistency between the get and putback directions of their translations.
Another problem that is sometimes mentioned in connection with view update translation is that of incremental view maintenance (e.g., [Abiteboul et al. 1998])efficiently recalculating an abstract view after a small update to the underlying concrete view. Although the phrase "view update problem" is sometimes, confusingly, used for work in this domain, there is little technical connection with the problem of translating view updates to updates on an underlying concrete structure.

11. CONCLUSIONS AND ONGOING WORK

We have worked to design a collection of combinators that fit together in a sensible way and that are easy to program with and reason about. Starting with lens laws that define "reasonable behavior," adding type annotations, and proving that each of our lenses is total, has imposed strong constraints on our design of new lenses constraints that, paradoxically, make the design process easier. In the early stages of the Harmony project, working in an under-constrained design space, we found

Fig. 10. Web demo of Safari Bookmark lens
it extremely difficult to converge on a useful set of primitive lenses. Later, when we understood how to impose the framework of type declarations and the demand for compositional reasoning, we experienced a huge increase in manageability. The types helped not just in finding programming errors in derived lenses, but in exposing design mistakes in the primitives at an early stage.

Our interest in bi-directional tree transformations arose in the context of the Harmony data synchronization framework. Besides the bookmark synchronizer described in Section 8, we have developed prototype synchronizers for calendars, address books, and structured text, as well as a growing library of lens programs. Building implementations continues to provide valuable stress-testing for both our combinators and their formal foundations. It also gives us confidence that our lenses are practically useful.

The source code for each of these prototypes, along with our lens compiler and synchronization engine, can be found on the Harmony web page [Pierce et al. 2006]. We have also made the system available as an online web demo (a screenshot from the Safari component of our bookmarks portion of this demo is shown in Figure 10).

Static Analysis

Naturally, the progress we have made on lens combinators raises a host of further challenges. The most urgent of these is automated typechecking. At present, it is the lens programmers' responsibility to check the well-behavedness of the lenses that they write. Our compiler has the ability to perform simple run-time checking and some debugging using probe points and to track stack frames. These simple dynamic techniques have proven helpful in developing and debugging small-to-medium sized lens programs, but we would like to be able to reason statically that a given program is type correct. Fortunately, the types of the primitive combinators have been designed so that these checks are both local and essentially mechanical. The obvious next step is to reformulate the type declarations as a type algebra and find a mechanical procedure for statically checking (or, more ambitiously, inferring) types.

In the semantic framework of lens types we have developed, the key properties tracked by the types are well-behavedness and totality. However, there are other properties of lenses that one might want to track in a type system including very well behavedness, obliviousness, adherence to the conventions about Ω, etc. Moreover, there is a natural subsumption relation between these different lens types: e.g., every oblivious lens is very well behaved. Once basic mechanized type checking for lenses is in place, the natural next step is to stratify the type system to facilitate reasoning about these more refined properties of lenses.

A number of other interesting questions are related to static analysis of lenses. For instance, can we characterize the complexity of programs built from these combinators? Is there an algebraic theory of lens combinators that would underpin optimization of lens expressions in the same way that the relational algebra and its algebraic theory are used to optimize relational database queries? (For example, the combinators we have described here have the property that map $l_{1} ; \operatorname{map} l_{2}=$ $\operatorname{map}\left(l_{1} ; l_{2}\right)$ for all l_{1} and l_{2}, but the latter should run substantially faster.)

Optimization

This algebraic theory will play a crucial role in any serious effort to compile lens programs efficiently. Our current prototype performs a straightforward translation from a concrete syntax similar to the one used in this paper to a combinator library written in OCaml. This is fast enough for experimenting with lens programming and for small demos (our calendar lenses can process a few thousands of appointments in under a minute), but we would like to apply the Harmony system to applications such as synchronization of biological databases that will require much higher throughput.

Additional Combinators

Another area for further investigation is the design of additional combinators. While we have found the ones we have described here to be expressive enough to code a large number of examples-both intricate structural manipulations such as the list transformations in Section 7 and more prosaic application transformations such as the ones needed by the bookmark synchronizer in Section 8 - there are some areas where we would like more general forms of the lenses we have (e.g., a more flexible form of xfork, where the splitting and recombining of trees is not based on top-level names, but involves deeper structure), lenses expressing more global transforma-
tions on trees (including analogs of database operations such as join), or lenses addressing completely different sorts of transformations (e.g., none of our combinators do any significant processing on edge labels, which might include string processing, arithmetic, etc.). Higher-level combinators embodying more global transformations on trees - perhaps modeled on a familiar tree transformation notation such as XSLT-are another interesting possibility.

Finally, we would also like to investigate recursion combinators that are less powerful than fix, but that come equipped with simpler principles for reasoning about totality. We already have one such combinator: map iterates over the width of the tree. However, we think it should be possible to go further; e.g., one could define lenses by structural recursion on trees.

Expressiveness

More generally, what are the limits of bi-directional programming? How expressive are the combinators we have defined here? Do they cover any known or succinctly characterizable classes of computations (in the sense that the set of get parts of the total lenses built from these combinators coincide with this class)? We have put considerable energy into these questions, but at the moment we can only report that they are challenging! One reason for this is that questions about expressiveness tend to have trivial answers when phrased semantically. For example, it is not hard to show that any surjective get function can be equipped with a putback functionindeed, typically many - to form a total lens. Indeed, if the concrete domain C is recursively enumerable, then this putback function is even computable. The real problems are thus syntactic - how to conveniently pick out a putback function that does what is wanted for a given situation.

Recently, we have been exploring bidirectional transformations expressed as word and tree transducers.

Lens Inference

In restricted cases, it may be possible to build lenses in simpler ways than by explicit programming - e.g., by generating them automatically from schemas for concrete and abstract views, or by inference from a set of pairs of inputs and desired outputs ("programming by example"). Such a facility might be used to do part of the work for a programmer wanting to add synchronization support for a new application (where the abstract schema is already known, for example), leaving just a few spots to fill in.

Acknowledgements

The Harmony project was begun in collaboration with Zhe Yang; Zhe contributed numerous insights whose generic material can be found (in much-recombined form) in this paper. Owen Gunden,, Malo Denielou, and Stéphane Lescuyer, have also collaborated with us on many aspects of the Harmony design and implementation; in particular, Malo's compiler and programming environment for the combinators described in this paper have contributed enormously. Trevor Jim provided the initial push to start the project by observing that the next step beyond the Unison file synchronizer (of which Trevor was a co-designer) would be synchronizing XML. Conversations with Martin Hofmann, Zack Ives, Nitin Khandelwal, Sanjeev

Khanna, Keshav Kunal, William Lovas, Kate Moore, Cyrus Najmabadi, Penny Anderson, and Steve Zdancewic helped us sharpen our ideas. Serge Abiteboul, Zack Ives, Dan Suciu, and Phil Wadler pointed us to related work. We would also like to thank Karthik Bhargavan, Vanessa Braganholo, Peter Buneman, Malo Denielou, Owen Gunden, Michael Hicks, Zack Ives, Trevor Jim, Kate Moore, Norman Ramsey, Wang-Chiew Tan, Stephen Tse, Zhe Yang, and several anonymous referees for helpful commentson earlier drafts of this paper.

The Harmony project is supported by the National Science Foundation under grant ITR-0113226, Principles and Practice of Synchronization. Nathan Foster is also supported by an NSF Graduate Research Fellowship.

REFERENCES

Abiteboul, S., Cluet, S., And Milo, T. 1997. Correspondence and translation for heterogeneous data. In International Conference on Database Theory (ICDT), Delphi, Greece.
Abiteboul, S., Cluet, S., And Milo, T. 1998. A logical view of structure files. VLDB Journal 7, 2, 96-114.
Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., and Wiener, J. L. 1998. Incremental maintenance for materialized views over semistructured data. In Proc. 24th Int. Conf. Very Large Data Bases (VLDB).
Abramov, S. M. and Glück, R. 2000. The universal resolving algorithm: Inverse computation in a functional language. In Mathematics of Program Construction, R. Backhouse and J. N. Oliveira, Eds. Vol. 1837. Springer-Verlag, 187-212.
Abramov, S. M. and Glück, R. 2002. Principles of inverse computation and the universal resolving algorithm. In The Essence of Computation: Complexity, Analysis, Transformation, T. Mogensen, D. Schmidt, and I. H. Sudborough, Eds. Lecture Notes in Computer Science, vol. 2566. Springer-Verlag, 269-295.

Atzeni, P. and Torlone, R. 1996. Management of multiple models in an extensible database design tool. In Proceedings of EDBT'96, LNCS 105%.
Atzeni, P. and Torlone, R. 1997. MDM: a multiple-data model tool for the management of heterogeneous database schemes. In Proceedings of ACM SIGMOD, Exhibition Section. 528531.

BAKER, H. G. 1992. NREVERSAL of fortune - the thermodynamics of garbage collection. In Proc. Int'l Workshop on Memory Management. St. Malo, France. Springer LNCS 637, 1992.
Bancilhon, F. and Spyratos, N. 1981. Update semantics of relational views. ACM Transactions on Database Systems 6, 4 (Dec.), 557-575.
Barsalou, T., Siambela, N., Keller, A. M., and Wiederhold, G. 1991. Updating relational databases through object-based views. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Denver, Colorado. 248-257.
Bennet, C. H. 1973. Logical reversibility of computation. IBM Journal of Research and Development 17, 6, 525-532.
Bohannon, A., Vaughan, J. A., and Pierce, B. C. 2006. Relational lenses: A language for updateable views. In Principles of Database Systems ($P O D S$). Extended version available as University of Pennsylvania technical report MS-CIS-05-27.
Braganholo, V., Davidson, S., and Heuser, C. 2003. On the updatability of XML views over relational databases. In $W e b D B 2003$.
Buneman, P., Khanna, S., and Tan, W.-C. 2002. On propagation of deletions and annotations through views. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Madison, Wisconsin. 150-158.
Cosmadakis, S. S. 1983. Translating updates of relational data base views. M.S. thesis, Massachusetts Institute of Technology. MIT-LCS-TR-284.
Cosmadakis, S. S. and Papadimitriou, C. H. 1984. Updates of relational views. Journal of the ACM 31, 4, 742-760.

Date, C. J. 2003. An Introduction to Database Systems (Eighth Edition). Addison Wesley.
Dayal, U. and Bernstein, P. A. 1982. On the correct translation of update operations on relational views. TODS 7, 3 (September), 381-416.
de Paula Braganholo, V., Heuser, C. A., and Vittori, C. R. M. 2001. Updating relational databases through XML views. In Proc. 3rd Int. Conf. on Information Integration and Webbased Applications and Services (IIWAS).
Dijkstra, E. W. 1979. Program inversion. In Program Construction, International Summer School, July 26 - August 6, 1978, Marktoberdorf, germany, F. L. Bauer and M. Broy, Eds. Lecture Notes in Computer Science, vol. 69. Springer.
Fogel, S. and Lane, P. 2005. Oracle Database Administrator's Guide. Oracle.
Foster, J. N., Greenwald, M. B., Kirkegaard, C., Pierce, B. C., and Schmitt, A. 2006. Exploiting schemas in data synchronization. Journal of Computer and System Sciences. To appear. Extended abstract in Database Programming Languages (DBPL) 2005.
Foster, J. N., Pierce, B. C., And Schmitt, A. 2006. Harmony Programmer's Manual. Available from http://www.seas.upenn.edu/~harmony/.
Gottlob, G., Paolini, P., and Zicari, R. 1988. Properties and update semantics of consistent views. ACM Transactions on Database Systems (TODS) 13, 4, 486-524.
Hegner, S. J. 1990. Foundations of canonical update support for closed database views. In International Conference on Database Theory (ICDT), Paris, France. Springer-Verlag New York, Inc., New York, NY, USA, 422-436.
Hegner, S. J. 2004. An order-based theory of updates for closed database views. Annals of Mathematics and Artificial Intelligence 40, 63-125. Summary in Foundations of Information and Knowledge Systems, 2002, pp. 230-249.
Hofmann, M. and Pierce, B. 1995. Positive subtyping. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), San Francisco, California. 186-197. Full version in Information and Computation, volume 126, number 1, April 1996. Also available as University of Edinburgh technical report ECS-LFCS-94-303, September 1994.
Hu, Z., Mu, S.-C., and Takeichi, M. 2004. A programmable editor for developing structured documents based on bi-directional transformations. In Partial Evaluation and Program Manipulation (PEPM).
International Business Machines Corporation 2004. IBM DB2 Universal Database Administration Guide: Implementation. International Business Machines Corporation.
Johnson, M., Rosebrugh, R., and Dampney, C. N. G. 2001. View updates in a semantic data modelling paradigm. In $A D C$ '01: Proceedings of the 12th Australasian conference on Database technologies. IEEE Computer Society, Washington, DC, USA, 29-36.
Keller, A. M. 1985. Algorithms for translating view updates to database updates for views involving selections, projections, and joins. In ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Portland, Oregon.
Keller, A. M. 1986. Choosing a view update translator by dialog at view definition time. In VLDB'86.
Landauer, R. 1961. Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 3, 183-191. (Republished in IBM Jour. of Res. and Devel., 44(1/2):261-269, Jan/Mar. 2000).
Lechtenbörger, J. 2003. The impact of the constant complement approach towards view updating. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego, California. ACM, 49-55.
Lorentz, D. 2005. Oracle Database SQL Reference. Oracle.
Masunaga, Y. 1984. A relational database view update translation mechanism. In VLDB'84.
Matsuoka, S., Takahashi, S., Kamada, T., and Yonezawa, A. 1992. A general framework for bidirectional translation between abstract and pictorial data. ACM Transactions on Information Systems 10, 4 (October), 408-437.
McCarthy, J. 1956. The inversion of functions defined by turing machines. In Automata Studies, Annals of Mathematical Studies, C. E. Shannon and J. McCarthy, Eds. Number 34. Princeton University Press, 177-181.

Medeiros, C. M. B. and Tompa, F. W. 1985. Understanding the implications of view update policies. In $V L D B^{\prime} 85$.
Meertens, L. 1998. Designing constraint maintainers for user interaction. Manuscript.
Microsoft 2005. Creating and Maintaining Databases. Microsoft.
Miller, R. J., Hernandez, M. A., Haas, L. M., Yan, L., Ho, C. T. H., Fagin, R., and Popa, L. 2001. The clio project: Managing heterogeneity. 30, 1 (March), 78-83.

Mu, S.-C., Hu, Z., and Takeichi, M. 2004a. An algebraic approach to bi-directional updating. In ASIAN Symposium on Programming Languages and Systems (APLAS).
Mu, S.-C., Hu, Z., and Takeichi, M. 2004b. An injective language for reversible computation. In Seventh International Conference on Mathematics of Program Construction (MPC).
Niehren, J. and Podelski, A. 1993. Feature automata and recognizable sets of feature trees. In TAPSOFT. 356-375.
Ohori, A. and Tajima, K. 1994. A polymorphic calculus for views and object sharing. In $A C M$ SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Minneapolis, Minnesota.
Oles, F. J. 1985. Type algebras, functor categories, and block structure. In Algebraic Methods in Semantics, M. Nivat and J. C. Reynolds, Eds. Cambrige University Press.
Pierce, B. C. et al. 2006. Harmony: A synchronization framework for heterogeneous treestructured data. http://www.seas.upenn.edu/~harmony/.
Pierce, B. C., Schmitt, A., And Greenwald, M. B. 2003. Bringing Harmony to optimism: A synchronization framework for heterogeneous tree-structured data. Technical Report MS-CIS-03-42, University of Pennsylvania. Superseded by MS-CIS-05-02.
Pierce, B. C. and Vouillon, J. 2004. What's in Unison? A formal specification and reference implementation of a file synchronizer. Tech. Rep. MS-CIS-03-36, Dept. of Computer and Information Science, University of Pennsylvania.
Rowe, L. and Schoens, K. A. 1979. Data abstractions, views, and updates in RIGEL. In ACM SIGMOD Symposium on Management of Data (SIGMOD), Boston, Massachusetts.
Scholl, M. H., LaAsch, C., and Tresch, M. 1991. Updatable Views in Object-Oriented Databases. In Proc. 2nd Intl. Conf. on Deductive and Object-Oriented Databases (DOOD), C. Delobel, M. Kifer, and Y. Yasunga, Eds. Number 566. Springer.

Spoonhower, D. 2004. View updates seen through the lens of synchronization. Manuscript.
Tatarinov, I., Ives, Z. G., Halevy, A. Y., and Weld, D. S. 2001. Updating XML. In ACM SIGMOD Symposium on Management of Data (SIGMOD), Santa Barbara, California.
Wadler, P. 1987. Views: A way for pattern matching to cohabit with data abstraction. In ACM Symposium on Principles of Programming Languages (POPL), Munich, Germany.
Winskel, G. 1993. The Formal Semantics of Programming Languages: An Introduction. MIT Press.
XQuery 2005. XQuery 1.0: An XML Query Language, W3C Working Draft. http://www.w3.org/ TR/xquery/.
toplas available only online. You should be able to get the online-only XXXX from the citation page for this article:

YYYY
Alternative instructions on how to obtain online-only appendices are given on the back inside cover of current issues of ACM TOPLAS or on the ACM TOPLAS web page:
http://www.acm.org/toplas YYYY

[^0]: ${ }^{1}$ Note that we are interested here in the final tree a^{\prime}, not the particular sequence of edit operations that was used to transform a into a^{\prime}. This is important in the context of Harmony, which is designed to support synchronization of off-the-shelf applications, where in general we only have access to the current states of the replicas, rather than a trace of modifications; the tradeoffs between state-based and trace-based synchronizers are discussed in detail elsewhere [Pierce and Vouillon 2004; Foster et al. 2006].
 ${ }^{2}$ We use the word "view" here in a slightly different sense than some of the database papers that we cite, where a view is a query that maps concrete to abstract states-i.e., it is a function that, for each concrete database state, picks out a view in our sense. Also, note that we use "view" to refer uniformly to both concrete and abstract structures-when we come to programming with lenses, the distinction will be merely a matter of perspective anyway, since the output of one lens is often the input to another.

[^1]: ${ }^{3}$ Indeed, well-behavedness is rather trivial in the absence of totality: for any function $l \nearrow$ from C to A, we can obtain a well-behaved lens by taking $l \searrow$ to be undefined on all inputs-or, slightly less trivially, to be defined only on inputs of the form $(l / c, c)$.
 ${ }^{4}$ Since we intend to use lenses to build synchronizers, the updated structures here will be results of synchronization. A fundamental property of the core synchronization algorithm in Harmony is that, if all of the updates between synchronizations occur in just one of the replicas, then the effect

[^2]: of synchronization will be to propagate all these changes to the other replica. This implies that the putback function in the lens associated with the other replica must be prepared to accept any value from the abstract domain. In other settings, different notions of totality may be appropriate. For example, Hu, Mu, and Takeichi [Hu et al. 2004] have argued that, in the context of interactive editors, a reasonable definition of totality is that $l \searrow(a, c)$ should be defined whenever a differs by at most one edit operation from l / c.

[^3]: ${ }^{5}$ Note that, although we are defining a syntax for lens expressions, the types used to classify these expressions are semantic-they are just sets of lenses or views. We are not (yet-see Section 11) proposing an algebra of types or an algorithm for mechanically checking membership of lens expressions in type expressions.

[^4]: ${ }^{6}$ Alternatively, we could use a refinement of the type system to track when PutPut does hold, annotating some of the lens combinators with extra type information recording the fact that they are oblivious, and then give map two types: the one we gave here plus another saying "when map is applied to an oblivious lens, the result is very well behaved."

[^5]: ${ }^{7}$ Although group uses the const lens indirectly, via add, it is semantically oblivious. Recall that (add $n\}$) expands into (xfork $\}\{n\}$ (const $\}\}$; plunge n) id). The type annotation on add ensures that the putback function is only ever applied to abstract trees that have a child n leading to $\}$. From this, a simple argument shows that both arguments to const \searrow are always $\}$. As a result, in this case, the behavior of const \searrow does not depend on its concrete argument-the lens is oblivious.

[^6]: ${ }^{8}$ We are dealing with countable sets of finite trees here, so this construct poses no metaphysical conundrums; alternatively, but less readably, we could just as well pass list_filter an extra argument $d \in D$.

[^7]: ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

[^8]: ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

[^9]: ${ }^{9}$ To be precise, we need an additional condition regarding partiality. The frameworks of Bacilhon and Spyratos and of Gottlob, Paolini, and Zicari are both formulated in terms of translating update functions on A into update functions on C, i.e., their putback functions have type $(A \longrightarrow$ $A) \longrightarrow(C \longrightarrow C)$, while our lenses translate abstract states into update functions on C, i.e., our putback functions have type (isomorphic to) $A \longrightarrow(C \longrightarrow C)$. Moreover, in both of these frameworks, "update translators" (the analog of our putback functions) are defined only over some particular chosen set U of abstract update functions, not over all functions from A to A, and these update functions may be composed. Update translators return total functions from C to C. Our putback functions, on the other hand, are slightly more general as they are defined over all abstract states and return partial functions from C to C. Finally, the get functions of lenses are allowed to be partial, whereas the corresponding functions (called views) in the other two frameworks are assumed to be total. In order to make the correspondences tight, our sets of well-behaved and very well behaved lenses need to be restricted to subsets that are also total in a suitable sense and the set of dynamic views should already include every abstract update functions that are needed and not rely on composition.

 A related observation is that, if we restrict both get and putback to be total functions (i.e., putback must be total with respect to all abstract update functions), then our lens laws (including PutPut) characterize the set C as isomorphic to $A \times B$ for some B.

