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Abstract

The addition of Three Dimensional (3D) data has the
potential to greatly improve the accuracy of Face Recogni-
tion Technologies by providing complementary information.
In this paper a new method combining intensity and range
images and providing insensitivity to expression variation
based on Log-Gabor Templates is presented. By breaking a
single image into 75 semi-independent observations the re-
liance of the algorithm upon any particular part of the face
is relaxed allowing robustness in the presence of occulu-
sions, distortions and facial expressions. Also presented is
a new distance measure based on the Mahalanobis Cosine
metric which has desirable discriminatory characteristics
in both the 2D and 3D domains. Using the 3D database
collected by University of Notre Dame for the Face Recog-
nition Grand Challenge (FRGC), benchmarking results are
presented demonstrating the performance of the proposed
methods.

1 Introduction

Face as a biometric has the distinct advantage over other
modalities such as fingerprint, DNA and iris recognition,
in that the acquisition stage is non-intrusive and can be
achieved with readily available equipment. 3D represen-
tations of the human face have the potential to overcome
many of the obstacles such as pose and illumination sen-
sitivity, which have prevented the widespread adoption of
Face Recognition Technology (FRT).

Early work in 3D facial recognition emerged in the late
1980’s but it wasn’t until recently that substantial research
databases have become available. The Face Recognition
Grand Challenge [1] aims to address this issue and provides
both a common dataset and experiment methodologies to
enable accurate comparisons of different algorithms.

In [2] the authors present a good summary of the current
research in 3D and composite 2D-3D recognition, in partic-

ular they note that while it is accepted that a combination
of 2D and 3D gives greater performance, it is still unclear
which modality performs better in isolation. In the follow-
ing work more focus was applied to the 3D domain, how-
ever the methodology is equally applicable to combination
with a more sophisticated 2D recognition engine.

In general, approaches to 3D recognition fall into 3 main
categories [2]: those that use 3D correspondence matching
explicitly to provide discrimination [3, 4]; those that extract
3D features such as curvature directly from the face; and
those that treat the range image as a 2D image in order
to extract features [5]. The latter has the advantage that a
considerable number of well tested image processing algo-
rithms can be directly applied.

Gabor filters are one such method which have been
demonstrated to achieve high recognition rates in traditional
2D face recognition tasks [6, 7] and have been shown in
[8] to exhibit robustness to misalignment. Techniques such
as Hierarchial Graph Matching (HGM) and Elastic Bundle
Graph Matching (EBGM) enhances this resilience further
by adding a degree of freedom into the localisation of fea-
ture points [5].

In this paper a novel method of achieving robust face
matching called Log-Gabor Templates (LGT) is presented.
It is established that the use of multiple observations im-
proves biometric performance; LGT exploits this fact by
breaking a single acquisition of a subject into mulitple
observations in both the spatial and frequency domains.
These observations are each classified individually and re-
combined at the score level using linear Support Vector Ma-
chines (SVM). In this article it shall be shown that such
a distributed approach is more resilient to local distortions
such as expression variation.

2 Log-Gabor Filters

The Gabor family of wavelets first started gaining popu-
larity in the field of image processing in 1980 when Daug-
mann first showed that the kernels exhibit useful properties
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such as spatial localisation and orientation selectivity. Typi-
cally when used in face recognition applications [9] a family
of filters is created where the filter at a scale v and orienta-
tion u is defined by,

ϕu,v(x) =
||ku,v||2

σ2
e−

||ku,v ||2||x||2
2σ2

[
eiku,vx − e−

σ2
2

]
(1)

where ku,v = kve
iφu is the wave vector, σ is typically 2π

and the final term, e
−σ2

2 , is employed to remove the D.C.
offset.

In [10] Field proposes an alternate method to perform
both the DC compensation and to overcome the bandwidth
limitation of a traditional Gabor filter. The Log-Gabor filter
has a response that is Gaussian when viewed on a logarith-
mic frequency scale instead of a linear one. This allows
more information to be captured in the high frequency ar-
eas and also has desirable high pass characteristics. Field
defines the frequency response of a Log-Gabor filter as,

Φ(f) = exp− log(f/k)
2 log(σ/k)

, (2)

where k = [u0 v0 w0 · · · ]T is the centre frequency of the
sinusoid and σ is a scaling factor of the bandwidth. In or-
der to maintain constant shape ratio filters, the ratio of σ/k
should be maintained constant. In the following experi-
ments the shape parameter was chosen such that each filter
had a bandwidth of approximately 2 octaves and the filter
bank was constructed with a total of 6 orientations and 3
scales.

3 Face Verification

Face Verification techniques typically employ a mono-
lithic representation of the face during recognition, how-
ever, approaches which decompose the face into sub-
regions have shown considerable promise. Many authors
[11, 12] have shown superior performance by adopting a
modular representation of the face provided that face local-
isation is performed accurately [12].

3.1 Log-Gabor Templates

It is well established that using multiple probe images
aids recognition performance, the same effect can be ob-
tained by breaking a single face into multiple observations.
After application of the 18 Log-Gabor filters, the face is
broken into 25 square windows arranged in a 5x5 grid with
50% overlap in both the horizontal and vertical directions.
These regions are then further decomposed by 3 scales of
filter to generate 75 semi-independent observations for both
the intensity and range images. An illustration of the de-
composition process can be seen in Figure 1. Principal

Figure 1. Decomposition of the face into sub-
regions

Component Analyis (PCA) is used to build sub-spaces for
each subregion from training data. In each region only the
top 150 eigen-vectors are retained, thus each face is finally
represented as 150 feature vectors each comprising 150 di-
mensions.

3.2 Distance Measure

The original Eigenfaces approach of Turk and Pentland
used a simple Euclidean distance classifier, however, ex-
perimentation with a wide variety of distance metrics has
shown that the Mahalinobis Cosine distance measure pro-
vides better performance [13]. This measure is defined as,

DMahCosine = −|m| |n| cos θmn

|m| |n|
= − m.n

|m| |n| , (3)

where m and n are two feature vectors transformed into the
Mahalanobis space. In this experimentation a new distance
measure based on the Mahalanobis Cosine measure is pro-
posed based upon the observation that the distance calcula-
tion is inherently a function of M , the number of retained
eigenvectors. By averaging the angular distance between
two vectors across a range of retained eigenvectors the im-
portance of optimal selection of parameter M is reduced.
The proposed distance metric is thus defined as

DMahCosAvg =
1
M

M∑
i=1

Di
MahCosine. (4)

3.3 Classifier Fusion

Given the multiple observations of a single face, a com-
parison between two faces generates 150 distance scores. In
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this work linear Support Vector Machines (SVM)

Ψ(x) = wT x + α, (5)

are used to combine a multitude of scores back to a sin-
gle value. SVMs were chosen because they combine in-
formation in a discriminatory sense, maximising the mar-
gin between client and imposter scores. Training data is
used to derive sets of combination weights within each fre-
quency band which are then concatenated to give the final
weight vector w for each modality. Initial experimentation
has shown that the 3D data being used performs approxi-
mately an order of magnitude better than the 2D and the
combination of 2D/3D scores are weighted accordingly.

4 Dataset Description

The experiments described in this article were conducted
using 3D data provided as part of the Face Recognition
Grand Challenge [1]. The FRGC dataset, which contains
4007 registered texture and shape images of 466 subjects, is
currently the largest publicly available database of 3D face
images. The data was collected by the Computer Vision Re-
search Laboratory at the University of Notre Dame (UND)
over 3 semesters using a Minolta Vivid 900 range finder.

The 466 subjects in the database were broken into train-
ing and testing groups according to the specification of
FRGC Experiment 3. Within Experiment 3 there are 3 sub-
experiments of increasing difficulty, all results quoted in
this paper were evaluated on the hardest of these (Mask III)
which is comprised of target/query pairs which are captured
in different semesters. Unless otherwise stated all results
are quoted as true acceptance rates at a False Acceptance
Rate (FAR) of 0.1%.

Of the 4007 images in the test set 59% are captured
with a neutral expression while the remainder are captured
variously with expressions of surprise, happiness, sadness
and disgust. Manual classification by researchers at Ge-
ometrix [4] shows that these non-neutral images are evenly
distributed between mild and severe distortions. Examples
of range images under various expressions are shown in Fig-
ure 2.

5 Experimentation

Before testing the robustness of the LGT method in the
presence of expression variation the efficacy of the proposed
distance metric and the distribution of discriminable infor-
mation in both modalities are first evaluated.

5.1 Distance Metric

In Section 3.2, the Mahalanobis Cosine Average (Mah-
CosAvg) distance measure was introduced, we now provide

(a) (b) (c)

Figure 2. Examples of FRGC images with (a)
neutral expression (b) small distortion and
(c) large distortion

test cases evaluating the performance of the metric. The
new distance measure was compared against an ensemble of
other metrics on monolithic representations for both range
and intensity images. Figure 3 shows the relative perfor-
mance of the three top performing distance metrics. While
slight improvements can be observed in the Covariance met-
ric in the 2D modality these are completely offset by its
poor performance in the 3D domain. The MahCosAvg met-
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Figure 3. DET for Covariance, MahCosine and
MahCosAvg distance metrics.
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ric provides consistant performance improvment over the
original MahCosine metric for both the 2D and 3D data and
provides equivalent performance in the combined case. Of
principal consideration is the low FAR region; in Table 1 the
results at a FAR of 0.1% show that the MahCosAvg metric
provides the best performance at this operating point.

 MahL2 Covariance MahCosine MahCosAvg 
2D 37.59% 39.42% 37.40% 39.37% 
3D 44.80% 51.92% 78.57% 79.66% 

Comb 51.38% 60.46% 82.72% 82.72% 

 

Table 1. Recognition rates for monolithic rep-
resentations using various distance metrics.

5.2 Log-Gabor Decomposition

After dividing the face into 25 overlapping regions and
calculating recognition performance in isolation, it is ob-
served that the recognition rate:

• deteriorates with distance from the image center,

• is approximately symmetrical about the medial line,

• was better above the nose than below it,

Table 2 shows the recognition accuracy as progressively
more regions surrounding the center are used in the clas-
sification process. In the 3D domain best performance is
achieved by using only the centermost 5 regions whereas
for 2D, best performance is achieved using the entire face.

Figure 4. Example of a single normalised ac-
quisition in both 2D and 3D.

To explain this contrast examination of the data is re-
quired. The 3D data collected for the FRGC is generally
much more consistent than the corresponding 2D, which
contains highly variant illumination conditions, this can be

observed from Figures 2 and 4. This leads to the conclusion
that the central regions of the face are sufficient to perform
verification in clean 3D data, however the inclusion of ex-
tra regions is better able to compensate for the environmen-
tal conditions present in the 2D data. The overall perfor-
mance of the LGT method with respect to the best perform-
ing monolithic system is shown in Figure 5 and consistent
improvements can be observed in all modalities in the low
FAR region. It is interesting to note that despite the sig-
nificant performance gap between the 2D and 3D data the
combination of both still yields an improvement.
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Figure 5. DET plot of LGT method (black) and
Log-Gabor based monolithic classifier (red).

5.3 Expression Variation

In the previous section it was shown that best results in
the 3D domain were achieved using a small closely packed
set of subregions surrounding the nose while in the 2D do-
main best results were achieved using the entire face. In this
section the effects of varying expresion levels upon each set
of regions is examined and compared against the best per-
forming monolithic approach used in previous sections.

In [4], the authors manually divide the FRGC 3D cor-
pus into three categories based on strength of expression
variation: Neutral, Small, Large. In order to test the robust-
ness of the presented approach in the presence of expres-
sion variation the neutral images are used as the gallery and
four probe sets are created containing progressively more
variation. The four sets are respectively Neutral, Small,
Small+Large and Large.
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 2D 3D 
 C1 C5 C9 C25 C1 C5 C9 C25 

Low  - - - - 82.68 83.93 83.21 82.95 
Mid 24.28 35.01 37.67 45.66 86.97 90.42 90.27 86.63 

High 14.40 41.01 42.68 47.39 76.41 87.07 86.73 87.36 
Combined 23.01 42.85 45.28 50.67 91.57 93.16 92.68 91.65 

 
Table 2. Recognition rates (C5 indicates that the 5 centermost subregions were combined, C9 that
the 9 centermost were combined and C25 that all subregions were combined).
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Figure 6. Equal Error Rate for increasing ex-
pression variation for 2D modality.
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Figure 7. Equal Error Rate for increasing ex-
pression variation for 3D modality.

Figures 6, 7 and 8 show the Equal Error Rate as the
strength of expression variation in the probe set is increased.
As can be seen the monolithic representation suffers from a
sharp degradation in performance when severe expression
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Figure 8. Equal Error Rate for increasing ex-
pression variation for combined.

variation are introduced. In contrast the LGT based clas-
sifiers have a much more linear degradation over the same
range.

This effect is significantly more noticeable in the 3D do-
main which can be attributed to the level of noise present in
the two modalities. In the 2D domain the effects of expres-
sion variation can be subsumed by factors such as lighting
variation, shadowing and surface reflectance. In the 3D do-
main expression is a much more dominant factor and thus
provides a better indication of the LGT method’s insensitiv-
ity to expression variation.

6 Conclusions

In this article a new distance metric is proposed for Near-
est Neighbour comparison of 2D and 3D face images in a
PCA based subspace. Testing has shown that the proposed
metric has good discriminating power in low False Alarm
regions.

Also presented is a novel and robust combined 2D/3D
face recognition method. The Log-Gabor Templates
method exploits the multitude of information available in
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the human visage to construct multiple observations of a
subject which are classified independently and combined
with score fusion. The LGT method has been evaluated
on the largest publicly available 3D face database. Results
have shown that the parts based methodology adopted has
better performance than an equivalent monolithic classifier
and exhibits more graceful performance degradation in the
presence of expression variation.
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