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Abstract The activities of a cyclohexene series of influ-

enza neuraminidase inhibitors were studied based on the

combination of 3D-QSAR, molecular docking, and

molecular dynamics methods. The 3D-QSAR models were

established by comparative molecular field analysis

(CoMFA) and comparative molecular similarity indices

analysis (CoMSIA) methods. The optimum CoMFA and

CoMSIA models yielded satisfactory statistical results: the

leave-one-out cross-validation correlation coefficients (q2)

were 0.722 and 0.779, respectively. The corresponding

non-cross-validated r2 were both 0.996. Based on the built

3D-QSAR models, several new neuraminidase inhibitor

analogs were designed. Molecular docking elucidated the

conformations of compounds and key amino acid residues

at the docking pocket of neuraminidase protein. Molecular

dynamics simulation further determined the binding pro-

cess and validated the rationality of docking results.

Keywords Influenza neuraminidase inhibitor �
3D-QSAR � Molecular docking � Molecular dynamics �
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Introduction

Pandemic influenza outbreaks pose a significant threat to

public health as highlighted by the latest emergence of

highly pathogenic avian influenza H7N9 [1, 2] and the

recent 2009 outbreaks of swine-oriented H1N1 viruses

(2009 H1N1) [3]. Currently, prevention and treatment of

influenza rely on inactivated vaccines and antiviral drugs.

However, attempts to control this disease through immu-

nization have been hampered by the rapidity with which

the virus mutates. Therefore, the development of effective

and safe antiviral agents is even more important in the

event that new highly virulent strains can lead to global

pandemics resulting in millions of deaths [4].

Many studies have demonstrated that the influenza virus

neuraminidase (NA), a surface glycoprotein located on the

virus surface, is a highly successful clinical target for the

treatment of influenza infections [5, 6]. Neuraminidase can

cleave terminal sialic acid residues from glycoconjugates,

which is essential for virus replication and infectivity [7]. It

has been postulated that NA is required in the elution of

newly synthesized virus from infected cells [8–10]. It may

also promote viral movement through respiratory tract

mucus, thus enhancing viral infectivity [11]. Therefore, NA

has been regarded as an important target for designing

agents against influenza viruses.

Based on the NA crystal structures elucidated in the

early 1990s, many highly selective NA inhibitors are rea-

sonably designed. A potent inhibitor, zanamivir (Relenza),

has been shown to have strong antiviral activity in animal

models and in human trials [12, 13]. However, due to poor

oral bioavailability, zanamivir is applied topically to the

respiratory tract as an intranasal spray or inhalant [12–14].

Aiming at developing oral agents against influenza infec-

tion, Kim et al. [15–20] have designed and synthesized a

series of carbocyclic NA inhibitors with various lipophilic

side chains. GS 4071 ((3R,4R,5S)-4-cetamido-5-amino-3

(1-ethylpropoxy)-1-cyclohexene-1-carboxylic acid) is the

most potent in this series with IC50 of 1 nmol/dm3 [16].

Oseltamivir (GS4104, TamifluTM), the ethyl ester prodrug

of GS4071, a striking influenza virus neuraminidase
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inhibitor, was developed to enhance oral absorption and

increase serum half-life [21]. At present, both zanamivir

and oseltamivir are effective inhibitors of both A and B

forms of neuraminidase. They have been approved by the

FDA for the treatment of influenza. More recently, two

other neuraminidase inhibitors, peramivir [22] and lani-

namivir [23], were also approved as anti-influenza drugs.

Despite their outstanding potency, all these inhibitors

have limitations: for example, zanamivir suffers from low

oral bioavailability, and oseltamivir is highly vulnerable to

inactivation because of viral mutation. In addition, some

people using oseltamivir and zanamivir have had rare side

effects of sudden confusion, delirium, hallucinations,

unusual behavior, or self-injury [24, 25]. Therefore, the

drugs currently in use may not fully protect humans, and

thus a new generation of antiinfluenza drugs is needed.

To develop new, more effective (more biologically

accessible, less toxic, without side effects) NA inhibitors,

an effective tool for drug design, the quantitative struc-

ture–activity relationship (QSAR) method, had already

been applied in this area. For instance, Verma and Hansh

[26] developed 17 QSAR models for different sets of

compounds including benzoic acid derivatives [27], car-

bocyclic derivatives [15–20], cyclopentane amide

derivative [28], isoquinolines [29], and pyrrolidines [30]

to understand chemical–biological interactions governing

their activities toward influenza neuraminidase. Two

models, topological and geometric, were established to

estimate the inhibitory activity of NA inhibitors, which

are cyclohexene and cyclopentane derivatives [31]. A

3D-QSAR model was also established by use of

descriptors calculated by a holographic vector of the

atomic interaction field analysis (HoVAIFA) method

[32]. These models can identify some critical structure

features for inhibitory activity. However, the traditional

2D method does not take 3D structural features into

account and lacks spatial information about compounds

[33]. Therefore, comprehensive molecular structure fea-

tures that contribute to the inhibitory activity of NA

inhibitors are still limited. In this work, 3D-QSAR

methods, i.e., comparative molecular field analyses

(CoMFA) [34] and comparative molecular similarity

index analyses (CoMSIA) [35, 36], were applied to gain

insights into the key structural factors affecting inhibitory

activity of NA inhibitors. The developed models can not

only be used to predict the activity of newly designed

inhibitors, but also provide beneficial information in

structural modifications for designing new inhibitors with

desired inhibitory activity. In addition, molecular dock-

ing was carried out to study the binding modes of

inhibitors at the active site of the NA protein. Molecular

dynamics (MD) simulation was performed to confirm the

reliability of docking results.

Results and discussion

Data sets

The 35 compounds involved in this study have been

reported by the same group [15–20]. The structures and

biological activities expressed as pIC50 against influenza A

are shown in Tables 1 and 2. The samples were randomly

divided into a training set of 30 compounds for model

generation and a test set of five compounds for model

validation. The data set compounds were selected by

considering both the distribution of biological data and

structural diversity. The alignment of training set com-

pounds is shown in Fig. 1.

CoMFA and CoMSIA statistical results

To generate statistically significant 3D-QSAR models, the

regression analysis was carried out using the partial least

squares (PLS) method [37, 38]. CoMFA and CoMSIA

models were developed, and the final models were selected

according to the statistical parameters. The statistical

results for the final CoMFA and CoMSIA models are

summarized in Table 3. PLS analysis on all of the com-

pounds in the training set resulted in a CoMFA model with

a cross-validated q2 of 0.722. This model gave an optimal

number of components (ONC) of 10 and a conventional

correlation coefficient r2 of 0.996. The corresponding steric

and electrostatic field descriptors explained 72.1 and

27.9 % of the total variance. For CoMSIA analysis, five

descriptor fields (steric, electrostatic, hydrophobic, hydro-

gen bond-donor, and hydrogen bond acceptor) were

considered. However, we found that the CoMSIA

descriptors such as the steric and hydrogen-bond donor

play significant roles in the prediction of inhibitory activ-

ity. An excellent value of 0.901 for r2 prediction was

obtained for this model with the q2 of 0.685. Incorporation

of the electrostatic, hydrophobic, or hydrogen bond

acceptor field descriptors leads to a small decrease in q2

(0.609–0.684) and r2 prediction (0.704-0.855). The CoM-

SIA model based on hydrophobic and hydrogen bond

donor fields was found to have marginally better q2 of

0.779 with a little drop in the r2 prediction (0.862). The

relationship between actual and predicted pIC50 value of

the training and test set molecules is illustrated in Fig. 2a, b

for the CoMFA and CoMSIA models. Herein almost all

points are located on the diagonal line.

CoMFA and CoMSIA contour maps

To visualize the field effects on the target compounds in 3D

space, the contour maps (Figs. 3, 4, 5) produced by

CoMFA (a) and CoMSIA (b) were analyzed by
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Table 1 The structures, actual and predicted pIC50 values of the training set

No. Inhibitor structure Substituent R Bioactivity (pIC50)

Actual Predicted CoMFA Predicted CoMSIA

1 CH2CH2CF3 6.650 6.659 6.628

2 C6H5 6.280 6.281 6.286

3 H 5.200 5.214 5.159

4 CH3 5.430 5.414 5.402

5 CH3CH2 5.700 5.595 5.936

6 CH3(CH2)2 6.740 6.457 6.611

7 cyc-C5H9 7.660 7.700 7.534

8 CH3(CH2)3 6.520 6.527 6.534

9 CH3(CH2)4 6.700 6.650 6.628

10 CH3(CH2)5 6.820 6.819 6.792

11 CH3(CH2)6 6.570 6.633 6.642

12 CH3(CH2)7 6.740 6.681 6.801

13 CH3(CH2)8 6.680 6.616 6.530

14 CH3(CH2)9 6.220 6.286 6.293

15 CH3CH2(CH3)CH*(R) 8.000 7.975 7.949

16 CH3CH2(CH3)CH*(S) 8.050 8.047 8.070

17 7.920 7.987 8.013

18 9.000 9.066 9.006

19 8.520 8.497 8.624

20 7.800 7.728 7.859

21 9.000 9.031 8.976

22 9.520 9.529 9.483

23 PhCH2 6.210 6.253 6.240

24 Ph(CH2)3 7.050 7.049 7.035

25 (CH3)2CHCH2 6.700 6.658 6.665

26 9.000 8.991 8.974

27 CH(CH2CH2CH3)2 7.800 7.811 7.805
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superimposing them onto the most active molecule 22.

These contour maps are significant for new drug design, as

they show regions in 3D space where modifications of the

molecular fields strongly correlated with variations in

biological activity.

As shown in Fig. 3, the sterically favorable regions are

represented in green and unfavorable regions in yellow. It

can be observed that the steric contour map of CoMFA

(Fig. 3a) is similar to that of CoMSIA (Fig. 3b). A small

green contour covering the ethyl group linked to C1 of R

indicates the importance of the presence of a bulky group

in this region for biological activity. Thus, compounds 23

and 24 without a bulky group at this position exhibit

decreased biological activity. Similarly, the higher pIC50

values of 9.00 in 18, 21, and 26 are indicative of the

importance of a bulky group at this position. The large

yellow contour surrounding the aryl ring indicates that

compounds with bulky substitution could not possess good

biological activity as observed in 24.

The electrostatic field contour maps of CoMFA and

CoMSIA are shown in Fig. 4a, b. The electrostatic field is

indicated by blue- and red-colored contours, where the blue

regions denote that the electropositive groups are favorable

to the activity and the red regions indicate that the elec-

tronegative groups are favorable to the activity. As shown

in Fig. 4a, two pieces of medium-sized region of red

contour located at the six-position of cyclohexene ring

show the importance of electronegative atoms in imparting

better biological activity. This is reflected in the increased

biological activity of 28–30 of the training set. Two med-

ium-sized blue contours observed near C3 of R suggest that

this position is not suitable for substitution with the elec-

tronegative atom. The poor biological activity of 1 is the

result of the replacement of H atoms of the methyl group

Table 2 The structures, actual and predicted pIC50 values of the test set

No. Inhibitor structure Substituent R Bioactivity (pIC50)

Actual Predicted CoMFA Predicted CoMSIA

Test1 CH2CH2CH3 6.280 6.458 6.605

Test2 CH2OCH3 5.200 6.277 5.700

Test3 CH2CH = CH2 5.430 6.024 5.880

Test4 H 7.000 5.815 5.961

Test5 (CH3CH2)2CH 9.300 9.551 9.796

Table 1 continued

No. Inhibitor structure Substituent R Bioactivity (pIC50)

Actual Predicted CoMFA Predicted CoMSIA

28 CH3(CH2)3 8.520 8.485 8.527

29 CH3CH2(CH3)CH*(R) 9.300 9.291 9.180

30 CH3CH2(CH3)CH*(S) 9.300 9.312 9.417
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by F atoms. Moreover, it had been recognized that most of

cyclohexene ring is encompassed by the red-colored map.

This observation demonstrates that these positions are

suitable for substitution with electronegative atoms. On the

other hand, the appearance can also demonstrate that the

carboxyl, amino, and amide groups at the cyclohexene ring

are very important for bioactivity.

In hydrophobic fields, yellow and white contours high-

light areas where hydrophobic and hydrophilic properties

are favored. In Fig. 5a, the yellow contour at C3 of R

indicates that this position is suitable for substitution with

hydrophobic group. Most of the derivatives involved in this

study possess hydrophobic groups at this site, which

reveals the importance of the hydrophobic substituent. The

white contour at C1 of R indicates that the introduction of

hydrophilic moieties at these positions should improve the

biological activity. A larger white contour covering the R

substituent suggests that the hydrophilic group may be

favored. In addition, a small white contour at the ortho

position of carboxyl in the cyclohexene ring indicates that

the position is suitable for substitution with a hydrophilic

group. As shown in Fig. 5b, the purple contours represent

the position where the hydrogen bond donor disfavors the

biological activity, and the cyan contours show that the

presence of donor groups in this region should produce

better biological activity. Two pieces of large cyan con-

tours near the region of amide indicate that introduction of

hydrogen bond donor moieties should improve the bio-

logical activity. This accounts for the better biological

activity of 28, 29, and 30. One larger purple contour

directed toward the amino group reveals that the hydrogen

bond donor substituent at the position is unfavorable to the

activity. As shown in Fig. 5c, the hydrogen bond acceptor

field is represented by magenta and red contours, in which

the magenta contours denote regions where the hydrogen

bond acceptor group would be beneficial to the bioactivity,

whereas red contours representing the hydrogen bond

acceptor group would decrease the bioactivity. Two

magenta polyhedrons near the carboxyl of the cyclohexene

ring suggest this region is favored for hydrogen bond

acceptor interactions. One medium-sized polyhedron

located at the C1 of the R substituent group shows disfa-

vored regions for hydrogen bond interactions, suggesting

that hydrogen bond acceptor substituent maybe decrease

activity.

Table 3 Summary of the CoMFA/CoMSIA PLS statistical results

q2 NOC r2 SEE F r2pred Field contribution/%a

S E H D A

CoMFA

S ? E 0.722 10 0.996 0.099 443.3 0.779 72.1 27.9

CoMSIA

S ? A 0.692 4 0.893 0.433 52.3 0.744 61.5 38.5

S 1 D 0.685 10 0.993 0.127 270.8 0.901 70.7 29.3

H ? D 0.779 10 0.996 0.101 428.5 0.862 76.7 23.3

S ? D ? A 0.641 10 0.992 0.137 230.5 0.855 65.4 19.6 14.9

S ? E?D 0.621 9 0.990 0.150 213.0 0.797 56.7 22.1 21.2

S ? E? A ? D 0.609 9 0.986 0.176 155.1 0.788 51.7 18.0 15.2 15.1

S ? E?H ? D 0.683 10 0.995 0.108 371.8 0.811 27.8 13.3 42.9 16.0

S ? E?H ? A ? D 0.684 8 0.981 0.200 134.5 0.704 26.2 9.2 39.1 12.8 12.7

Bold values indicate the COMSIA model based on steric and hydrogen-bond donor fields is the best model
a CoMFA and CoMSIA with different field contributions such as S (steric), E (electrostatic), H (hydrophobic), D (H-bond donor), and A (H-bond

acceptor)

Fig. 1 Alignment of the training set compounds
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Molecular design of new NA inhibitors

The detailed contour map analysis of both CoMFA and

CoMSIA models empowered us to identify structural

requirements for the observed inhibitory activity. Based on

QSAR results, inhibitor 22, with the highest activity, was

taken as a template to design new compounds. For example, a

green contour covering the ethyl group linked to C1 of R

indicates the importance of the presence of a bulky group in

this region for biological activity. Thus, a bulky isopropyl was

introduced to this position, and compound 22a was obtained.

A red contour near C6 of the cyclohexene ring shows the

importance of the electronegative atom at this position, and

thus compound 22b with two F substitutions at C6 was

designed. The white contour at the C atom of methylene in

ethyl linked to C1 of R indicates that the introduction of

hydrophilic moieties at this position perhaps can improve

biological activity. So compounds 22c, 22d, and 22e with

carboxyl, amino, and hydroxyl substitutions were designed.

The structures of compounds 22a-22e are shown in Table 4.

Their computed total energies, zero-point energies (ZPE),

relative energies (with ZPE corrections), and number of

imaginary frequencies are also listed in Table 4. Harmonic

vibrational frequency calculations indicate that all isomers

22a-22e are local minima on their potential energy surfaces at

theB3LYP level of theory.To predict their biological activity,

the CoMFA and CoMSIA models were applied to these new

molecules; the corresponding results are listed inTable 5. The

results show that the pIC50 values of these compounds are all

higher than 6.918, indicative of their good biological activity.

Based on the CoMFA model, 22a, 22d, and 22e have higher

pIC50 values than that of the most active molecule 22, so we

predict these three compounds perhaps should be regarded as

good candidates for experimental synthesis.

Docking analysis

A number of high-resolution crystal structures of influenza

NA and its complex with various small molecule inhibitors

have been determined and are available from the Protein

Databank. Based on the analysis of these structures, Kim

et al. [18] revealed that electrostatic interactions might play

Fig. 3 Contour maps of CoMFA (a) and CoMSIA (b) based on compounds 22. Steric fields: favored (green) and disfavored (yellow) (color

figure online)

Fig. 2 Plots of predicted versus actual pIC50 values for all the

molecules based on CoMFA (a) and CoMSIA models (b)

1218 L. P. Cheng et al.

123



a critical role for any successful inhibitors. Herein two new

most potent analogs, 22a and 22d, are selected for more

detailed analysis. Figure 6 shows the interacting mode of

compounds 22a and 22d in the binding site of the NA

receptor. Some key residues, such as Arg292, Arg371,

Arg152, Tyr406, and Trp178, as well as hydrogen bonds

between the selected compound and the residues were also

labeled. As shown in Fig. 6a, compound 22a was docked in

the binding cavity with the carboxyl directing toward the

hydrophilic group of Arg292, Arg371, and Tyr406. The

ligand is anchored in the binding site perhaps via five

H-bonds. The carboxyl oxygen atom of 22a perhaps acts as

an acceptor to form two hydrogen bonds with the H atom

of the –NH2 groups of the Arg292 residue and one

hydrogen bond with the H atom of the –NH2 group of the

Arg371 residue. It may also form one hydrogen bond with

Fig. 4 Contour maps of CoMFA (a) and CoMSIA (b) based on compounds 22. Electrostatic fields: electropositive (blue) and electronegative

(red) (color figure online)

Fig. 5 Contour maps based on

compound 22. a Hydrophobic

field: favored (yellow) and

disfavored (white). b Hydrogen

bond donor field: favored (cyan)

and disfavored (purple).

c Hydrogen bond acceptor field:

favored (magenta) and disfavored

(red) (color figure online)
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the H atom of the –OH group of Tyr406. Another hydrogen

bond is formed between the amide oxygen atom of the

cyclohexene ring and hydrogen atom of the –NH2 group in

Arg152 residue. Indeed, the crucial electrostatic interac-

tions between the NA protein and residues Arg118 and

Glu119 were observed in the binding pocket. Figure 6b

depicts the docking result of compound 22d. This ligand

was docked in the binding cavity with the amide directing

toward the hydrophilic group of Arg292, Arg371, and

Tyr406. The ligand is anchored in the binding site perhaps

via six H-bonds. The amide oxygen atom perhaps acts as an

acceptor to form three hydrogen bonds with H atoms of the

–NH2 group in Arg292 and Arg371 residues and one

hydrogen bond with H atom of the –OH group in Tyr406

residue. Another hydrogen bond is formed between the

carboxyl oxygen atom of Glu119 and H atom of the –NH2

group in the cyclohexene ring. The sixth hydrogen bond is

formed between the carboxyl oxygen atom of Trp178 and

Table 4 Total energies (E), zero-point energies (ZPE), and number of imaginary frequencies (NIMAG) for new molecules

No. Structure B3LYP/6-31G*

E/hartree ZPE/kJ mol-1 NIMAG

22 -1,189.40203 1,213.9 0

22a -1,228.71202 1,287.6 0

22b -1,427.18975 1,247.8 0

22c -1,377.96736 1,255.9 0

22d -1,244.74354 1,259.8 0

22e -1,264.60865 1,225.5 0
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H atom of the –NH2 group in the R substitute. Similarly,

the crucial electrostatic interactions between the NA pro-

tein and residues Arg152, Glu227, and Arg118 were also

found in the binding pocket.

MD simulations of complexes

The MD simulations of the two above-mentioned docking

complexes (22a-NA and 22d-NA) were carried out for

1,200 ps to validate the dynamic stability of the two systems.

The superposition of the average structure of the last 200-ps

MD simulation and the initial docked structure is shown in

Fig. 7. Where the magenta ligand and ribbon represent the

average structure and the corresponding MD complex, and

the green ligand and ribbon represent the initial structure and

the corresponding docked complex. As shown in both

Fig. 7a, b, it can be recognized that the average structure

extracted from MD simulations, and the initial docked

Table 5 Structures and predicted pIC50 values of the newly designed molecules

Compound no. Structure Predicted pIC50

CoMFA CoMSIA

22 9.529 9.594

22a 10.018 10.052

22b 6.918 8.254

22c 7.385 7.790

22d 9.732 8.785

22e 9.580 8.750
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structure of the complex is in the same binding pocket.

Except for a slight drift and rotation of bonds, there seems to

be no significant difference between the average and the

initial docked structure of the complex. It can be inferred that

the binding pocket and the conformation of the ligand are

stable, and the docking results are reliable.

Conclusion

CoMFA and CoMSIA studies on 35 cyclohexene-based

NA inhibitors were carried out to develop 3D-QSAR

models that provided good internal and external predic-

tivity. The resulted models can be extrapolated to predict

novel and more potent molecules. The contour maps

obtained from the CoMFA and CoMSIA analysis could

guide the design of new chemical entities with high NA

inhibitory activity. Based on the built QSAR models,

several novel NA inhibitors were designed, and the best

candidates for experimental synthesis were suggested. To

study the binding modes of inhibitors at the active site of

NA protein, molecular docking studies of representative

compounds were performed. Some key residues such as

Arg292, Arg371, Arg152, Tyr406, and Trp178 as well as

hydrogen bonds between the selected compound and the

residues were found. To further confirm the reliability of

docking results, MD simulations were carried out for rep-

resentative compounds. We hope our research may provide

a basis for the development of new NA inhibitors.

Materials and methods

Molecular modeling and database alignment

The molecular modeling and 3D-QSAR studies were per-

formed using the molecular modeling package SYBYL-X

2.0 (Tripos, Inc., USA). Three-dimensional structures of all

compounds were constructed by using the Sketch Molecule

module. Energy minimization was performed by the Powell

gradient algorithm with the Tripos force field [39] and Ga-

steiger-Hückel charge [40]. The maximum iterations for the

Fig. 6 Docking of the

representative ligand compounds

22a (a) and 22d (b) into the

binding site of NA. Ligands and

the important residues for binding

interaction are represented by stick

and line models. The hydrogen

bonds are shown as yellow dotted

lines (color figure online)
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minimization were set to 10,000. The minimization was

terminated when the energy gradient convergence criterion

of 0.021 kJ/mol Å was reached [32].

One of the critical steps in 3D-QSAR studies is the

selection of active conformation and alignment of mole-

cules. The success of these methods strongly depended on

the relative position of the ligands in the fixed lattice before

the generation of 3D descriptors. The database alignment

method was performed. The fragment used for the align-

ment is the cyclohexene carbon ring, and the most active

molecule 22 is used as a template.

CoMFA and CoMSIA modeling

CoMFA steric and electrostatic interaction fields were

calculated at each lattice intersection on a regularly spaced

grid of 3 Å. The grid pattern was generated automatically

by the SYBYL/CoMFA routine. As a probe atom, an sp3-

hybridized carbon atom of ?1.0 charges with a van der

Waals radius of 1.52 Å was used at each intersection [41].

For the CoMFA analysis, two descriptors, steric and elec-

trostatic fields were generated and scaled by the CoMFA-

STD method with default energy of 125.4 kJ/mol. Steric

interactions were calculated using the Lennard-Jones 6–12

potential, while electrostatic interactions were calculated

using the Coulomb potential. In the case of CoMSIA

analysis, similarity index descriptors were derived with the

same lattice box that was used in CoMFA. Five fields,

steric, electrostatic, hydrophobic, hydrogen bond donor,

and hydrogen bond acceptor interactions, were calculated

using the same probe atom as for the CoMFA analysis.

Regression analysis and model validation

The CoMFA and CoMSIA descriptors were used as inde-

pendent variables, and pIC50 values were used as the

dependent variables. The performance of models was

evaluated using the leave-one-out (LOO) cross-validation

method. The optimal number of components (ONC) equal

to that yielding the highest cross-validated q2 was used to

generate the final PLS regression models. The conventional

correlation coefficient r2, standard error of estimate (SEE),

and F ratio between the variances of experimental and

predicted activity values were then computed for the final

PLS models. The CoMFA and CoMSIA results were

interpreted graphically by the contribution maps using the

field type ‘‘PLSstdev 9 PLScoeff’’. To validate the CoM-

FA- and CoMSIA-derived models, the predictive ability

r2pred was determined for the test set molecules. The cross-

validated correlation coefficient q2 and r2pred were calcu-

lated by using Eqs. (1) and (2),

q2 ¼ 1�
R Yexp � Ypred
� �2

R Yexp � Ymean

� �2
ð1Þ

where Yexp, Ypred, and Ymean are the experimental,

predicted, and mean values of activity.

r2pred ¼ 1�
PRESS

SD
ð2Þ

Herein PRESS means the sum of squared deviations

between experimental and predicted activity values for

each molecule in the test set. SD means the sum of squared

deviations between the experimental activities of the

compounds in the test set and the mean activity of the

training molecules [33].

Computational methods

The calculations for the designed new molecules were

performed using the Gaussian 03 program package [42].

We optimized geometries and calculated the harmonic

vibrational frequencies at the B3LYP/6-31G* level of

theory, where B3LYP is the DFT method using Becke’s

three-parameter gradient-corrected functional [43] with the

Fig. 7 Superimposition of the average structure from the last 200 ps of the MD simulation (magenta) and the initial structure (green), compound

22a-NA complex (a), and compound 22d-NA complex (b) (color figure online)
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gradient corrected correlation of Lee et al. [44], and

6–31G* is the used basis set [45]. Stationary points were

characterized as minima without any imaginary vibrational

frequency.

Molecular docking

To study the binding mode of the inhibitors in the active site

of NA protein, molecular docking was performed using the

Surflex-Dockmodule in SYBYL-X2.0. The crystal structure

of the NA receptor complex was retrieved from the RCSB

Protein Data Bank (PDB entry code: 4K1K) [46]. The

ligands were docked in the corresponding protein’s binding

site by an empirical scoring function and a patented search

engine in Surflex-Dock. Before the docking process, one

natural ligand was extracted; the other natural ligands and

water molecules were removed from the crystal structure.

Subsequently, the protein was prepared by using the Bio-

polymer module implemented in Sybyl. The polar hydrogen

atoms were added, and Gasteiger-Hückel charges were

assigned to protein atoms. The automated docking manner

was applied in the present work. Other parameters were

established by default in the software. Surflex-Dock total

scores, which were expressed in -log10(Kd) units to repre-

sent binding affinities, were applied to estimate the ligand-

receptor interactions of newly designed molecules.

Molecular dynamics (MD) simulations

To confirm the docking results, the MD simulations [47–

49] were carried out in SYBYL-X 2.0 software. The

docked complexes of NA protein with two designed most

active molecules are used as initial conformations. The

system setup for simulation included an 8-Å cutoff for non-

bonded van der Waals interactions and periodic boundary

conditions. Constant temperature (300 K) and volume were

maintained with the time constant for a heat bath coupling

of 100 fs. The time step of 1 fs was used to integrate the

equations of motion, and the snapshot time was 100 fs. The

Boltzmann initial velocity was used to start the simulation.

Other parameters were set by default in Sybyl.

At the beginning of the production-run phase, the whole

system was first subjected to a gradual temperature change

from 319 to 294 K. The whole system was equilibrated for

600 ps, followed by another 600 ps of the molecular

dynamics production phase. The resulting trajectories were

analyzed by the Analyze module of Sybyl.
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