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Abstract. Analysis of the expression for Strehl ratio for a circularly
symmetric pupil allows one to design complex filters that offer reduced
sensitivity to spherical aberration. It is shown that filters that combine hyper-
Gaussian amplitude transmittance with hyper-Gaussian phase modulation
provide five-fold reduction in sensitivity to spherical aberration. Furthermore,
this is achieved without the introduction of zeros into the modulation transfer
function and deconvolution can restore the transfer function to that of a
diffraction-limited imager. The performance of the derived combined ampli-
tude and phase filter is illustrated through the variation of its axial intensity
versus spherical aberration. This technique is applicable to imaging in the
presence of significant amounts of spherical aberration as is encountered in, for
example, microscopy.

1. Introduction
Optical aberrations denote the departure of imaging systems from the idealized

conditions of Gaussian optics. An extensive literature is devoted to the alleviation
of defocus and the reduction of the effects of residual aberrations. In this paper, we
restrict investigation to spherical aberration (SA) only. The effects of SA are well
known. For instance, in confocal microscopy, the SA introduced by weakly
aberrating media can considerably degrade imaging performance [1], and recently
[2] it has been shown that for small Fresnel number focusing systems, SA can
increase the maximum intensity at the focal point. Alleviation of aberrations has
previously been described using amplitude-only filters or phase-only filters placed
in front of the aberrated imaging system to produce a specific axial response that
reduces sensitivity to optical aberrations [3–12]. Ojeda-Castaneda et al. [7–11]
demonstrated the performance achieved by various amplitude filters to extend the
depth of focus or to reduce the effect of SA, but to the detriment of light gathering
power. For applications where efficient light throughput is essential, the use of
phase-only filters has been reported [13–15]. We report here derivation of a new
filter that employs amplitude and phase modulation to reduce sensitivity to SA.
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In the Debye approximation, the intensity of a circularly-symmetric system
that suffers from defocus, W20, and SA, W40, measured in units of wavelength, is
given by [8]:
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where � is the radial spatial frequency whose maximum value is the cutoff
frequency, �0. The axially symmetric generalized pupil function, p̃ð�Þ; is complex
within 0 4 � 4 �0, and zero elsewhere. When the optical system is well focused,
W20� 0, and the on-axis intensity in equation (1) can be rewritten, with a
convenient change of variables, as a Fourier-transform operation:
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The complex function, Q(�), is null when � is outside the interval �1/2 4 � 4 1/2.
The expression for the intensity at the focal point is thus reduced to a simple
Fourier transform of the function Q. To derive the pupil function that reduces the
variation of the intensity at the focal point, I(W40), with respect to SA,W40, we use
the stationary phase approximation to evaluate equation (2). Therefore, the
intensity can be rewritten as
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where

Qð�Þ ¼ Að�Þ exp ½i2��ð�Þ�: ð5Þ

The modulus of the complex function Q(�) is given by A(�), the function �(�)
represents the phase delay introduced by the optical element, and �s is the
stationary point. To ensure invariance to SA, the intensity I(W40) must satisfy the
following relation:

qIðW40Þ

qW40
¼ 0: ð6Þ

Let us consider first the simple case where A(�)¼ 1. Replacing equation (4) in
equation (6), and by integrating the resulting differential equation, we obtain the
expression for the phase delay:

�ð�Þ ¼ ��2; ð7Þ

where � 6¼ 0 is a real.
By substituting equation (7) into equation (5), the pupil function in equation (3)

is, therefore, given by

p̃ð�Þ ¼ ð�=�0Þ
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The quadratic term in the amplitude of the pupil function represents attenuation
of light at the centre of the aperture producing a graduated annular aperture, while
the phase function includes an eighth-order term. The performance of the complex
filter in equation (8) is shown in figure 1 where the variation of the intensity near
the focal point with W40 is compared with that of an ideal lens. In this and
subsequent graphs of focal-point intensity distributions, intensity is normalized
with respect to the peak of the diffraction-limited point-spread function and the
indicated scaling factor is therefore equivalent to the Strehl ratio. According to
Rayleigh’s criterion, the normalized intensity of 0.8 represents the lower limit to
low aberration imaging. The derived filter displays a high tolerance to SA and the
limits for low aberration imaging are extended from W40¼�0.25 for an ideal lens
up to �1.4 when �¼ 0.75�. Although the complex filter in equation (8) achieves
an improvement in tolerance to SA, the light transmitted is considerably reduced
because of the low transmittance of the filter. The quadratic variation in amplitude

Figure 1. Intensity normalized with respect to a diffraction-limited peak intensity at the

focal point versus spherical aberration W40 for a simple lens (———) and the complex

filter (- - - - ). The relative intensity scaling for the complex filter is indicated.

Figure 2. Amplitude transmittance of the complex filter, equation (8), as a function of the

normalized radial coordinate.
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transmittance is shown in figure 2 and the phase–delay function �(�) is displayed in
figure 3.

The reduction of light throughput is an important issue when such combined
amplitude and phase filters are employed. The expression of light throughput
normalized to the full aperture is given by10

T ¼ 2�
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0
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Thus, by substituting equation (8) in equation (9), we deduce that the light
throughput is reduced by a factor of 1/3 relative to the full aperture. The dominant
contribution to the effects of SA arises from contributions from the central part of
the pupil, therefore it is reasonable to expect that only modest degradation in SA
sensitivity will arise from the heuristic approach of increasing the transmittance of
the pupil close to its periphery to unity. We therefore define a new pupil function
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where a5 1 is a real. This is depicted in figure 4. When a¼ 1, the relation (10) is
identical to equation (8).

The variation of light throughput, as shown in figure 5, can be increased by a
factor of up to 2 when the parameter a¼ 3. However, the performance achieved by
the filter, as given by the variation of axial intensity with W40 is diminished as
shown in figure 6. For instance, when a¼ 1.5 the complex filter alleviates only the
positive SA, while for a¼ 3 the range of W40 over which the normalized axial
intensity remains above 0.8 is only about twice (2.1) that of an ideal lens.
An alternative heuristic approach is the use of a hyper-Gaussian transmittance in
which the pupil function is given by

p̃ð�Þ ¼ cð�=�0Þ
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Figure 3. The variation of the phase-delay function, �(�), as a function of the normalized

radial coordinate.
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where � is a positive real and c is a constant of normalization. Numerical compu-
tation (by replacing equation (11) in equation (9)) demonstrates that a maximum
light throughput of about 0.432 is attained when �¼ 1.3. This filter exhibits an
improvement of 30% in light throughput in comparison with equation (8). The
transmittance of the hyper-Gaussian complex filter (11) is shown in figure 7 while
its performance is slightly enhanced as displayed in figure 8.

To complete this study and in order to appreciate the performance achieved
by the hyper-Gaussian filters, we display in figure 9 and figure 10 a comparison
between the computed modulation transfer function (MTF) for different values of
SA. The MTF of a perfect lens is sensitive to the variation of the amount of
additional SA as shown in figure 9, and the departure from the MTF of the
diffraction-limited case is considerable even for a modest SA (W40¼ 0.5). Beyond a
moderate SA, the MTF contains zeros. When the hyper-Gaussian filter is used,
the sensitivity of the MTF to SA is reduced as shown in figure 10. Although the
magnitude of the MTF is considerably reduced in comparison to an ideal lens, it
does not contain zeros even for SA as large as W40¼ 2. There is a reduction of the

Figure 4. Transmittance of semi-shaded complex filters, relation (10), as a function of the

normalized radial coordinate for different values of the parameter a¼ 1, 1.5, 2, and 3.

Figure 5. The light throughput (normalized to full-aperture) of semi-shaded complex

filters as function of the obscuration parameter a.

Combined amplitude and phase filters for increased aberration tolerance 5



effective cut-off frequency of about 5%, which will normally be unimportant. The
recorded image can therefore be deconvolved to nearly the diffraction-limited case
without a loss in information, but at the expense of a reduction in the signal-to-
noise ratio.

2. Conclusions
We have derived combined amplitude and phase filters that enhance tolerance

to SA but at the cost of a reduction in the transmitted optical power. The present
design relies on the evaluation of the axial intensity by using the stationary phase
approximation. The complex filters obtained can be implemented by the use of a
two-dimensional programmable liquid-crystal spatial light modulator, as reported
in [16].

Figure 6. Normalized intensity at the focal point versus spherical aberration W40 for a

clear circular aperture (———), and complex filter with a¼ 1, 1.5, and 3. The relative

intensity scalings for the clear and two complex filters are indicated.

Figure 7. A comparison between the variation of the quadratic (- - - -) and the hyper-

Gaussian transmittance as a function of the normalized radial coordinate.

6 S. Mezouari and A. R. Harvey



Figure 8. A comparison between the intensity at the focal point versus spherical

aberration W40 for a circular aperture (———), the quadratic complex filter (- - - -), and

the hyper-Gaussian complex filter (- - - -). The relative intensity scalings for the

quadratic and hyper-Gaussian filters are indicated.

Figure 10. Normalized MTF of the hyper-Gaussain complex filter suffering from

multiple spherical aberration W40¼ 0, 0.5, 1, and 2.

Figure 9. Normalized MTF of a perfect lens suffering from multiple spherical aberration

W40¼ 0, 0.5, 1, and 2.
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