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Prospectus

• Prologue: Why use CCG for NLP?

• I: Combinatory Categorial Grammar

• II: Wide Coverage Parsing with CCG

• III: The Statistical Problem of Language Acquisition

• IV: Towards a Robust Semantics

• V: The Surface Compositional Semantics of Intonation and Information
Structure
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Prologue: Why Use CCG for NLP?
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The Long Tail and the Uncanny Valley

• Zipf’s Law:
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Frequency Rank

• The Uncanny Valley:
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Frequency Rank
Z Ignoring the long tail can engender the uncanny:
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In the Uncanny Valley

• TREC 2005:

Q77.6 Name opponents who Foreman defeated.
Q77.7 Name opponents who defeated Foreman.

• A QA Program (Kor 2005):

Opponents who
Foreman defeated:
George Foreman
Joe Frazier
Ken Norton
Sonny
Archie Moore

Opponents who
defeated Foreman:
George Foreman
Joe Frazier
Ken Norton
Sonny
Archie Moore
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The Problem

• The contribution of certain constructions to determining system acceptability
is disproportionate to their low frequency.

• This is bad news.

Z Machine learning is very bad at acquiring systems for which crucial information

is in rare events.
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The Darkling Plain

Z If the distribution of event types really is a power law curve, then there is no

other side to the Uncanny Valley accessible to brute-force machine learning.
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• We shall see that, for certain categories of parser error, up to half the error
rate is due to unseen grammatical event types (such as lexical entries), and
up to half is due to unseen model tokens for seen types (such as head word
dependencies).

• So the long tail is already hurting us badly.
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What To Do

• The distribution of grammatical event types isn’t a true power law, because
there is a finite number of them, defined generatively, ultimately by a universal
semantics.

• In principle, we can enumerate the types.

Z But there are more constructions than you can shake a stick at (Goldberg

1995)

• Induce them from labeled data. (Or get linguists to enumerate them).

• If we knew what that semantics was, we might be able to solve the model
problem as well.

Z But none of the existing logicist semantic formalisms will do (MacCartney and

Manning 2007).
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How To Do It

• We need a readily extensible, construction-based grammar.

• It must be robustly and efficiently parsable with wide coverage

• It must be transparent to a “natural” semantics, supporting cheap inference.
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I: Combinatory Categorial Grammar
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Categorial Grammar

• Categorial Grammar replaces PS rules by lexical categories and general
combinatory rules (Radical Lexicalization):

(1) S → NP VP
VP → TV NP
TV → {proved, finds, . . .}

• Categories:

(2) proved := (S\NP)/NP

(3) think := (S\NP)/�S
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Categorial Grammar

• Categorial Grammar replaces PS rules by lexical categories and general
combinatory rules (Lexicalization):

(1) S → NP VP
VP → TV NP
TV → {proved, finds, . . .}

• Categories with semantic intepretations:

(2) proved := (S\NP)/NP : prove′

(3) think := (S\NP)/�S : think′
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Applicative CG Derivation = CFG

• (4) Marcel proved completeness

NP (S\NP)/NP NP
>

S\NP
<

S

(5) I think Marcel proved completeness

NP (S\NP)/�S NP (S\NP)/NP NP
>

S\NP
<

S
>

S\NP
<

S
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Applicative CG Derivation = CFG

• (4) Marcel proved completeness

NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>

S\NP : λy.prove′completeness′y
<

S : prove′completeness′marcel′

(5) I think Marcel proved completeness

NP : i′ (S\NP)/�S : think′ NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>

S\NP : λy.prove′completeness′y
<

S : prove′completeness′marcel′
>

S\NP : think′(prove′completeness′marcel′)
<

S : think′(prove′completeness′marcel′)i′
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Combinatory Categorial Grammar (CCG)

• Combinatory Rules:

Application :
X/?Y Y

X >
Y X\ ?Y

X <

Composition :
X/�Y Y/�Z
X/�Z

>B
Y\ �Z X\ �Y
X\ �Z

<B

Crossed Composition :
X/×Y Y\×Z
X\×Z >B×

Y/×Z X\×Y
X/×Z <B×

• All arguments are type-raised in the (morpho) lexicon:

Type Raising :
X

T/(T\X) >T X
T\(T/X) <T

• We omit a further family of rules based on the combinator S
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Combinatory Categorial Grammar (CCG)

• Combinatory Rules:

Application :
X/?Y : f Y : g

X : f (g) >
Y : g X\ ?Y : f

X : f (g) <

Composition :
X/�Y : f Y/�Z: g
X/�Z: λ z. f (g(z)) >B

Y\ �Z: g X\ �Y : f
X\ �Z: λ z. f (g(z)) <B

Crossed Composition :
X/×Y : f Y\×Z: g
X\×Z: λ z. f (g(z)) >B×

Y/×Z: g X\×Y : f
X/×Z: λ z. f (g(z)) <B×

• All arguments are type-raised in the (morpho) lexicon:

Type Raising :
X : x

T/(T\X): λ f . f (x) >T X : x
T\(T/X): λ f . f (x) <T

• We omit a further family of rules based on the combinator S
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Slash Typing

• The features ?,�,× were introduced by Baldridge 2002 following Hepple (1987)

• They form a lattice
∗

.

Figure 1: CCG type hierarchy for slash modalities (Baldridge and Kruijff 2003)

• · type written as bare slash e.g. α/β means any rule can apply

• � type e.g. α/�β means any rule except × can apply.

• × type e.g. α/×β means any rule except � can apply.

• ? type e.g. α/?β means no rule except ? can apply.
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Combinatory Derivation

(6) Marcel proved completeness

NP (S\NP)/NP NP
>T <T

S/(S\NP) S\(S/NP)
>B

S/NP
<

S

(7) Marcel proved completeness

NP (S\NP)/NP NP
>T <T

S/(S\NP) (S\NP)\((S\NP)/NP)
<

S\NP
>

S
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Combinatory Derivation

(6) Marcel proved completeness

NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>T <T

S/(S\NP) : λ f .f marcel′ S\(S/NP) : λp.p completeness′
>B

S/NP : λx.prove′x marcel′
<

S : prove′completeness′marcel′

(7) Marcel proved completeness

NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>T <T

S/(S\NP) (S\NP)\((S\NP)/NP)
: λ f .f marcel′ : λp.p completeness′

<
S\NP : λy.prove′completeness′y

>
S : prove′completeness′marcel′

Steedman NASSLLI, Austin TX June 2012



19

Case as Type-Raising

• The type-raising combinator T is directly related to case systems, as in Latin:

(8) a.Balbus ambulat. b.Livia Balbum amat. c.Livia Balbo murum dabit.
“Balbus walks.” “Livia loves Balbus.” “Livia gave Balbus a wall.”

• This involves the following fragment of Latin lexicon:

(9)



Balb+us := S/(S\NP) : λp(e,t).p balbus′

Balb+um := S/(S/NP)λp(e,(e,t))λy.p balbus′y
:= (S\NP)/((S\NP)/NP) : λp(e,(e,t))λy.p balbus′y

Balb+o := ((S\NP)/NP)/(((S\NP)/NP)/NP) : λp(e,(e,(e,t)))λyλ z.p balbus′yz
&c.


• Even English possesses a case system in this sense. It’s just very ambiguous.

• We will sometimes schematize cased/raised forms as NP↑
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Linguistic Predictions: Unbounded “Movement”

• The combination of type-raising and composition allows derivation to project
lexical function-argument relations onto “unbounded” constructions such as
relative clauses and coordinate structures, without transformational rules:

(10) a man who I think you like arrived

(S/(S\NP))/N N (N\N)/(S/NP) S/(S\NP) (S\NP)/�S S/(S\NP) (S\NP)/NP S\NP
>B >B

S/�S S/NP
>B

S/NP
>

N\N
<

N
>

S/(S\NP)
>

S
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Linguistic Predictions: Constraints on “Movement”

• We also predict the following assymetry without stipulation, since we can allow
a without allowing b, but can’t allow b without also getting c:

(11) a. a man who(m) [I think that]S/S [Keats likes]S/NP
b. *a man who(m) [I think that]S/S [likes Keats]S\NP
c. *[I think]S/S Chapman [that]S/S [likes Keats]S\NP.

• In transformational (MP) terms, CCG reduces move to merge.
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Predictions: English Intonation

• A minimal pair of contexts and contours:

(12) Q: I know who proved soundness. But who proved completeness?
A: (Marcel)(proved completeness).

H*L L+H* LH%

(13) Q: I know which result Marcel predicted. But which result did Marcel
prove?

A: (Marcel proved )( completeness).
L+H* LH% H* LL%

• Crossing contexts and responses yields complete incoherence.

• In transformational (MP) terms, CCG reduces intonational phrases to surface
constituents.
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Predictions: Argument-Cluster Coordination

• The following construction is predicted on arguments of symmetry.

(14) give a teacher an apple and a policeman a flower
<T <T <T <T

DTV TV\DTV VP\TV (X\?X)/?X TV\DTV VP\TV
<B <B

VP\DTV VP\DTV
>

(VP\DTV)\?(VP\DTV)
<

VP\DTV
<

VP

—where VP = S\NP; TV = (S\NP)/NP; DTV = ((S\NP)/NP)/NP.

• A variant like the following cannot occur in an SVO language like English:

(15) *A policeman a flower and give a teacher an apple.
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Syntax = Type-Raising and Composition

• CCGs combination of type-raising and composition yields a permuting and
rebracketing string calculus closely tuned to the needs of natural grammar.

• The argument cluster coordination construction (14) is an example of a
universal tendency for “deletion under coordination” to respect basic word
order: in all languages, if arguments are on the left of the verb then argument
clusters coordinate on the left, if arguments are to the right of the verb then
argument clusters coordinate to the right of the verb (Ross 1970):

(16) SVO: *SO and SVO SVO and SO
VSO:*SO and VSO VSO and SO
SOV: SO and SOV *SOV and SO

• In transformational (MP) terms, CCG reduces copy/delete to merge.
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These Things are Out There in the Treebank

• Full Object Relatives ( 570 in WSJ treebank)
• Reduced Object Relatives ( 1070 in WSJ treebank)
• Argument Cluster Coordination ( 230 in WSJ treebank):

(S (NP-SBJ It)
(VP (MD could)

(VP (VP (VB cost)
(NP-1 taxpayers)
(NP-2 $ 15 million))

(CC and)
(VP (NP=1 BPC residents)

(NP=2 $ 1 million)))))

• It could cost taxpayers 15 million and BPC residents 1 million
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These Things are Out There (contd.)

• Parasitic Gaps (at least 6 in WSJ treebank):

(S (NP-SBJ Hong Kong’s uneasy relationship with China)
(VP (MD will)

(VP (VP (VB constrain)
(NP (-NONE- *RNR*-1)))

(PRN (: --)
(IN though)
(VP (RB not)

(VB inhibit)
(NP (-NONE- *RNR*-1)))

(: --))
(NP-1 long-term economic growth))))

• HK’s relation with C will constrain , though not inhibit , long-term growth.
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A Trans-Context Free Natural Language

• CCG can capture unboundedly crossed dependencies in Dutch and Zurich
German (examples from Shieber 1985):

... das        mer         em Hans             es huus        haelfed  aastriiche

  ... that   we.NOM   Hans.DAT  the house.ACC   helped       paint  

‘... that  we helped Hans paint the house.’

...  das        mer            d’chind                  em Hans          es huus        loend   haelfe  aastriiche       

... that   we.NOM  the children.ACC   Hans.DAT   the house.ACC      let      help       paint  

‘... that we let the children help Hans paint the house.’

Steedman NASSLLI, Austin TX June 2012



28

A Trans Context-Free CCG Analysis

(17) das mer em Hans es huus hälfed aastriiche
that we−NOM Hans−DAT the house−ACC helped paint

NP↑nom NP↑dat NP↑acc ((S+SUB\NPnom)\NPdat)/×VP VP\NPacc
>B×

((S+SUB\NPnom)\NPdat)\NPacc
>

(S+SUB\NPnom)\NPdat
>

S+SUB\NPnom
>

S+SUB

“that we helped Hans paint the house”

• The following alternative word order is correctly also allowed:

(18) Das mer em Hans hälfed es huus aastriiche.

Z The corresponding word order is disallowed in the related Dutch construction.
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A Trans Context-Free CCG Analysis

(18) das mer d′chind em Hans es huus lönd hälfe aastriiche
that we−NOM the children−ACC Hans−DAT the house−ACC let help paint

NP↑nom NP↑acc NP↑dat NP↑acc ((S+SUB\NPnom)\NPacc)/×VP (VP\NPdat)/×VP VP\NPacc
>B2

×
(((S+SUB\NPnom)\NPacc)\NPdat)/×VP

>B×
(((S+SUB\NPnom)\NPacc)\NPdat)\NPacc

>
((S+SUB\NPnom)\NPacc)\NPdat

>
(S+SUB\NPnom)\NPacc

>
S+SUB\NPnom

>
S+SUB

“that we let the children help Hans paint the house”

• Again, other word orders are correctly allowed.
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On So-called “Spurious” Ambiguity

• Examples like (80), and (14), embody the claim that fragments like “Marcel
proved”, and “a policeman a flower”, are constituents, comparable to “proved
completeness”.

• If “Marcel proved” can be constituent in right node raising, then it can be a
constituent of a canonical transitive sentence.

• Even such simple sentences are derivationally ambiguous:

S : prove’completeness’marcel’

a.  Marcel  proved   completeness                               b.  Marcel  proved  completeness

S : prove’completeness’marcel’
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On So-called “Spurious” Ambiguity (Contd.)

• More complex sentences are multiply ambiguous:

S: Λ S: ΛS: Λ

Frankie thinks that Anna married      Manny. Frankie thinks that Anna married      Manny. Frankie thinks that Anna married      Manny.a. b. c.

• This has been referred to (misleadingly) as “Spurious” ambiguity, since all the
derivations have the same interpretation Λ.

• Interestingly, so called “spurious” constituents include many left prefixes.

• Left prefixes are relevant to language modeling for purposes like ASR.
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Parsing in the Face of “Spurious Ambiguity”

• All grammars exhibit derivational ambiguity—even CFG.

• Any grammar that captures coordination at all will have the same derivational
ambiguity as CCG.

• Use standard table-driven parsing methods such as CKY, with packed charts,
either:

– checking identity of underlying representation of table entries (Steedman
2000b), rather than identity of derivation, or:

– parsing normal-form derivations (Eisner 1996; Hockenmaier and Bisk 2010)
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CCG is “Nearly Context-Free”

• CCG and TAG are provably weakly equivalent to Linear Indexed Grammar
(LIG) Vijay-Shanker and Weir (1994).

• Hence they are not merely “Mildly Context Sensitive” (Joshi 1988), but rather
“Nearly Context Free,” or “Type 1.9̇” in the Extended Chomsky Hierarchy.

Language Type Automaton Rule-types Exemplar

Type 0: RE Universal Turing Machine α → β

Type 1: CS Linear Bound Automaton (LBA) φAψ → φαψ P(anbncn) (?)

I Nested Stack Automaton(NSA) A[(i),...] → φB[(i),...]ψC[(i),...]ξ a2n

LCFRS (MCF) ith-order EPDA A[[(i),...]...] → φB[[(i),...]...]ψ anbncn . . .mn

LI/CCG/TAG Embedded PDA (EPDA) A[(i),...] → φB[(i),...]ψ anbncn

Type 2: CF Push-Down Automaton (PDA) A→ α anbn

Type 3: FS Finite-state Automaton (FSA) A→
{

a B

a
an

Steedman NASSLLI, Austin TX June 2012



34

Processing

• CCG was widely expected to be completely useless for processing, because of
so-called “spurious” derivational ambiguity

• However, any theory that covers the range of grammatical phenomena covered
by CCG has the same ambiguity.

• Moreover, everyone has to use a probabilistic parsing model to limit search
arising from standard ambiguity, so who cares about a little more?

• Near context free power guarantees polynomial parsability hence applicability
of standard algorithms.

• CCG supports one of the fastest and most accurate wide coverage parsers
(Clark and Curran 2004; Auli and Lopez 2011) (with the bonus of capturing
unbounded dependencies.)
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CKY
(19) 1. for j := 1 to n do

begin
t( j, j) := {A|A is a lexical category for a j}

2. for i := j−1 down to 0 do
begin

3. for k := i down to 0 do
begin
t(k, j) := pack{A|for all B ∈ t(k, i),C ∈ t(i+1, j)

such that B C ⇒ A for some
combinatory rule in R
and admissible(B C ⇒ A)}

end

end
end

Steedman NASSLLI, Austin TX June 2012
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CKY

• The procedure pack packs all categories A in the chart entry t(k, j) with the
same syntactic type ΣA but different logical forms ΛA into a single disjunctive
structure-sharing entry

• The boolean function admissible stands for one of a number of possible
conditions on the inclusion of A in the chart entry t(k, j) that are necessary to
keep the algorithm polynomial.

• The simplest admissibility condition is that A not already be in t(k, j). Others
are normal form conditions (Eisner 1996; Hockenmaier and Bisk 2010).

• For real-life sized examples like parsing the newspaper, such algorithms must
be statistically optimized.

Steedman NASSLLI, Austin TX June 2012



37

II: Wide-Coverage Parsing with CCG
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Human and Computational NLP

• No handwritten grammar ever has the coverage that is needed to read the
daily newspaper.

• Language is syntactically highly ambiguous and it is hard to pick the best parse.
Quite ordinary sentences of the kind you read every day routinely turn out to
have hundreds and on occasion thousands of parses, albeit mostly semantically
wildly implausible ones.

• High ambiguity and long sentences break exhaustive parsers.
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For Example:

• “In a general way such speculation is epistemologically relevant, as suggesting
how organisms maturing and evolving in the physical environment we know
might conceivably end up discoursing of abstract objects as we do.” (Quine
1960:123).

• —yields the following (from Abney 1996), among many other horrors:
S

PP AP Absolute VP

in the physical envirmnment

NP 

such speculation is                                   as suggesting how

might       AP                  Ptcpl                 objects as we do

NP                                                      VP

In a general way  RC            epistemologically relevant  PP           organisms maturing and evolving     we     know                                           S

conceivably end up   discoursing of abstract

Steedman NASSLLI, Austin TX June 2012



40

The Anatomy of a Parser

• Every parser can be identified by three elements:

– A Grammar (Regular, Context Free, Linear Indexed, etc.) and an associated
automaton (Finite state, Push-Down, Nested Push-Down, etc.);

– A search Algorithm characterized as left-to-right (etc.), bottom-up (etc.),
and the associated working memories (etc.);

– A Model, to resolve ambiguity.

• The model can be used in two ways, either to actively limit the search space,
or in the case of an “all paths” parser, to rank the results.

• In wide coverage parsing, we mostly use it the former way.

Steedman NASSLLI, Austin TX June 2012
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Competence and Performance

• Linguists (Chomsky 1957, passim), have always insisted on the methodological
independence of “Competence” (the grammar that linguists study) and
“Performance” (the mechanisms of language use).

• This makes sense: there are many more parsers than there are grammars.

• Nevertheless, Competence and Performance must have evolved as a single
package, for what evolutionary edge does a parser without a grammar have, or
a grammar without a parser?

Z Any theory that does not allow a one-to-one relation between the grammatical

and derivational constituency has some explaining to do.
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Human Sentence Processing

• “Garden path” sentences are sentences which are grammatical, but which naive
subjects fail to parse.

• Example (20a) is a garden path sentence, because the ambiguous word “sent”
is analysed as a tensed verb:

(20) a. # The doctor sent for the patient died.
b. The flowers sent for the patient died.

• However (20b) is not a garden path.

• So garden path effects are sensitive to world knowledge (Bever 1970).

• They are even sensitive to referential context: (Altmann and Steedman 1988)
showed that (simplifying somewhat) if a context is established with two doctors,
one of whom was sent for a patient, then the garden path effect is reversed.
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The Architecture of the Human Sentence
Processor

• This requires a “cascade” architecture:

} .

Speech Recognition

Parsing Model

The situation

Syntax & Semantics

Yes?

Yes?

Yes?

{The  flowers  sent for the patient died
doctor

Probably!/Forget it!

Probably!/Forget it!

Probably!/Forget it!
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Grammar and Incrementality

• Many left prefix substrings of sentences are typable constituents in CCG, for
which alternative analyses can be compared using the parsing model

• The fact that (21a,b) involve the nonstandard constituent [The doctor sent
for]S/NP, means that constituent is also available for (21c,d)

(21) a. The patient that [the doctor sent for]S/NP died.
b. [The doctor sent for]S/NP and [The nurse attended]S/NP the patient who had complained of a pain.
c. #[The doctor sent for]{ S/NP

(S/(S\NP))/N N (N\N)/NP

} [the patient]NP diedS\NP.

d. [The flowers sent for]{ #S/NP
(S/(S\NP))/N N (N\N)/NP

} [the patient]NP diedS\NP.

• (22) a. #[The doctor sent for the patient] S diedS\NP.
b. [The flowers sent for the patient] S/(S\NP) diedS\NP.

Steedman NASSLLI, Austin TX June 2012
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The Strict Competence Hypothesis

• Since the spurious constitutent [#The flowers sent for]S/NP is available in the
chart, so that its low probability in comparison with the probabilities of the
unreduced components can be detected (according to some “figure of merit”
(Charniak et al. 1998) discounting the future), the garden path in (20b) is
avoided, even under the following very strong assumption about the parser:

– The Strict Competence Hypothesis: the parser only builds structures that
are licensed by the Competence Grammar as typable constituents.

• This is an attractive hypothesis, because it allows the Competence Grammar
and the Performance Parser/Generator to evolve as a package deal, with parsing
completely transparent to grammar, as in standard bottom-up algorithms.

• But is such a simple parser possible? We need to look at some real-life parsing
programs.
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Wide Coverage Parsing: the State of the Art

• Early attempts to model parse probability simply by attaching probabilities to
rules of CFG performed poorly (bad independence assumption).

• Great progress as measured by the ParsEval measure has been made by
combining statistical models of headword dependencies with CF grammar-
based parsing (Hindle and Rooth 1993; Collins 1997; Charniak 2000)

• However, the ParsEval measure is very forgiving. Such parsers have until now
been based on highly overgenerating context-free covering grammars. Analyses
depart in important respects from interpretable structures.

• In particular, they typically fail to represent the long-range “deep” semantic
dependencies that are involved in relative and coordinate constructions.

Steedman NASSLLI, Austin TX June 2012



47

Head-dependencies as Model

• Head-dependency-Based Statistical Parser Optimization works because it
approximates an oracle using real-world knowledge.

• In fact, the knowledge- and context- based psychological oracle may be
much more like a probabilistic relational model augmented with associative
epistemological tools such as typologies and thesauri and associated with a
dynamic context model than like traditional logicist semantics and inferential
systems.

• Many context-free processing techniques generalize to the “mildly context
sensitive” grammars.

• The “nearly context free” grammars such as LTAG and CCG—the least
expressive generalization of CFG known—have been treated by Xia (1999),
Hockenmaier and Steedman (2002a), and Clark and Curran (2004).
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Nearly Context-Free Grammar

• Such Grammars capture the deep dependencies associated with coordination
and long range dependency.

• Both phenomena are frequent in corpora, and are explicitly annotated in the
Penn WSJ corpus.

• Standard treebank grammars ignore this information and fail to capture these
phenomena entirely.

Z Zipf’s law says using it won’t give us much better overall numbers. (around

3% of sentences in WSJ include long-range object dependencies, but those
dependencies are only a small proportion of the dependencies in those
sentences.)

• But there is a big difference between getting a perfect eval-b score on a
sentence including an object relative clause and interpreting it!
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Supervised CCG Induction by Machine

• Extract a CCG lexicon from the Penn Treebank: Hockenmaier and Steedman
(2002a), Hockenmaier (2003) (cf. Buszkowski and Penn 1990; Xia 1999).

Mark constituents:
− heads
− complements
− adjuncts

Assign categories The lexiconThe Treebank

S

NP VP

NP

NP

S

VP

NP

(H)

(C)

(H) (C)

(H)

NP

S

NP S\NP

(S\NP)/NPIBM 

bought Lotus

IBM 

bought Lotus

IBM 

bought Lotus

VBDVBD

 IBM  :=    NP
bought  :=    (S\NP)/NP

Lotus  :=    NP

• This trades lexical types (500 against 48) for rules (around 3000 instantiated
binary combinatory rule types against around 12000 PS rule types) with
standard Treebank grammars.
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Supervised CCG Induction: Full Algorithm

• foreach tree T:
preprocessTree(T);
preprocessArgumentCluster(T);
determineConstituentType(T);
makeBinary(T);
percolateTraces(T);
assignCategories(T);
treatArgumentClusters(T);
cutTracesAndUnaryRules(T);

Steedman NASSLLI, Austin TX June 2012



51

CCGbank: Hockenmaier and Steedman 2007

Z The trees in CCG-bank are (Rightward-Branching Normalized) CCG

derivations, and in cases like Argument Cluster Coordination and Relativisation
they depart radically from Penn Treebank structures.

• The resulting treebank is somewhat cleaner and more consistent, and is offered
for use in inducing grammars in other expressive formalisms. It was released in
June 2005 by the Linguistic Data Consortium with documentation and can be
searched using t-grep.
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Statistical Models for Wide-Coverage Parsers

• There are two kinds of statistical models:

– Generative models directly represent the probabilities of the rules of the
grammar, such as the probability of the word eat being transitive, or of it
taking a nounphrase headed by the word integer as object.

– Discriminative models compute probability for whole parses as a function
of the product of a number of weighted features, like a Perceptron. These
features typically include those of generative models, but can be anything.

• Both have been applied to CCG parsing
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Generative Models (Hockenmaier)

• A problem: standard generative models for the local dependencies characteristic
of CFGs do not immediately generalize to the reentrant dependencies
generated by these more expressive grammars (Abney 1997).

• The generative model of Hockenmaier and Steedman 2002b only models
probability for Collins-style local dependencies (although it can recover long
range dependencies).

• Hockenmaier (2003) showed that a sound full generative model is as possible
for nearly context free grammars as it is for CFG.

• Log Linear models offer another solution (Clark and Curran 2003, 2004, and
see below)
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Hockenmaier 2002/2003: Overall Dependency
Recovery

• Hockenmaier and Steedman (2002b)

Parseval Surface dependencies

Model LexCat LP LR BP BR 〈PHS〉 〈〉
Baseline 87.7 72.8 72.4 78.3 77.9 81.1 84.3

HWDep 92.0 81.6 81.9 85.5 85.9 84.0 90.1

• Collins (1999) reports 90.9% for unlabeled 〈〉 “surface” dependencies.

• CCG benefits greatly from word-word dependencies.
(in contrast to Gildea (2001)’s observations for Collins’ Model 1)

• This parser is available on the project webpage.
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Long Range Dependencies (Hockenmaier 2003)

• Extraction:

– Dependencies involving subject relative pronoun
(NP\NP)/(S[dcl]\NP): 98.5%LP, 95.4%LR (99.6%UP, 98.2%UR)

– Lexical cat. for embedded subject extraction (Steedman 1996b)
((S[dcl]\NP)/NP)/(S[dcl]\NP): 100.0%P, 83.3%R

– Dependencies involving object relative pronoun (including ES)
(NP\NP)/(S[dcl]/NP): 66.7%LP, 58.3%LR (76.2%UP, 58.3%UR)

• Coordination:

– VP coordination (coordination of S[.]\NP): 67.3%P, 67.0%R
– Right-node-raising (coordination of (S[.]\NP)/NP): 73.1%P, 79.2%R
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Log-Linear Conditional CCG Parsing Models

• Features fi encode evidence indicating good/bad parses

• (23) p(d|S) = 1
Z(S)e

∑i λi fi(d,S)

• Use standard Maximum Entropy techniques to train a FSM “supertagger”
Clark (2002) to assign CCG categories, multitagging (n ≈ 3) at over 98%
accuracy (Clark and Curran 2003, 2004).

• Clark and Curran use a conditional log-linear model such as Maximum Entropy
of either:

– The derived structure or parse yield;
– All derivations;
– All derivations with Eisner Normal Form constraints.
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Conditional CCG Parsing Models (Contd.)

• Discriminative estimation via the limited-memory BFGS algorithm is used to
set feature weights

• Estimation is computationally expensive, particularly for “all derivations”:

– Beowulf cluster allows complete Penn Treebank to be used for estimation.
– The fact that the supertagger is very accurate makes this possible.
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Overall Dependency Recovery

LP LR UP UR cat

Clark et al. 2002 81.9 81.8 90.1 89.9 90.3
Hockenmaier 2003 84.3 84.6 91.8 92.2 92.2
Clark and Curran 2004 86.6 86.3 92.5 92.1 93.6
Hockenmaier (pos) 83.1 83.5 91.1 91.5 91.5
C&C (pos) 84.8 84.5 91.4 91.0 92.5

Table 1: Dependency evaluation on Section 00 of the Penn Treebank

• To maintain comparability to Collins, Hockenmaier (2003) did not use a
Supertagger, and was forced to use beam-search. With a Supertagger front-
end, the Generative model might well do as well as the Log-Linear model. We
have yet to try this experiment.
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Log-Linear Overall Dependency Recovery

• The C&C parser has state-of-the-art dependency recovery.

• The C&C parser is very fast (≈ 30 sentences per second)

• The speed comes from highly accurate supertagging which is used in an
aggressive “Best-First increasing” mode (Clark and Curran 2004), and behaves
as an “almost parser” (Bangalore and Joshi 1999)

• Clark and Curran 2006 show that CCG all-paths almost-parsing with
supertagger-assigned categories loses only 1.3% dependency-recovery F-score
against parsing with a full dependency model

• C&C has been ported to the TREC QA task (Clark et al. 2004) using a
hand-supertagged question corpus, and applied to the entailment QA task
(Bos et al. 2004), using automatically built logical forms.
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Recovering Deep or Semantic Dependencies
Clark et al. (2004)

respect  and  confidence     which     most      Americans    previously           had

lexical item category slot head of arg

which (NPX\NPX,1)/(Sdcl2/NPX) 2 had
which (NPX\NPX,1)/(Sdcl2/NPX) 1 confidence
which (NPX\NPX,1)/(Sdcl2/NPX) 1 respect
had (Sdclhad\NP1)/NP2) 2 confidence
had (Sdclhad\NP1)/NP2) 2 respect
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Full Object Relatives in Section 00

• 431 sentences in WSJ 2-21, 20 sentences (24 object dependencies) in
Section 00.
1. Commonwealth Edison now faces an additional court-ordered refund on its summerwinter rate differential collections that the Illinois
Appellate Court has estimated at DOLLARS.
2. Mrs. Hills said many of the 25 countries that she placed under varying degrees of scrutiny have made genuine progress on this
touchy issue.

X 3. It’s the petulant complaint of an impudent American whom Sony hosted for a year while he was on a Luce Fellowship in Tokyo –
to the regret of both parties.

X 4. It said the man, whom it did not name, had been found to have the disease after hospital tests.
5. Democratic Lt. Gov. Douglas Wilder opened his gubernatorial battle with Republican Marshall Coleman with an abortion
commercial produced by Frank Greer that analysts of every political persuasion agree was a tour de force.
6. Against a shot of Monticello superimposed on an American flag, an announcer talks about the strong tradition of freedom and
individual liberty that Virginians have nurtured for generations.
X 7. Interviews with analysts and business people in the U.S. suggest that Japanese capital may produce the economic cooperation
that Southeast Asian politicians have pursued in fits and starts for decades.
8. Another was Nancy Yeargin, who came to Greenville in 1985, full of the energy and ambitions that reformers wanted to reward.
9. Mostly, she says, she wanted to prevent the damage to self-esteem that her low-ability students would suffer from doing badly on
the test.

X 10. Mrs. Ward says that when the cheating was discovered, she wanted to avoid the morale-damaging public disclosure that a trial
would bring.
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X 11. In CAT sections where students’ knowledge of two-letter consonant sounds is tested, the authors noted that Scoring High
concentrated on the same sounds that the test does – to the exclusion of other sounds that fifth graders should know.

X 12. Interpublic Group said its television programming operations – which it expanded earlier this year – agreed to supply more than
4,000 hours of original programming across Europe in 1990.
13. Interpublic is providing the programming in return for advertising time, which it said will be valued at more than DOLLARS in
1990 and DOLLARS in 1991.

X 14. Mr. Sherwood speculated that the leeway that Sea Containers has means that Temple would have to substantially increase their
bid if they’re going to top us.

X 15. The Japanese companies bankroll many small U.S. companies with promising products or ideas, frequently putting their money
behind projects that commercial banks won’t touch.

X 16. In investing on the basis of future transactions, a role often performed by merchant banks, trading companies can cut through the
logjam that small-company owners often face with their local commercial banks.
17. A high-balance customer that banks pine for, she didn’t give much thought to the rates she was receiving, nor to the fees she was
paying.

X 18. The events of April through June damaged the respect and confidence which most Americans previously had for the leaders of
China.

X 19. He described the situation as an escrow problem, a timing issue, which he said was rapidly rectified, with no losses to customers.
X 20. But Rep. Marge Roukema (R., N.J.) instead praised the House’s acceptance of a new youth training wage, a subminimum that

GOP administrations have sought for many years.

• Cases of object extraction from a relative clause in 00 associated with the object relative

pronoun category (NPX\NPX)/(S[dcl]/NPX);

• The extracted object, relative pronoun and verb are in italics; sentences marked with a X are
cases where the parser correctly recovers all object dependencies
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Clark et al. (2004): Full Object Relatives

• 24 cases of extracted object in Section 00:

• 15/24 (62.5%) recovered with all dependencies correct (15/20 (75%) precision)

– That is, with both noun attachment and rel pronoun-verb dependency
correct—comparable to 58.3%/67% labelled recall/precision by Hockenmaier
2003 and significantly better than Clark et al. (2002) 42% recall

– 1 sentence (1) failed to parse at all (necessary category for seen verb
estimated unseen in 2-21).

– 5 were incorrect because wrong category assigned to relative pronoun, of
which: in two (5, 9) this was only because again the necessary category for
a seen verb was unseen in 2-21, and one (17) was incorrect because the
POS tagger used for back-off labeled the entirely unseen verb incorrectly

– 3 incorrect only because relative clause attached to the wrong noun
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Clark et al. (2004): Free Relatives

• 14/17 (82%) recall 14/15 (93%) precision for the single dependency.

• Better performance on long-range dependencies can be expected with more
features such as regular expressions for Max Ent to work on.

• Other varieties of deep dependency (Control, subject relatives, reduced
relatives) discussed in Hockenmaier (2003); Clark et al. (2002, 2004).

• It looks as though about half the errors arise because the lexicon is too small,
and about half because the head-dependency model is too weak.

Z 1M words of treebank is nothing like enough data
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Experiments with Porting the Parser

• As with all treebank grammars, almost any practical application involves
porting the parser to a different grammar and model.

• For example, in ongoing experiments with open domain question answering,
we would like to use the parser for parsing the questions.

• However, all treebank grammars including this one do appallingly badly on the
TREC question database, because WSJ contains almost no direct questions,
and none at all of some common patterns.

• Hand-labelling data for retraining is usually not possible.

• However, semi-automatically hand-supertagging a few thousand sentences and
retraining the supertagger with those included is quite practical.

• Clark et al. 2004 did the 1,171 What questions from TREC in a week.
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Porting to Questions: Results

• 171 What-question development set. 1000 for training (and testing using
tenfold cross-validation), average length 8.6 words.

• Since the gold standard question data is only labelled to the level of lexical
category we can only evaluate to that level.

• However, supertagger accuracy and sentence accuracy correlate very highly
with dependency and category recall by the parser, and we know we need
around 97% per word and 60% per sentence for the original WSJ performance

•

Model 1 cat Sent 1.5 cats Sent

Acc Acc /word Acc

CCGbank 72.0 1.8 84.8 11.1

Qs 92.3 66.7 96.6 80.7

Qs+CCGbank 93.1 61.4 98.1 86.5

Table 2: Accuracy of Supertagger on Development set Question Data
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Porting to Questions: Results

•

Supertagging/ cat Sent What
parsing method Acc Acc Acc

Increasing av. cats 94.6 81.8 91.2
Decreasing av. cats 89.7 65.3 80.0
Increasing cats (rand) 93.4 79.4 88.2
Decreasing cats (rand) 64.0 9.4 21.2
Baseline 68.5 0.0 60.6

Table 3: Category accuracy of parser on dev question data

• For the What object questions, per word/sentence accuracies were 90%/71%,
suggesting that they are harder than the average question.

• Object dependency recall by the parser for these questions was 78%.
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Porting to Questions: Results

• See Rimell et al. 2009; Rimell 2010; Nivre et al. 2010 for comparisons of masy
modern parsers on recovery rates for long-range dependencies.
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Applications: CCG Parsers as Language Models

• Standard technique/baseline is Trigram modeling, strikingly akin to Elman’s
Simply Recurrent Networks.

• Strict left-to-right parsing interpolated with trigram model does better: Chelba
and Jelinek (1998); Roark (2001).

• Immediate-Head parser modeling alone does even better, even with a non-left-
to-right algorithm: Charniak (2001).
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CCG Parsers as Language Models

• CCG type-raising treats head and complement as dual: In some sense, it makes
all constructions head first.

• Hence many left prefixes are constituents, even in Dutch/German/Japanese.

• While any grammar can in principle be mapped onto a prefix grammar with a
generative model (Jelinek and Lafferty 1991), CCG already is (nearly) a prefix
grammar and probabilities for prefix dependency structures can be derived from
the standard dependency model.

• CCG similarly offers a direct way to use prosodic information (Steedman
2000a). (see (79) and (80), above, and cf. Charniak 2001).
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CCG Parsers as Language Models

• For example, in Dutch the prefix dat Cecilia een hond een knok . . . (“that
Cecilia a dog a bone . . . ”) has (via type-raising and composition) a category
S/(((S\NP)\NP)\NP).

• We know this, because the cluster can coordinate (Ross 1970):

(24) . . . dat [Cecilia een hond een knok]S/(((S\NP)\NP)\NP) en [Henk een politieman een
bloemS/(((S\NP)\NP)\NP) [heeft gegeven]((S\NP)\NP)\NP.

(25) Henk een politieman een bloem

S/(S\NP) (S\NP)/((S\NP)\NP) ((S\NP)\NP)/(((S\NP)\NP)\NP)
>B

S/((S\NP)\NP)
>B

S/(((S\NP)\NP)\NP)
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CCG Parsers as Language Models

• The type of this constituents tells you how to invert the dependency model to
obtain a left-to-right prediction.

• It predicts a ditransitive verbgroup and tells you all you need to know to
estimate its Arg Max from verbs of that class. (For example, the “give” stem
is going to come out ahead of the “sell” stem.)

• dat een hond een knok Cecilia . . . is going to make a quite different
predictions.

• Type-raising preserves the head dependency model relations.

• This is the real point of type-raising.
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Aside: Can You Do this with Lambek/TLG Proof
Nets?

• Yes (Baldridge and Kruijff 2003)—its just like making a DCG into a PDCG
with a head-dependency model. You can even use our lexicon.

• But its not clear that its the same enterprise.

• For reasons of theoretical and computational economy, it seems very odd to
relegate word order to post-hoc Linear Precedence (LP) rules, as in some
Linear Logic and proof-net -based generalizations of the Lambek calculus.
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Aside: Can You Do this with Proof Nets?

• First, categories already express linear order.

• Second, multiple occurrences of words so treated induce factorially many
spurious derivations:

– Police police police police police.
– This is the dog that worried the cat that killed the rat that ate the malt

that lay in the house that Jack built.

• So string position must be part of the resource, not extra logical.
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Aside: Can You Do this with Proof Nets?

• But string positions are what makes DCGs, Lambek, and all linguistic grammars
and parsers linear (in both senses of the term) in the first place—so is that
what we are axiomatizing?

• This seems to be what is implied by talk of “compiling” Linear Logic grammars
into more standard formalisms like TAG.

• But to anyone who cares about actually parsing, that seems to be an odd way
of thinking about it. When we’re computing arithmetic, we don’t use Peano’s
axioms, or even think of our operations as “compiled” Peano Arithmetic.
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Where do we Go from Here?

• This performance is still bad by human standards.

• The main obstacle is that 1M words of annotated training data is not nearly
enough,

• There are lots of words that never occur at all in the TreeBank at all.

– This is a problem that smoothing can help with

• But a worse problem is words that have been seen, but not with the necessary
category.

• The only answer to this problem is to generalize the grammar and the model,
using

– Active learning over unreliable parser output from unlabeled data, or
– High precision low recall methods over web-scale amounts of data.
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Moral

• You can have the linguistic expressivity that is needed to build interpretable
structure and parse efficiently with wide coverage—with an automatically
induced CCG lexicon and a statistical head-dependency model
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III: The Statistical Problem of Language
Acquisition

• Combinatory Categorial Grammar (CCG) and Surface Compositional Semantics
(Steedman 2012b)

• CCG-based Induction of “Semantic Parsers” for GeoQueries, ATIS, etc.
datasets (Kwiatkowski et al. 2010, 2011).

• Semantic Parsing as a model of Child Language Acquisition.

• Results from using the CHILDES “Eve” dataset for learning (Kwiatkowski
et al. 2012).

• Incorporating Information Structure.

• Comparisons with Fodor, Yang, etc. Parameter Setting.
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Inducing Semantic Parsers with CCG

• Thompson and Mooney (2003); Zettlemoyer and Collins (2005, 2007); Wong
and Mooney (2007); Lu et al. (2008); Börschinger et al. (2011); Liang
et al. (2011) generalize the problem of inducing parsers from language-specific
treebanks like WSJ to that of inducing parsers from paired sentences and
unaligned language-independent logical forms.

– The sentences might be in any language.
– The logical forms might be database queries, λ -terms, robot action

primitives, etc.

• This is a harder problem: in the worst case, we would have to consider all
possible pairings of all possible substrings of the sentence with all possible
subtrees of the logical form.
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Inducing Semantic Parsers: GeoQuery

Z Most of these programs invoke (English) language-specific assumptions.

• Kwiatkowski et al. (2010, 2011) have applied a more language-general approach
to the problem of inducing multilingual grammars from the GeoQueries
database of sentence meaning pairs (Thompson and Mooney, 2003):

– Which states border states through which the mississippi traverses?
– λx.∃y[state(x)∧ state(y)∧ loc(mississippi river,y)∧next to(x,y)]

Z GeoQuery is all about wh-dependency

• Model is discriminative (log-linear), learned by batch mode inside-outside
EM using stochastic gradient descent, iterated, evaluated by 10-fold cross-
validation.

Z Learning is accelerated by inititialization with Giza++ alignment between

strings and logical forms.
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Inducing CCG Semantics Parsers: GeoQuery 250

• % of unseen test sentences parsed correctly by induced grammars:

UBL-s λ -WASP LuO8
English 81.8 75.6 72.8
Spanish 81.4 80.0 79.2

Japanese 83.0 81.2 76.0
Turkish 71.8 68.8 66.8

Z This is done without the language-specific engineering of the other approaches.

Constraints on splits are universal (e.g. ATB, A-over-A, semantic-syntactic
types mapping).

• See Kwiatkowski et al. (2011) for effect of factored lexical generalization, and
competitive results on the much harder ATIS travel bookings dataset.
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II: Child and Computer Language Development

• The child’s problem is similar to the problem of inducing a semantic parser
(Siskind 1992; Villavicencio 2002, 2011; Buttery 2006).

– Children too have unordered logical forms in a universal language of thought,
not language-specific ordered WSJ trees.

– So they too have to work out which words (substrings) go with which
element(s) of logical form, as well as the directionality of the syntactic
categories (which are otherwise universally determined by the semantic
types of the latter).

Z A word may correspond to any substructure of the logical form

Steedman NASSLLI, Austin TX June 2012



83

Child and Computer Language Development

• Children do not seem to have to deal with a greater amount of illformedness
than that in the Penn WSJ treebank (MacWhinney 2005).

– But they need to learn big grammars.
– They are faced with contexts which support irrelevant logical forms.
– They need to be able to recover from temporary wrong lexical assignments.
– And they need to be able to handle serious amounts of lexical ambiguity.
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The Statistical Problem of Language Acquisition

• The task that faces the child is to learn the categorial lexicon on the basis of
exposure to (probably ambiguous, possibly somewhat noisy) sentence-meaning
pairs, given a universal Combinatory Projection Principle, and a mapping from
semantic types to the set of all universally available lexical syntactic types.

• Once the lexicon is learned, CCG will handle unbounded projection for free.

Z In CCG, all dependencies are projective—even so-called “non-projective” ones.
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Indefinitely Expandable Model

• At the start of the learning process the child does not have access to the scope
of the final grammar or lexicon.

• We need to model an indefinitely expandable set of grammar rules and lexical
items.

• This is done using Dirichlet priors.

• All unseen rules and lexical items are drawn from geometric base distributions.
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The Algorithm

• Variational Bayes (cf. Sato 2001; Hoffman et al. 2010)

• Incremental Two-stage Expectation/Maximisation Algorithm

• The intuition:

– Compute the probabilities of all analyses of the new sentence on the basis
of the previous model.

– Update the model on the basis of weighted counts of events in the new
sentence.
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Incremental Variational Bayes EM

• For n string-interpretation pairs {(Si, Ii); i = 1 . . .n}:

1. Find all derivations D that map string S to I

2. For each derivation D ∈ D, calculate its probability:
P(D|S, I;θ) = 1

Z ∏r∈D P(r|θ)

3. Calculate expectation of each rule r being used in all derivations D:
E(r|S,D;θ) = ∑D∈D count(r ∈ D)×P(D|S, I;θ)

4. Update model parameters with rule expectations:
θ t+1 := θ t +E(r|D;θ)
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Experiment: Learning from CHILDES Data
(Kwiatkowski et al. 2012 this conference)

• Part of the CHILDES corpus (“Eve”) is annotated with dependency graphs.

• These are English-specific. Put      your toys    away

obj

loc

• We can ignore linear order and treat them as impoverished logical forms.

• In fact we automatically map them into equivalent λ -terms.
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Limitations of CHILDES Data

Z The resulting pseudo-logical forms are still partly lexically English-specific.

Z We will learn constructions in other languages that are more synthetic than

English as multi-word items.

• Milou traverse la rue à la course! (Milou runs across the road!)

(26) Milou traverselarueàlacourse !

S/(S\NP) : λp.p milou′ S\NP : λy.run′(across′road′)y
>

S : run′(across′road′) milou′

Z CHILDES isn’t annotated in the Language of Thought accessed by the child.
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Using CHILDES Data

• Nevertheless, we can learn any construction in any language that is less
synthetic than English.

• Ranges tes jouets! (Put away your toys!)

(27) Ranges tes jouets !

S/NP : λx.put′away′x you′ NP : toys′
>

S : put′away′toys′you′
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Results

• Following Alishahi and Stevenson (2008), we train on chronological sections
1− n and test on n + 1. We see steady learning for both this program and
Kwiatkowski et al. (2010) (the latter with the Giza++ alignment initialization
turned off and run for 10 iterations over 1−n.)

• The present program learns around a steady 8% better than the latter State-
of-the-Art semantic parser inducer.

• Even with Giza alignment it is around 1% better. Full results in Kwiatkowski
et al. (2012).

• Absolute accuracy of all systems is low because we can only learn from 33%
of Eve, excluding stuff like “MMMMMM” and “DOGGIE DOGGIE DOGGIE!”

• The Eve corpus is also a tiny proportion of what the child has to work with,
so test-on-n+1 is very brutal.
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Analysis: Learning Curves

• The following slides show learning curves for

1. Learning that verbs are SVO rather than SOV, VSO, VOS, OSV, or OVS
2. Learning that determiners are Det-N rather than N-Det;

In each case, curves are shown for learning with

1. The correct logical form alone;
2. The correct logical form plus the logical forms from the preceding and

succeeding turn, as irrelevant distractors.
3. Cases with even more distractors are discussed in Kwiatkowski et al. (2012).

• In the later case learning is slower, but still converges.
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Learning SVO Word Order
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Learning Determiners a, another, any
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Fast Mapping

• Frequent determiners like “a” ( f = 168) are learned slowly and continuously
with high stability,

• By the time low frequency determiners like “another” ( f = 10) and “any”
( f = 2) are actually encountered, the prior on the category NP/N has grown
to the point where learning may only need a few trials.

• Such “fast mapping” is characteristic of later child language acquisition (Carey
and Bartlett 1978).
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Later Development

• The latter effect is all that is needed to explain the phenomenon of “syntactic
bootstrapping” (Gleitman 1990), where at a later stage of development, the
child can learn lexical entries for words for which the corresponding concept is
not salient, or is even entirely lacking to the child.

• Transitive verbs could in principle be assigned either of the two syntactic
categories in (29), both of which support a derivation of a different logical
form supported by the same contexts:

(28) Grover flees Big Bird! := S : flee′bigbird′grover′

(29) a. flee := (S\NP)/NP : λxλy. f lee′xy
b. flee := *(S/NP)\NP : λxλy.chase′xy
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Bootstrapping “Flee” against Competing “Chase”

• Pairs of verbs which a single situation necessarily supports are relatively rare,
and one member is usually much rarer

• There is exactly one occurrence of any form of “flee” in the entire CHILDES
corpus, in comparison to 162 occurences of inflected forms of the verb “chase”.

• We are therefore justified in assuming that situations unambiguously supporting
the correct transitive category will predominate.

• Providing everything else in the sentence is known, this should be enough to
ensure that the priors for the derivation that supports the correct category
(29a) with the nonsalient or unavailable meaning will be more probable than
that with the nonstandard category (29b) with a salient meaning.
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Bootstrapping Known and Unknown Meanings

• Thus, provided the adult’s intended meaning is available, even if with low prior
probability, then the child is in a position to assign the correct hypothesis a
high probability.

• Even if it is not available, the child will assign a high probability to the correct
lexical entry, and can productively proceed to investigate its meaning further
(Thomforde and Steedman 2011).

(30) “Why can’t you cut ice with A. Smaill?”

Steedman NASSLLI, Austin TX June 2012



99

Bootstrapping

• Gleitman 1990 has described the process by which the child resolves this
contextual ambiguity as “syntactic bootstrapping,” meaning that it is the childs
knowledge of the language-specific grammar, as opposed to the semantics, that
guides lexical acquisition.

• However, in present terms syntactic bootstrapping is emergent from the
statistical model resulting from primary semantic bootstrapping.
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Bootstrapping

• Like the related proposals of Siskind; Villavicencio; Zettlemoyer and Collins;
Piantadosi et al. and the somewhat different probabilistic approach of Yang
2002, this proposal considerably simplifies the logical problem of language
acquisition:

– No “subset principle.”
– No “triggers” other than reasonably short reasonably interpretable sentences

in context, drawn from a reasonably representative sample.
– Hence no “trigger ordering problem.”
– No “parameters”

Z We need more datasets! (Commentaries? Call centers?)
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Conclusion

• The theory presented here somewhat resembles the proposals of Fodor 1998 as
developed in Sakas and Fodor (2001) and Niyogi (2006), and Yang (2002) in
treating the acquisition of grammar as in some sense parsing with a universal
“supergrammar”.

• However, rather than learning over the space of all possible grammars
corresponding to all possible parameter settings, the present theory adjusts
probabilities in a model of all elements of the grammar for which there is
positive evidence from all processable utterances.

• “Parameters” like V2 vs. free order are simply statements about probability
distributions over lexical types and rule types.

• Nevertheless, learning is typically step-like, like parameter-setting.
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Moral: Against “Parameter Setting”

• If parameters are implicit in the rules or categories themselves, and you can
learn the rules or categories directly, why should the child (or a truly Minimal
theory) bother with parameters at all?

• For the child, all-or-none parameter-setting is counterproductive, as many
languages include inconsistent items.

• Consider English expressions like Doggies galore!

Z “Galore” is one of a tiny group of phrase-final determiner in E. (It came from

Irish. the others are “a-plenty” (Norman French) and “a gogo” (also Fr))
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IV: Towards a Robust Semantics
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Building Interpretations

• The combinatory rules guarantee “surface compositionality” with any
compositional semantic representation.

• Thus the process of interpretation building can be built into the categories and
combinatory rules, and can be done in parallel to derivation, as in (4)

• To make such a semantics wide-coverage involves specifying a semantics or
a morphological stem-based semantic schema for the 400-500 most frequent
category types (Hockenmaier et al. 2004; Bos et al. 2004)

• Generalize categories for open-class content words.

• Use 1st order logics such as DRT, using λ -calculus as “glue language”.

• Example (Bos et al. (2004): From 1953 to 1955 , 9.8 billion Kent cigarettes
with the filters were sold , the company said .
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_____________ _________________________________________________________________
| x1 | | x2 x3 |
|-------------| |-----------------------------------------------------------------|
(| company(x1) |A| say(x2) |)
| single(x1) | | agent(x2,x1) |
|_____________| | theme(x2,x3) |

| proposition(x3) |
| __________________ ____________ ________________ |
| | x4 | | x5 | | x6 x7 x8 | |
| x3: |------------------| |------------| |----------------| |
| (| card(x4)=billion |;(| filter(x5) |A| with(x4,x5) |)) |
| | 9.8(x4) | | plural(x5) | | sell(x6) | |
| | kent(x4) | |____________| | patient(x6,x4) | |
| | cigarette(x4) | | 1953(x7) | |
| | plural(x4) | | single(x7) | |
| |__________________| | 1955(x8) | |
| | single(x8) | |
| | to(x7,x8) | |
| | from(x6,x7) | |
| | event(x6) | |
| |________________| |
| event(x2) |
|_________________________________________________________________|
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The Poverty of Logicism

• Parsing with C&C 2004, and feeding such logical forms to a battery of FOL
theorem provers, Bos and Markert (2005) attained quite high precision of 76%
on the 2nd PASCAL RTE Challenge Problems.

Z However, recall was only 4%, due to the overwhelming search costs of full FOL

theorem proving.

• MacCartney and Manning (2007) argue that entailment must be computed
more directly, from the surface form of sentences, using edit distance, and
fast inference such as Modus Ponens implicit in polarity marking and resources
such as WordNet.

Z It is the latter that does the real work.
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Polarity

• It is well-known that explicit and implicit negation systematically switches the
“upward” or “downward direction of entailment of sentences with respect to
ontology-based inference:

(31) Egon walks `Egon moves
0Egon walks quickly

Egon doesn’t walk`Egon doesn’t walk quickly
0Egon doesn’t move

• Sánchez Valencia (1991) and Dowty (1994) point out that polarity can be
computed surface-compositionally using CG.
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Taking Scope (Steedman 2012b, hereafter TS)

• (32) Everybody loves somebody.

• (33) a. ∀x[person′x →∃y[person′y∧ loves′yx]])
b. ∃y[person′y∧∀x[person′x → loves′yx]

• (34) An effective silencer must be fitted to every vehicle.

• Appears not to allow computation of LF from the simple combinatorics of
grammatical derivation.

Z Has motivated “quantifying in,” “covert quantifier movement,” morpholexically

unmotivated type-changing operations, and the dreaded “underspecification.”
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The Problem with Underspecification/
Movement/&c.

Z The following two sentences from the Rondane treebank of MRS-based

underspecified logical forms respectively generate 3,960 readings all falling
into one equivalence class, and 480 readings falling into two semantically
distinct equivalence classes (Koller and Thater 2006):

(35) a. For travelers going to Finnmark there is a bus service from Oslo to Alta
through Sweden.

b. We quickly put up the tents in the lee of a small hillside and cook for the first
time in the open.

• We should stick to surface-compositionality, using nothing but the derivational
combinatorics of surface grammar to deliver all and only the attested readings.
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Scope Alternation: The Universals

• The universal quantifiers every and each can invert scope in the strong sense
of binding (unboundedly) c- or lf-commanding indefinites, subject to certrain
island conditions.

• Such quantifier “movement” appears to be subject to the same “Across-the-
Board” condition as wh-movement, as in examples like the following (Geach
1972):

(36) Every boy admires, and every girl detests, some saxophonist.

Z Two readings, not four. (Another problem for covert movement,

underspecification, et.,)
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Scope (Non)Alternation: The Existentials

• Existential quantifiers like some, a, and at least/at most/exactly three appear
able to take wide scope over unboundedly c- or lf-commanding universals, and
are not sensitive to island boundaries.

Z However, existentials in general cannot invert scope in the strong sense of

distributing over a structurally-commanding indefinite:

Z Maybe existentials don’t really move at all.
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Deriving Scope from Grammatical Combinatorics

• Existentially quantified NPs are replaced by a generalization of standard Skolem
terms.

• Skolem terms are obtained by replacing all occurrences of a given existentially
quantified variable by a term applying a unique functor to all variables bound
by universal quantifiers in whose scope the existential quantifier falls.

• Such Skolem terms denote dependent “narrow-scope” indefinite individuals.

• If there are no such universal quantifiers, then the Skolem term is a constant.

• Since constants behave as if they “have scope everywhere”, such terms denote
nondependent “wide-scope” specific-indefinites.
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Generalized Skolem Terms

• We generalize the notion of Skolem terms by analogy to generalized quantifiers
by packaging the restriction p (and any associated cardinality property c)
inside the functor over arguments A , together with a number n identifying the

originating NP,in a term of the form sk(A )
n: p;c,

• We can usually ignore n and c

• The ambiguity of (34) can be expressed by the following two logical forms,

which differ only in the generalized skolem terms sk(x)
person′ (denoting a dependent

or “narrow-scope” beloved) and skperson′, a Skolem constant.

(37) a. ∀x[person′x → loves′sk(x)
person′x)]

b. ∀x[person′x → loves′skperson′x)]
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The Model Theory

Z We need an explicit model theory because Generalized Skolem Terms are first

class citizens of the logic, rather than being derived from existentials via prenex
normal form. They need to carry information about their scope with them, to
avoid problems arising from their interaction with negation.

(38) a. Some farmer owns no donkey.
b. ¬iowns′−iskdonkey′+skfarmer′

Z Because of the involvement of Skolem terms and their restrictors, which are

λ -terms in L, we need to identify a notion of level for terms of L. Object
symbols, variables, and the related pro-terms are terms of level 0.

Z The model theory also treats implication as ¬P∨ (P∧Q), rather than material

implication, because of duplication of Skolem terms in donkey sentences.
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Syntax

1. If a1, . . . ,an are terms whose maximum level is i, then Rn(a1, . . . ,an) is a wff of
level i.

2. If X is a wff of level i then [¬X ] is a wff of level i.
3. If X and Y are wff for which i is the higher of their respective levels, then

[X ∧Y ], [X ∨Y ], and [X → Y ] are all wff of level i.
4. If X is a wff of level i then [∀x[X ]] is a wff of level i
5. If X is a wff of level i then skA

λx.X is a term of level i + 1 where A is the set
of arguments of the Skolem functor skλx.X and A is a superset of the free
variables of X other than x.

A complete formula or sentence of L is then a wff all of whose variables are
bound.
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Semantics: Preliminaries

• We refer to a generalized Skolem term skA
p;c with no free variables among its

arguments A (and hence none in its λ -term p) as saturated.
• There is a basic correspondence C0 from model objects and relations to L

object symbols, relation symbols, and pro-terms.
• If a correspondence C includes C0, but does not map any object of M to

a particular saturated generalized Skolem term t, then we will speak of a
correspondence C ′ obtained by adding to C a pair 〈a, t〉 (together with all the
related pronoun pairs 〈a,pro′t〉, 〈a,pro′(pro′t)〉, . . . ) for some object a∈M as
an “extension of C to t” and of a as the “value” named by t in C ′. We
will refer to the set of correspondences obtained by extending C to some set
of saturated generalized Skolem terms in L (including the null set) as the
“extensions” of C . (That is to say that the extensions of C include C .)

• The function C −1 on the range of a correspondence C is the inverse of C .
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Semantics

1. C satisfies an atomic formula R(a1, . . . ,an) in L if and only if there is an there
is an extension C ′ of C for which the terms a1, . . . ,an are all in the range of
C ′ and:

(a) The n-tuple 〈C ′−1(a1), . . . ,C ′−1(an)〉 is in the relation C ′−1(R) in M;
(b) For all ai that are Skolem terms of the form skA

p;c, C ′ also satisfies p(skA
p;c)

and c(skA
p;c);

(c) For all such Skolem terms of the form skA
p;c whose value under C ′ is a set

object a′, there is no correspondence C ′′ differing from C ′ only in the value
a′′ named by skA

p;c that satisfies the atomic formula and p(skA
p;c) in which a′′

is a proper superset of a′;
2. Given two sentences Y and Z in L:

(a) C satisfies a sentence ¬Y if and only if C does not satisfy Y ;
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(b) C satisfies a sentence Y ∨Z if and only if C satisfies at least one of Y or Z;
(c) C satisfies a sentence Y ∧Z if and only if there is an extension C ′ of C to

all and only the saturated generalized Skolem terms common to Y and Z
that are not in the range of C such that C ′ satisfies both Y and Z;

(d) C satisfies a sentence Y → Z if and only if every extension C ′ of C to all
and only the saturated generalized Skolem terms common to Y and Z that
are not in the range of C that satisfies Y also satisfies Z;

3. Given a well-formed formula Y (x) in L, in which x and no other variable is free:

(a) C satisfies a sentence ∀x[Y (x)] if and only if there is an extension C ′ of C
to all saturated generalized Skolem terms in Y (x) such that for all object
symbols a, in L C ′ satisfies Y (a).

We then define truth of a sentence Y in a model M as follows: Y is true in M

relative to a correspondence C if and only if C satisfies Y .
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Example

• Consider a model containing six individuals: Giles, George, Eliza�th, Pedro, Mo�<ine,
and Maxwelton. The unary relation farmer holds for Giles, George, and Eliza�th. The
unary relation �nkey holds for Pedro, Mo�<ine, and Maxwelton. The binary relation
own holds for the pairs {Giles, Pedro}, {Giles, Mo�<ine}, and {Eliza�th, Maxwelton}.
The binary relation feed holds for the pairs {Giles, Pedro}, {Giles, Mo�<ine}, and
{Eliza�th, Maxwelton}.

• Consider the correspondence C0 consisting of the following pairs:

(39) {Giles, giles′} {Maxwelton, maxwelton′}
{George, george′} {farmer, farmer′}
{Eliza�th, elizabeth′} {�nkey, donkey′}
{Pedro, pedro′} {own, own′}
{Mo�<ine, modestine′}{feed, feed′}
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• Consider the donkey sentence, ∀x[farmer′x∧own′sk(x)
donkey′x→ feed′(pro′sk(x)

donkey′)x]

• By 3a, C0 satisfies this sentence if and only if for all object symbols a in L

there is an extension of C0 to the saturated generalized skolem term sk(a)
donkey′

that satisfies farmer′a∧own′sk(a)
donkey′a → feed′(pro′sk(a)

donkey′)a.

• By 2d, the interesting cases are a = giles′ and a = elizabeth′, and the respective

extensions by the pairs {Pedro, sk(giles′)
donkey′}, {Mo�<ine, sk(giles′)

donkey′}, and {Maxwelton,

sk(elizabeth′)
donkey′ }, since for all object symbols there is either no extension that

satisfies the antecedent or all of these extensions satisfy both antecedent and
consequent, once the skolem terms are unpacked via rule 1b.

• This is the “strong” reading of the donkey sentence, because of 2d.
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Related Approaches

• DRT:

– Like DRT with generalized Skolem terms as discourse referents, except:
– Quantifies over farmers rather than farmer donkey pairs, hence no proportion

problem.
– Gets the strong reading for donkey sentences, unlike duplex.

• E-type pronouns:

– No covert definites masquerading as pronouns, hence:
– No uniqueness problem, and hence,
– No call for minimal situations, nor ensuing ramifications concerning bishops

meeting other bishops, split antecedents etc.
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Related Approaches (contd.)

• Other referential accounts of indefinites:

– Unlike Fodor 1982, Reinhart 1987, Park 1995, indefinites have only the
non-quantificational reading.

– Unlike storage and underspecification accounts, possibilities for scope-taking
are closely tied to derivation and syntactic combinatorics.
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Universals ARE Generalized Quantifiers in CCG

• The universals every and each are Good Old-Fashioned generalized quantifier
determiners:

(40) every, each := NP↑
3SG/�N3SG : λpλqλ . . .∀x[px → qx . . .]

• NP↑ schematizes over all NP types raised over functions of the form T |NP.
λ . . . schematizes over the corresponding arguments.

Z This is analogous to lexicalizing covert quantifier movement to SPEC-of-IP/CP.

but once again there is no movement or equivalent syntactic type-lifting, only
merge, a.k.a. unification of variables
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Existentials NOT Generalized Quantifiers in CCG

Z All other “quantifiers” are referential (cf. Woods 1975; VanLehn 1978; Webber

1978; Fodor and Sag 1982; Park 1996).

(41) a, an, some := NP↑
agr/�Nagr : λ pλq.q(skolem′p)

Z In the present theory, existentials entirely lack quantificational senses.
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Indefinites as Generalized Skolem Terms

• We do this by making the meaning of NPs underspecified Skolem terms of the
form skolem′

n : (p;c)p, (Again, p is a predicate such as donkey′, corresponding
to the restrictor of a generalized quantifier, c is a cardinality condition which
may be null, and n is a number unique to the originating NP which we usually
suppress.)

• We then define a notion of an environment for Skolem terms:

(42) The environment E of an unspecified skolem term T is a tuple comprising all
variables bound by a universal quantifier or other operator in whose structural
scope T has been brought at the time of specification, by the derivation so far.
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Indefinites as Generalized Skolem Terms

• Skolem term Specification (simplified) can then be defined as follows:

(43) Skolem specification of a term t of the form skolem′
np;c in an environment E

yields a generalized Skolem term skE
n,p;c, which applies a generalized Skolem

functor skn,p to the tuple E , defined as the environment of t at the time of
specification, which constitutes the arguments of the generalized Skolem term.

We will suppress the number n from now on, since it usually does no work.

Z There is more to say about negation and polarity here—see TS.
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Narrow-scope Saxophonist Reading

(44) Every boy admires some saxophonist

S/(S\NP3SG) (S\NP3SG)/NP (S\NP)\((S\NP)/NP)
: λ p.∀y[boy′y → py] admire′ : λq.q(skolem′sax′)

<
S\NP

: admires′(skolem′sax′)
>

S : ∀y[boy′y → admires′(skolem′sax′)y]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S : ∀y[boy′y → admires′sk(y)
sax′y]

• Unlike FCG/TLG, the left-branching derivation allows the same logical
form.

• That has to be the case, because of the Geach sentence.
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Wide-scope Saxophonist Reading

(45) Every boy admires some saxophonist

S/(S\NP3SG) (S\NP3SG)/NP (S\NP)\((S\NP)/NP)
: λ p.∀y[boy′y → py] admires′ : λq.q(skolem′sax′)

. . . . . . . . . . . . . . . . . . .
: λq.q sksax′

<
S\NP : admires′sksax′

>
S : ∀y[boy′y → admires′sksax′y]

• Unlike FCG/TLG, the left-branching derivation allows the same logical
form.

• That has to be the case, because of the Geach sentence.
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How Universals Invert Scope

• (46) Some boy admires every saxophonist

S/(S\NP3SG) (S\NP3SG)/NP (S\NP)\((S\NP)/NP)
: λp.p(skolem′boy′) : λxλy.admires′xy : λq.∀x[sax′x → qx]

<
S\NP3SG : λy.∀x[sax′x → admires′xy]

>
S : ∀x[sax′x → admires′x(skolem′boy′)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S : ∀x[sax′x → admires′x sk(x)

boy′]

• The SVO grammar of English means that embedded subjects in English are
correctly predicted neither to extract nor to allow universals to take scope over
their matrix subject in examples like the following (Cooper 1983, Farkas 2001):
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Non-Inversion of Embedded Subject Universals

• (47) a. *a boy who(m) [I know that]S/�S [admires some saxophonist]S\NP
b. [Somebody knows (that)]S/�S [every boy]S/(S\NP) [admires](S\NP)/NP some

saxophonist.
6= ∀x[boy′x → know′(admire′sksaxophonist′x)sk(x)

person′]

6= ∀x[boy′x → know′(admire′sk(x)
saxophonist′x)sk(x)

person′]

• This sort of thing is very common in German (Kayne 1998; Bayer 1990, 1996;
SP)

Z To allow bare complement subjects to extract a quite different “antecedent

governed” category (VP/NP−LEX,agr)/(S\NPagr) must be added to the English
lexicon for know. However, Every boy cannot combine with that.
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How Universals Invert Scope Out of NP Modifiers

• (48) a. Some apple in every barrel was rotten.
b. Someone from every city despises it/#the dump

• Cf. #A City that every person from admires sincerity.

• But also cf. A city that every person from despises

(49) Some apple in every barrel was rotten

(S/(S\NP))/NP : λxλp.p(skolem′λy.apple′y∧ in′x y) NP↑ : λ p.∀x[barrel′x → px] S\NP : rotten′
<

S/(S\NP) : λp.∀x[barrel′x → p(skolem′λy.apple′y∧ in′x y)]
>

S : ∀x[barrel′x → rotten′(skolem′λy.apple′y∧ in′x y)]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S : ∀x[barrel′x → rotten′sk(x)
λy.apple′y∧in′x y]
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Inverse Scope Limits Readings

Z This process only supports four distinct readings for the following:

(50) a. Some representative of every company saw every sample.
b. Every representative of some company saw every sample.

• We will return to this example below.
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Why Non Universals Don’t Invert Scope

• Non-universals cannot invert scope because they are not quantificational:

(51) a. Some linguist can program in at most two programming languages.
b. Most linguists speak at least three/many/exactly five/no/most languages.

Z Chierchia (1995) points out that apparent exceptions like “a Canadian flag

was hanging in front of at least five windows,” crucially involve unaccusatives,
passives, etc.

Z Hirschbüller pointed out that, exceptionally, they support inversion out of VP

ellipsis. Something else is going on.
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Binding and Distributivity are Lexicalized

• (52) a. eat a pizza:= S\NPPL : λy.eat′(skolem′pizza′)y
b. eat a pizza := S\NPPL : λy.∀w[w ∈ y → eat′(skolem′pizza′)w]

• Binding and Distributivity are lexicalized via the verb (cf. Link 1983, passim):

(53) Three boys ate a pizza

NP↑PL/NPL NPL (S\NPPL)/NP NP↑
: λnλp.p(skolem′n ; λ s.|s|= 3)) : boy′ : λxλy.∀z[z ∈ y → eat′xz] : λp.p(skolem′pizza′

> <

NP↑PL : λp.p(skolem′boy′ ; λ s.|s|= 3)) S\NP : λy : ∀z[z ∈ y → eat′(skolem′pizza′)z]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NP↑PL : λp.p(skboy′ ; λ s.|s|=3))
>

S : ∀z[z ∈ skboy′ ; λ s.|s|=3 → eat′(skolem′pizza′)z]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S : ∀z[z ∈ skboy′ ; λ s.|s|=3 → eat′sk(z)
pizza′z]

Z Crucially, the term on the left of the implication is not a Generalized Skolem

term, but a bound variable z.
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Binding and Distributivity are Lexicalized

• Compare Greenlandic Eskimo and Chinese, in which distributivity is explicitly
morphologically marked on the verb, and English “collective-only” verbs, as in
Three boys/#Every boy gathered in the library.

• Localizing distributivity on the verb predicts mixed readings for the following:

(54) a. Three boys ate a pizza and lifted a piano.
b. Three boys gathered in the bar and ate a pizza.
c. Three boys met each other and ate a pizza.

Z As Robaldo points out, This account means that Exactly two boys read exactly

one book is false in a model in which there are two boys who read the same
book, and one of them read some other book.

• I claim that result is correct for natural quantifiers.
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The Donkey

(55) Every farmer who owns a donkey feeds it

(S/(S\NP3SG)/�N3SG N3SG (Nagr\�Nagr)/�(S\NPagr) (S\NP3SG)/NP (S\NP)\(S\NP)/NP S\NP3SG
: λnλp.∀x[nx → px] : farmer′ : λqλnλy.ny∧qy : λxλy.own′xy : λp.p(skolem′donkey′) : λy.feed′it′y

<
S\NP3SG

: λy.ny∧own′(skolem′donkey′)y
>

N3SG\N3SG : λnλy.ny∧own′(skolem′donkey′)y
<

N3SG : λy.farmer′y∧own′(skolem′donkey′)y
>

S/(S\NP3SG) : λp.∀x[farmer′x∧own′(skolem′donkey′)x → px]
>

S : ∀x[farmer′x∧own′(skolem′donkey′)x → feed′it′x]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S : ∀x[farmer′x∧own′sk(x)
donkey′x → feed′it′x]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S : ∀x[farmer′x∧own′sk(x)

donkey′x → feed′(pro′sk(x)
donkey′)x]
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Strength sans Proportion/Uniqueness Problems

• (56) Most farmers who own a donkey feed it

NP↑PL/�NPL NPL S\NPPL
: λnλp.p(skolem′n ; most′) : λx.farmer′x∧own′(skolem′donkey′)x : λy.∀z[z ∈ y → feeds′(pronoun′it′)z]

>

NP↑PL : λp.p(skolem′(λx.farmer′x∧own′(skolem′donkey′)x ; most′))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NP↑PL : λp.p(skλx.farmer′x∧own′(skolem′donkey′)x ; most′)
>

S : ∀z[z ∈ skλx.farmer′x∧own′(skolem′donkey′)x ; most′ → feeds′(pronoun′it′)z]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S : ∀z[z ∈ sk
λx.farmer′x∧own′sk(z)

donkey′x ; most′
→ feeds′(pronoun′it′)z]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S : ∀z[z ∈ sk

λx.farmer′x∧own′sk(z)
donkey′x ; most′

→ feeds′sk(z)
donkey′z]

• most′ = λ s.|s|> 0.5∗ |all′(λx. f armer′x∧own(skolem′donkey′))|.
• Quantifies over farmers z not farmer-donkey pairs, avoiding proportion problem.

It is the distributive universal quantifier that ensures strong reading without
recourse to devices like “minimal situations,” avoiding uniqueness problem.
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Coordination Constraints on Scope Alternation

• SP showed that, by contrast with distributivity, localizing quantification and
Skolem terms on the NP disallows mixed readings:

• Narrow-scope saxophonist reading of (36):

(57) Every boy admires and every girl detests some saxophonist

S/NP S\(S/NP)
: λx.∀y[boy′y → admires′xy]∧∀z[girl′z → detests′xz] : λq.q(skolem′sax′)

<
S : ∀y[boy′y → admires′(skolem′sax′)y]∧∀z[girl′z → detests′(skolem′sax′)z]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S : ∀y[boy′y → admires′sk(y)
sax′y]∧∀z[girl′z → detests′sk(z)

sax′z]
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Coordination Constraints on Scope Alternation

• The same categories also yield the wide-scope saxophonist reading of (36):

(58) Every boy admires and every girl detests some saxophonist

S/NP S\(S/NP)
: λx.∀y[boy′y → admires′xy]∧∀z[girl′z → detests′xz] : λq.q(skolem′sax′)

. . . . . . . . . . . . . . .
: λq.q(sksax)

<
S : ∀y[boy′y → admires′sksaxy]∧∀z[girl′z → detests′sksaxz]

Z There are no mixed readings.
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Polarity and Directional Entailment

• (59) doesn’t◦ := (S◦\NP)/(S•inf\NP) : λp.•p

• ◦ stands for the polarity of the syntactic/semantic environment, and • stands
for −◦, its inverse.

• Crucially, this category inverts the polarity of the predicate alone.
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Negation, Polarity, and Directional Entailment

• Sánchez Valencia (1991) and Dowty (1994) point to the natural compatibility
of CG and polarity.

• (60) Enoch doesn′t walk

Enoch+ := doesn′t◦ := walk◦ :=
S◦/(S◦\NP+) (S◦\NP)/(S•inf\NP) S◦inf\NP

: λp.p +enoch′ : λpλx.•p ◦x : ◦walk′
>

doesn′t◦walk• := S◦\NP : •walk′
>

Enoch+doesn′t+walk− := S+ : −walk′+enoch′

Z This engenders a number of complications to the model theory of TS, notably

that Skolem terms must carry polarity, and in the case it is negative, a binding
to a particular negative operator
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NPIs &c.

(61) any:=(S•/(S•\NP))/N−) : λpλq.q −(skolem′p)
(S•/(S•/NP))/N−) : λpλq.q −(skolem′p)
((S•\NP)\((S•\NP)/NP))/N−) : λpλq.q −(skolem′p)
&c.
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Split Scope

• B laszczak and Gärtner (2005) point out that CCG predicts split scope readings
under such an analysis:

(62) They asked us to review no book

S/VPto−inf VP◦
to−inf/NP VP◦

to−inf\(VP•
to−inf/NP)

: λp.ask′(p us′)◦us′◦they′ : review′ : λpλy.¬p −skbook′y
<

VP◦
to−inf : λy.¬review′−skbook′y

>
S+ : ask′(¬review′−skbook′+us′)+us′+they′
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Split Scope (contd.)

(63) They asked us to review no book

S/VP VP◦/NP VP◦\(VP•/NP)
λp.p they′ : λxλy.ask′(review′x◦us′)◦us′y : λpλy.¬p −skbook′y

<
VP◦ : λy.¬ask′(review′−skbook′us′)◦us′y

>
S+ : ¬ask′(review′−skbook′+us′)+us′+they′

• See TS for MIT publication sentences, cross linguistic differences, double
negation, negtive concord, &c.
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Processing Scope in CCG

• One might expect Skolem Specification to induce further Spurious Ambiguity

(64) A representative of a company saw a sample.

• The parser will have to keep track of eight distinct underspecified logical forms,
representing all possible combinations of specification versus nonspecification
of three generalized Skolem terms.

• This ambiguity too is real, and must be allowed for in any framework. For
example, if there is a dependency-inducing universal, as follows, then all eight
interpretations are semantically distinct.

(65) Every exhibitor knows that a representative of a company saw a sample.
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Son of Spurious Ambiguity

Z Since Skolem specification can happen at any point in a derivation, it might

therefore appear that there is a danger of an even greater proliferation of
semantically spurious ambiguity.
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Sharing Structure

• Unlike related sets of traditional logical forms using traditional quantifiers, all
eight partially specified logical forms are structurally homomorphic.

• Rather than maintaining a single underspecified logical form as in UDRT, the
multiple specified readings can instead be efficiently stored as a single packed
shared structure, which we might visualize as follows:

(66) saw′(
{

skolem′

sk

}
sample′)(

{
skolem′

sk

}
λx.(representative′x∧of ′

{
skolem′

sk

}
company′ x))

• Since unspecified terms can be eliminated at the end of derivation, this ends
up as:

(67) saw′({sk}sample′)({sk}λx.(representative′x∧of ′{sk}company′ x))

Steedman NASSLLI, Austin TX June 2012



148

Sharing Structure

• The related ambiguous example (68) delivers a shared structure (69), off which
four distinct specified readings can be read directly.

(68) A representative of every company saw a sample.

(69) ∀y
[

company′y → saw′(
{

sk(y)

sk

}
sample′)(

{
sk(y)

sk

}
λx.representative′x∧of ′yx)

]

• (Cf. example (50).)
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Sharing Structure

• The four readings are as follows:

(70) a. ∀y[company′y → saw′sk(y)
sample′sk(y)

λx.representative′x∧of ′yx]

b. ∀y[company′y → saw′sk(y)
sample′skλx.representative′x∧of ′yx]

c. ∀y[company′y → saw′sksample′sk(y)
λx.representative′x∧of ′yx]

d. ∀y[company′y → saw′sksample′skλx.representative′x∧of ′yx]
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Controlling Specification

• In order to avoid duplicating specified generalized Skolem terms in the logical
form, we need only to add a test for nonredundant specification to the
admissibility condition admissible of the algorithm for adding a new entry A to
the chart.

• Such an admissibility condition can be incorporated by comparing the
environment associated with each daughter category B, C with that of A
to determine whether Skolem specification could possibly affect the structure-
sharing logical form ΛA by specifying all instances of a given unspecified Skolem
term, say skolem′

39sample′.

• In which case, the specification operation is applied to its instances, and the
result is structure shared, and we iterate.
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Example

• (71) Every man who read a book loves every woman.

• The result consists of two packed logical forms corresponding to the two
possible scopes of the two universals with respect to each other:

(72) a. S : ∀x[man′x∧ read′(
{

sk(x)

sk

}
book′)x →∀y[woman′y → loves′yx]]

b. S : ∀y[woman′y →∀x[man′x∧ read′(


sk(x,y)

sk(x)

sk

book′)x → loves′yx]]

• Each of these two packed logical forms subsumes two interpretations, one
with a wide-scope Skolem constant book, and another in which books are
dependent on men. The latter generates a further reading in which books are
dependent on both men and women.
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Representatives

• (73) Every representative of a company saw most samples.

The result reveals only four readings, not the five claimed by Hobbs and
Shieber, and by Keller, and predicted by their higher-order unification-based
mechanism.

• These four readings are represented by a single packed structure, repeated here,
since there is only one true quantifier. It is therefore immediately apparent
that they are semantically distinct.

(74) S : ∀x[rep′x∧of ′(
{

sk(x)

sk

}
comp′)x → saw′(

{
sk(x)

sk

}
(samples′;most′))x]
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Geach Sentence and Packing

Z In unpacking logical forms like the following for the Geach sentence,

which has more than one occurrence of the same generalized Skolem term
skolem′

39saxophonist′, we must ensure that all instances are interpreted as the
first, or as the second, etc. specified form.

(75) ∀y[boy′y → admires′(

{
sk(y)

39
sk39

}
sax′)y]∧∀z[girl′z → detests′(

{
sk(z )

39
sk39

}
sax′)z]

• This move does not compromise the competence-theoretic account of why
there are only two readings for the Geach sentence. It is simply a consequence
of the use of packing in the performance representation.
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Geach Sentence

• Thus, the Geach sentence ends up with just two interpretations:

(76) a. ∀y[boy′y → admires′(
{

sk(y)
39

}
sax′)y]∧∀z[girl′z → detests′(

{
sk(z)

39

}
sax′)z]

b. ∀y[boy′y → admires′({sk39}sax′)y]∧∀z[girl′z → detests′({sk39}sax′)z]
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Remarks

• Most so-called quantifiers aren’t generalized quantifiers. (Many languages
appear to entirely lack true generalized quantifiers—Baker 1995; Bittner 1994;
Aoun and Li 1993).

• The account combines the advantages of both DRT and E-type theories with
a movement-free syntax and semantics.

• It escapes the Scylla of the proportion problem and the Charybdis of the
uniqueness problem, without the involvement of category ambiguity for
existentials or minimal situations.
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What about the Open-Class Words?

• We need to get beyond the semantics of “walks” being walks′”

• Hand built resources like Wordnet, FrameNet, etc. are useful but incomplete.

• We need unsupervised “Machine Reading” (Etzioni et al. 2007; Mitchell et al.
2009) over web-scale corpora.

• Work by Harrington and Clark (2009) using C&C and spreading activation
semantic networks is interesting.

• This work has only just begun. Ideas of ”distributed semantics” have hardly
been road tested.
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Conclusion

• Scope relations are defined lexically at the level of logical form, and projected
onto the sentence by combinatory derivation The pure syntactic combinatorics
of CCG is the source of all and only the grammatically available readings.

• All logical-form level constraints on scope-orderings can be dispensed with—a
result related to, but more powerful than, that of Pereira 1990, as extended in
Dalrymple et al. 1991, Shieber et al. 1996 and Dalrymple et al. 1997.

• Some but not all of these results transfer to other non-TG frameworks, such
as LTAG, LFG, HPSG, and recent MP and DRT.

• However, the interactions of scope and coordinate structure discussed here
seem to demand the specific syntactic combinatorics of CCG.
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V: The Surface Compositional Semantics
of English Intonation
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Outline

1. The Four Dimensions of Information-Structural Meaning:

(a) Contrast/Background
(b) Theme/Rheme
(c) Presence in Common Ground
(d) Speaker/Hearer Agency

2. The Surface Compositionality of Intonational Semantics

3. Conclusion: Intonation Structure = Information Structure = Derivation
Structure
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Dimensions of Information-Structural Meaning
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Dimension 1: Contrast/Background

• Accents are properties of words.

• In English (and perhaps in every language), primary accents mark words as
contributing via their interpretation to contrast between the speakers actual
utterance, and various other utterances that they might have made, as in the
Alternatives Semantics of Karttunen (1976) and Rooth (1985).

(77) Q: Who was that lady I saw you with last night?
A: That was mywife .

H* LL%

Z Contrast in this sense is a property of all (primary) accents–cf. Vallduv́ı and

Vilkuna (1998) “kontrast”.
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Accents are Not Necessarily Pitch-Accents

Z While many English speakers (including the present one) mark the various

species of accent by pitch contour, and we accordingly use the notation of
Pierrehumbert 1980 to distinguish those species, such labels do not presuppose
the use of pitch alon as a marker.

• They are abstract phonological categories reflecting a trade-off between a
number of artulatory dimensions, including length, syllabic alignment and
relative height, as well as pitch (Calhoun 2006, 2010).

• Some speakers, including those without a larynx (such as Miles Davis), certain
non native speakers (sucxh as Finns), and certain native speakers mark the
same distinctions without any pitch excursion.
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Accents are Not Necessarily Pitch-Accents

Japan still does not let us compete fairly intheir country

( N ?A ) ( A N ) ( N ) ( N )

kontrast backgd backgd kontrast kontrast bkgd kontrast

theme rheme rheme rheme
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500
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400

Pi
tc
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Time (s)
0 3.688

1.85307797
japan
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Semantics of Contrast

• We follow Rooth (1992) in assuming that all logical forms of all linguistic
elements come in pairs (Λo,Λa), and Steedman 2012b (hereafter TS) in
assuming that non-universals translate as generalized Skolem terms, rather
than as existential generalized quantifiers.

• Λa is an “alternative” logical form , in which the constants c in the “ordinary”
logical form Λo corresponding to words bearing an accent have been replaced
by unique free variables of the same type τc as c, defining an “alternatives set”
{Λa}.

• For example, the alternative semantic content of the all-rheme example (77),
That was my wife might be written as follows:

(78)
{

was skλx.wife x∧mine that
was skλx.vτwife x∧mine x that

}
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An Extension to the Earlier Model

• A model M for the logical language L of TS includes a correspondence C
from the objects {anna, manny, . . . } and relations {man, marry, introduce, . . . }
in M into a set of object symbols {anna,manny, . . .} (not including any
generalized Skolem terms or free variables), and a set of relation symbols
{man,marry, introduce, . . . ,} in L. The function C −1 on the range of the
correspondence C is defined as the inverse of C . Then:

1. The correspondence C satisfies a formula Ra1 . . .an in which R is a relation
symbol in L and all ai are object symbols in L in the standard way, if and
only if the n-tuple 〈C −1(a1), . . . ,C −1(an)〉 is in the relation C −1(R) in M.
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2. The correspondence C satisfies a formula Ra1 . . .an in which in which R
is a relation symbol in L and some ai are generalized Skolem terms skpi

if and only if there is an interpretation for each Skolem term skpi as an
object symbol a′i in L such that a′i satifies the restrictor condition p of the
skolem term skpi, and when the Skolem terms skpi are replaced by the object
symbols a′i, C satisfies Ra1 . . .an.

3. The correspondence C satisfies a formula Ra1 . . .an in which in which R
and/or some ai are free variables vτR and/or vτpi

if and only if there is an
interpretation for each free variable as a relation symbol R′ or an object
symbol a′i in L such that, when the free variables are replaced by the relation
and/or object symbols a′i, C satisfies Ra1 . . .an.

• There is much more to say (not least about semantics of negation), but for
present purposes, we can assume that the rest of the model theory for TS is
much like a standard model of first-order predicate logic, with rules for each
connective and for the sole (Universal) quantifier.
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Dimension 2: Theme/Rheme

• Accents also define information-structural role, which syntax projects onto
constituents delimited by boundary tones:

(79) Q: I know Emma will marry Arnim. But who will marry Manny?
A: (Anna)(will marry Manny) .

H* L+H* LH%

(80) Q: I know Emma will marry Arnim. But who will Anna marry?
A: ( Anna will marry )( Manny) .

L+H* LH% H* LL%

• The claim: L+H* (and L*+H) mark theme (roughly, the topic or “Question
Under Discussion”) in English. H* (and H*+L, L*, and H+L*) mark rheme
(roughly, the comment or part that advances that discussion).
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The Speaker Defines the Theme

Z That is not to say that information structure is uniquely determined by contexts

such as wh-questions.
Z Speakers establish information structure by their utterance, as in the following

variant of (80):

(81) Q: I know Emma will marry Arnim. But who will Anna marry?
A: (Anna)(will marry Manny) .

L+H* LH% H* LL%
• The hearer accomodates the speaker’s consistent presupposition that Anna

(as opposed to somebody else) is the theme, and marrying Manny (as opposed
to someone else) is the rheme. This obviates criticism by Joshi (1990) and
Pulman (1997).
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Common Ground

• We follow Stalnaker and Thomason in assuming that common ground consists
in the set of propositions that a conversational participant supposes to be
mutually agreed to for the purposes of the conversation.

Z 6= the set of propositions that all participants actually believe.
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Theme and Rheme

• In these terms, we can informally define theme and rheme as follows:

– A theme is a part of the meaning of an utterance that some participant
in the conversation supposes (or fails to suppose) already to be common
ground;

– A rheme is a part of the meaning of an utterance which some participant
makes (or fails to make) common ground.

• Cf. Gussenhoven 1983 SELECTION/ADDITION

• Cf. Brazil 1997 REFERRING/PROCLAIMING.

• Cf. Roberts 1996; Ginzburg 1996 QUD; Inquisitive ISSUES; &c.
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Unmarked Themes

• In cases where there is only one theme, known to all participants, the theme
lacks any contrast and any accent.

• E.g., the following responses to the questions in (79) and (80) are possible:

(82) Q: I know Emma will marry Arnim. But who will marry Manny?
A: (Anna)(will marry Manny).

H* LL%

(83) Q: I know Anna dated Arnim. But who will she marry?
A: (Anna will marry)( Manny) .

H* LL%

• Such non-contrastive themes are referred to as “unmarked” themes.
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Unmarked Themes vs. All-Rheme utterances

• Sentences with unmarked themes are ambiguous, and a number of information
structures (including the “all-rheme” utterance (84c) that is appropriate to the
“out-of-the-blue” context) are acoustically indistinguishable.

(84) a. Q: What will Anna do?
A: (Anna will)θ ( marry Manny)ρ .

H* LL%
b. Q: What about Anna?

A: (Anna)θ (will marry Manny)ρ .
H* LL%

c. Q: What’s new?
A: (Anna will marry Manny)ρ .

H* LL%
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All-Rheme Utterances with Non-Final Accent

• In English, the following all-rheme example succeeds as an out-of-the-blue
rheme just in case phoning is a background activity of the absent mother:

(85) Q: What’s new?
A: (Your mothercalled)ρ .

H* LL%

Z However, the possibility of such a subject-accented all-rheme utterance does

not appear in general to extend to transitive examples like the following:

(86) Q: What’s new?
A: #(Annamarried Manny)ρ .

H* LL%
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Dimension 3: Presence in Common Ground

• English accents are distinguished along an orthogonal dimension of whether
their information unit is (or becomes) present in common ground (H*, L+H*,
H*+L) or not (L*, L*+H, H+L*):

(87) a. You put my trousers in the microwave!
H* H* LL%

b. You put my trousers in the microwave?
L* L* LH%

• In (87a), the speaker marks the proposition as being made common ground.

• In (87b), the speaker marks the proposition as NOT being made common
ground, thereby possibly implicating disbelief.
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Dimension 4: Speaker/Hearer Agency

• A further dimension of intonational meaning is carried by the boundaries,
rather than the accents.

• The level boundaries L, LL% and HL% mark information units as being (or
not being) supposed to be (or made to be) common ground by the speaker.

• The rising boundaries H, LH% and HH% mark information units as being (or
not being) supposed to be (or made to be) common ground by the hearer.
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Generativity of Intonational Tunes in English

• The system relating these four dimensions of information structural meaning
can be set out as follows, where θ signifies theme, and ρ signifies rheme,
while > and ¬ signify success/failure of supposition/update over the Common
Ground by the speaker/hearer agents S and H.
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Generativity of Intonational Tunes in English

> ⊥
θ L+H* L*+H
ρ H*, H*+L L*, H+L*

Table 4: Meaning Elements Contributed by the Accents

S L, LL%, HL%
H H, HH%, LH%

Table 5: Meaning Element Contributed by the Boundaries
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Semantics of Theme/Rheme, Common Ground,
and Agency

• We define the common ground as a (sub)model C, and the property of a
proposition holding in C as a logical modality [C]. The thematic function of
being already supposed present in common ground can then be represented as
θ , and the rhematic function of being made present in common ground as ρ,
defined as follows:1

(88) θ =def λpλx.suppose([C]theme po∧∀a ∈ {pa} [theme a → a = po])x

(89) ρ =def λpλx.[C]update C po x∨∃t[theme t∧update C (po t) x

—where:
1The latter definition is simplified here by omitting any mention of the alternative semantic value pa.
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1. p is a polymorphic variable ranging over pairs (po, pa) where po is a function
of any valency (including propositions of zero valency), and pa is a function
of the same valency that includes at least one free variable;

2. {pa} is the alternative set characterized by pa;
3. suppose can be thought of as a modal version of Beaver’s (2001) fallible

presupposition operator ∂ —roughly, verify or update with respect to the
common ground C;

4. the predicate theme is assumed to be directly interpreted in the common
ground model C as a (polymorphic) property t
me.

5. update can be thought of as a fallible update predicate which fails if its
argument is not a proposition, and which either extends the common ground
model C by the denotation of a proposition p, or finds a theme t and extends
it by the denotation of the result of applying p to t.

6. x is the agent S or H.
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Alternative Semantics for CCG: Accents

• The proper name Anna bearing an H* accent has the following nominative
category, among other case-like type-raised categories:

(90) Anna
H*

:=S>,ρ/(S>,ρ\NP>,ρ) :
{

λ p.p anna
λ p.p vτanna

}

• A subject bearing no accent has the following category:

(91) Anna:=Sπ,η/(Sπ,η\NPπ,η) :
{

λ p.p anna
λ p.p anna

}
(Where Λo and Λa are identical as here we will write them as one e.g.
λ p.p anna.)
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Alternative semantics for CCG: Boundaries

• Boundaries are not properties of words or phrases, but independent string
elements in their own right.

• They bear a category which “freezes” ±,θ/±,ρ-marked constituents as
complete information-/intonation- structural units, making them unable to
combine further with anything except similarly complete prosodic units.

• For example, the speaker-supposition- signaling LL% boundary bears the
following category:

(92) LL%:= S$φ\ ?S$π,η : λ f .π(η f S)
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A Derivation

(93) Anna married Manny .
L∗+H LH% H∗ LL%

>T <T
S⊥,θ/(S⊥,θ\NP⊥,θ ) (S\NP)/NP S$φ\?S$π,η S>,ρ\(S>,ρ/NP>,ρ) S$φ\?S$π,η

:
{

λ f . f anna
λ p.p vτanna

}
: λx.λy.married xy : λ f .π(η f H) :

{
λ p.p manny
λ p.p vτmanny

}
: λg.π(η g S)

>B

S⊥,θ/NP⊥,θ :
{

λx.married x anna
λx.married x vτanna

}
< <

Sφ/NPφ : ⊥(θ
{

λx.married x anna
λx.married x vτanna

}
H) Sφ\(Sφ/NPφ ) : >(ρ

{
λ p.p manny
λ p.p vτmanny

}
S)

<

Sφ : >(ρ
{

λ p.p manny
λ p.p vτmanny

}
S)(⊥(θ

{
λx.married x anna
λx.married x vτanna

}
H))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S :

{ married manny anna
married vτmanny vτanna

}
“You do not suppose the question of who Anna (as opposed to anyone else) married to be

common ground, I make it common ground that she married Manny (as opposed to anyone else)”
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Remarks

• Theme/Rheme marking is projected onto phrasal constituents by syntactic
derivation alone.

• It is bounded by combination of the phrase with a boundary tone.

• No independent extrasyntactic mechanism of “Focus Projection” is needed to
achieve the semantics of “broad focus”
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Unmarked Theme

• (94) Prosodic phrase promotion rule (%)
S$π,η : f ⇒% S$φ : π(η f S)

(95) Anna married Manny .
H∗ LL%

>T <T
S/(S\NP) (S\NP)/NP : S>,ρ\(S>,ρ/NP>,ρ) S$φ\?S$π,η :

: λ f .f anna λx.λy.married xy :
{

λ p.p manny)
λ p.p vτmanny)

}
: λg.π(η g S)

>B
S/NP : λx.married x anna

% <

Sφ/NPφ : π(η {λx.married x anna}S) Sφ\(Sφ/NPφ ) : >(ρ
{

λ p.p manny
λ p.p vτmanny

}
S)

<

Sφ : >(ρ
{

λ p.p manny
λ p.p vτmanny

}
S)(π(η(λx.married x anna)S))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S :

{ married manny anna
married vτmanny anna

}
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Accent-Final All-Rheme Utterance

• The above contour also allows an alternative analysis as a all-rheme utterance:

(96) Anna married Manny .
H∗ LL%

>T <T
S/(S\NP) (S\NP)/NP S>,ρ\(S>,ρ/NP>,ρ) S$φ\?S$π,η

: λ f .f anna : λx.λy.married xy :
{

λ p.p manny
λ p.p vτmanny

}
: λg.π(η g S)

>B
S/NP : λx.married x anna

<

S>,ρ :
{ married manny anna

married vτmanny anna
}

<

Sφ : >(ρ
{ married manny anna

married vτmanny anna
}

S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S :
{ married manny anna

married vτmanny anna
}

“I make it common ground that Anna married Manny”
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Non-Final Accent All-Rheme Utterance

• Since English unaccented verbs are also unmarked as to the theme/rheme
dimension, there is also a all-rheme analysis for intransitives like the following:

(97) Your mother called .
H∗ LL%

>T
S>,ρ/(S>,ρ\NP>,ρ) S\NP S$φ\?S$π,η

:
{

λ f . f (your mother)
λ f . f (your vτmother)

}
: λx.called x : λg.π(η g S)

>

S>,ρ :
{

called (your mother)
called (your vτmother)

}
<

Sφ : >(ρ
{

called (your mother)
called (your vτmother)

}
S)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S :
{

called (your mother)
called (your vτmother)

}

Steedman NASSLLI, Austin TX June 2012



187

No English Non-final Rheme-Accented Transitives

Z We are free to make unaccented accusatives theme-marked:

(98) Manny :=(S>,θ\NP>,θ)\((S>,θ\NP>,θ)/NP>,θ) : λp.p manny′

S>,θ\(S>,θ/NP>,θ) : λp.p manny′
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No English Non-final Rheme-Accented Transitives

• This category allows a derivation for (82) with an unmarked theme:

(99) Anna married Manny .
H∗ LL%

>T <T
S>,ρ/(S>,ρ\NP>,ρ) (S\NP)/NP (S>,θ\NP>,θ )\((S>,θ\NP>,θ )/NP>,θ ) S$φ\?S$π,η

:
{

λ f . f anna
λ f . f vτanna

}
: λx.λy.married xy : λp.p manny : λg.π(η g S)

% <

Sφ/(Sφ\NPφ ) : >(ρ
{

λ f . f anna
λ f . f vτanna)

}
S S>,θ\NP>,θ : λx.married manny x

<
Sφ\NPφ : >(θ{λx.married manny x}S)

>

Sφ : >(ρ
{

λ f . f anna
λ f . f vτanna

}
S)(>(θ {λx.married manny x}S))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S :

{
married manny anna
married manny vτanna

}
“I make Anna (as opposed to anyone else) common ground, I suppose the
question of who married Manny to be common ground”
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Non-Final Accent Rheme Disallowed

Z However, the theme-marked object category prevents an all-rheme analysis

(100) Anna married Manny .
H∗ LL%

>T <T
S>,ρ/(S>,ρ\NP>,ρ) (S\NP)/NP (S>,θ\NP>,θ )\((S>,θ\NP>,θ )/NP>,θ ) S$φ\?S$π,η

:
{

λ f . f anna
λ f . f vτanna

}
: λx.λy.married xy : λp.p manny : λg.π(η g S)

<
S>,θ\NP>,θ : λx.married manny x

∗

“#I make it common ground that Anna (as opposed to anyone else) married
Manny”

• Hence the anomaly of the out-of-the-blue utterance (86) with the same
contour. (The all-theme version is OK in context.)
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Another Impossible Non-Final Accent Rheme

• The same observation applies to examples like the following, consistent with
Ladd’s 1996 analysis of related examples (cf. Steedman 2000a:119, (62)):

(101) Q: Has Anna read Ulysses?
A: (Anna doesn’t read)ρ (books)θ .

H* LL%

• (101) cannot be uttered out of the blue.
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“Anchoring” Objects and Superman Sentences

• Examples like the following can be uttered out-of-the-blue:

(102) a. I have to see a guy.
b. You need to talk to someone.
c. Your mother called you.
d. He was reading Superman to some kid. (Neeleman and Szendrői 2004)

• Such non-theme-marked objects are reminiscent of Prince’s 1981 “anchoring”
given modifiers:

(103) Anna married a guy I know.

(The alternatives are people, not people I know.)
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Focusing Particles such as only

(104) only := NP↑/NP↑ : λnpλpλ . . . .npo p . . .∧∀a ∈ {npa}[a p . . .→ (a = npo)]

(105) Anna married only Manny .
H∗ LL%

>T <T
S/(S\NP) (S\NP)/NP NP↑/NP↑ S>,ρ\(S>,ρ/NP>,ρ) S$φ\?S$π,η

: λ f .f anna : λx.λy.married xy : λnpλp.npo p∧∀a ∈ {pa} [a p → (a = npo)] :
{

λ p.p manny
λ p.p vτmanny

}
: λg.π(η g S)

>B >
S/NP S>,ρ\(S>,ρ/NP>,ρ)

: λx.married x anna : λp.p manny∧∀a ∈
{

λp.p vτmanny

}
[a p → (a = λp.p manny)]

% <
Sφ/NPφ Sφ\(Sφ/NPφ )

: π(η {λx.married x anna}S) : >(ρ
{

λp.p manny∧∀a ∈
{

λp.p vτmanny

}
[a p → (a = λp.p manny)]

}
S)
<

Sφ : >(ρ
{

λp.p manny∧∀a ∈
{

λp.p vτmanny

}
[a p → (a = λp.p manny)]

}
S)(π(η(λx.married x anna)S))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S : married manny anna∧∀a ∈

{
λp.p vτmanny

}
[a(λx.married x anna)→ (a = λp.p manny)]

“I suppose the question of who Anna married to be common ground, I make it common ground

she married Manny and none of the alternatives.”
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Only and “Second Occurence Focus”

• Who ate only tofu?

(106) Anna ate only tofu .
H∗ LL%

>T <T
S>,ρ/(S>,ρ\NP>,ρ) (S\NP)/NP NP↑/NP↑ (S\NP)\((S\NP)/NP) S$φ\?S$π,η

:
{

λ f . f anna
λ f . f vτanna

}
: λx.λy.ate xy : λnpλpλy.npo p y∧∀a ∈ pa[a p y → (a = npo)] : λpλy.p tofu y : λg.π(η g S)

% >
Sφ/(Sφ\NPφ ) (S\NP)\((S\NP)/NP)

: >(ρ
{

λ f . f anna
λ f . f vτanna

}
S) : λp.λy.p tofu y∧∀a ∈ {λpλy.p tofu y} [a p y → a = λpλy.p tofu y]

<
S\NP

: λy.ate tofu y∧∀a ∈ {λpλy.p tofu y} [a ate y → a = λpλy.p tofu y]
<

Sφ\NPφ

: π(η {λy.ate tofu y∧∀a ∈ {λpλy.p tofu y} [a ate y → a = λpλy.p tofu y]}S)
>

Sφ : >(ρ
{

λ f . f anna
λ f . f vτanna

}
S)(π(η {λy.ate tofu y∧∀a ∈ {λpλy.p tofu y} [a ate y → a = λpλy.p tofu y]}S))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S :
{

ate tofu anna∧∀a ∈ {λpλy.p tofu y} [a ate anna → (a = λpλy.p tofu y)]
ate tofu vτanna ∧∀a ∈ {λpλy.p tofu y} [a ate vτanna → (a = λpλy.p tofu y)]

}
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Second occurrence isn’t contrastive

• Category (104) does not require Λo,Λa values to be distinct.

• (106) does not evoke any alternatives to tofu, because tofu is unaccented.

• But that is because we have already disposed of the alternatives to tofu in a
previous utterance such as Who ate only tofu?

• (106) is only admissible at all in such contexts, in which by definition such
alternatives are not only given, but also explicitly denied by the previous
utterance. So why should they be evoked?

• Cf. Rooth 1992 People who grow rice generally only eat rice.

Z The semantics of Only is independent of focus, at least in the sense of contrast

with alternatives.
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“Nested” Focus

• Adverbial only and also

(107) only := (S\NP)/$/(S\NP)/$ : λpλx . . . .pox . . .∧∀a ∈ {pa} [a x . . .→ (a = po)]

(108) also := (S\NP)/$/(S\NP)/$ : λpλx . . . .pox . . .∧∃a ∈ {pa} [a x . . .∧a 6= po)]

• Wold (1996) notes that Rooth makes the wrong prediction for “nested focus”
examples like the following elaborated answer to the question “Who did John
introduce to Bill?”:

(109) a. Anna only introduced Sue to Bill.
b. Anna also only introduced Sue to Tom
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Wold’s Problem

• The available reading supported by the context is one in which Anna introduced
Sue and no one else to both Bill and Tom.

• However, if both the second mention focus and the novel focus in the
second sentence are captured by only, (b) means (counterfactually) that Anna
introduced only Sue to only Tom.

• Because the CCG account of the projection of rheme focus (that is, accent) is
strictly via the derivation, the preferred consistent reading is correctly derived
here (brace yourself):
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Anna also only introduced Sue to Tom .
H∗LL%

>T
NP↑ (S\NP)/(S\NP) ((S\NP)/PP)/((S\NP)/PP) ((S\NP)/PP)/NP NP↑ PP↑ S$φ\?S$π,η

: λ f .f anna : λpλy.poy∧∃a ∈ {pa} [a y∧ (a 6= po)] λpλ zλy.pozywedge∀a ∈ {pa} [a zy → (a = po)] : λxλ zλy.introduced zxy : λg.g sue :
{

λh.h tom
λh.h vτtom

}
% <

NP↑
φ

(S\NP)/PP
π(η {λ f . f anna}) λ zλy.introduce z sue y

>
(S\NP)/PP

: λ zλy.introduce z sue y
∧∀a ∈ {λ zλy.introduce z sue y} [a y → (a = (λ zλy.introduce z sue y))]

<
S>,ρ\NP>,ρ

:
{

λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y} [a y → (a = λy.introduce tom sue y)]
λy.introduce vτtom sue y∧∀a ∈ {λy.introduce vτtom sue y} [a y → (a = λy.introduce vτtom sue y)]

}
>

S>,ρ\NP>,ρ
λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y} [a y → (a = λy.introduce tom sue y)]

∧∃a ∈ {λy.introduce vτtom sue y∧∀a ∈ {λy.introduce vτtom sue y}
[a y → (a = λy.introduce vτtom sue y)]}[a y∧ (a 6= (λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y} [a y → (a = λy.introduce tom sue y)]))]

<
Sφ\NPφ

>(ρ{λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y}[a y → (a = (λy.introduce tom sue y))]
∧∃a ∈ {λy.introduce vτtom sue y∧∀a ∈ {λy.introduce vτtom sue y}[a y → (a = λy.introduce vτtom sue y)]}

[a y∧ (a 6= (λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y} [a y → (a = λy.introduce tom sue y)]))]}S)
>

Sφ

π(η(λ f .f anna))(>(ρ{λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y}[a y → (a = (λy.introduce tom sue y))]
∧∃a ∈ {λy.introduce vτtom sue y∧∀a ∈ {λy.introduce vτtom sue y}[a y → (a = λy.introduce vτtom sue y)]}

[a y∧ (a 6= (λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y} [a y → (a = λy.introduce tom sue y)]))]}S))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

introduce tom sue anna∧∀a ∈ {λy.introduce tom sue y}[a anna → (a = (λy.introduce tom sue y))]
∧∃a ∈ {λy.introduce vτtom sue y}∧∀a ∈ {λy.introduce vτtom sue y}[a y → (a = λy.introduce vτtom sue y)]}

[a anna∧ (a 6= (λy.introduce tom sue y∧∀a ∈ {λy.introduce tom sue y} [a y → (a = λy.introduce tom sue y)]))]}S))
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Coda: Intonational Phrases are Constituents

• The present theory makes intonation structure as defined by intonational
boundaries isomorphic with the top-level constituency of surface syntactic
derivational structure.

• Surface derivational structure is also, as we have seen, isomorphic to coordinate
structure and the domain of relativization.

• It follows that this theory predicts the strongest possible relation between
intonation structure, information structure, coordination, and movement, as
follows (cf. Steedman 1991):

– All and only those substrings that can either undergo coordination or be
extracted over can be intonational phrases and elements of information
structure, and vice versa.
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Syntactic Islands are Intonational Islands

• (110) a. *(Three mathematicians) (in ten derivea lemma).
L+H* LH% H* LL%

b. *(Seymour prefers the nuts) (and boltsapproach).
L+H* LH% H* LL%

c. *(They only asked whether I knew the woman who chairs) (the zoning board).
L+H* LH% H* LL%

• (111) a. *Three mathematicians in ten derive a lemma and in a hundred can cook a
boiled egg.

b. *The nuts which Seymour prefers and bolts approach
c. *Which boards did they ask whether you knew the woman who chairs?
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Coda: The Real Problem of Language Acquisition

• If all there was to language was an encoding of propositions that the child
already has in mind, as in part III, it is not clear why they should bother to
learn language at all, as Clark (2004) points out, in defence of a PAC learning
model (!).

• We know from Fernald (1993) that infants are sensitive to interpersonal aspects
of intonation from a very early age.

• In English, intonation contour is used to convey a complex system
of information-structural elements, including topic/comment markers and
given/newness markers (Bolinger 1965; Halliday 1967; Ladd 1996), and is
exuberantly used in speech by and to infants.
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Towards a More Realistic Syntax and Semantics

• For example, it is likely that the child’s representation of the utterance “More
doggies! is more like (112):

(112) More doggies !
H∗ H∗ LL%

NP↑
+,ρ Xφ\?Xπ,η

:
{

λ p.p (more′dogs′)
λ p.p (vmore′vdogs′)

}
: λg.π[S]η g

<

NP↑
φ

: [S]ρ
{

λ p.p (more′dogs′)
λ p.p (vmore′vdogs′)

}
“Mummy makes the property afforded by more dogs (as opposed to the alternatives) common
ground.”
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• Consider the child then faced with the following, from Fisher and Tokura
(1996), as the next utterance (cf. Steedman 1996a):

(113) You like the doggies!
H∗ L LL%

S/(S\NP) (S\NP)/NP Xφ\?Xπ,η Sφ\(Sφ/NPφ )

: λp.p you′ :
{

λxλy.like′xy
λxλy.vlike′xy

}
: λg.π[S]η g : [S]ηλq.q dogs′

>B

S/NP :
{

λx.like′x you′
λx.vlike′x you′

}
<

Sφ/NPφ : [S]ρ
{

λx.like′x you′
λx.vlike′x you′

}
<

Sφ : ([S]θλp.p dogs′)([S]ρ
{

λx.like′x you′
λx.vlike′x you′

}
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S :

{
like′dogs′you′
vlike′dogs′you′

}
“Mummy supposes what property the dogs afford to be common ground, and
makes it common ground it’s me liking (as opposed to anything else) them.”
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CCG as “Motherese”

• Fisher points out that the L boundary after the verb makes the intonation
structure inconsistent with standard assumptions about surface constituency.

• However, this intonation structure is homomorphic to the CCG derivation,
which delivers the corresponding theme/rheme information partition directly.

• Thus, here too, the availability of the full semantic interpretation, including
information-structural information, directly reveals the target grammar.

• In this case, since the derivation requires the use of the forward composition
rule, indexed >B, the child gets information about the probability of applying
the composition rule to the first two categories to yield S\NP.

• Thus, the child can build the entire parsing model in parallel with learning the
grammar,

• Long range dependencies come for free.
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Coda: Information Structure and Gapping

• I conjecture that the Alternative Logical Form defined in this section is the
locus of the Gap information in the English gapped construction.

(114) Anna married Manny and Tom Sue

S :
{

married′manny′anna′
married′vτmanny′vτanna′

}
(X\?X)/?X S\((S/NP)/NPSG) :

{
λ tv.tv sue′tom′
λ tv.tv vτsue′vτtom′

}

• This would fill a hole in the account of gapping as constituent coordination in
Steedman (1990)
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Conclusion

• Intonation Structure is just Surface Syntactic Derivation, a.k.a. PF.

• Information Structure is just Logical Form, a.k.a. LF.

• PF and LF are the only “interface levels”

• LF is the only structural representational level.

Z covert/overt move (a.k.a. copy/delete etc.) = merge = LF surface

composition
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