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A detailed study of a set of combined acceleration methods is presented with the objective of accelerating the solid rocket motor
grain burnback simulation based on the level set method. Relevant methods were improved by making use of unique
characteristics of the grains, and graphical processing unit (GPU) parallelization is utilized to perform the computationally
intensive operations. The presented flow traced the expansion of burning surfaces, and then Boolean operations were applied on
the resulting surfaces to extract various geometric metrics. The initial signed distance field was built by an improved distance
field generating method, and a highly optimized GPU kernel was used for estimating the gradient required by the level set
method. An innovative Boolean operation method, thousands of times faster than ordinary ones, was ultimately proposed.
Performance tests show that the overall speedup was close to 15 on desktop-class hardware, simulation results were proven to
converge to analytical results, and the error boundary was 0 25%.

1. Introduction

The working process of a solid rocket motor (SRM) is always
accompanied by dramatic changes in the shape of its grain.
As a result, burnback data are required in various SRM
simulations. Ordinary grains usually burn uniformly, so the
minimum distance method (MDM) [1, 2] can be used to cal-
culate burnback data efficiently. For those SRMs in which
erosive burning is encountered, a general surface tracing
method is required to handle the arbitrarily distributed
burnback speed. Specifically for dual-propellant grains, since
the burnback speed distributes discontinuously, the tracing
method has to be capable of strong discontinuity.

The level set method (LSM) [3] is a widely used and well-
tested method for tracing general evolving surfaces. It has
been proven to work well in SRM simulation [4–10]. The
LSM processes geometry using implicit representation; that
is, an ℝ-dimensional geometry is represented by an isosur-
face in ℝ + 1 dimensional space. Implicit representation pro-
vides the capability to handle complex topological changes

but also requires a larger data structure and more computa-
tion [11]. Full three-dimensional (3D) LSM burnback simu-
lation may consume hours of computation time. In specific
tasks, such as optimization [4] or data fitting, the simulation
has to be repeated for hundreds or thousands of times to
obtain the required data, making computational efficiency
even more crucial in these tasks.

The flow of burnback simulation based on a level set can
be summarized as follows: (1) generating the initial signed
distance field (SDF) on a computation grid, (2) tracing the
geometry formed by the expansion of burning surfaces via
the LSM, and (3) applying Boolean operations to produce
corresponding burnt grain or other required geometries.
The reason why we choose tracing the expansion of burning
surfaces rather than tracing the burning grain directly is that
such flow causes less numerical dissipation, evades extending
the definition of the burning rate, and allows one to easily
distinguish burning surfaces from nonburning ones. The
issue of Boolean operation will be further discussed in
Section 2. With the aim of boosting the simulation speed,
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accelerating any of the above subflows makes sense. Here, the
subflows are discussed one by one.

An initial SDF is required to start the LSM. Constructing
a SDF using a brute-force method on high-resolution grids
may take hours. Previous research [12, 13] provides efficient
algorithms for this task. In [1], the algorithm introduced by
[12] is used to generate the required SDF. Themethod discre-
tizes any geometry into sufficiently small triangles and calcu-
lates the SDF using OpenGL rendering functions. On the
other hand, the algorithm relies on the OpenGL shading
language, making it difficult to improve or run in server envi-
ronments. In [13], a scanning-based SDF-generating method
was proposed. This method is not bound to any specific
architecture and thus can be easily improved. In this
paper, the method of [13] is transplanted to NVIDIA’s
CUDA architecture to make use of the computing power
provided by modern GPUs. Since the follow-up process
requires two SDFs to work, the method is improved to
generate all required SDFs simultaneously using a reduced
level of computation.

Previous efforts to accelerate the tracing process of the
LSM can be divided into two categories: narrowband
methods [14] and avoiding reinitialization [15–18]. In [14],
the authors proposed a narrowband method, allowing one
to skip the computation of the nodes that are far from the tar-
get surface. Narrowband methods do significantly accelerate
LSM simulation in many cases. However, the technique lost
its role in this paper due to the usage of a cuboid mesh (see
the end of Section 2), so the technique is not adopted here.
In [15], a method was proposed to keep the implicit repre-
sentation as an exact signed distance function during the evo-
lution. Reinitialization is thus totally eliminated from the
simulation flow. However, the method cannot handle dual-
propellant grains because its accuracy is extremely sensitive
to the error of gradient estimation of the evolving speed field,
but in such grains, the gradient of discontinuous speed fields
cannot be accurately estimated. In [16–18], various methods
were proposed to avoid reinitialization in an active contour
method for image segmentation. While working well in
image segmentation, these energy-function-based methods
cannot be used for burnback simulation, because the propa-
gation speed and time components in such methods cannot
be mapped to physical solid rocket grains. To summarize,
the standard LSM is currently irreplaceable in the field of
burnback simulation.

From another perspective, the acceleration of the LSM
can still be achieved by improving computing power. Prelim-
inary tests show that the performance bottleneck of LSM lies
in estimating the gradient of the implicit representation. In
order to handle the discontinuity caused by dual-propellant
grains, in this work, we used weighted essentially nonoscilla-
tory (WENO) schemes [19] to estimate the gradient. There
have been studies on implementing WENO schemes on
GPUs [20, 21]. Both of the latter studies provide a significant
speedup compared to the CPU version. The major difference
between them lies in their memory accessing model: in [20],
source data are fetched from texture memory, while in [21],
the data are preloaded into shared memory. In this paper,
considering that memory access in WENO is complex but

not random, the shared-memory scheme is adopted. The
proposed computing pattern fuses the computation of three
axes, further reducing memory transfers without increasing
shared-memory occupancy.

The last step in the simulation is extracting the resulting
geometries and geometric metrics. Depending on the ulti-
mate purpose of the burnback simulation, there may be
various geometric metrics to extract. For simple 0D interior
ballistics analysis, we need to compute the total burning
area in each simulation step. In 1D interior ballistics analy-
sis, the burning area in each discretized segment is needed.
For 3D computational fluid dynamics (CFD) simulation or
visualization, the shape of the fluid boundary is required. In
previous research [5, 7], a method proposed in [22] is com-
monly used to retrieve the area and volume of geometries
from implicit representations. While the method is easy to
implement and works reliably, it is not adopted in this
paper due to the fact that it is unable to provide explicit
geometry in CFD simulations and that it introduces O 1
error in multidimensional cases [23]. Owing to accuracy
and flexibility concerns, in this paper, a triangular surface
mesh of the resulting geometry is first generated using the
marching cube (MC) method [24], and then other geomet-
ric operations (mainly Boolean ones) are applied to this
surface mesh to obtain the required metrics. Boolean oper-
ations on triangular meshes are usually computationally
expensive, but an innovative Boolean operation method is
proposed in this paper to solve the issue. The proposed
Boolean operation uses SDF to reduce the complexity com-
pared to corresponding ordinary operations, can be embed-
ded into the flow of the MCs, and can take advantage of
the hardware-accelerated interpolation of GPU to further
improve its efficiency.

Our main contributions in this work can be summarized
as follows: (1) an improved SDF-generating technique is
presented, (2) a highly optimized GPU kernel is designed to
estimate the gradient required by LSM, and (3) an extremely
fast Boolean operation method is proposed to obtain the
needed geometries from the LSM output. All of the above
methods are combined to construct an efficient, accurate,
and flexible framework for the solid rocket motor grain burn-
back simulation. Results of the simulation flow are proven to
converge to corresponding analytical results, and the overall
acceleration is significant.

2. Level Set Method

In this section, we use a finocyl SRM grain to demonstrate the
simulation framework. Extension to other types of grains is
easy. Figure 1 shows two sectional views of the grain. The
thick black lines denote the nonburning surfaces of the grain,
the thick red lines mark the burning surfaces, and the thin
blue grid is the computational mesh. We use uniform Carte-
sian grids in the simulation. Cylindrical meshes may seem to
better fit the shape of grains, but they would require time-
consuming transformation and provide no obvious advan-
tage in describing complex shapes (e.g., fins or stars). In
Figure 1, each point on the burning surfaces burns andmoves
inwards at the speed of the local burning rate.
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The straightforward practice is to simply trace the shrink-
ing (i.e., burning) process of the grain. However, such an
approach is not optimal due to the following disadvantages:

(1) Since burning rate is defined on the burning surface
instead of on the grid nodes, its definition has to be
extended to the grid nodes via a partial-differential-
equation- (PDE-) based method [25], which is obvi-
ously time-consuming.

(2) Nonburning and burning surfaces are blended in an
implicit representation. Therefore, extracting geo-
metric metrics of burning surfaces would be difficult.

(3) As the burnback continues, sharp cornersmay emerge
near fin-like structures (see Figure 2(a)). Numerical
dissipation near these sharp edges is often more
severe than that in any other part of the grain.

A simple solution for the above issue is to trace the
expansion of the burning surfaces. Despite the fact that the
flame actually only spreads inwards on the grain, we imag-
ine that the flame starts from initial burning surfaces and
spreads to all directions like waves; the space swept by the
flame can be defined as the “flame domain,” which is shown
by red lines in Figure 2(b). The expansion speed of the flame
domain is naturally defined by the burning rate of local pro-
pellant, so there is no need to expand the definition. The
expansion rate outside the grain can be simply set to the
slowest burning rate among that of all propellants. When-
ever the shape of burnt grain is needed, the shape can be
easily obtained by applying a Boolean operation, that is, sub-
tracting the produced flame domain from the unburnt grain
(see Figure 3). Burning and nonburning surfaces can be dis-
tinguished by their source geometry. Since the flame domain
keeps expanding during simulation, few sharp edges would
emerge (see Figure 2(b)).

The flame domain expansion process can be easily han-

dled by the LSM. We use LSM following (1), where ϕ x is
a SDF defined on a uniform Cartesian grid around a SRM
grain and Vn is the local burning rate. We use the WENO5
scheme to estimate the gradient and Godunov’s scheme
[26] to determine the corresponding domain of dependence.
The total variation diminishing Runge–Kutta (TVD-RK)
scheme is used for time discretization. Other foundational

details regarding the LSM will not be described in this article
for simplicity.

ϕt +Vn · ∇ϕ = 0 1

An obvious characteristic of SRM grains is that most have
a large length-radius ratio and that the shape-changing rate
along a grain’s axial direction is more moderate than that
along the radial direction. Therefore, using a finer mesh in
the radial direction than that in the axial direction is reason-
able. In the proposed framework, all of the combined
methods allow the mesh grid to be cuboid, so we can set a
larger grid length in the axial direction to balance accuracy
and efficiency.

One side effect of the cuboid mesh is that a narrowband
technique [14] is no longer effective. A narrowband tech-
nique requires roughly 10 grids to be normally calculated
around the zero level set, so the width of the narrow band
would be roughly 2 × 10 times the axial grid spacing
(assumed as Lx). Since Lx can be several times larger than
the grid spacing in the radial direction, a narrow band of
20Lx width covers dozens of grid nodes in the radial direc-
tion. Unfortunately, less than 128 radial grids already pro-
vide enough accuracy in most cases. To summarize, if a
cuboid mesh is used in the simulation, most of the grid
points will appear in the band, rendering the narrowband
technique ineffective.

3. Implementation

3.1. Efficient SDF Generation. Our framework requires SDFs
of both the initial burning surface and the entire model. The
SDF of the initial burning surface will be used in LSM evolu-
tion, and that of the entire model will be used to accelerate
the Boolean operation (see Section 3.3).

To construct a SDF, we need the minimum distance field
(MDF) value and sign information for each grid node. Calcu-
lating the MDF via a brute-force method results in O G · E
complexity, where G is the number of grid nodes and E is
the number of geometric elements. In [13], an efficient scan-
ning technology called DiFi was proposed to calculate the
MDF of any model. We have improved DiFi so it generates
the two required SDFs simultaneously.

The flow of DiFi in the 2D case is illustrated in Figure 4.
Expanding to the 3D case is straightforward. A scanning line
moves in one direction and divides the geometric elements
(which can be of any type) into three categories: approaching,
intersecting, and receding. The approaching group is shown
in blue and contains the elements not reached by the scan-
ning line. The intersecting group is shown in red and holds
the elements that have been passed by the scanning line
and thus may contribute to the MDF near the scanning line.
If an element no longer contributes to the MDF near the
moving scanning line, it will be moved to the receding group,
which is shown in green. During each scanning step, we iter-
ate through the intersecting group and search the shortest
distance from each element to each nearby node. By per-
forming two scans at opposite directions (head to end, then
end to head) and taking the minimum result, we can obtain

Figure 1: Computation grid.
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an exact MDF value. A detailed procedure and proof can be
found in [13].

Noting that each element of the burning surface has an
identical copy in the corresponding grain model, it is unnec-
essary to process these elements using two independent
scans. During the abovementioned iteration among the inter-
secting group, the improved DiFi implementation maintains
two required MDFs simultaneously: if the element being

processed belongs to the burning surface (so it must also
belong to the grain), the minimum result is written to the
MDFs of both geometries; otherwise, the result is written to
the MDF of the grain only. By the end of scanning, both
MDFs are ready for follow-up procedures.

On the base of the generated MDFs, sign information on
each node is still required to finally build a SDF. Using the
CPU library CGAL [27], it is easy to determine whether a
point is inside the grain and to assign negative signs to inside
nodes. Noting that generating a MDF value and a determin-
ing sign is two independent operations carried out on differ-
ent hardware, we can launch the two operations in parallel to
improve efficiency. Moreover, the procedure for determining
each node is also independent, and thus, CGAL can be run
across multiple CPU cores to further improve efficiency.

3.2. Weighted ENO Scheme on a GPU. In this paper, we use
the WENO5 scheme to estimate the gradient of level set
fields, and in this section, we focus on accelerating the
WENO5 computation using a GPU.

(a)

(b)

Figure 2: Avoiding sharp edges.

Step 1 Step 2 Step 3

Grain

Flame

Boolean

Result

Figure 3: Boolean subtraction operation.

Figure 4: DiFi demonstration.
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The WENO5 computation on each node is independent
of that on other nodes, so it is easy to distribute the task to
multiple GPU cores. However, to achieve the best perfor-
mance, the memory access pattern of the program must be
carefully designed. Unlike CPUs, the time spent to access
the GPU RAM (or global memory) is quite long. Since the
WENO5 computation contains stencils that include three
neighboring nodes on both sides, if all values are read directly
from the global memory, each element would have been
loaded repeatedly seven times on each axis. There are two
ways to reducememory transmission: fusing the computation
of the three axes and avoiding the redundant memory access.

To estimate the gradient on a specific node, the numerical
difference values on all three axes are required. The practice
detailed in [20] is to launch three independent GPU kernels
for the three respective axes. Accordingly, a similar loading
procedure must be repeated at least three times. In the
LSM, however, only the module of the gradient is needed.
This reminds us to use one giant kernel to compute the three
numerical differences. The obtained values are then fed to
Godunov’s scheme and modulo operation. Because all of
the subtasks are fused, there is no need to save or fetch inter-
mediate results to or from the global memory, and thus,
global memory transmission is minimized.

In addition, shared memory can be used to eliminate
redundant accessing of the global memory. Compliant
shared-memory access is much faster than global memory
access. To reduce global memory access, we can use a block
of GPU threads to preload corresponding elements into the
shared memory. Each GPU thread then reads its input from
the shared memory instead of the global memory. As the
capacity of the shared memory is limited, preloading the
entire array into the shared memory is impossible, so the field
is divided into a plurality of blocks and processed one by one.
The problem is that the dependence region of one specific
block is not well aligned, as shown in Figure 5. Assuming that
the size of the CUDA thread block is n, n, n , to calculate the
numerical difference on all three axes, n3 + 6 × 3n2 values are
needed. It is difficult to design an efficient access pattern on
such a cross-shaped region.

Noting that the numerical difference on each axis is inde-
pendent, we do not have to keep all of the nodes shown in
Figure 5 in the shared memory all the time. Cache and calcu-
lation can be performed in an axis-by-axis manner. In this
instance, only n2 n + 6 shared memory is required, and the
dependence region is aligned on two axes with the block.
Moreover, less shared-memory usage leads to more active
threads on the GPU and higher overall performance. In most
cases, n > 6, so n2 n + 6 < n3, meaning that we can load all
required data within two loading cycles using n3 threads.
Figure 6 illustrates the proposed loading flow on one row of
the thread block. For the first axis to be loaded, both steps
in Figure 6 must be performed. For the latter two axes, as
the elements corresponding to the first step are already in
the shared memory, only the second step must be performed.

The above discussion can be summarized as follows: In the
simplest method, neither caching nor fusing is applied. In
such amethod, on each axis, each thread has to load seven ele-
ments and write two results (positive and negative numerical

differences). Then, each thread for Godunov’s scheme and
modulo operation loads 3 × 2 intermediate results and writes
one final result. Fusing the computations eliminates the sav-
ing and loading of intermediate results. Simply caching the
entire dependence region costs n3 + 3 × 6n2 shared memory
but largely reduces loading operations. By computing axis
by axis and rearranging the shared memory, shared-memory
usage can be reduced. A comparison of these methods is
shown in Table 1. Other details in GPU implementation are
straightforward and will not be discussed here for simplicity.

3.3. Efficient Boolean Operation. As discussed in Section 2, a
Boolean operation is required to acquire the real geometry of
the grain. A straightforward way of accomplishing this is to
build a triangular mesh representation of the grain via the
MC method and then to perform the Boolean operation on
the obtained mesh. Assuming that the triangular mesh repre-
senting the flame domain generated by MC is S and the orig-
inal grain is G, the burning surfaces can then be expressed by
S ∩G, the burnt grain can be expressed by G − S, and the 1D
discretized burning area data requiring 1D interior ballistics
simulation can be obtained by Bi ∩ S ∩ G , where Bi is a
series of cuboids arranged along the x-axis.

The CGAL library provides robust Boolean algorithms
on triangular meshes. However, Boolean operations on tri-
angular meshes are usually slow. According to profile data,

Figure 5: Dependence region of an 83 block.

Step 1

Step 2

Global memoryUnloaded shared memory

Loaded shared memory Loading operation

Figure 6: Loading flow on one axis.
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the cost of a CGAL-based Boolean operation is close to that of
LSM evolution. In [1], the SDF ofG (assumed as ϕG) is used to
quickly estimate S ∩G. Their practice is to use the sign ofϕG to
determine whether each of the grid nodes is outside G. Then,
in the follow-up MC process, all the cubes that contain any
outside nodes are excluded, and the triangles generated from
the remaining cubes are used as the estimation of G ∩ S. Such
a practice is fast but introduces error that can cause slight
oscillation in the resulting burning surface area (see Section
4.1). Since the average area of the discarded triangles is pro-
portional to the grid surface area, the error introduced is pro-
portional to Lg

2, where Lg is the scale of computation grids.

However, we can improve the method to eliminate the
error without downgrading its performance.

Here, we present the process for obtaining S ∩G to dem-
onstrate the proposed SDF-based Boolean operation; expan-
sion to other types of Boolean operations is straightforward.
Considering Figure 7, where the blue curve is the boundary
of G and the red triangles are part of S, points A and B are
outside G while C, D, and E are inside G. Therefore, the
boundary of G ∩ S in Figure 7 is C OPQR E, which can be
estimated using the polyline COPQRE. From the definition
of the SDF, it is obvious that ϕG O = ϕG P = ϕG Q =
ϕG R = 0. As the coordinates of A, B, C, D, and E are
already known, ϕG A , ϕG B , ϕG C , and ϕG D can be eas-
ily acquired using linear interpolation, and then the coordi-
nates of O, P, Q, and R can be calculated using another
linear interpolation. Finally, by discarding outside triangles
and dividing the quadrilaterals OPDC and QRED into trian-
gles, a triangular estimation of G ∩ S can be obtained. Noting
that the above operations on each triangle are independent,
in order to further speed up the SDF-based Boolean opera-
tion, the discard and divide operations can be embedded into
a standard MC method and be performed cube by cube.

Among the above flows, two operations that introduce
error are the curve estimation OPQR using the polyline OP
QR and linear interpolation. The error introduced (assumed
as Em) is obviously larger than that of the CGAL-based oper-
ation (assumed as ECGAL). However, similar estimations are
already included in a standard MC method, and therefore,
the error contained in S is of the same order as Em. As a
result, the overall error of the SDF-based Boolean operation
is Em, while the overall error of the MC- and CGAL-based
Boolean operations in a series is Em + ECGAL ≈ Em. In other
words, using a SDF-based Boolean operation to replace the
CGAL-based one does not degrade overall accuracy.

The above process contains many random reads and tri-
linear interpolations, which happen to be the strengths of

texture memory. Using the hardware-based acceleration for
random read and interpolation operations of texture mem-
ory, performance of the SDF-based Boolean operation can
be further improved.

The accuracy and complexity of various Boolean opera-
tions are shown in Table 2. The row labeled “Triangle filter-
ing” refers to the method used in [1]. It is clear that the
proposed SDF-based Boolean operation exhibits the best
overall performance.

4. Results

4.1. Regression Test. Since the LSM is a mature method, we
can verify the result of our implementation by comparing it
with previous implementations. In this subsection, we use
several commonly used samples to verify the LSM evolution
module of our implementation. The reference results are pro-
duced using ToolboxLS [28]. In addition, two sample grains
are used to verify the entire framework, and the referenced
results are analytical results.

We use the maximum regression error, which is defined
by (2) (where Δx denotes the scale of mesh grids), to mea-
sure the error of our LSM implementation with respect
to ToolboxLS.

Emr = max
x i∣ϕ x i <5Δx

ϕ x i − ϕToolboxLS x i 2

The maximum regression errors of three common sam-
ples are shown in Table 3: “constant convection” describes
a sphere moving in a constant direction at constant speed;
“linear convection” describes a sphere moving along an arc
at constant speed; and “star reinitialization” starts from an
inaccurate 2D SDF of a star and regulates it to an exact
SDF. The “resolution” column shows the resolution of the
computation grid on one axis. From the table, it is clear that

Table 1: Complexity of all calculation methods on GPU n3 nodes in a cubic region, with n3 threads.

Method Shared-memory usage Loading cycles Loading transmission Writing transmission

No cache, not fused 0 27 27n3 7n3

No cache, fused 0 21 21n3 n3

All cache, fused n3 + 18n2 4 n3 + 18n2 n3

Partial cache, fused n + 6 n2 4 n3 + 18n2 n3

A

B

O

P

Q

R

C

D

E

Figure 7: SDF-based Boolean operation.
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the results produced by our implementation fit well with the
reference results in all cases.

The above results indicate that our GPU implementation
correctly traces the target geometry. As long as the “flame
domain-Boolean operation” mechanism is validated, it can
be confirmed that the framework gives correct results. We
use sample SRM grains that have a clear analytical burnback
solution to perform the validation. The two chosen sample
grains are a nonuniform tube grain and a uniform star grain

(see Figure 8). The normal propagation speeds Vn (see (1)) of
the two sample grains are defined by (3), where collections S
and F are the slow- and fast-burning regions, respectively,
and Rsf ∈ 0, 1 is the ratio of the burning speed of the slow-

and fast-burning propellant.

Vn∣Tube x =

Rsf ,   x ∈ S,

1,  x ∈ F,

Rsf ,  x ∉ S, x ∉ F,

Vn∣Star x ≡ 1

3

The analytical solution of the sample grains can be sum-
marized by burning area-propagation distance functions.
Equation (4) [29] and Figure 9 demonstrate the analytical
solution of a nonuniform tube grain, where As and Af are

the burning areas of slow- and fast-burning propellants,
respectively, and other symbols are defined by Figure 9.

α = sin−1Rsf ,

es = efRsf ,

As es, ef = 2π r0 + es Ls − ef − es tan α

+ π es + ef
ef − es
cos α

,

Af ef = 2π r0 + ef Lf

4

Equation (5) [30] describes the analytical solution of star
grains, where L is the length of the grain, and other symbols
are defined by Figure 10.

We measure the accuracy by the average relative error of
the predicted burning surface area to the average burning
surface area (defined by (6)).

E =
〠

ei
ALSM ei − AAnalytical ei

〠
ei
AAnalytical ei

6

The error data of the two samples at various grid resolu-
tions are shown in Table 4. The “fast” and “slow” columns in
Table 4 mean the fast- and slow-burning parts, respectively,
in the nonuniform grain. It is clear from Table 4 that the
results correctly converge to the analytical results as the
simulation resolution increases.

In Figure 11, we have presented the SDFs of the sample
grains, which remain constant during evolution. Figure 12

Table 3: Regression errors at various resolutions.

Resolution
Constant
convection

Linear
convection

Star
reinitialization

32 8 386e − 6 1 234e − 5 9 244e − 6

64 6 439e − 6 6 051e − 6 7 256e − 6

128 2 245e − 6 2 638e − 6 3 157e − 6

Te = R − l − r,

h =
sin ϵπ /n

cos θ/2
l − r,

A e

2L
=

h + r + l 1 − ϵ
π

N
+ e + r

π

2
+

π

N
−
θ

2
− cot

θ

2
,  0 ≤ e ≤min h, Te ,

l 1 − ϵ
π

N
+ e + r

π

N
+ sin−1

1

e + r
sin

ϵπ

N
,   min h, Te < e ≤ Te,

e + r cos−1
e + r 2 + l2 − R2

2 e + r l
−
π

2
+
ϵπ

N
− cos−1

l

e + r
sin

ϵπ

N
,  e > Te

5

Table 2: Complexity and accuracy of various Boolean operations:
nS and nG triangles in S and G, with nT threads and nC cubes.

Method Hardware Error Time complexity

MC & CGAL CPU Em O nSnG

Triangle filtering GPU Em +O Lg
2 O

nC
nT

SDF-based GPU Em
O
nC
nT
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demonstrates the transient contours of flame domains during
evolution. Figure 12(a) shows the contour near the interface
of slow- and fast-burning propellants. The α angle measured
from Figure 12(a) is in good agreement with the prediction
made by (4). Figure 12(b) shows 3 radial sections belonging
to the slow-burning propellant, the interface, and the fast-
burning propellant, respectively. It can be seen from
Figure 12(b) that Vn outside the grain equals to the burn
speed of the slow-burning grain. Figure 12(c) shows the tran-
sient contours of the star grain. Apparently, LSM degrades to
the minimum distance method when Vn is uniform across
the field. All above results imply that our framework works
well on SRM grains.

The superiority of a SDF-based Boolean operation com-
pared to a triangle filtering method is shown by the star sam-
ple. In Figure 13, an enlarged view (the first third of the
curve) of the results produced by both methods [1] is shown.
It is clear that the output of the SDF-based Boolean operation
is smoother and more accurate than that of triangle filtering.

4.2. Performance Test. In this subsection, we analyze the per-
formance of our framework by profiling each GPU kernel
and equivalent CPU implementation. The following refer-
enced CPU LSM code is from ToolboxLS [28], and the
CPU Boolean operation code is from CGAL [27].

The averaged execution profile data are shown in Table 5.
The kernel WENO5-Module computes ∇ϕ using the
WENO5 scheme and Godunov’s scheme, the kernel DiFi-
Slice is repeatedly called in the SDF-generating stage to calcu-
late the distance field on one slice of the field, and the kernel
MC-Boolean generates the current burning surface and cal-
culates its area using the MC- and SDF-based Boolean
methods proposed in Section 3.3.

It is clear from the table that all subtasks benefit from
GPU parallelization. Since the NVIDIA K2200 has poor
double-precision computation capability (40 GFLOPS nom-
inal peak), the acceleration would be much more significant
on professional computing GPUs such as Tesla. The acceler-
ation in the “MC-Boolean” column is amazing because the
SDF-based Boolean operation has highly reduced complexity
compared to the CGAL-based one. The speedup rate of MC-

Slow-burning grain

Fast-burning grain

Figure 8: Sample grains.
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Figure 9: Burnt nonuniform tube grain.
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Figure 10: Geometric parameters of star grain.

Table 4: Average relative error at various resolutions.

Resolution
Tube

Star (%)
Fast (%) Slow (%)

96,48,48 0.4276 0.5002 0.2287

128,64,64 0.2359 0.2802 0.1965

256,96,96 0.1912 0.2101 0.1127
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Figure 12: Transient contour of SDF of flame domains.
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Boolean slowly declines as the grid grows finer, due to the fact
that the computation growth of two implementations is not
proportional. Time spent by the SDF-based implementation
is close to that by a simple MC operation. However, the per-
centage of MC in the execution time of CGAL-based imple-
mentation decreases as the grid density grows, meaning
that the acceleration of the SDF-based Boolean operation
would be covered up. Fortunately, the speedup remains sig-
nificant within a reasonable grid scale.

Further, we run the framework at 256,96,96 resolution
to analyze the overall performance gain and locate the bottle-
neck. The profile data are shown in Table 6. The “other” item
in Table 6 covers the execution time of all other operations
(other element-by-element computation, input and output,
simple CPU computation, etc.).

The overall speedup ratio is 14.74. The WENO5-Module
and MC-Boolean play a major role in the overall speedup.
The WENO5-Module contains many floating-point opera-
tions and is repeatedly called by the TVD-RK scheme. As a
result, the WENO5-Module occupies a large portion of the
total execution time, and the corresponding acceleration con-
tributes greatly to overall speedup. For the MC-Boolean, the
GPU version takes nearly no time, while the time spent by the
CPU version is close to that by the WENO5-Module.

From the “GPU” column in Table 6, it is easy to see that
for the current GPU implementation, the only performance-
critical kernel is the WENO5-Module. Analysis of WENO5
and the Godunov scheme shows that the minimum required
computation is 400 FLOPS per result element. Using the data
provided in Table 5, we can easily calculate that the average
performance of the WENO5-Module is 22.44 GFLOPS,
which corresponds to 56.10% of the nominal peak. Consider-
ing that there are inevitable extra computations (e.g., com-
puting memory index) and branch code, we conclude that
the WENO5-Module is well optimized.

5. Conclusions

In order to accelerate the LSM-based SRM burnback simula-
tion, we have developed or improved the following combined
methods that jointly improve the overall efficiency: (1) the
concept of flame domain is introduced to reduce numerical
dissipation and therefore allows a relatively coarser grid; (2)
cuboid grids are allowed, so a coarser grid can be used on a
specific axis when necessary; (3) the improved DiFi module
generates all required SDFs within one scan; (4) the WENO5
module estimates the gradient of level set fields using well-
designed memory accessing patterns; (5) the MC module is
fused with the innovative SDF-based Boolean operation;
and (6) all computation-intensive operations are performed
on a GPU to further improve the performance.

Surface tracing regression testing shows that the pro-
posed framework gives exactly the same result as previously
published LSM code. Further regression testing shows that
the “flame domain-Boolean operation” mechanism works
as intended. The overall error on sample grains is less than
0 25%. Efficiency testing shows that the overall perfor-
mance is roughly 15 times higher than that using equiva-
lent CPU code. In particular, the fused MC- and SDF-based
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Figure 13: Result of star grain.

Table 5: Comparison between CPU and GPU execution time (per
call). CPU, Intel i54570; GPU, NVIDIA K2200.

Grid CPU time GPU time Speedup

WENO5-Module

64, 32, 32 1 208e − 2 1 183e − 3 10.21

96, 48, 48 3 662e − 2 3 935e − 3 9.306

128, 64, 64 9 511e − 2 9 305e − 3 10.22

256, 96, 96 0 4286 4 180e − 2 10.25

DiFi-Slice

64, 32, 32 4 911e − 4 6 443e − 5 7.623

96, 48, 48 1 750e − 3 2 597e − 4 6.739

128, 64, 64 5 443e − 3 7 566e − 4 7.194

265, 96, 96 1 119e − 2 1 553e − 3 7.204

MC-Boolean

64, 32, 32 0.7985 1 965e − 4 4064

96, 48, 48 1.775 4 703e − 4 3774

128, 64, 64 2.618 9 110e − 4 2874

256, 96, 96 4.762 3 886e − 3 1226

Table 6: Comparison between CPU and GPU execution times (per
simulation): CPU: Intel i54570; GPU: NVIDIA K2200.

Kernel
CPU GPU

Time Portion (%) Time Portion (%)

WENO5-Module 1070 58.29 104.3 83.73

DiFi-Slice 5.707 0.3110 0.7920 0.6358

MC-Boolean 742.9 40.47 0.6060 0.4865

Other 17.03 0.9277 18.87 15.15

Total 1836 100.0 124.6 100.0
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Boolean operation is thousands of times faster than an ordi-
nary method.

The implemented code executes within minutes on
desktop-class hardware, making it suitable for adoption in
iterative execution roles such as in optimization systems.
Further work will focus on embedding CFD simulation fea-
tures into the current framework.
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