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Abstract  
 
 
COMBINED ANTIPROLIFERATIVE EFFECTS OF THE AMINOALKYLINDOLE WIN55,212-2 
AND RADIATION IN BREAST CANCER CELLS 
 
 
By Sean Emery PhD 
 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy at Virginia Commonwealth University. 
 
 

Virginia Commonwealth University, 2014 
 

Major Director: David A. Gewirtz, Professor of Pharmacology and Toxicology 
 

 
The potential antitumor activity of mixed CB1/CB2 cannabinoid receptor agonists, such as the 

aminoalkylindole WIN55,212-2 (WIN2), has been extensively studied, but little information is 

available as to their potential interaction with conventional cancer therapies, such as ionizing 

radiation (IR). In the present work, we investigated the effects of WIN2 on the antiproliferative 

effects of radiation in human (MCF-7 and MDA-MB-231) and murine (4T1) breast cancer cells, 

as well as an immortalized human breast epithelial cell line (MCF-10A). WIN2 or radiation alone 

inhibited breast tumor growth, while the combination of WIN2 and radiation was more effective 

than either agent alone in breast cancer cells. WIN2 showed lower potency in MCF-10A cells 

than MCF-7 cells, but was still able to augment the effects of radiation at higher doses. The 

stereoisomer of WIN2, WIN55,212-3 (WIN3) failed to inhibit growth or potentiate the growth-

inhibitory effects of radiation, indicating stereospecificity in all cell lines tested. The combination 

of WIN2 and IR was examined in vivo but the results were inconclusive. Interestingly, while 

other aminoalkylindoles, pravadoline and JWH-015, enhanced the antiproliferative effects of 

radiation, this was not the case for other synthetic cannabinoids (i.e., nabilone, CP55,940 and 

methanandamide) or phytocannabinoids (i.e., ∆9-tetrahydrocannabinol and cannabidiol). The 
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antiproliferative actions of WIN2 were not ameliorated by CB1, CB2, TRPV1, or PPAR receptor 

antagonists, suggesting the possibility of a novel site of action. Studies utilizing sphingosine-1-

phosphate (S1P) agonists and estradiol suggest that WIN2 interferes with S1P signaling in cell 

proliferation, but agonist stimulated [³⁵S]GTPγS binding assays show that this antagonism is not 

occurring at the level of S1P receptors. In addition, WIN2 did not alter radiation-induced DNA 

damage or the rate of DNA repair based on γH2AX staining. Treatment with WIN2 and radiation 

promoted both autophagy and senescence, but not apoptosis or necrosis. Time course studies 

combined with senescence and cell death data suggest that radiation-induced senescence, 

while WIN2 induced classical growth arrest and the WIN2/IR combination produced parallel 

mechanisms of both senescent growth arrest and classical growth arrest. Taken together, these 

findings raise the possibility that aminoalkylindole compounds targeting a novel site of action 

represents a potential strategy to augment the effectiveness of radiation treatment in breast 

cancer.  
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General background  

 

Breast cancer and breast cancer therapy  

 

Breast cancer is a mammary tissue derived neoplastic disease typically beginning as a 

solid tumor and progressing to a malignant and metastatic disease. The surveillance, 

epidemiology and end result (SEER) program of the National Cancer Institute collects valuable 

information about cancer prevalence in the United States. According to the SEER report, an 

estimated 232,340 new cases of breast cancer were diagnosed in 2013, which comprised 14.1 

percent of all cancer diagnoses. Breast cancer almost exclusively presents in women but 0.5-

1% of all cases are diagnosed in men (Ruddy et al. 2013). The high yearly diagnosis rate 

translates to an estimated 2.82 million women currently living with breast cancer. With such a 

high rate of diagnosis, breast cancer is the most common cancer among women and the 

second most common cancer overall behind prostate cancer. About 12.3 percent of all women 

will be diagnosed with a form of breast cancer at some point in their lifetime, but fortunately 

breast cancer has a relatively high 5 year survival rate at 89.2 percent of cases. Despite this, 

the high occurrence rate for breast cancer diseases will lead to an estimated 39,620 deaths in 

2013, making breast cancer the third leading cause of cancer related deaths in the United 

States. This high mortality rate indicates that more effective therapies need to be developed. 

Current treatment paradigms consist of three primary therapies, specifically including surgery, 

chemotherapy and radiation (Kaviani et al. 2013; Joerger et al. 2013; Yang et al. 2013; den 

Hollander et al. 2013), and depending on the type of breast cancer targeted therapies such as 

hormone based therapy can also be used (den Hollander et al. 2013). 

After diagnosis of a breast tumor, a surgical consultation can lead to one of two primary 

options for treatment including breast conserving therapy or mastectomy. The choice of which of 
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these options is to be used is dependent on the state of the disease based on biopsy and/or the 

extent of the malignant spread. Breast conserving therapy primarily aims to eliminate the bulk of 

primary tumors and remaining tumor cells are treated with radiation and chemotherapy. The 

goal of a mastectomy is to eliminate the primary tumor and other remaining tumor cells by 

complete removal to the breast tissue, which eliminates the tumor bed. Chemotherapy and 

radiation are also used in conjunction with mastectomies to decrease relapse rates (Kaviani et 

al. 2013).  

Chemotherapeutics function in a variety of ways depending on the drug class. Use of 

these therapeutic agents has evolved over the years as clinical knowledge of breast cancer has 

expanded. Breast cancer has primarily been treated with five drugs including, 

cyclophosphamide, methotrexate, 5-fluorouracil, doxorubicin and paclitaxel, but the current front 

line chemotherapeutic treatments are doxorubicin and paclitaxel, which are also the most 

recently developed of the five. Doxorubicin (Adriamycin) is a topoisomerase 2 poison capable of 

causing DNA damage during DNA replication by preventing DNA religation. Paclitaxel is a 

microtubule poison that inhibits cell division as the cancer cell goes through mitosis. Utilization 

of doxorubicin and paclitaxel, as well as other chemotherapeutics, is at the discretion of what 

the oncologist feels will be the most effective treatment (Joerger et al. 2013).  

A powerful addition to the traditional adjuvant chemotherapies has been neoadjuvant 

therapies designed to inhibit specific signaling pathways in cancer. These treatments are also 

referred to as targeted therapies. The most successful targeted therapeis in breast cancer 

include estrogen receptor antagonists, aromatase inhibitors and HER2/neu receptor 

antagonists. Estrogen receptor positive breast cancers depend on estrogen signaling to 

stimulate growth and promote tumor progression. Inhibition of the pro-cancer effects of estrogen 

receptor signaling is executed with estrogen receptor antagonists such as tamoxifen. Another 

mechanism by which breast cancers use to enhance estrogen signaling is via overexpression of 
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aromatase to increase local conversion of steroid precursors to estrogen. Aromatase inhibitors 

were developed to inhibit this process and decrease estrogen based signaling. Finally, a 

particularly aggressive form of breast cancer over-expresses the epidermal growth factor 

receptor HER2/neu, which can fuel tumor growth and survival. Recently developed antibody 

based antagonists of this receptor such as trastuzamab have proven to another useful tool for 

improving patient survival (den Hollander et al. 2013).  

In contrast to the relatively recent development of targeted therapies, radiation therapy 

has been a component of cancer therapy almost since the discovery in the early 1900s that 

ionizing radiation reduced tumor volume. Typical radiation therapy consists of 20-30 treatments 

of 2 gray (Gy) doses of ionizing radiation. Depending on the tumor, radiation treatments can be 

given pre-mastectomy, post-mastectomy or as a part of breast sparing surgery (Yang et al. 

2013). The goal of radiation therapy is to inhibit tumor growth and recurrence, and these actions 

are linked to the DNA damaging effects of ionizing radiation. The primary mechanism for 

radiation-induced DNA damage is believed to be radiolysis of water leading to the formation of 

reactive oxygen species (ROS) (Narayanan et al. 1997). ROS formation of DNA damage is 

expressed as single and double strand breaks in DNA (Driessens et al. 2009).  

 

Current cannabinoid use in cancer therapy 

 

Cannabinoids are a class of compounds originally classified by their psychoactive 

effects, which are most often associated with marijuana use and abuse (Howlett et al. 2002; 

Pertwee et al. 2010). The cannabinoids Δ9-tetrahydrocannabinol (THC; Marinol) and nabilone 

(Cesamet) are approved by the Food and Drug Administration (FDA) for the treatment of emesis 

and nausea associated with cancer chemotherapy, and in the United States these remain the 

only federally approved cannabinoid treatments (Russo 2008). THC is the primary psychoactive 
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component of marijuana and nabilone is a synthetic analog of THC (Howlett et al. 2002; 

Pertwee et al. 2010). 

The current FDA approval of Marinol and Cesamet indicates these drugs showed 

acceptable minimally detected negative effects on patient treatment during clinical trials, but the 

epidemiological literature has multiple reports that point to mixed views on cannabinoid action in 

the development of cancer. Three reports have linked Marijuana use to increased incidents of 

testicular cancer (Daling et al. 2009; Trabert et al. 2011; Lacson et al. 2012), but three other 

studies reported that marijuana use is not significantly correlated to lung cancer development 

(Sidney et al. 1997; Hashibe et al. 2006; Mehra et al. 2006). These studies suggest that 

marijuana smoke contains carcinogens similar to tobacco smoke that are not related to the 

cannabinoid compounds, and that these carcinogens could be a confounding factor of the 

comparisons. Resultantly, cannabinoid treatments effects on tumor development remain 

unresolved.  

Even though the epidemiological literature has not reached a consensus on the effects 

of cannabinoids in tumor development, preclinical cancer treatment literature is in fairly strong 

agreement that cannabinoids have potential uses as anti-cancer agents. These observations 

begin with a 1975 report by Munson et al. where THC, Δ8-tetrahydrocannabinol and cannabinol 

inhibited growth of Lewis lung carcinoma cells in BDF mice leading to a significant increase in 

survival rates of the animals. Analysis of in vitro studies indicated THC decreases cell 

proliferation based on [3H]-thymidine incorporation. Since the Munson et al. (1975) study, 

research has elucidated numerous mechanisms by which cannabinoids act in the body, both in 

non-cancerous and cancerous tissues.  
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The endocannabinoid system and cannabinoid sensitive receptors in preclinical cancer 

research  

 

Cannabinoid receptor 1  

Cannabinoid receptor 1 (CB1) is a G protein coupled receptor (GPCR) first identified 

after cloning from a rat brain cDNA library. Transfection of the putative CB1 receptor into CHO-

K1 cells allowed cannabinoid agonists to inhibit forskolin stimulated cAMP production, a 

characteristic action of cannabinoids (Matsuda et al. 1990). CB1 is found abundantly in the 

central nervous system, where its primary function is to suppress neurotransmitter release 

halting stimulation of postsynaptic neurons (Hoffman et al. 2000; Howlett et al. 2002; Pertwee et 

al. 2005). Additional research has implicated CB1 in the antiproliferative actions of anandamide 

(AEA) in MCF-7 cells when the CB1 selective antagonist SR141716 (SR1) completely blocked 

AEA induced growth inhibition (Melck et al. 2000). Similar findings were reported in U87-MG 

glioma cells, where SR1 blocked THC mediated induction of autophagy and apoptosis (Salazar 

et al. 2009). The Melck et al. and Slazar et al. studies exemplify that CB1 action extends beyond 

mediating the psychoactive activities of cannabinoid in the CNS, and possess additional abilities 

to inhibit tumor growth.  

 

Cannabinoid receptor 2 

In addition to CB1, a second cannabinoid receptor has been identified and also shown to 

mediate anti-tumor effects of cannabinoids. Screening in HL60 leukemia cells identified several 

new receptors, one of which showed 48 percent sequence homology to CB1 receptors. Cloning 

of the HL60 derived receptor into COS cells allowed for binding of radiolabelled cannabinoids to 

identify its cannabinoid activity (Munro et al. 1993). The receptor was then identified as 

cannabinoid receptor 2 (CB2), which like CB1 receptors, is also a GPCR. CB2 is found primarily 
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in immune cells circulating in the body. Primary function of CB2 is believed to be modulation of 

immune function by altering immune cell migration and cytokine release (Kaminski et al. 1992; 

Howlett et al. 2002; Pertwee et al. 2002). CB2 has a documented role in cancer to mediate 

cannabinoid based antiproliferative effects in multiple studies. Caffarel et al. (2006) showed that 

the CB2 antagonist, SR144528 (SR2), but not SR1 significantly blocked the antiproliferative 

effects of THC in EVSA-T breast cancer cells. CB2 involvement in cancer was later supported 

when the CB2 selective cannabinoid agonist JWH-133 was shown to decrease the volume of 

genetically derived Erb-B2 positive mammary tumors in mice (Caffarel et al. 2010). CB2 

involvement also extends to prostate cancer where SR2, but not SR1, blocked the induction of 

apoptosis in PC-3 cells induced by both methanandamide and the CB2 selective agonist JWH-

015 (Olea-Herrero et al. 2009).  

 

Cannabinoid receptor-independent effects  

In contrast to the aforementioned studies, cannabinoid receptor-independent 

antiproliferative effects have also been reported in cancer cells. Cannabidiol (CBD), a marijuana 

derived cannabinoid, inhibited growth of U87 glioma cells in a manner that was not 

antagonizable by SR1 or SR2 (Vaccani et al. 2005). Similarly, the cannabinoid selective 

antagonists AM251 (CB1) and AM630 (CB2) did not block HU-210 and AEA growth inhibition in 

Caco-2 colorectal cells (Gustafsson et al. 2009). Also WIN55, 212-2 (WIN2) growth inhibition 

was not blocked by SR1 or SR2 in Granta519 mantle cell lymphoma cells (Wasik et al. 2011), or 

AM251 and AM630 in OCM-1A and Colo 38 melanoma cells (Scuderi et al. 2011). Taken 

together, these studies demonstrate that cannabinoids inhibit tumor cell growth in a cannabinoid 

receptor-independent manner in certain systems. One caveat is that these studies did not 

assess other cannabinoid sensitive targets such as GPR55, peroxisome-proliferator activated 

receptors and Transient receptor potential-cation-channel subfamily V member 1 (TRPV1), 
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which could explain some of these effects. The observation of an as of yet unidentified third 

cannabinoid receptor characterized by agonist stimulated [35S]GTPγS binding in CB1 mouse 

knockout brains, could provide another possible explanation for the cannabinoid-independent 

inhibition of cancer cell growth (Breivogel et al. 2001; Nguyen et al. 2010).  

 

 

GPR55 

GPR55 is an orphan GPCR that has been to be shown sensitive to cannabinoids such as 

abnormal cannabidiol, THC, 2-arachidonoylglycerol, and anandamide by using complementary 

assays. These assays include: a β-arrestin based luciferase reporter assay, a GPR55 activated 

luciferase reporter assay and [35S]GTPγS binding assays in HEK-293T (HEK) cell over 

expressing GPR55 (Johns et al. 2007; Yin et al. 2009). However, further research suggested 

that GPR55 is actually a lysophosphatidylinositol receptor with cannabinoid sensitivity (Oka et 

al. 2007). Unlike CB1 and CB2, GPR55 mediated effects on cancer were consistently linked to a 

pro-cancer phenotype. Andradas et al. (2011) reported that expression of GPR55 in human 

tumors was correlated with decreased patient survival, overexpression of GPR55 in HEK, 

EVSA-T and T98G cells increased growth rates, and GPR55 knockdown decreased growth 

rates in EVSA-T and T98G cells. The Pineiro et al. 2011 study further supports a GPR55 pro-

cancer phenotype by showing that GPR55 is expressed in PC-3 (prostate) and OVCAR3 

(ovarian) tumor cells, and that GPR55 downregulation with siRNA decreases cell growth 

compared to scrambled control siRNA. Lastly, GPR55 knockout mice showed decreased tumor 

formation after treatment with the carcinogen DMBA, indicating that GPR55 plays a role in 

tumor development (Perez-Gomez et al. 2012).  
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Peroxisome-proliferator activated receptors 

Peroxisome-proliferator activated receptors (PPAR) are a group of three (α, δ and y) 

nuclear receptors involved in metabolism and cell differentiation (Schoonjans et al. 1996; 

Spiegelman 1998). Activation of PPARα by fibrate drugs treats high cholesterol (Schoonjans et 

al. 1996), and activation of PPARγ by thiazolidinedione drugs treats insulin insensitivity in 

diabetes (Spiegelman 1998). Recent preclinical studies have found that PPARγ is expressed in 

MCF-7 breast cancer cells (Nwankwo et al. 2001), and continuous treatment with the selective 

PPARy agonist troglitazone inhibited MCF-7 cell growth (Yin et al. 2001). Treatment with WIN2 

in HepG2 hepatoma cells was found to induce apoptosis in a PPARγ dependent manner as 

demonstrated by blockade of the effect by the PPARγ selective antagonist GW9662 (Giuliano et 

al. 2009). Gene reporter (O’Sullivan et al. 2007) and antagonist studies (Mestre et al. 2009) 

have demonstrated that WIN2 can function as an activator of PPARγ. Cannabinoid-induced 

inhibition of cancer through PPARy is supported by studies from Vara et al. (2013), where 

GW9662 also blocked the antiproliferative effects of both THC and JWH-015 in HepG2 cells.  

 

Transient receptor potential-cation-channel subfamily V member 1 

TRPV1 is a non-selective cation channel identified as the site of action for capsaicin 

(Caterina et al. 1997). It has also been implicated in the sensory detection of high heat stimulus 

(Caterina et al. 2000). AEA was later found to be a full agonist for TRPV1 based on comparison 

to capsaicin in electrical current measurements using HEK-293 cells transfected with TRPV1 

(Smart et al. 2000). TRPV1 is expressed on some cancers but its role in growth is uncertain. For 

example, TRPV1 mRNA is found abundantly in MCF-7 cells (Ligresti et al. 2006), but the 

TRPV1 agonist capsaicin has mixed growth inhibitory effects in MCF-7 cells ranging from 

minimal (Tuoya et al. 2006) to significant (Thoennissen et al. 2010). Furthermore, these studies 

do not link actions of capsaicin to TRPV1 either genetically or pharmacologically. Conversely, 
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the TRPV1 antagonist capsazepine sensitizes HCT116 colon cells to tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL) induced apoptosis, which argues for a protective 

action of TRPV1 in some cancers (Sung et al. 2012), but again capsazepine mediated actions 

were not linked to TRPV1 either genetically or pharmacologically.  

 

Anandamide and fatty acid amide hydrolase 

AEA was first identified as an endogenous cannabinoid by Devane et al. (1992) and 

AEA levels were found to be regulated by the degradative enzyme fatty acid amide hydrolase 

(FAAH; Deutsch et al. 1993). Treatment with AEA has been shown to inhibit the growth of 

numerous cancer cell lines including MCF-7 (breast), MDA-MB-231 (breast), Mz-ChA-1 (biliary), 

HCT116 (colon) and CaCo-2 (colorectal), (Melck et al. 2000; Laezza et al. 2006; DeMorrow et 

al. 2008; Patsos et al. 2010; Liao et al. 2011). Interestingly, MCF-7 cells have been shown to 

express FAAH. This FAAH expression might be a mechanism to protect the MCF-7 cells from 

the endogenously synthesized ligand AEA (Takeda et al. 2008). More work is required to prove 

this hypothesis however.  

 

2-Arachidonoylglycerol and monoacylglycerol lipase  

The fatty acid derivative 2-Arachidonoylglycerol (2-AG) was the second 

endocannabinoid discovered when Seguira et al. (1995) used 2-AG to competitively inhibit the 

radiolabelled cannabinoid receptor agonist CP55,940. Later research further confirmed 2-AG as 

an endocannabinoid, when selective inhibition of 2-AG hydrolysis increased 2-AG levels in the 

brain and elicited cannabimimetic effects (Makara et al. 2005). In cancer the actions of 2-AG 

has not been as extensively studied as other cannabinoids, but the endocannabinoid is capable 

of inhibiting C6 glioma  cell growth dose-dependently (Jacobsson et al. 2001). Additionally, 

increasing 2-AG levels by inhibiting its degradation or administering a stable 2-AG analog such 
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as noladin ether inhibits invasion of PC-3 and DU-145 prostate cells through matrigel in 

transwell plates (Nithipatikom et al. 2004).  

The primary degradative enzyme responsible for regulating the levels of 2-AG is 

monoacylglycerol lipase (MAGL; Dinh et al. 2012), and to a lesser extent ABHD6 and ABHD12 

(Blankman et al. 2007; Marrs et al. 2010). In addition to regulating 2-AG, MAGL was implicated 

as a regulator of a network of monoacylglycerol fatty acids in cancer cells by preventing their 

accumulation. The fatty acids in this network were linked to anti-cancer effects including growth 

and invasion inhibition (Nomura et al. 2009). Pharmacological inhibition using JZL184 and 

genetic knockdown using shRNA increased expression of four monoacylglycerols in C8161 

melanoma cells and SKOV3 ovarian cancer cells. In both melenoma and ovarian cancers, the 

genetic knockdown of MAGL decreased cancer cell survival, migration and invasion in vitro; 

treatment with JZL184 decreased in vivo tumor growth. Overexpression of MAGL in MUM2C 

melanoma cells had opposite effects with decreased monoacylglycerol presence in the cells, 

increased migration and invasion in vitro, and increased in vivo tumor growth (Nomura et al. 

2009).  

 

Cannabinoid signaling in cancer  

Decades of research have led to a robust understanding of the upstream signaling 

events from CB1 and CB2 receptors in their respective tissues, neuronal and immune. These 

processes are well characterized in reviews such as Howlett et al. (2002). The same level of 

attention, however, has not been paid to upstream cannabinoid signaling in cancer. It appears in 

large part that researchers assume the activation of a cannabinoid receptor in a cancer cell 

results in similar upstream signaling events as would be observed in a non-neoplastic tissue. 

While it is not necessarily incorrect to make this assumption, it cannot be stated definitively that 
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this is true and future research is still needed. Current research has, however, led to a number 

of novel findings related to downstream cannabinoid signaling events in cancer cells.  

Carracendo et al. (2006) identified that CB1 receptor activation by THC leads to 

modulation of ceramide signaling in U87-MG glioblastoma cells to mediate the antiproliferative 

actions observed with cannabinoid treatment. This ceramide signaling was later tied to the 

induction of endoplasmic reticulum stress, autophagy and apoptotic cell death in the same cell 

line by Salazar et al. (2009). Dando et al. (2013) identified that synthetic cannabinoids modulate 

AMPK signaling to affect cell survival through modulation of energy pathways in multiple 

pancreatic cancer cell lines. Additionally, in the cervical cancer model, HeLa cells, a stable 

analog of AEA was shown to induce apoptosis through prostaglandin production in a 

cyclooxygenase-2 dependent manner (Eichele et al. 2009). These examples of cannabinoid 

signaling in cancer are meant to exemplify that cannabinoid actions can be highly diverse in 

nature depending on the model and cannabinoid used, but since this document focuses on 

cannabinoid actions in breast cancer, the following section will explain major findings of how 

cannabinoid associated signaling events in breast cancer cells inhibit the growth of these breast 

cancer models.  

 

Cannabinoid actions in breast cancer  

 

Antiproliferative actions - Anandamide  

In studies by De Petrocellis et al. (1998), AEA was shown to dose-dependently decrease 

the  number of both EFM-19 and MCF-7 breast cancer cells. AEA elicited effects were attributed 

to growth inhibition instead of cell death in both cell lines based on time course studies and a 

decrease in [3H]thymidine incorporation. EFM-19 cells were shown to be capable of hydrolyzing 

AEA suggesting that a metabolite of AEA, instead of AEA itself, could inhibit EFM-19 cell 
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growth.  Comparison of AEA and its primary metabolite arachidonic acid (AA) showed that AA 

was significantly less capable at inhibiting EFM-19 cell growth than AEA, and there was also no 

significant difference in growth inhibition when AEA was compared to its non-hydrolyzable form 

methanandamide (MAEA). Dose-dependent inhibition of EFM-19 cells by other cannabinoids, 

HU-210 and 2-AG, suggested that AEA inhibition of EFM-19 cell growth was cannabinoid in 

nature, and blockade of AEA growth inhibition by SR1 confirmed AEA mediated effects were 

CB1 receptor mediated. AEA suppression of cell cycle progression was attributed to prolactin 

growth signaling because of dose-dependent inhibition of prolactin induced growth stimulation in 

EFM-19 cells by AEA. AEA antagonism of prolactin was also antagonized by SR1. 

Melck et al. (2000) studied the AEA mechanism of growth inhibition in MCF-7 cells as an 

extension of De Petrocellis et al.’s work. As in EFM-19 cell, MCF-7 cells showed dose-

dependent growth inhibition by AEA. Growth inhibition by AEA was again demonstrated to be 

cannabinoid in nature when the cannabinoids HU-210, methanandamide and 2-AG elicited 

similar levels of growth inhibition, and SR1 blocked AEA mediated antiproliferative effects. 

Melck et al. went on to show that the CB2 selective antagonist, SR2, did not block AEA induced 

antiproliferation, further confirming a CB1 receptor-dependent effect. Melck et al. hypothesized 

that AEA was antagonizing MCF-7 growth by decreasing nerve growth factor (NGF) signaling 

through downregulation of NGF associated Trk receptors. This hypothesis was based on a 

correlation between AEA growth inhibition, AEA antagonism of the growth stimulation from 

exogenously administered NGF and AEA induced downregulation of Trk receptors. These two 

papers, De Petrocellis and Melck et al., are the first demonstration that cannabinoids are 

capable of eliciting multiple mechanisms of action to inhibit breast cancer cell growth depending 

on the model.  

Laezza et al. (2006; 2010) continued Melck et al.’s work in MCF-7 cells using the 

synthetic analog of AEA, MAEA. MAEA was shown to decrease cAMP response element 
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binding protein phosphorylation and the authors indicated that this is a likely explanation for the 

decreased expression of HMG-CoA reductase after MAEA treatment. HMG-CoA reductase is 

integral to the synthesis of mevalonate or mevalonic acid (MVA). Exogenous administration of 

MVA to MCF-7 cells rescued the cells from MAEA mediated antiproliferative effects. 

Radiolabelled MVA was incorporated into proteins and immunoprecipitation studies showed that 

proteins containing MVA were decreased after MAEA treatment, one such protein being RAS 

which is well known to have mitogenic effects. MVA incorporation into RAS allows it to 

translocate to the membrane. Under MAEA treatment, RAS levels in the membrane decreased 

while cytosolic RAS increased, and exogenous administration of MVA inhibited this effect. 

Based on the well-known RAS mediated pro-proliferative actions in cancer cells, the decrease 

of active RAS caused by MAEA inhibition of MVA synthesis was cited as the explanation for 

MAEA induced cell cycle arrested, p21 accumulation and Chk1 phosphorylation (Laezza et al. 

2006; 2010).  

 

Antiproliferative actions - THC 

THC was shown to have antiproliferative actions against multiple breast tumor cell lines 

including MCF-7, MDA-MB231, EVSA-T and SkBr3. THC mediated inhibition of EVSA-T cells is 

CB2 dependent based on SR2 but not SR1 antagonism of THC, and the expression of CB2 but 

not CB1 in EVSA-T cells. THC mediated inhibition of EVSA-T cells was attributed to G2-M cell 

cycle arrest quantified by propidium iodide staining, and a simultaneous occurrence of apoptosis 

quantified by sub-G1 population, annexin V/PI staining and caspase 3 activation. Western 

blotting showed an increased expression of p21 and a decrease in Cdc2, which explains the cell 

cycle arrest. Apoptosis was associated with decreased expression of the anti-apoptotic protein 

survivin which was also confirmed by western blotting. Survivin is also known to be stabilized by 

Cdc2 and the decrease of Cdc2 under THC treatment would explain the decrease in survivin 
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levels. THC invokes translocation of the transcription factor, JunD, to the nucleus of the cell. 

Knockdown of JunD prevents THC downregulation of Cdc2 and rescues EVSA-T cells from 

THC treatment; genetic overexpression of Cdc2 also rescues EVSA-T cells from THC. Together 

these studies show that THC activates CB2 in EVSA-T cells to cause JunD translocation leading 

to downregulation of Cdc2 which results in cell cycle arrest and apoptosis (Caffarel et al 2006; 

2010).  

 

A study by von Beuren et al. (2008) showed that THC treatment in MCF-7-AR1 cells 

antagonized estradiol stimulated growth, but THC did not inhibit growth of MCF-7-AR1 cells 

alone. THC treatment in parent MCF-7 cells did however dose-dependently decrease viable cell 

number. This finding is partially supported by Takeda et al. (2008; 2009) where THC 

antagonized the growth stimulating effects of estradiol in MCF-7 cells. Surprisingly, the Takeda 

et al. studies also characterized a growth stimulating action of THC in MCF-7 cells, which is 

somewhat paradoxical when compared to growth inhibitory effects of THC in the previously 

mentioned study by von Beuren et al. A review of the methods used between the studies 

revealed no obvious differences that explain growth stimulating and growth suppressing effects 

in the same cell line from the same drug.  

 

 

Antiproliferative actions - CBD 

Ligresti et al. (2006) examined the antiproliferative effects of various phytocannabinoids 

across a spectrum of breast cancer cell lines. The major component of their study however 

focused on antiproliferative effects of cannabidiol (CBD) in MDA-MB-231 cells, which were 

demonstrated both in vitro and in vivo. CBD antiproliferation was attributed to a modest 

induction of apoptosis elicited through the increased influx of calcium and the generation of 
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ROS. McCallister et al. (2007; 2011) also confirmed the antiproliferative effects of CBD in MDA-

MB231 cells, and that the anti-oxidant α-tocopherol protected MDA-MB231 cells from ROS 

produced by CBD treatment, similar to what was shown in Ligresti et al. Overexpression of the 

transcription factor Id-1 rescued MDA-MB231 cells from CBD treatment confirming the 

hypothesis that CBD downregulation of Id-1 demonstrated through western blotting mediates 

the inhibition of MDA-MB231 cell growth. Anti-tumor effects of CBD were extended to the whole 

animal using the 4T1-Balb/c syngeneic model (McCallister et al. 2007; 2011).  

CBD actions in MDA-MB231 cells were again expanded in Shrivastava et al. (2011). 

This study confirmed ROS species involvement using the anti-oxidant α-tocopherol, which was 

demonstrated in both studies from Ligresti and McCallister et al. Shrivastava et al. also 

confirmed CBD induction of apoptosis shown by Ligresti et al. Novel observations from 

Shrivastava et al. highlight the induction of autophagy alongside apoptosis under CBD 

treatment. In a time- and dose-dependent manner, both apoptosis (annexin V staining or PARP 

cleavage) and autophagy (LC3 cleaved western blotting) increased in parallel under CBD 

treatment. Administration of the autophagic inhibitor bafilomycin or the caspase inhibitor zVAD 

to MDA-MB231 cells treated with CBD show modest changes in cell death. No other 

experiments were conducted to evaluate the interaction between apoptosis and autophagy, 

leaving conclusions unclear if these two processes of autophagy and apoptosis are working 

together or separately to mediate CBD induced antiproliferative actions. CBD inhibition of AKT 

phosphorylation was also hypothesized to play a role in the antiproliferative effects of CBD 

based on a correlation between CBD treatment and a decrease of AKT phosphorylation 

(Shrivastava et al. 2011). 

Additional observations from the above studies show that CBD inhibited MDA-MB231 

cell growth independent of cannabinoid receptors based on the use of cannabinoid receptor 

antagonists (Ligresti et al. 2006; Shrivastava et al. 2011). This is not surprising since CBD has 
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extremely poor affinity for CB1 (Ki=4.3 μM) and CB2 (Ki=1.2 μM) (Showalter et al. 1996). Also, 

Shrivastava et al. demonstrated that CBD had a lower efficacy at inhibiting growth of the non-

transformed MCF-10a breast epithelial cells than the MDA-MB231 breast cancer cells, which 

shows a potentially cancer selective effect for CBD treatment in MDA-MB231 cells. 

 

Antiproliferative actions - synthetic cannabinoids  

Other studies have linked synthetic cannabinoids (WIN2 and JWH-133) to 

antiproliferative effects in cancer as well (Qamri et al. 2009; Caffarel et al. 2010). WIN2 and 

JWH-133 inhibited MDA-MB231 cell growth both in vitro and in vivo. In vitro studies found that 

both CB1 and CB2 mRNA were expressed in MDA-MB231 cells, and in vivo studies show that 

both the CB1 selective antagonist AM251 and the CB2 selective antagonist SR2 reduced WIN2 

inhibition of tumor volume. JWH-133 is a CB2 selective agonist, therefore only SR2 was used to 

antagonize its effects. This indicates that both CB1 and CB2 are involved in the antiproliferative 

actions of cannabinoids in MDA-MB231 cells. WIN2 and JWH-133 inhibition of MDA-MB231 

proliferation was attributed to the induction of apoptosis quantified by a sub-G1 population from 

cell cycle analysis (Qamri et al. 2009).  

Caffarel et al. 2010 further demonstrated the antiproliferative effects of JWH-133 using 

an ErbB2 based genetic model of tumor development. JWH-133 and THC suppressed growth of 

tumors in vivo as well as suppressed cell viability in vitro using N202.1A cells. Caffarel et al.’s 

histological analysis of human tumor samples showed a correlation between ErbB2 positive 

tumors and CB2 receptor expression indicating a connection between the two receptors; based 

on this correlation, JWH-133 and THC were tested with the antagonists SR2 and SR1. Only 

SR2 inhibited in vitro tumor growth indicating CB2 dependent antiproliferative effects. Caffarel et 

al. (2010) also observed a decrease in p-AKT when N202.1A breast tumor cells were treated 

with both THC and JWH-133. Overexpression of AKT in N202.1A cells also prevented both THC 
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and JWH-133 from inhibiting cell growth both in vitro and in vivo, implicating AKT signalling in 

the CB2 dependent actions of THC and JWH-133.  

 

Anti-invasive and anti-metastatic cannabinoid actions 

In addition to characterizing the antiproliferative effects of synthetic cannabinoids, Qamri 

et al. 2009 and Caffaral et al. 2010 also characterized the anti-invasive and anti-metatstatic 

effects of WIN2, JWH-133 and THC. WIN2 and JWH-133 decreased the in vitro migratory action 

and the in vivo formation of metastatic lung nodules by MDA-MB231 cells (Qamri et al. 2009). 

Additionally, JWH-133 and THC decreased the number of blood vessels per tumor and the 

number of metastatic nodules in genetically derived breast carcinomas. Decreases in number of 

blood vessels and metastatic nodules indicate an anti-angiogenic and anti-invasive action for 

cannabinoid treatment, which is likely explained by JWH-133 and THC mediated effects on 

matrix metalloproteases (MMP). Both JWH-133 and THC in Caffarel et al. decreased 

expression of the pro-invasive MMP2 and increased expression of the anti-angiogenic MMP9.  

MAEA also inhibits invasion, migration and metastasis of MDA-MB231 cells both in vivo 

and in vitro. Antagonism of MAEA elicited anti-invasive actions with SR1 demonstrates a CB1 

component to this observation, although CB2 antagonists were not assessed (Grimaldi et al. 

2006). These anti-invasive effects were linked to MAEA-mediated decrease of RHOA, which is 

known to be involved in actin rearrangement for cell motility. MAEA decrease of RHOA was also 

shown to be CB1 dependent using the CB1 antagonist SR1. MVA rescued the downregulation of 

RHOA and anti-invasive effects demonstrated by MAEA (Laezza et al. 2008), and MVA rescue 

of RHOA downregulation connects MAEA associated anti-invasive actions in MDA-MB231 cells 

to the MAEA mediated antiproliferative effects in MCF-7 cells discussed in detail above (Laezza 

et al. 2006; 2010). A cannabinoid constituent of marijuana, cannabidiolic acid, was also able to 

inhibit MDA-MB231 invasion measured in vitro using transwell migration and the wound healing 
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assay, and like Laezza et al. (2008), this cannabidiolic acid treatment also induced a 

downregulation of RHOA (Takeda et al. 2012).  

A unique observation by Nasser et al. (2011) showed that the CB2 selective agonist 

JWH-015 inhibited CXCR4 associated migration in MCF-7/CXCR4, MDA-MB231 (SCP2) and 

NT 2.5 breast cancer cells, which overexpress CXCR4. Migration was quantified using the 

transwell migration and wound healing assays. The CXCR4 agonist CXCL12 enhanced 

migration in both assays compared to vehicle. Treatment with JWH-015 and CXCL12 showed 

less migration compared to treatment with vehicle and CXCL12 in both assays but JWH-015 

effects on migration in the absence of CXCL12 were not quantified. Absence of data for the 

JWH-015 and vehicle control prevents the conclusion that JWH-015 is antagonizing CXCR4 

mediated migration since JWH-015 might be suppressing migration in general. Regardless, 

JWH-015 was shown to have some effect on migration in the MCF-7/CXCR4, MDA-MB231 

(SCP2) and NT 2.5 cell lines.  

 

Summary, hypothesis and goals of the following studies  

 

The research presented in section 1 of this document has proven that cannabinoids have 

the capacity to inhibit the growth of breast cancer cells through a variety of mechanisms. The 

goals of the following work, was to evaluate the antiproliferative effects of cannabinoids alone 

and in combination with established breast cancer therapies, as well as attempt to elucidate 

mechanism(s) for the effects of these treatments. Section 3 of the document will present further 

information to support the hypothesis of these studies, which was that cannabinoid agonist 

treatment in breast cancer cells would augment radiation and/or adriamycin treatments to 

enhance the antiproliferative effects of either therapeutic strategy through an autophagic 

mechanism. 
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Each section of this document will be presented with the necessary background 

information specifically pertinent to the aims of that section, followed by results and ending with 

a brief discussion. The first results section (section 3 of the document) will address cannabinoid 

interactions with chemotherapy and radiotherapy. The second results section (section 4) will 

investigate the mechanism(s) of breast cancer cell growth inhibition elicited by cannabinoid and 

radiation combinations, and finally the third results section (section 5) will examine receptor 

involvement for the cannabinoid treatment. The discussion section (section 6) presented at the 

end of the document aims to connect these three research aims, demonstrate the interaction of 

each respective project, and summarize how each contributes to the overall conclusions made 

from this body of research.  
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Section 2 
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Materials and Methods 

 

Cell line maintenance  

MCF-7, MDA-MB231, and MCF-10a cells were obtained from ATCC (Manassas, VA). 

Luciferase transfected 4T1 cells were obtained from Caliper (Hopkinton, MA). MCF-7, MDA-

MB231 and 4T1 cells were cultured in RPMI media (Invitrogen, Grand Island, NY) with 1% 

penicillin/streptomycin solution, 5% fetal bovine serum and 5% bovine calf serum. MCF-10a 

cells were cultured in DMEM/F12 media (Invitrogen) supplemented with 1% pen/strep solution, 

10% horse serum, insulin 10 ug/ml, cholera toxin 100 ng/ml, EGF 20 ng/ml, and hydrocortisone 

500 ng/ml. For studies under low serum conditions, cells were cultured in RPMI with 1% 

pen/strep, 0.05% fetal bovine serum, and 0.05% bovine calf serum. For studies utilizing 

estradiol, MCF-7 cells were cultured in phenol red free IMEM media (Invitrogen) supplemented 

with 1% pen/strep solution and 10% fetal bovine serum. 

 

Drugs and reagents  

WIN55,212-2, WIN55,212-3, chloroquine diphosphate salt, staurosporine, CP55,940, 

glutathione, methanandamide, n-acetylcysteine, nabilone, pioglitazone, bezafibrate, capsaicin, 

adriamycin, paclitaxel AM251, capsazepine, GW9662, and estradiol were purchased from 

Sigma (St. Louis, MO). CBD and THC were generously provided by NIDA (Bethesda, MD). 

AM630 was purchased from Enzo Life Sciences (Farmingdale, NY). Pravadoline, JWH-015 and 

SEW2871 were purchased from Caymen Chemical (Ann Arbor, Michigan). Ketamine and 

xylazine were obtained from Butler Schein Animal Health. S1P was a gift from the laboratory of 

Dr. Sarah Spiegel (Virginia Commonwealth University). 
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Drug treatments  

All treatments with cannabinoids, cannabinoid antagonists, capsaicin, capsazepine, 

pioglitazone, GW9662, bezafibrate, S1P, SEW2871 and estradiol were initiated with a 24 h 

exposure period, after which the drug-containing media was aspirated, the cells were washed 

with phosphate-buffered solution (PBS), and replenished with fresh media. Radiation was 

administered at the same time as drug, unless otherwise indicated. Exposure to drug 

antagonists was coincidental with the receptor agonists. Adriamycin (doxorubicin) was used at 1 

μM with an exposure time of 2 h. Paclitaxel was used at 0.5 μM with an exposure time of 24 h. 

For autophagy inhibition, chloroquine (5 μM) was administered to cells for the duration of the 

experiment. For ROS inhibition, N-acetylcysteine and glutathione were administered to cells 24 

h before initiation of drug treatment, and maintained throughout drug treatment for a total of 48 

h. H2O2 was administered with drug and radiation as a positive control for ROS mediated cell 

death. Media treated with H2O2 was removed after 24 h. In experiments under low serum 

conditions, drugs were added to the low serum media and low serum media was administered 

to cells for 24 h. After 24 h the low serum media and drugs were removed and replaced with 

regular media absent of drug. In studies involving estradiol, the cells were maintained in phenol 

red free IMEM media through the course of the experiment. All experimental results were 

analyzed at 96 h, unless otherwise indicated. Cell counts for 4T1 cells were determined at 48 h 

due to their rapid growth rate. 

 

Cell count methods –  

Trypan blue viable cell number - Cells were plated into six well plates MCF-7 and 

MDA-MB231 cells (50,000 cells/well); 4T1cells (100,000 cells/well). Viability was determined 

based on trypan blue exclusion using a hemocytometer or Invitrogen Countess automated 

counter. 
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Crystal violet assay - Cells were plated into 96 well plates and allowed to adhere 

overnight MCF-7 and MDA-MB231 lines (5,000 cells); 4T1 cells (10,000 cells). After 96 h, cells 

were washed with PBS, fixed with methanol and stained with a 0.5% solution of crystal violet in 

25% methanol. Samples were solubilized with a 0.1M Na-Citrate solution in 50% ethanol before 

absorbances were measured at 540 nm using a microplate reader. 

 

Flow cytometry –  

Annexin V and propidium iodide - Cells were harvested at the indicated time points 

and washed twice with PBS prior to centrifugation at 500xg in a 4°C 5810 R Eppendorf 

centrifuge. Annexin V and PI were obtained from BD Bioscience and diluted in binding buffer 

according to the manufacturer’s instructions before being added to cells. Samples were 

analyzed by flow cytometry at 520 nm for FITC labeled annexin V and 617 nm for PI. 

γH2AX - Both adherent and non-adherent cells were collected and pelleted at indicated 

time points using a 4°C 5810 R eppendorff centrifuge at 500xg. Samples were fixed in 

formaldehyde (3.7%) in PBS for 10 min at 37°C before being chilled on ice and re-pelleted. 

Fixative was removed, cells were permeabilized using methanol, the methanol was removed 

and cells were washed twice with 5 mg/ml bovine serum albumin (BSA) in PBS, and then 

blocked using the BSA solution for 10 min at room temperature. γH2AX-FITC conjugated 

antibody was added at a dilution of 1:200 in 200 µl per sample followed by incubation for 60 min 

at room temperature. Cells were washed with BSA solution twice more before being 

resuspended in PBS. Measurements were performed by flow cytometry at a wavelength of 520 

nm. 
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Cell staining –  

 Cell staining was used to identify senescent cells (β-galactosidase), nuclear morphology 

(DAPI) and autophagic vesicles (acridine orange).  

β-galactosidase (pH 6.0) - As described in Biggers et al. (2013), cells were plated into 6 

well plates at 10,000 cells/well. At appropriate time points, cells were washed twice with PBS 

and fixed with 2% formaldehyde/0.2% glutaraldehyde for 5 min. The cells were washed again 

with PBS and stained with a solution of 1 mg/mL 5-bromo-4-chloro-3-indolyl-b-galactosidase in 

dimethylformamide (20 mg/mL stock), 5 mM potassium ferrocyanide, 5 mM potassium 

ferricyanide, 150 mM NaCl, 40 mM citric acid/sodium phosphate, pH 6.0 and 2 mM MgCl2. 

Following overnight incubation at 37ºC, the cells were washed twice with PBS and the images 

of representative microscopic fields were captured on an Olympus 1 x 70 inverted microscope 

(Olympus America, Inc., Melville, NY). Senescent cells were quantified manually based on blue 

staining and reported as a percent of the total population. 

4',6-diamidino-2-phenylindole (DAPI) - As described in Biggers et al. (2013), at the 

indicated time points both adherent and nonadherent cells were harvested and centrifuged at 

1,500 rpm for 3 min. A dilution of 20,000 cells in 200 μl of PBS per slide was prepared, and cells 

were spun at 500xg for 5 min (Shandon Cytospin 4, Thermal Electron Corp). Slides were 

refrigerated until ready for staining. Cells were fixed with 4 % formaldehyde in PBS for 10 min at 

room temperature and then washed with PBS twice for 5 min at room temperature. A 1:1,000 

dilution was prepared for Vectashield:Dapi, and each slide was mounted with 10 μl of the 

solution. Coverslips were sealed using clear nail polish, and photographs were taken using an 

Olympus 1 x 70 inverted microscope (Olympus America, Inc., Melville, NY). Slides were stored 

at 4°C, and three fields per condition were evaluated. 

Acridine orange - As described in Biggers et al. (2013), cells were plated at a density of 

2 x 10⁵ cells per 6-well plate and allowed to adhere overnight. After drug treatment, drug was 
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removed and cells were washed with PBS. Cells were stained with acridine orange (1 μg/mL) 

for 15 min. At selected time points, cells were stained for 10 min, the stain was removed and 

cells were washed with PBS four times before fresh media was added to the wells. Photographs 

were taken using an Olympus 1 x 70 inverted microscope (Olympus America, Inc., Melville, NY). 

Staining was visualized at a fluorescence wavelength of 500 nm. All comparisons were made at 

identical magnifications. 

 

RT-PCR  

Total RNA was extracted from cells by using Trizol Reagent (Gibco BRL Technologies, 

USA), and reverse-transcribed with iScript cDNA Synthesis Kit (BIO-RAD, USA). The cDNA 

obtained from each sample was used as template for PCR using KAPA Mouse Genotyping Kit 

(KAPA Biosystems, USA). The primer was synthesized by Invitrogen (USA) and primer 

sequences were as follows: CB1 forward- GACCATAGCCATTGTGATCG, CB1 reverse- 

GGTTTCATCAATGTGTGGGA, CB2 forward- GACCGCCATTGACCGATACC, CB2 reverse- 

GGACCCACATGATGCCCAG, TRPV1 forward- CTCACCAACAAGAAGGGAATG, TRPV1 

reverse- AGGTCGTACAGCGAGGAGTG, PPARγ forward- ATGACAGCGACTTGGCAATA, 

PPARγ reverse- GAGGACTCAGGGTGGTTCAG, GPR55 forward- 

CATCTCTCAGCCCTCTCAGC, GPR55 reverse- TTCTTCCTACAACACCAACAGA, Beta actin 

forward- TGGGACGACATGGAGAAA, Beta actin reverse- CACAGCCTGGATAGCAACG. The 

PCR program was as follows: 95 oC for 3 min; 35 cycles of 95 oC for 15 s, 58 oC for 15 s and 72 

oC for 20 s; 72 oC for 2 min. Primer sequences for CB1 and CB2 receptors were contributed by 

Dr. Mary Abood of Temple University, Department of Anatomy and Cell Biology. 
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Agonist stimulated [³⁵S]GTPγS binding –  

Activation of G proteins by sphingosine-1-phosphate (S1P) and WIN55,212-2 (WIN2) 

was quantified by agonist-stimulated [³⁵S]GTPγS binding assays.  

Cell Harvesting - MCF7 cells were harvested and centrifuged before suspension in ice-

cold membrane buffer (50 mM Tris-HCl, 3 mM MgCl 2 and 1 mM EGTA, pH 7.4). The cells were 

homogenized using a Polytron homogenizer for 10 seconds, then centrifuged at 50,000xg at 

4°C for 10 min. Membranes were resuspended in membrane buffer, and protein was 

determined by the method of Bradford using 1 mg/ml bovine serum albumin (BSA) as the 

standard. Membrane preparations were stored in aliquots at -80°C.  

Membrane preparation - Frozen membrane samples were thawed on ice and were 

homogenized in 50 mM Tris-HCl, 3 mM MgCl2, 0.2 mM EGTA, 100 mM NaCl pH 7.4 (assay 

buffer) using a Polytron homogenizer for 10 seconds.  Homogenates were centrifuged at 

50,000xg at 4°C for 10 minutes and resuspended in assay buffer. Membrane protein levels were 

assessed via the Bradford method, using 1 mg/ml BSA as the standard (Bradford, 1976). 

[35S]GTPγS Binding - Concentration-effect curves were generated by incubating the 

appropriate concentration of membrane (10 µg protein) in assay buffer with 0.1% BSA, various 

concentrations of S1P and/or WIN2, 30 μM GDP and 0.1 nM [³⁵S]GTPγS in 0.5 ml total volume. 

Basal binding was assessed in the absence of agonist, and nonspecific binding was measured 

in the presence of 10 μM unlabeled GTPγS. The reaction was terminated by filtration under 

vacuum through Whatman GF/B glass fiber filters, followed by three washes with cold (4°C) 

Tris buffer (50 mM Tris-HCl, pH 7.4). Bound radioactivity was determined by liquid 

scintillation spectrophotometry at 95% efficiency for [35S] after extraction overnight in 

Econo-Safe scintillation fluid. 
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In vivo studies –  

Animals and maintenance - Female Balb/c mice (Jackson Laboratory, Bar Harbor, ME) 

weighing between 17 and 22 g (approximately 8-10 weeks of age at the start of the study) were 

housed 4 per cage in a temperature controlled (20-22oC) vivarium approved by the American 

Association for the Accreditation of Laboratory Animal Care. The mice were maintained on a 12 

h light/dark cycle, with all experiments performed during the light cycle. Food and water were 

available ad libitum. All experiments were approved by the Institutional Animal Care and Use 

Committee at Virginia Commonwealth University in accordance with the Guide for the Care and 

Use of Laboratory Animals. 

Tumor growth - 4T1 cells were suspended into sterile PBS at 250,000 cells per ml. A 

200 µl volume of the cell suspension was subcutaneously injected into the hind flank of Balb/c 

mice. Tumors were permitted to stabilize for 24 h prior to treatment and allowed to grow for 16-

17 days, until evidence of necrosis was detected or the tumor burden exceeded 1 cm3. Tumor 

volume was assessed by caliper measurements by an investigator blinded to the experimental 

conditions; tumor volume was calculated by the formula V=0.5(W(L2)). Radiation treatments 

were given 24 h after injection of tumor cells. Irradiated animals were anesthetized using 

ketamine (85 mg/kg) and xylazine (8.5 mg/kg) before being placed into a focused irradiation 

chamber limiting exposure to the right hind quarter. 24 h after irradiation, drug treatments were 

begun. Vehicle (ethanol, emulphor, and saline in a ratio of 1:1:18), WIN,212-2 (1, 5, or 10 

mg/kg) or WIN,212-3 (5 mg/kg) were administered to mice twice weekly via intraperitoneal (i.p.) 

injection. Adriamycin (5 mg/kg), used as a positive control, was administered once per week i.p. 

for two total treatments.  
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Statistics –   

In vitro tests - All experiments were performed with 3-6 replicates. Two-way repeated 

measures ANOVA was used to analyze radiation and drug treatments for individual treatment 

effects and potential interactions between treatments. All two-way ANOVA comparisons were 

done within time point. Paired T-test with a Bonferroni correction was used for individual 

comparisons and to assess interactions of combination treatments. Standard paired T-tests 

were used for validation of positive controls. Temporal studies utilized One way repeated 

measures ANOVAs for two purposes 1) to assess growth inhibition within each time point by 

comparison to vehicle and 2) to assess cell death by comparing an individual treatment across 

time points. Dunnett’s post hoc test was used with One way repeated measures ANOVAs. All 

data are displayed as mean+se. 

In vivo tests - All animal studies utilized 8 mice per treatment group. A Two-way 

ANOVA was used to analyze radiation vs. drug treatments within each time point to assess 

interactions and main effects of drug. A T-test with a Bonferroni correction was used to assess 

comparisons of combination + drug with the individual treatments. A One way ANOVA was used 

to assess effects of individual treatments across time points. Dunnett’s post hoc test was used 

for comparisons to baseline. All data are displayed as mean+se. 

Criteria for augmentation and antagonism - Interactions between treatments were 

evaluated using the following statistical criteria. Two way ANOVAs assess significant 

interactions between treatments by requiring p<0.05 for interaction comparisons. If a significant 

interaction was found then individual comparisons with a bonferroni corrected T-tests were used 

to determine the type of interaction.  

Using the bonferroni corrected T-test to assess augmentation. Studies will evaluate the 

effects of two individual treatements (cannabinoid or cancer therapeutic) and then the 

combination of the two treatments (cannabinoid + cancer therapeutic). If both individual 
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treatments are significantly different from vehicle (p<0.05), then the combination treatment must 

be significantly different when compared to the cannabinoid treatment (p<0.025) and the cancer 

therapeutic treatment (p<0.025). If either of the individual treatments are not found significantly 

different from vehicle by p<0.05, then the combination treatment must be significantly different 

from vehicle (p<0.0166), cannabinoid treatment (p<0.0166) and the cancer therapeutic 

treatment (p<0.0166). To demonstrate antagonism the combination treatment need only be 

shown to significantly decrease antiproliferative action  when compared to one or both of the 

individual treatments (p<0.05).   
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Section 3 
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Characterization of cannabinoids in combination with ADR and radiation  

 

Various studies have implicated a process known as autophagy in the antiproliferative 

action of cannabinoids (Salazar et al. 2009; Shrivastava et al. 2011; Donadelli et al. 2011, 

Dando et al. 2013). Autophagy was originally characterized in normal cells as a degradative 

process used throughout the body in which intracellular autophagosomal structures are 

generated that consume cellular materials such as mitochondria and endoplasmic reticulum for 

the purposes of nutrient recycling, energy production or management of cellular stresses. 

Autophagy has now been implicated in cancer cell treatment as either a novel cell death 

mechanism, a precursor to growth inhibitory mechanisms or protection from treatment stress. 

However, differences between death-promoting forms of autophagy and protective forms of 

autophagy are poorly understood (Yang et al 2011, Mah et al. 2012, Leone et al 2013).  

Cannabinoid and cancer research clearly links autophagy to antiproliferative action in 

various publications. In Salazar et al. (2009), THC induced autophagy via activation of CB1 in 

U87-MG glioblastoma cells. The cannabinoid receptor antagonist SR1 was used to confirm CB1 

involvement and GFP-LC3 puncta formation and electron microscopic autophagosome imaging 

confirmed autophagy induction. THC also induced apoptosis identified by active caspase 3 

staining, annexin V/PI staining and antagonism by the pan-caspase inhibitor ZVAD. ATG1 and 

ATG5 knockdown inhibited autophagy induction, prevented apoptosis induction and subsequent 

cell death by THC treatment, demonstrating that THC induction of autophagy through CB1 leads 

to the induction of apoptosis killing of glioblastoma cells. Studies further supported the 

hypothesis of cannabinoid induction of autophagy. In MDA-MB231 cells cannabidiol induces 

autophagy based on LC3 cleavage and electron microscopic autophagosome imaging. LC3 

cleavage was prevented by the autophagy inhibitor bafilomycin (Shrivastava et al. 2011). In 
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Panc1 cells, the cannabinoid agonists GW405833 and arachidonoyl cyclopropamide treatment 

lead to autophagic induction quantified by LC3 cleavage, acridine orange staining and flow 

cytometric quantification of MDC staining. (Donadelli et al. 2011, Dando et al. 2013).  

Interestingly, data from the Gewirtz laboratory supports a hypothesis termed the 

“autophagic switch”. This hypothesis suggests that autophagy can have multiple effects on cell 

fate depending on the conditions of the system. The autophagic switch concept was initially 

promoted in studies by Wilson et al. (2011) using radiation in ZR-75 breast cancer cells. This 

hypothesis was then later expanded to radiation in MCF-7 breast cancer cells (Bristol et al. 

2012), and then again extended to chemotherapeutic treatment in MCF-7 breast cancer cells 

(Goehe et al. 2012).  

The studies by Bristol et al. (2012) showed that 5x2 Gy of radiation-induced significant 

levels of autophagy as measured by complementary assays including acridine orange staining, 

RFP-LC3 puncta formation, autophagic vesicles imaged with electron microscopy and p62 

degradation via western blot. Previous work has shown that senescence mediates growth 

inhibition by radiation (Jones et al. 2005), and the work by Bristol et al. further supported this 

finding by demonstrating (using cell viability and TUNEL assays) that radiation reduces 

proliferative capacity in the absence of apoptosis. Blockade of autophagy by pharmacological 

treatment with chloroquine or genetic knockdown of ATG5 further decreased viable cell number 

and induced apoptotic cell death, demonstrating that manipulation of autophagy leads to a 

transition from senescent growth arrest to cell death. 

The study by Goehe et al. (2012) addressed the potential relationship between 

autophagy and senescence by demonstrating that manipulation of autophagy induced by 

adriamycin (ADR, also known as doxorubicin) treatment leads to a delay in the onset of 

senescence. After 72 h, ADR was shown to induce a significant amount of senescence as 
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measured by beta galactosidase staining, and a significant amount of autophagy as measured 

by acridine orange staining, RFP-LC3 puncta formation, autophagic vesicles imaged with 

electron microscopy and p62 degradation. Blockade of autophagy by chloroquine, 3-

methyladenine and ATG5 knockdown led to a decrease in autophagic signaling and delayed 

senescence until 120 h post treatment. Consequently, these studies demonstrated that while 

senescence could occur in the absence of autophagy, there was nevertheless a clear 

connection between autophagy and the rate of ADR induction of senescence in MCF-7 cells.  

This autophagic switch hypothesis presents the premise that autophagy is interconnected 

with growth inhibitory and cell death processes, and that alterations in autophagy can alter how 

the cell responds to various stressors. It is possible that the cited cannabinoid actions on 

autophagy could alter autophagic mechisms in such a way as to enhance the antiproliferative 

effect as was demonstrated in Bristol et al. 2012 and Goehe et al. 2012. This previous work 

guided the generation of my hypothesis that cannabinoid agonist treatment in MCF-7 cells 

would augment radiation and/or adriamycin treatments to enhance the antiproliferative effects of 

either therapeutic strategy through an autophagic mechanism. 

A primary aim of the studies presented in this section as well as the overall thrust of this 

work was to evaluate the interaction of cannabinoid agonists in combination with either radiation 

treatment or ADR treatment. These studies were performed in human (MCF-7 and MDA-MB-

231) and murine (4T1) breast cancer cells. For the purpose of assessing selectivity in 

cancerous versus non-cancerous cells, the combination treatment was also evaluated in MCF-

10A cells, a model of normal breast epithelial cells. WIN55, 212-2 was the primary cannabinoid 

evaluated in this work, and stereospecificity was determined utilizing its stereoisomer, 

WIN55,212-3, which does not bind to cannabinoid receptors.  The impact of radiation on breast 

tumor cell growth was assessed in combination with a variety of cannabinoids, including THC, 



 

 

47 

 

 

nabilone, CP55,940, methanandamide, cannabidiol (CBD), JWH-015 and pravadoline. In vivo 

experiments were conducted using the 4T1-Balb/c syngeneic model to establish a WIN2 dose-

response curve and to test the interaction of WIN2 and radiation.  

 

Cell lines 

 

Bristol et al (2012) and Goehe et al (2012) used MCF-7 cells for their studies, and 

cannabinoids including anandamide, cannabidiol, and THC have been shown to inhibit MCF-7 

cell growth (De Petrocellis et al 1998, Legresti et al 2006, Caffarel et al 2006). These previous 

studies provided the rationale for studying MCF-7 cells as the primary model for evaluating 

cannabinoid treatment in combination with ADR and radiation and establishing and 

characterizing any interaction. Once interactions were established in MCF-7 cells, other models 

were used to assess generalization of combination treatments (MDA-MB231 and 4T1), test 

combination effects in an appropriate in vivo model (4T1) or demonstrate selectivity of the 

combination treatment for tumor cells (MCF-10a). A more detailed explanation and rationale for 

the models chosen is provided below.  

 

MDA-MB231 cells 

MDA-MB231 cells are a p53 mutant cell line compared to the p53 wild type MCF-7 

(Lacroix et al. 2006). p53 is commonly mutated in cancer with 31% of all cancers and ~23% of 

breast cancers expressing this aberration. p53 gene mutations are also correlated with poor 

prognosis, due to a collection of cancer promoting effects on cell growth, DNA repair, 

tumorigenicity, cell death, angiogenesis and metastasis (Lacroix et al 2006, Walerych et al 

2012). The frequency at which the p53 mutation is present in breast cancer and its effectiveness 
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at enhancing pathology, makes it important to test the cannabinoid/cancer therapy combinations 

against a p53 mutant model. 

MDA-MB231 cells are also a triple negative breast cancer (TNBC) model, based on 

absence of the estrogen receptor, progesterone receptor and Her2/neu receptor. Typically, 

TNBC diseases are initially responsive to chemotherapy but resistant to hormone therapy. 78% 

of TNBC patients show a response after initial therapy; however, this 78% also have faster rates 

of recurrence than non-TNBC patients, show more frequent progression to metastasis than non-

TNBC patients and have poorer 5 year survival rates than non-TNBC patients. Interestingly 

though 22% of TNBC patients given treatment show complete disease elimination (CDE) 

compared to the 11% CDE for non-TNBC disease. These 22% of TNBC patients also have a 

higher percentage of 5 year survivors compared to non-TNBC patients that have CDE after 

initial treatment (Liedtke et al. 2008). Based on this, combination therapies that can enhance 

current treatment effectiveness could also translate to higher CDE rates and potentially lead to 

greater 5 year survival rates in TNBC patients. Testing enhanced treatment effectiveness in a 

TNBC model would require the use a model that is already responsive to our selected therapies 

of radiation, ADR and cannabinoids. 

MDA-MB231 cells have been demonstrated to be such a model. 10 gray (Gy) radiation 

induces a G2 cell cycle arrest at early time points followed by induction of apoptosis quantified 

by TUNEL staining and accumulation of a significant fraction of the cell population in the sub-G1 

phase. Decreases in MDA-MB231 survival from radiation treatment persisted to 14 days (Jones 

et al 2005). 2μM ADR in MDA-MB231 cells induces delayed apoptosis as quantified by TUNEL 

staining (Elmore et al. 2002), leaving a small surviving fraction in senescent growth arrest 

quantified by β-galactosidase activity (Di et al. 2009). The cannabinoids WIN55,212-2 and JWH-

133 were shown to inhibit in vitro cell viability and in vivo tumor growth of MDA-MB231 cells 
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(Qamri et al. 2009), and likewise the phytocannabinoid, cannabidiol (CBD), decreased cell 

viability via apoptosis as quantified by annexin V positive staining (Shrivastava et al. 2011). 

 

4T1 cells 

Cannabinoids and autophagy have immune related effects in tumor treatment that 

become relevant when studies are moved in vivo (McKallip et al. 2005, Michaud et al. 2011). 

For example, McKallip et al. (2005) showed that THC suppresses the antitumor immune 

response in mice, which enhanced tumor growth. When Balb/c mice were injected with non-

viable 4T1 cells they developed protection from tumor growth when later challenged by injecting 

viable 4T1 cells, but THC suppressed this protection after the injection of non-viable 4T1 cells. 

Furthermore, treatment with THC increased the number and size of 4T1 metastatic nodules in 

lung of Balb/c mice compared to vehicle, while this did not occur in (immune-suppressed) SCID 

mice. If cannabinoid treatments in these studies elicit similar suppression of the anti-tumor 

immune response it could limit the effectiveness of a cannabinoid/cancer therapy combination 

approach.  

Michaud et al. (2011) showed that immune function is necessary for autophagy inducing 

chemotherapies in vivo. CT26 colon cells treated with mitoxantrone (MTX) in vivo and in vitro 

induced autophagy quantified by LC3 cleavage. Inoculating mice with CT26 cells treated with 

MTX in vitro causes 80% protection from tumor development when mice are later challenged 

using healthy/untreated CT26 cells. However, knockdown of the autophagy genes ATG5 and 

ATG7 in CT26 cells blocks MTX mediated induction of autophagy, and when these knocked 

down CT26 cells are treated with MTX in vitro and incoculated into mice, the mice show ~15-

35% decrease in protection from tumor development when challenged using healthy/untreated 
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CT26 cells. These studies demonstrate that autophagy is relevant to some extent in signaling 

the immune system after MTX treatment. If the cannabinoid/cancer therapy combination 

treatment interact via autophagy as hypothesized, then an immune competent animal would be 

required to detect this effect in vivo. 4T1 cells are a murine derived breast cancer model that 

can be implanted into an inbred Balb/c mouse with normal immune function without incurring 

unwanted graft host interactions (Aslakson et al. 1992). 

 

MCF-10A cells 

When augmenting growth inhibitory or cytotoxic effects of cancer therapies through the 

use of other agents there is always a concern that this augmentation will extend to non-

cancerous tissues enhancing the toxic side-effects of these therapies. MCF-10A cells are a cell 

line derived from the immortalized breast epithelial cell line MCF-10 (Soule et al. 1990), and 

could be used for screening augmentation of toxicities in the cannabinoid/cancer therapy 

combination treatments. A similar idea from Shrivastava et al. (2011) used the cell viability 

assay to show that cannabidiol had greater growth inhibitory effects in MDA-MB231 cells than 

MCF-10A cells demonstrating that cannabidiol toxicities do not transfer to all cell types equally. 

Similar comparisons between MCF-7 and MCF-10A would offer insights into the effects of 

cannabinoids alone and in combination with cancer therapy in normal tissues.  

 

Rationale for cannabinoid agonist choice  

THC was shown to induce CB1 mediated autophagic cell death in glioma cells (Salazar 

et al 2009), making it an appropriate candidate to be evaluated in combination with ADR and 

radiation, but wide ranging differences among cannabinoids in both structure and function within 

the endocannabinoid system provide a spectrum of tools for these studies. Structurally, the 
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compounds used here fall into three basic classes including a phytocannabinoid structure 

similar to THC (THC, CBD, nabilone, CP55,940), the fatty acid or endogenous cannabinoid 

structure (methanandamide (MAEA)) and the aminoalkylindole structure (WIN55,212-2, 

pravadoline, JWH-015) (Fig 3.1A-H).  

THC (Marinol) and nabilone (Cesamet) are clinically approved by the Food and Drug 

Administration (FDA) as anti-emetics in chemotherapy treatment, although neither compound is 

approved for palliative use in radiation therapy. THC and nabilone are currently the only FDA 

approved cannabinoids in the United States. Preclinically, radiation-induced emesis in the least 

shrew has been shown to be attenuated by THC, WIN55,212-2 (WIN2) and CP55,940 (Darmani 

et al. 2007). Beyond palliative care, the cancer inhibiting properties of cannabinoids have only 

been assessed preclinically. CBD, THC, MAEA and WIN2 have been shown to inhibit breast 

cancer cell growth (Laezza et al. 2006, Legresti et al 2006, Caffarel et al 2006, Qamri et al. 

2009) while CP55,940 and JWH-015 inhibit glioma cell growth (Jacobsson et al. 2001). 

Pravadoline was chosen for its structure, and has not yet been demonstrated to inhibit cancer 

cell growth. 

In addition to their palliative or potential antitumor properties, all cannabinoids tested 

have varying efficacies and affinities for CB1 and CB2, both of which are G protein coupled 

receptors (GPCR). Agonist-stimulated [35S]GTPγS binding assays have shown that both WIN2 

and CP55,940 are high efficacy agonists at both CB1 and CB2, while THC is a relatively low 

efficacy agonists at both receptors (Sim et al. 1996, Showalter et al. 1996, Breivogel et al. 

1998). JWH-015 was shown to have low affinity at CB1 receptors with a 27x greater affinity for 

CB2 over CB1 (Showalter et al. 1996). Conversely MAEA, a stable analog of the rapidly 

hydrolyzed endogenous cannabinoid anandamide, has CB1 selectivity with a 40x greater affinity 

for CB1 over CB2 (Abadji et al. 1994, Khanolkar et al. 1996). CBD has extremely poor affinity for 

CB1 (Ki=4.3 μM) and CB2 (Ki=1.2 μM) (Showalter et al. 1996), and likewise the stereoisomer of  
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Figure 3.1 – Cannabinoid structures. (A) ∆9-tetrahydrocannabinol (B) Nabilone (C) 
WIN55,212-2 (D) CP55,940 (E) Cannabidiol (F) Methanandamide (G) Pravadoline (H) JWH-015  
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WIN2, WIN55,212-3 (WIN3), has no known agonist activity at CB1 and CB2 (Howlett et al 2002; 

Savinainen et al. 2005).  

A majority of the studies presented in this document utilize the synthetic cannabinoid 

WIN2 due to its pharmacology (Sim et al. 1996, Showalter et al. 1996, Breivogel et al. 1998), 

stereochemistry (Howlett et al 2002; Savinainen et al. 2005) and efficacy as an anti-cancer 

agent (Giuliano et al. 2009; Qamri et al. 2009; Park et al.  2011; Scuderi et al. 2011; Wasik et al. 

2011). As a high efficacy agonist for both cannabinoid receptors (Sim et al. 1996, Showalter et 

al. 1996, Breivogel et al. 1998), the use of WIN2 in our studies prevented us from preferentially 

testing one cannabinoid receptor over another. This is important, because both cannabinoid 

receptors have been implicated in the growth inhibition of breast cancer cells, which will be 

discussed in more detail in section 5 (Qamri et al. 2009). WIN2 also posesses an inactive 

enantiomer (WIN3) that allows for the characterization of stereospecific action for differentiation 

between receptor/target mediated toxicities and non-specific toxicities (Howlett et al 2002; 

Savinainen et al. 2005). Finally previous reports showed that WIN2 inhibited the growth of 

various types of cancer cells preclinically, including breast, hepatic, lymphoma, melanoma and 

gastric cancer models (Giuliano et al. 2009; Qamri et al. 2009; Park et al.  2011; Scuderi et al. 

2011; Wasik et al. 2011).  

 

*statistical values reported in figure legends  

 

Abbreviations  

 

CB1-cannabinoid receptor 1; CB2-cannabinoid receptor 2; WIN2-WIN55,212-2; WIN3-

WIN55,212-3; IR-ionizing radiation; ADR-adriamycin; THC-∆9-tetrahydrocannabinol; CBD-

cannabidiol; Gy-gray (radiation dose unit); TNBC-triple negative breast cancer  
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Results 

 

Section 3.1 - WIN55, 212-2 stereoselectively inhibits breast cancer growth. 

 

Figures 3.2-3.5 present dose-response curves for WIN2 in three breast cancer cell lines 

(MCF-7, MDA-MB231 and 4T1), and one non-cancerous breast epithelial cell line (MCF-10A). 

WIN3, the inactive enantiomer of WIN2, was used to assess stereoselectivity. Doses tested 

include 3.75, 7.5, 15, 30 and 60 μM1. Cell density was quantified using the crystal violet assay 

at 96 h. The 96 h timepoint was chosen because MCF-7 cells show significant growth arrest and 

autophagic induction with both ADR and radiation treatment by this time point (Jones et al. 

2005, Bristol et al. 2012, Goehe et al. 2012). WIN2 dose-dependently inhibited growth of all four 

cell lines tested when compared to vehicle treatment. ED50 values for WIN2 were 11.96+1.65 

μM in MCF-7 cells, 17.92+3.38 μM in MDA-MB231 cells, and 18.24+3.00 μM in 4T1 cells. In 

MCF-10A cells, WIN2 achieved a maximum growth inhibition of 36% at 30 μM, preventing 

calculation of the ED50. Significant differences were also found between WIN2 and WIN3 in 

each cell line confirming that WIN2 mediated growth inhibition is stereospecific in nature.   

 

Section 3.2 - WIN55, 212-2 fails to augment adriamycin induced growth inhibition  

 

Based on studies from Goehe et al. (2012) and Salazar et al. (2009) discussed above, 

ADR (100 nM, 300 nM and 1000 nM) was evaluated in combination with WIN2 (6, 12 and 18 

μM) in MCF-7 cells (Fig 3.6). Trypan blue exclusion assessed viable cell number at 96 h after 

treatment. Statistical analysis showed WIN2 did not significantly augment the antiproliferative 

actions of ADR, even though both individual treatments dose-dependently inhibited  

                                                           
1 3.75 μM was not used in MCF-10A cells  
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Figure 3.2 – WIN2 stereoselectively and dose-dependently inhibits the growth of MCF-7 
breast cancer cells. Growth inhibition by WIN2 and WIN3 was assessed at 96 h post-treatment 
by the crystal violet assay in MCF-7 cells.  Data presented reflect the means of 5 individual 
experiments + se; *p<0.05 WIN2 vs. WIN3 within concentration; Blackened symbols p<0.05 
compared to vehicle. 

 
Statistics 

Two way repeated measures ANOVA : Drug-dose interacton (F4,15=7.5, p=0.0016) 
Individual comparisons : Vehicle-WIN2 15-60 μM (p<0.0025). WIN2-WIN3 15-60 μM 

(p<0.05) 
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Figure 3.3 – WIN2 stereoselectively and dose-dependently inhibits the growth of MDA-
MB231 breast cancer cells. Growth inhibition by WIN2 and WIN3 was assessed at 96 h post-
treatment by the crystal violet assay in MDA-MB231 cells.  Data presented reflect the means of 
5 individual experiments + se; *p<0.05 WIN2 vs. WIN3 within concentration; Blackened symbols 
p<0.05 compared to vehicle. 
 
Statistics 

Two way repeated measures ANOVA : Drug-dose interacton (F4,15=7.8, p<0.0013) 
Individual comparisons : Vehicle-WIN2 30-60 μM (p<0.0001). WIN2-WIN3 30-60 μM 

(p<0.02) 
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Figure 3.4 – WIN2 stereoselectively and dose-dependently inhibits the growth of 4T1 
breast cancer cells. Growth inhibition by WIN2 and WIN3 was assessed at 96 h post-treatment 
by the crystal violet assay in 4T1 cells.  Data presented reflect the means of 5 individual 
experiments + se; *p<0.05 WIN2 vs. WIN3 within concentration; Blackened symbols p<0.05 
compared to vehicle. 
 
Statistics 

Two way repeated measures ANOVA : Drug-dose interacton (F4,15=12.8, p<0.0001) 
Individual comparisons : Vehicle-WIN2 30-60 μM (p<0.0025). Vehicle-WIN3 30-60 μM 

(p<0.02). WIN2-WIN3 30-60 μM (p<0.02) 
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Figure 3.5 – WIN2 stereoselectively and dose-dependently inhibits the growth of non-
transformed MCF-10A breast epithelial cells. Growth inhibition by WIN2 and WIN3 was 
assessed at 96 h post-treatment by the crystal violet assay in MCF-10A cells.  Data presented 
reflect the means of 4 individual experiments + se; *p<0.05 WIN2 vs. WIN3 within concentration; 
Blackened symbols p<0.05 compared to vehicle. 
 
Statistics 

Two way repeated measures ANOVA : Drug-dose interacton (F4,15=9.8, p=0.0004) 
Individual comparisons : Vehicle-WIN2 30-60 μM (p<0.025). Vehicle-WIN3 60 μM 

(p<0.02). WIN2-WIN3 30-60 μM (p<0.05) 
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MCF-7 cell growth alone. WIN2 treatment also failed to antagonize ADR effects demonstrating a 

complete lack of interaction between the treatments.  

 

Section 3.3 - WIN55, 212-2 stereoselectively enhances antiproliferative effects of ionizing 

radiation in MCF-7 cells 

 

In addition to a cannabinoid/ADR combination it was also hypothesized that 

cannabinoids would augment the antiproliferative effects of radiation (Salazar et al. 2009; Bristol 

et al. 2012). The combination of WIN2 (6, 12 and 18 μM) and ionizing radiation (1, 2 and 4 Gy) 

was assessed in MCF-7 cells using trypan blue exclusion at 96 h to measure cell viability (Fig 

3.7A). Data analysis indicated that 12 and 18 μM WIN2 significantly augmented the 

antiproliferative effects of radiation at 2 and 4 Gy. No interactions (augmentation or antagonism) 

were found between the lower doses used of either treatment.   

WIN3 was then used to assess stereoselectivity of the WIN2/IR interaction (Fig 3.7B). 

MCF-7 cells were treated with either vehicle, WIN2 (12 μM) or WIN3 (12 μM). Drug treatments 

were given alone or in combination with 2 Gy radiation, which is a ~50% effective dose at 96 h 

based on results from Figure 3.7A. The combination of WIN2 and IR again elicited a significant 

augmentation, but WIN3 had no effect on growth either alone or in combination with IR. 

Together these studies show that WIN2 stereoselectively enhances the antiproliferative actions 

of radiation in MCF-7 cells.  

 

Section 3.4 - MCF-10a cells require higher doses of WIN55,212-2 to augment the 

antiproliferative effects of radiation  
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Figure 3.6 – WIN2 fails to augment ADR induced antiproliferative effects. MCF-7 cells were 
exposed to treatments of WIN2 (6, 12 and 18 μM) and ADR (100, 300 and 1000nM). ADR 
treatments lasted 2 h. WIN2 treatments lasted 24 h. Cells were analyzed at 96 h using trypan 
blue exclusion. Data presented reflect the means of 3 individual experiments + se; no significant 
interactions were found.  
 
Statistics 

Two way repeated measures ANOVA: WIN2-ADR interaction (F9,24=36.6, p<0.0001) 
Individual comparisons for augmentation: no significant effects found (criteria described 

in methods) 
Individual comparisons for ADR to vehicle: (100 nM p=0.0064; 300 nM p=0.0004; 1000 

nM p<0.0001). 
Individual comparisons for WIN2 to vehicle: (6 μM p=0.1359; 12 μM p=0.0428; 18 μM 

p=0.0012) 
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Figure 3.7 – WIN2 stereoselectively enhances the antiproliferative effect of ionizing 
radiation in MCF-7 cells. (A) Combination of WIN2 and radiation was evaluated. MCF-7 cells 
were exposed to treatments of WIN2 (6, 12 and 18 μM) and IR (1, 2 or 4 Gy). (B) 
Stereoselectivity of the WIN2 + IR interaction was tested using WIN3. Treatments included 
WIN2 (12 μM), WIN3 (12 μM) or radiation (2 Gy). Drug treatments lasted 24 h. Cells were 
analyzed at 96 h using trypan blue exclusion. Data presented reflect the means of 3-4 individual 
experiments +se; (A) *=p<0.025 compared to WIN2 alone and IR alone; (B) *=p<0.05 vs vehicle 
and **=p<0.025 vs WIN2 alone and IR alone.  
 
Statistics  

(A) Two way repeated measures ANOVA : WIN2-IR interaction (F12,32=31.1, p<0.0001) 
(A) Individual comparisons for augmentation: 12 μM + 2 Gy (vs WIN2 p=0.0091; vs IR 

p=0.0070), 12 μM + 4 Gy (vs WIN2 p=0.0020; vs IR p=0.0175), 18 μM + 2 Gy (vs WIN2 
p=0.0083; vs IR p=0.0021) and 18 μM + 4 Gy (vs WIN2 p=0.0008; vs IR p=0.0020). 

(B) Two way repeated measures ANOVA: (F2,12=12.8, p=0.0011) 
(B) Individual comparisons with WIN2: Vehicle-WIN2 (p=0.0011). Vehicle-IR (p<0.0001). 

WIN2-WIN2 + IR (p=0.0024). IR-WIN2 + IR (p=0.0013).  
(B) Individual comparisons with WIN3: Vehicle-WIN3 and WIN3-WIN3 + IR comparisons 

showed no significant differences   
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The effect of the WIN2/IR combination was also evaluated in MCF-10A cells, an in vitro 

model of normal breast epithelial tissue, to assess the selectivity of the WIN2/IR combination for 

cancer cells. MCF-10A cells were treated as in Figure 3.7B before cell viability was assessed at 

96 h using trypan blue exclusion (Fig 3.8A). Radiation significantly inhibited MCF-10A growth 

but WIN2 showed no capacity to do the same, nor did WIN2 show any enhancement of the 

antiproliferative actions of radiation.   

Higher doses of WIN2 were then tested based on the dose-response curve in Figure 

3.6A, which showed growth inhibitory effects at 30 μM WIN2. Using this higher dose of WIN2, 

MCF-10A cells showed significant growth inhibition for WIN2, IR and WIN2 + IR (Fig 3.8B). 

Comparisons also indicated that WIN2 significantly augmented the antiproliferative effects of 

radiation. This indicates that WIN2 can augment the actions of radiation in non-cancerous cells 

but it appears to require higher doses than those used in cancerous cells. Lastly, WIN3 showed 

no ability to inhibit MCF-10A growth or augment growth inhibition when combined with radiation 

confirming that WIN2 is acting in a stereospecific manner in MCF-10A cells as it did in MCF-7 

cells.   

 

Section 3.5 – WIN55, 212-2 augments the antiproliferative effects of radiation in other 

breast cancer cell lines 

 

The combination of WIN2 and IR was evaluated in MDA-MB-231 (Fig 3.9A) and 4T1 

cells (Fig 3.9B). MDA-MB-231 cells were treated with vehicle, 15 μM WIN2, 2 Gy ionizing 

radiation and WIN2 + IR before being analyzed at 96 h. 4T1 cells however were analyzed at 48 

h due to a faster doubling rate. Treatments for 4T1 cells included 8 Gy radiation and 30 μM 

WIN2. Equivalent doses of WIN3 were used to assess stereoselectivity. Both MDA-MB231 and 

4T1 cells show significant growth inhibition from treatment with WIN2 alone and IR alone. WIN2  
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Figure 3.8 – Increased doses of WIN2 required to augment radiation in normal breast 
epithelial cells. MCF-10a cells were exposed to vehicle, WIN2 or WIN3 either alone or with 2 
Gy radiation. WIN2 and WIN3 treatments were (A) 12 μM (B) 30 μM. All experiments were 
analyzed for cell viability by trypan blue exclusion 96 h after drug treatment. Data presented 
reflect the means of 3 individual experiments + se; *=p<0.05 vs vehicle and **=p<0.025 vs 
WIN2 alone and IR alone. 
 
Statistics 

(A) No significant interactions detected  
(B) Two way repeated measures ANOVA: WIN2-IR interaction (F2,8=37.6, p<0.0001) 
(B) Individual comparisons with WIN2: Vehicle-WIN2 (p=0.0041). Vehicle-IR (p=0.0077). 

WIN2-WIN2 + IR (p=0.0090). IR-WIN2 + IR (p=0.0058).  
(B) Individual comparisons with WIN3: Vehicle-WIN3 and WIN3-WIN3 + IR comparisons 

showed no significant differences   
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Figure 3.9 – Enhanced antiproliferation from WIN2 and IR occurs in other breast cancer 
cell lines.  Cells were exposed to vehicle, WIN2 or WIN3 either alone or with radiation (A) 
MDA-MB231 (2 Gy) (B) 4T1 (8 Gy). Cells analyzed for cell viability by trypan blue exclusion: (A) 
96 h and (B) 48 h (due to prohibitive growth characteristics). Data presented reflect the means 
of 3-4 individual experiments + se; *=p<0.05 vs vehicle and **=p<0.025 vs WIN2 alone and IR 
alone. 
 
Statistics 

(A) Two way repeated measures ANOVA: WIN2-IR interaction (F2,16=4.0, p=0.0370) 
(A) Individual comparisons with WIN2: Vehicle-WIN2 (p<0.0001). Vehicle-IR (p<0.0001). 

WIN2-WIN2 + IR (p=0.0123). IR-WIN2 + IR (p=0.0237).  
(A) Individual comparisons with WIN3: Vehicle-WIN3 and WIN3-WIN3 + IR comparisons 

showed no significant differences   
(B) Two way repeated measures ANOVA: WIN2-IR interaction (F2,8=14.6, p=0.0021) 
(B) Individual comparisons with WIN2: Vehicle-WIN2 (p=0.0267). Vehicle-IR (p=0.0002). 

WIN2-WIN2 + IR (p=0.0090). IR-WIN2 + IR (p=0.0058).  
(B) Individual comparisons with WIN3: Vehicle-WIN3 and WIN3-WIN3 + IR comparisons 

showed no significant differences   
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significantly augmented the antiproliferative effects of radiation in both cell lines. WIN3 failed to 

inhibit cell growth or augment the effects of radiation in either cell line, which confirms that the  

stereospecific augmentation of radiation-induced growth inhibition generalizes to other breast 

cancer cell lines.  

 

Section 3.6 - Augmentation of radiation by cannabinoids appears to be limited to the 

aminoalkylindoles  

 

In addition to WIN2, other structurally diverse cannabinoids were given in combination 

with radiation in MCF-7 cells to screen for augmented antiproliferative effects. The following 

drugs were tested because of their clinical relevance, their differences in structure and/or their 

variable activity within the endocannabinoid system: THC (30, 50 and 70 μM), nabilone (10, 30 

and 50 μM), CBD (10, 25 and 50 μM), CP55,940 (10, 20 or 30 μM), MAEA (10, 20 or 30 μM), 

pravadoline (15, 30 and 45 μM) and JWH-015 (15, 30 and 45 μM). Trypan blue exclusion was 

used to assess the number of viable cells at 96 h after treatment (Table 3.1). Statistical 

analyses of antiproliferative actions showed no significant interaction when radiation was 

combined with THC, nabilone, CBD, CP55,940, or MAEA. Pravadoline and JWH-015, however, 

were both able to significantly augment the growth inhibitory effects of radiation at the highest 

doses tested for each drug (45 μM).  

 

Section 3.7 - Evaluations of WIN55, 212-2 and radiation interaction in a syngeneic tumor 

growth model  

 

The syngeneic model of 4T1 cells in Balb/c mice was used to test the capacity of WIN2 

to augment the established antiproliferative effects of radiation on tumor growth in vivo. Tumor  
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Drug 
Control Low dose Medium dose High dose 

Vehicle 
IR – 
2Gy 

Vehicle IR – 2Gy Vehicle 
IR – 
2Gy 

Vehicle IR – 2Gy 

THC 100+0.01 57+3.93 94+2.93 55+3.92 47+4.41 33+6.02 26+7.80 21+5.77 

CBD 100+0.01 60+8.04 85+7.72 59+11.26 59+4.47 45+4.77 24+7.28 16+3.95 

Nabilone 100+0.01 56+4.61 88+5.41 56+5.75 66+7.56 50+5.33 32+14.88 22+8.08 

CP55,940 100+0.01 70+8.12 100+1.41 77+10.58 81+4.41 59+7.13 38+7.18 37+14.72 

MAEA 100+0.01 61+8.89 92+0.93 58+8.33 66+7.96 47+7.25 47+9.38 32+7.98 

Pravadoline 100+0.01 53+5.67 94+1.52 43+4.95 60+5.38 37+5.64 40+5.06 25+3.85 * 

JWH-015 100+0.01 53+5.67 79+6.39 45+4.04 42+7.04 31+2.61 24+2.00 17+1.25 * 

 
 
Table 3.1 – Interaction of cannabinoids with radiation in MCF-7 cells.  MCF-7 cells were 
treated with the indicated cannabinoids either alone or in combination with 2Gy radiation and 
cell viability was determined based on trypan blue exclusion at 96h. Drugs concentrations ( µM) 
were as follows: THC-30, 50,70; CBD-10,25,50; Nabilone-10,30,50; CP55,940-10,20,30; 
Methanandamide (MAEA)-10,20,30; Provadoline-15,30,45; JWH-015-15,30,45. All data 
normalized to % of control; sample size n=3-5 experiments/study; values expressed as 
mean+se; *= p<0.025 vs WIN2 alone and IR alone.  
 
Statistics 

Two way repeated measures ANOVAs and individual comparisons reported no 
significant interactions present for THC, CBD, nabilone, CP55,940 or MAEA 

Two way repeated measures ANOVA: Pravadoline-IR interaction (F3,8=29.2, p=0.0001). 
JWH-015-IR interaction (F3,8=38.4, p<0.0001) 

Individual comparisons revealed no significant augmentation with the 15 and 30 µM 
treatments of pravadoline and JWH-015 in combination with IR.  

Individual comparisons (45 µM pravadoline): Pravadoline-Pravadoline + IR (p=0.0047). 
IR-Pravadoline + IR (p=0.0028) 

Individual comparisons (45 µM JWH-015): JWH-JWH + IR (p=0.0103). IR-JWH + IR 
(p=0.0101).  
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volume was monitored using calipers, and body weight was tracked for each mouse to screen 

for general toxicity. 48 h after tumor implantation drug treatments were initiated including vehicle 

(1:1:18 of ethanol:emulphor:saline), WIN2 (1, 5 and 10 mg/kg) and ADR (5 mg/kg) as a positive 

control for growth inhibition (Fig 3.10A). This study was conducted with the assistance of Dr. 

Qing Tao. By day 16, comparisons showed that WIN2 dose-dependently suppressed tumor 

growth, but significant growth inhibition was detected as early at day 11 when compared to 

vehicle. ADR showed the greatest suppression of tumor growth. Body weight measurements 

are presented in Figure 3.10B. Significant changes in bodyweight were detected as early as day 

7 but by day 16 WIN2 (10 mg/kg) and ADR were the only treatments to significantly increase 

and decrease bodyweight, respectively. On day 16 the maximum increase in body weight by 

WIN2 was 8%, and ADR had a maximum suppression of body weight at 16%.  

The WIN2/IR combination was further evaluated in the 4T1-Balb/c syngeneic model by 

treating subjects with vehicle, WIN2 (5 mg/kg), radiation (10 Gy) or WIN2 plus radiation. WIN3 

(5 mg/kg) was also administered to evaluate stereoselectivity (Fig 3.11A). As described 

previously, body weight was tracked and tumor volume was quantified using caliper 

measurements. Statistical comparisons revealed no significant interactions between any 

treatments at any time points in the study. Radiation significantly suppressed tumor growth at 

day 15 and 17, whether given alone or in combination with WIN2/WIN3. WIN2 alone showed no 

ability to significantly suppress tumor growth at any time point, which was in stark contrast to 

both the multiple in vitro studies presented above and the in vivo WIN2 dose-response 

presented in Figure 3.10A. Also in contrast to the in vitro studies presented above, WIN3 

significantly stimulated tumor growth at days 15 and 17. These results clearly indicate that 

WIN2, at the dose tested, does not augment the antiproliferative effects of radiation in vivo, but 

this finding is likely confounded by the fact that WIN2 did not inhibit tumor growth in this study 

(Fig 3.11A), as it did in the dose-response study presented above (Fig 3.10A). Body weight 
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was also analyzed but at no time point was any comparison found to be significantly different 

from vehicle (Fig 3.11B).  
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Figure 3.10 – Evaluation of WIN2 dose-dependent effects on in vivo tumor burden and 
weight change.  Balb/c mice were injected with 50,000 4T1 cells and measured for (A) tumor 
volume and (B) body weight changes. Mice were treated with vehicle, WIN2 (1, 5 or 10 mg/kg) 
or ADR (5 mg/kg) and tracked for 16 days. Mean+se; n=8 per treatment; blackened symbols 
p<0.05 compared to vehicle within time points. 
 
Statistics 

(A) One way ANOVAs: day 11 (p=0.0217), day 14 (p=0.0004) and day 16 (p<0.0001) 
(A) Dunnett’s post hoc comparison to vehicle: 1 mg/kg (days 11 and 16 significant). 5 

mg/kg (days 11, 14 and 16 significant). 10 mg/kg (days 11, 14 and 16 significant). ADR (days 14 
and 16 significant).  

(B) One way ANOVAs: day 7 (p=0.0235), 9 (p=0.0240), 11 (p=0.0324), 14 (p<0.0001) 
and 16 (p<0.0001). 

(B) Dunnett’s post hoc comparison to vehicle: 5 mg/kg (days 7 and 9). 10 mg/kg (days 7, 
9, 14 and 16). ADR (days 14 and 16).  
  



 

 

70 

 

 

 
Figure 3.11 – Evaluation of WIN2 and WIN3 alone and with radiation on in vivo tumor 
burden and weight change.  Balb/c mice were injected with 50,000 4T1 cells and measured 
for (A) tumor volume and (B) body weight changes. (A and B) Mice were treated with vehicle, 
WIN2 (5 mg/kg) and WIN3 (5 mg/kg) either alone or in combination with 2 Gy ionizing radiation, 
and tracked for 17 days. Mean+se; n=8 per treatment; blackened symbols p<0.05 compared to 
vehicle within time points. 
 
Statistics 

(A) Two way ANOVAs: Drug-IR interaction (none). Drug treatment main effect (day 15-
p=0.0122; day 17-p=0.0028). IR treatment main effect (day 10-p=0.0215; day 13-p=0.0011; day 
15-p<0.0001; day 17-p<0.0001) 

(A) Individual comparisons: Vehicle-WIN2 (no significant effects). Vehicle-WIN3 (day 15-
p=0.0054; day 17-p=0.0091). Vehicle-IR (day 15-p=0.0126; days 17-p=0.0006)> 

(B) Two way ANOVAs reported not significant effects on any days. 
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Discussion  

 

WIN2 showed no interaction (positive or negative) with ADR induced antiproliferative 

actions 

 

Both ADR and radiation treatment induce autophagy and senescent growth arrest in 

MCF-7 cells (Jones et al. 2005, Bristol et al. 2012, Goehe et al. 2012), but WIN2 demonstrated 

no augmentation or antagonism with ADR in MCF-7 cells. Meanwhile, WIN2 significantly 

augmented the antiproliferative effects of radiation in MCF-7 cells. This difference, while 

unexpected, is not necessarily surprising. When autophagy is blocked in radiation treatment 

there is a shift from senescence to apoptosis (Bristol et al. 2012), but when autophagy is 

blocked in ADR treatment there is a delay in senescence initiation without a significant 

enhancement of antiproliferative effects of ADR (Goehe et al. 2012). Bristol et al. and Goehe et 

al.’s studies clearly indicate that senescence functions differently depending on how it is 

induced, and this difference means it cannot be assumed that WIN2 will interact with radiation 

and ADR in the same way.  

 

WIN2 dose-dependently inhibits breast tumor growth and augments the antiproliferative 

actions of radiation stereoselectively   

 

WIN2 dose-dependently inhibited the growth of MCF-7, MDA-MB231 and 4T1 cells, and 

WIN3, the inactive enantiomer of WIN2, confirmed that in all three breast cancer cell lines this 

dose-dependent growth inhibition was also stereospecific. This allows for the conclusion that 

WIN2 is eliciting its antiproliferative effects through a specific site of action, and supports the 
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need to elucidate a site of action for WIN2, which will be explored in later sections of this 

document.  

WIN2 augmented the antiproliferative effects of radiation in MCF-7 cells at 12 and 18 

μM. The lower dose of WIN2 tested (6 μM) did not significantly augment effects of radiation 

which suggests a significant level of growth inhibition is required from the WIN2 treatment to 

interact with radiation. This is also likely true for the reverse, because the lowest dose of IR 

tested (1 Gy) was not be augmented by any of the higher doses of WIN2 treatments. As with the 

dose-dependent/stereospecific effects, augmentation of radiation-induced growth inhibition by 

WIN2 also generalized to MDA-MB231 and 4T1 cells, indicating that the mechanism of action 

for the WIN2/IR combination is not specific to one type of breast tumor cell, MCF-7s. Multiple 

doses of WIN2 and IR were not tested in the MDA-MB231 and 4T1 cells as they were in MCF-7 

cells, which may suggest that augmentation could be observed at lower doses than was 

necessary in MCF-7 cells.  

Finally, WIN3 was used to demonstrate that the augmentation of radiation by WIN2 acts 

in a stereospecific manner. Dose-response experiments with WIN2 and WIN3 provide clear 

evidence that showed WIN2 inhibits breast cancer cell growth in a stereospecific manner, but it 

cannot be concluded that this stereospecific action is relevant to the mechanism for the WIN2/IR 

combination. Additional studies showed that WIN3 did not produce inhibition of cell growth and 

was incapable of augmenting the antiproliferative effects of radiation in MCF-7, MDA-MB231 

and 4T1 cells. As a result, it can be concluded from the combination of all these studies that 

WIN2 is acting at a specific target in three breast cancer cell lines to inhibit cell growth either 

alone or in an enhanced manner through its combination with radiation.  
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Relevance of WIN2 and radiation combination across MDA-MB231, 4T1 and MCF-10a 

cells  

 

MDA-MB231 and 4T1 cells   

The fact that WIN2 enhanced the antiproliferative effects of radiation in multiple breast 

cancer cell lines in addition to MCF-7 cells offers important insight into the generalization of the 

WIN2/IR combination. More importantly though, MDA-MB231 cells are a TNBC model, which is 

a disease known for short lived remission and poor five year survival relative to other forms of 

breast cancer. An advantage of TNBC treatment is that patients that show CDE (22%) after 

initial treatment show a better prognosis with regard to 5 year survival rates when compared to 

CDE patients without TNBC (11%) after initial treatment (Liedtke et al. 2008). This observation 

suggests that more efficacious therapies could increase 5 year survival rates by enhancing CDE 

rates after the initial intervention. As a result, WIN2 augmentation of radiation-induced growth 

inhibition in MDA-MB231 cells indicates a potential to increase patient survival after TNBC 

diagnosis.     

Although 4T1 cells are murine derived and MCF-7 cells are human (Aslakson et al. 

1992), both cell line show enhancement of radiation-induced growth inhibition by WIN2. Testing 

was primarily done in these cells to establish the model for future testing in whole animal 

syngeneic tumor growth. However, the ability of the WIN2/IR interaction to span not only 

species (human and mouse) but also spontaneous (MCF-7) versus carcinogen-induced (4T1) 

breast cancer should not be overlooked (Aslakson et al. 1992). One of the dangers of breast 

cancer is that it can evolve, in essense becoming more diverse than the original tumor, and this 

diversity can increase the likelyhood of drug resistance, recurrance and death. The ability of 

WIN2 to effect such different tumor types, MCF-7 versus 4T1, suggests that it can also span the 

diversity that develops inside the patient, and potentially enhance patient outcomes.  
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In addition to the above mentioned factors, both MDA-MB231 and 4T1 cells have a p53 

status different than MCF-7 cells. p53 mutation correlates with poor patient prognosis because 

of pro-cancer effects on growth, tumorigenicity, DNA repair, cell death, angiogenesis and 

metastasis (Lacroix et al 2006, Walerych et al 2012). Importantly, the sensitivity of mutant p53 

MDA-MB231 and p53 null 4T1 cells to the WIN2 augmentation of radiation clearly shows that 

p53 status is not relevant (Lacroix et al 2006, Yerlikaya et al. 2012). The common nature of p53 

mutations in 31% of all cancers and ~23% of breast cancers further highlight the importance of 

this observation.  

 

MCF-10a 

MCF-10a cells are an immortalized breast epithelial cell line that demonstrated WIN2 

dose-dependently inhibited their growth and augmenting the antiproliferative actions of 

radiation, like was revealed in MCF-7 cells (Soule et al. 1990). Uniquely though, MCF-10A cells 

required higher doses of WIN2 to inhibit MCF-10A cell growth compared to MCF-7 cells, 30 

versus 12 μM, respectively. The need for higher doses in the MCF-10A cells extended to the 

augmentation of radiation as well, and this decreased sensitivity of MCF-10A cells to the 

antiproliferative effects of WIN2 alone or in combination with radiation indicates a potential 

selectivity for tumor cells. Shrivastava et al. (2011) had previously demonstrated that MDA-

MB231 cells were more sensitive to the cannabinoid CBD than MCF-10A cells supporting the 

findings presented in this document regarding cannabinoid selectivity for tumor cells over non-

cancerous MCF-10A cells. This selectivity supports the hypothesis that WIN2 has a therapeutic 

window for treatment that would be beneficial to patient outcomes.  

However, as exciting as these findings could be for the patient, the MCF-10A studies are 

not without their limitations. First, the MCF-10A cells in culture are a proliferating population and 

breast epithelial cells are largely non-proliferative. Later studies will show that WIN2 elicits a 
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growth inhibitory mechanism in MCF-7 cells versus cell death, and a growth inhibitory 

mechanism is likely to have a diminished if not non-existent antiproliferative effect in a non-

proliferating population. This may suggest further analysis of toxicities would show an even 

greater therapeutic window for WIN2 treatments. Second, breast epithelial cells are not the only 

cell types found within the path of ionizing radiation in the breast. Fibroblasts are a common cell 

type that can be analyzed, either as mouse embryonic fibroblasts or an immortalized fibroblast 

cell line, to assess WIN2 augmentation of IR toxicities. Finally, unlike radiation, WIN2 is a drug 

that will likely spread systemically via the circulation and it may have an effect on tissues 

outside of the breast, especially those that are rapidly dividing like that gastrointestinal epithelial 

cells or bone marrow. Testing for toxicities in these cell types with WIN2 treatment might prove 

pertinent.  

 

Aminoalkylindole cannabinoids are more efficacious at augmenting the antiproliferative 

effects of radiation than other cannabinoids tested  

 

THC, CBD, nabilone, CP55,940 and MAEA all show lack of interaction with radiation in 

MCF-7 cells, while JWH-015 and pravadoline augmented the effects of radiation at the high 

doses tested similar to WIN2. The clinical relevance of THC (Marinol) and nabilone (Cesamet) 

make a lack of antagonism worth noting however. Patients are given palliative treatment with 

Marinol and Cesamet for chemotherapy (Russo 2008), and chemotherapy is often given in 

combination with radiation therapy (Kaviani et al. 2013; Joeger et al. 2013; Yang et al. 2013). 

The lack of antagonism by THC and nabilone in the studies presented above offer preclinical 

evidence that these palliative treatments will not interfere with radiation therapy should they be 

in the patient’s system during treatment.  
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Comparing structural differences of the cannabinoids that successfully augmented the 

antiproliferative effects of radiation (WIN2, JWH-015, pravadoline) versus those that did not 

(THC, CBD, nabilone, CP55,940, MAEA) clearly reveals that the aminoalkylindoles had a 

greater capacity to augment effects of radiation based on the compounds tested in these 

studies. The structures of each drug are presented in Figure 3.1. While it remains unclear at this 

time what aspect of the aminoalkylindole structure allows for the capacity to augment radiation-

induced growth inhibition, future studies investigating structure-activity relationships could 

elucidate this structural selectivity. Augmentation of radiation by JWH-015 also poses an 

additional benefit, in that JWH-015 is a CB2 specific agonist (Showalter et al. 1996). This is 

advantageous as CB2 agonists are absent of the cannabimimetic effects that have blunted the 

potential for clinical development of WIN2 and other drugs like it (Howlett et al. 2002; Pertwee et 

al. 2010). Development or screening of additional aminoalkylindole analogs could provide 

compounds with a greater efficacy for augmentation of radiation effects without the unwanted 

psychoactive properties.  

 

The ability of WIN2 to augment radiation in vivo cannot be determined based on current 

studies  

 

WIN2 and IR were given in combination to test the ability of WIN2 to augment radiation-

induced growth inhibition in vivo. The in vivo model used for this was the 4T1-Balb/c syngeneic 

model, but the results of these studies are inconclusive regarding the effects of the WIN2/IR 

combination in vivo. This is due to the fact that the dose of WIN2 tested did not inhibit tumor 

growth and in vitro studies using MCF-7 cells showed that effective doses of WIN2 and/or IR 

were required for augmentation to occur. The in vivo combination studies could have been 

repeated using higher doses of WIN2, but this approach would conflict with observations from 
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the dose response study. 1, 5 and 10 mg/kg WIN2 dose-dependently inhibited tumor growth in 

the same 4T1-Balb/c syngeneic tumor growth model. Even if 5 mg/kg hypothetically showed an 

unusually high level of growth inhibition in the dose-response study, 1 mg/kg WIN2 was also 

found to significantly inhibit tumor growth, which suggests that even accounting for variability 

between experiments, 5 mg/kg WIN2 should have inhibited tumor growth. Additionally, 

repeating the experiment until 5 mg/kg WIN2 demonstrated tumor growth inhibition was not 

considered because of obvious ethical considerations.It is unclear why 5 mg/kg WIN2 inhibited 

tumor growth in the dose-response study but failed to do so in the combination study, and to 

date no variables have been identified that reconcile the difference between these studies.  

Since the 4T1-Balb/c model has proven unreliable in my hands it seems logical that 

future in vivo studies be moved to another in vivo model until the factors causing the above 

described variability of the 4T1 model can be identified. Options for additional models include 

estrogen pelleted immune-deficient SCID mice bearing MCF-7 tumors, or immune-deficient 

SCID mice bearing MDA-MB231 cells. It does, however, remains pertinent to evaluate the in 

vivo actions of the WIN2/IR combination in an immune competent model, based on the 

argument described in the introduction of this section, but MCF-7 and MDA-MB231 cells are 

human derived and cannot be transplanted in vivo without immune complications. Therefore 

future studies would require the in vitro evaluation of the WIN2/IR combination in a new murine 

derived tumor model.  

 

Summary 

 

The studies in this chapter have effectively demonstrated the proof of principle for WIN2 

to augment the antiproliferative actions of radiation in vitro, using multiple breast cancer cell 

lines. This augmentation was shown to be stereospecific in nature, did not translate to other 
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cancer therapeutic treatments tested, demonstrated potential selectivity between cancer and 

non-cancerous cells and might be unique to the aminoalkylindole class of cannabinoids. The in 

vivo studies using the 4T1-Balb/c model were the first attempt to demonstrate translatability of 

this WIN2/IR combination, but the results were uninterpretable and the model was proven 

unreliable. Future studies could use a variety of in vivo models, but regardless of the in vivo 

model chosen it is important that these studies move beyond the in vitro setting, because 

without demonstrating the WIN2/IR combination in a whole animal model, the combination of 

cannabinoids and radiation can never be considered a viable therapeutic strategy.   
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Section 4 
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Evaluation of antiproliferative mechanisms governing WIN2/IR interaction 

 

The antiproliferative effects of radiation in the treatment of cancer are caused by DNA 

damage which is primarily driven by radiolysis of water leading to the formation of reactive 

oxygen species (ROS) (Narayanan et al. 1997). This ROS formation is responsible for DNA 

damage expressed primarily as single and double strand breaks in DNA (Driessens et al. 2009). 

Radiation-induced DNA damage causes MDA-MB231 breast tumor cells to undergo apoptotic 

cell death demonstrated by TUNEL staining, but MCF-7 cells undergo senescent growth arrest 

shown by pH 6.0 dependent β-galactosidase staining (Jones et al. 2005). Artificial expression of 

caspase-3 in the caspase-3 deficient MCF-7 cells can induce a modest apoptotic response to 

radiation treatment; a robust apoptotic response requires simultaneous administration of the 

ATM inhibitor, caffeine and re-expression of caspase-3 in MCF-7 cells (Essmann et al. 2004). 

Work from Essmann et al. and Jones et al. provide evidence that the antiproliferative 

mechanisms of radiation are contextually dependent on the system.  

Cannabinoids also have multiple antiproliferative mechanisms depending on the 

cannabinoid agonist used and the cancer cell type investigated. These mechanisms include 

autophagy (Salazar et al. 2009; Shrivastava et al. 2011, Donadelli et al. 2011, Dando et al. 

2013), cell death (Giullino et al. 2009; Qamri et al. 2009; Caffarel et al. 2010) and growth arrest 

(Galanti et al. 2008; Park et al. 2011). However, DNA damage and senescent growth arrest 

have not yet been associated with cannabinoid treatment in preclinical cancer models.  

∆9-tetrahydrocannabinol (THC) treatment-induced autophagy in U87-MG glioblastoma 

cells based on GFP-LC3 puncta formation and electron microscopic autophagosome imaging, 

and knockdown of the autophagy genes ATG1 and ATG5 resulted in increased viable cell 

number (Salazar et al. 2009). Other studies have linked cannabinoid-induced autophagy to a 

ROS mediated mechanism (Shrivastava et al. 2011, Donadelli et al. 2011, Dando et al. 2013). 
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In MDA-MB231 cells, cannabidiol (CBD) induced autophagy based on LC3 cleavage and 

electron microscopic autophagosome imaging. LC3 cleavage was antagonized by the 

autophagy inhibitor bafilomycin and the ROS scavenger α-tocopherol (Shrivastava et al. 2011). 

In Panc1 cells the ROS scavenger N-acetyl-cysteine was shown to inhibit autophagy induction 

under synthetic cannabinoid treatment, GW405833 and arachidonoyl cyclopropamide. 

Autophagy was quantified by LC3 cleavage, acridine orange staining and flow cytometric 

quantification of autophagolysosomal staining by MDC (Donadelli et al. 2011, Dando et al. 

2013).  

Shrivastava et al. (2011) and Salazar et al. (2009) showed that CBD and THC, 

respectively, induced autophagic effects that were linked to the induction of apoptosis, and this 

finding that cannabinoids induced apoptosis is supported by numerous studies. ErbB2 positive 

tumors produced by MMTV-neu transgenic animals treated with THC and the synthetic 

cannabinoid JWH-133 express higher levels of cleaved caspase-3 when compared to vehicle 

(Caffarel et al. 2010). WIN55, 212-2 (WIN2) increased apoptotic markers in HepG2 cells with 

concomitant increases in the sub-G1 population, annexin V/propidium iodide (PI) positive 

staining and cleaved caspase 3 expression (Giullino et al. 2009). Qamri et al. (2009) showed 

that WIN2 and JWH-133 induce apoptosis in MDA-MB231 cells based on an increased sub-G1 

population, TUNEL staining and imaging of apoptotic nuclei. 

In addition to cell death, another common antiproliferative mechanism is growth 

inhibition. Park et al. (2011) showed that WIN2 treatment induced growth arrest in gastric 

cancer cells through downregulation of E2F1 and several cyclins and cyclin dependent kinases. 

Park et al. furthermore linked WIN2 growth arrest to inhibition of the survival protein pAKT. Park 

et al.’s observations support an earlier study by Galanti et al. (2008) where THC caused growth 

arrest via down regulation of E2F1 and cyclin A in both U251-MG and U87-MG human 

glioblastoma cell lines. Galanti et al.’s findings with THC in U87-MG cells are contradictory to 
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those from Salazar et al. (2009) in which THC induced autophagic cell death in U87-MG cells, 

but this could be explained by Salazar’s use of media containing low serum, which tends to be 

permissive for autophagy, and Galanti’s opposite use of media containing normal serum 

concentrations.   

A primary goal of these studies was to assess the antiproliferative mechanism(s) for 

radiation and WIN2 alone and in combination. MCF-7 cells treated with the WIN2/IR 

combination were tested for ROS mediated antiproliferative actions, cell death (including 

apoptosis, necrosis, mitotic catastrophe and autophagy), changes in the DNA damage response 

and growth arrest (both classical and senescent).   

 

*statistical values reported in figure legends  

 

Abbreviations 

ROS-reactive oxygen species; THC-∆9-tetrahydrocannabinol; WIN2-WIN55,212-2; CQ-

chloroquine; PI-propidium iodide; ADR-adriamycin; NAC- N-actyl-cysteine; GSH-glutathione; IR-

ionizing radiation; Gy-gray (radiation dose unit); AO-acridine orange;  
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Results 

 

Section 4.1 - Autophagy is induced in MCF-7 cells but does not appear to be relevant to 

WIN2 growth inhibitory mechanisms 

 

In a previous chapter, it was hypothesized that WIN2 augmentation of the 

antiproliferative actions of radiation would be mediated by an autophagic mechanism based on 

evidence from Salazar et al. 2009 and Bristol et al. 2012. To qualitatively establish the presence 

of autophagy, MCF-7 cells were treated with vehicle, 12 μM WIN2, 2 Gy radiation or the 

combination of WIN2 + IR. At 96 h, the treated cells were stained with acridine orange (AO) and 

imaged. The presence of increased numbers of orange vesicles compared to vehicle treatment 

confirmed the promotion of autophagy in cells exposed to WIN2, IR and WIN2 + IR (Fig 4.1A).  

To evaluate the potential involvement of autophagy in the antiproliferative effects of the 

WIN2/IR combination, cells were treated with the autophagic inhibitor chloroquine (CQ) at 5 μM 

in combination with the WIN2/IR combination before quantification of cell viability using trypan 

blue exclusion.  At 96 h, CQ had no effect on viable cell number in cells treated with the vehicle, 

WIN2, IR or WIN2 + IR (Fig 4.1B). Acridine orange staining was used to qualitatively confirm 

that the 5 μM CQ treatment was properly inhibiting autophagy. Markers for blockade of 

autophagy in AO staining include increased vesicle number (blocked degradation) and a yellow 

color as opposed to orange (incomplete acidification). MCF-7 cells were treated with vehicle, 

adriamycin (ADR; 1 μM) or ADR + CQ before being stained with AO and imaged (Fig 4.1C). 

ADR induced autophagy compared to vehicle, shown by an increase in orange vesicles. CQ 

blocked autophagy compared to ADR, shown by an increase in yellow vesicle number. Similar 

results with ADR and CQ were previously demonstrated in Goehe et al. 2012. These combined  
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Figure 4.1 – Autophagy is induced by radiation and WIN2 but not involved in growth 
inhibition. Acridine orange staining was used to image autophagic vesicles in MCF-7 cells 
treated with vehicle, 12 μM WIN2, 2 Gy IR or WIN2 + IR (A). Cell viability was quantified using 
trypan blue exclusion in MCF-7 cells treated as in (A) with a co-treatment of either vehicle or 5 
μM chloroquine (B). Acridine orange staining was used to image autophagic vesicles in MCF-7 
cells treated with vehicle, 1 μM ADR or ADR + 5 μM chloroquine (C). In (B) data were 
normalized to % of control and presented as the means of 3 individual experiments + se; no 
significant differences detected. 
 
Statistics  

(B) Two way repeated measures ANOVA: Chloroqine-combo interaction (p=0.8842) 
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results indicate that while autophagy is clearly induced, autophagy does not appear to be 

relevant to the antiproliferative actions of WIN2, IR or WIN2 + IR.  

 

Section 4.2 - ROS do not mediate antiproliferative effects of the WIN2/IR combination 

 

ROS have been shown to mediate cannabinoid based growth inhibition (Shrivastava et 

al. 2011, Donadelli et al. 2011, Dando et al. 2013, Driessens et al. 2009). To assess the 

involvement of ROS in the antiproliferative actions of the WIN2/IR combination, MCF-7 cells 

were treated with the antioxidants N-actyl-cysteine (NAC; 1 mg/ml) and glutathione (GSH; 0.5 

mg/ml). NAC and GSH treatment lasted 48 h beginning 24 h before the WIN2/IR treatment (Fig 

4.2A-B). 96 h after WIN2/IR were administered to MCF-7 cells neither NAC nor GSH 

demonstrated any ability to decrease viable cell number in MCF-7 cells. H2O2 (9.79 μM) was 

used as a positive control for ROS induced growth inhibition, and both NAC and GSH 

significantly protected MCF-7 cells from H2O2 insult at 96 h. These data demonstrate that ROS 

signaling does not mediate the antiproliferative actions of the WIN2/IR combination.  

 

Section 4.3 -  The WIN2/IR combination does not induce cell death in MCF-7 breast tumor 

cells 

 

As indicated in the introduction, previous studies have documented the capacity of 

cannabinoids to induce apoptosis (Shrivastava et al. 2011, Salazar et al. 2009, Caffarel et al. 

2010, Giullino et al. 2009, Qamri et al. 2009). In order to confirm this in our system, annexin 

V/PI staining was used to assess apoptosis and necrosis, respectively, at 48 h post treatment 

with the WIN2/IR combination (Fig 4.3A). Flow cytometric quantification showed no change in 

the percentage of healthy, apoptotic or necrotic cells treated with WIN2, IR or WIN2 + IR  
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Figure 4.2 – ROS do not mediate the antiproliferative effects of the WIN2/IR combination. 
MCF-7 cells were treated with vehicle, WIN2 (12 μM), IR (2 Gy), WIN2 + IR or hydrogen 
peroxide (9.79 μM). Co-treatments were given of either vehicle, (A) NAC (1 mg/ml) or (B) GSH 
(0.5 mg/ml). Cell viability was quantified at 96 hrs using trypan blue exclusion. Data were 
normalized to % of control and presented as the means of 3 individual experiments + se; 
*=p<0.05. 
 
Statistics 

(A) Two way repeated measures ANOVA: NAC-combo (p=0.1638) 
(A) Positive control vs. NAC paired t-test (p=0.0043) 
(B) Two way repeated measures ANOVA: GSH-combo (p=0.1507) 
(B) Positive control vs. GSH paired t-test (p=0.0079) 
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Figure 4.3 – Apoptosis, necrosis and mitotic catastrophe are not involved in the 
antiproliferative actions of the WIN2/IR combination. MCF-7 cells were treated with vehicle, 
WIN2 (12 μM), IR (2 Gy) or WIN2 + IR. Staurosporine (1 μM) and Paclitaxel (1 μM) were used 
as positive controls. (A) Flow cytometry was used to quantify annexin V and PI staining at 48 
hrs. (B) Dapi staining was used to assess nuclear morphology at 40x magnification. Data 
normalized to % of population in (A); data presented reflect the means of 3-4 individual 
experiments + se; *p<0.05 vs vehicle. 
 
Statistics 

(A) Two way repeated measures ANOVA: no significant differences for healthy, apoptotic 
or necrotic cells 
(A) Staurosporine paired t-test: healthy cells (p=0.0141). Apoptotic cells(p=0.0192). Necrotic 

cells (p=0.0396).  
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compared to vehicle. A 1 μM staurosporine treatment for 24 h was used as a positive control for 

apoptosis and necrosis, and this treatment produced a significant decrease in healthy cells, with 

significant increases in both apoptotic and necrotic cells.  

To confirm the absence of cell death in MCF-7 cells treated with the WIN2/IR 

combination, nuclear morphology was assessed at 48, 72 and 96 h using DAPI staining (Fig 

4.3B). 0.5 μM of the microtubule poison, paclitaxel, was used as a positive control for apoptotic 

nuclear morphology. DAPI staining was also used to screen for multinucleated cells, a marker of 

mitotic catastrophe (Jonathan et al. 1999). At 48, 72 and 96 h, no evidence of cell death was 

detected except in the positive control. Taken together, these results strongly argue that the 

antiproliferative effects of the WIN2/IR combination are not mediated by apoptosis, necrosis or 

mitotic catastrophe in MCF-7 cells.  

 

Section 4.4 - Temporal effects of the WIN2/IR combination in breast cancer cells  

 

The absence of evidence for a cell death mechanism, lead us to predict that growth 

inhibition was likely mediating the antiproliferative actions of the WIN2/IR combination. To test 

this hypothesis, trypan blue was used to assess cell viability at 24, 48, 72 and 96 h in MCF-7 

cells treated with the WIN2/IR combination (Fig 4.4). WIN2, IR and WIN2 + IR were all 

significantly different from vehicle at 48, 72 and 96 h, which confirmed the growth inhibition 

hypothesis. Decreases in doubling times after treatment emphasize the presence of growth 

inhibition. Doubling time presented in hrs (mean+se): vehicle – 27.7+2.6, WIN2 – 44.6+7.7, IR – 

36.8+4.9 and WIN2 + IR – 68.3+9.8.  

A cell viability time course was also evaluated in MDA-MB231 breast tumor cells exposed 

to the WIN2/IR combination treatment (Fig 4.5). MDA-MB231 cells were treated with 15 μM 

WIN2 and 2 Gy radiation. Statistical comparisons showed that growth inhibition was detected as  
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Figure 4.4 – Temporal effects of WIN2 and IR combination in MCF-7 breast cancer cells. 
MCF-7 cells were treated with vehicle, WIN2 (12 μM), IR (2 Gy) or WIN2 + IR treatments. Viable 
cell number was monitored over a period of 96 h using the trypan blue exlusion assay. Data 
presented reflect the means of 5 individual experiments + se. Darkened symbols = p<0.05 vs 
vehicle within time points. 
 
Statistics  

24 h – No significant differences   
48 h – Repeated measures ANOVA (p<0.0001) with Dunnett’s post hoc (WIN2, IR and 

WIN2 + IR significant from vehicle) 
72 h – Repeated measures ANOVA (p<0.0001) with Dunnett’s post hoc (WIN2, IR and 

WIN2 + IR significant from vehicle) 
96 h – Repeated measures ANOVA (p=0.0006) with Dunnett’s post hoc (WIN2, IR and 

WIN2 + IR significant from vehicle) 
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Figure 4.5 – Temporal effects of WIN2 and IR combination in MDA-MB231 breast cancer 
cells. MDA-MB231 cells were treated with vehicle, WIN2 (15 μM), IR (2 Gy) or WIN2 + IR 
treatments. Viable cell number was monitored over a period of 96 h using the trypan blue 
exlusion assay. Data presented reflect the means of 5 individual experiments + se. Darkened 
symbols = p<0.05 vs vehicle within time points. 
 
Statistics  

24 h – No significant differences   
48 h – Repeated measures ANOVA (p=0.0062) with Dunnett’s post hoc (WIN2 and 

WIN2 + IR significant from vehicle) 
72 h – Repeated measures ANOVA (p=0.0011) with Dunnett’s post hoc (WIN2, IR and 

WIN2 + IR significant from vehicle) 
96 h – Repeated measures ANOVA (p<0.0001) with Dunnett’s post hoc (WIN2, IR and 

WIN2 + IR significant from vehicle) 
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Figure 4.6 – Temporal effects of WIN2 and IR combination in 4T1 breast cancer cells. 4T1 
cells were treated with vehicle, WIN2 (30 μM), IR (8 Gy) or WIN2 + IR treatments. Viable cell 
number was monitored over a period of 48  using the trypan blue exlusion assay. Data 
presented reflect the means of 5 individual experiments + se. Darkened symbols = p<0.05 vs 
vehicle within time points. 
 
Statistics  

24 h – Repeated measures ANOVA (p=0.0352) with Dunnett’s post hoc (IR and WIN2 + 
IR significant from vehicle) 

48 h – Repeated measures ANOVA (p<0.0001) with Dunnett’s post hoc (WIN2, IR and 
WIN2 + IR significant from vehicle) 

WIN2 (0-24 h) – Repeated measures ANOVA (p=0.0438) with Dunnett’s post hoc (no 
treatments significantly different from time 0) 

IR (0-24 h) – Repeated measures ANOVA (p=0.0051) with Dunnett’s post hoc (IR and 
WIN2 + IR significantly different from time 0) 

WIN2 + IR (0-24 h) – Repeated measures ANOVA (p=0.0166) with Dunnett’s post hoc 
(WIN2 + IR significantly different from time 0) 
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early as 48 h in the WIN2 and WIN2 + IR groups but by 72 and 96 h, all treatment groups 

showed significant growth inhibition compared to vehicle. These results support those reported 

using MCF-7 cells.  

Different than MCF-7 or MDA-MB231 cells, 4T1 cell assessment of temporal effects 

indicates evidence for cell death with the WIN2/IR combination. 4T1 cells were treated with 30 

μM WIN2 and 8 Gy IR before assessment at 24 and 48 h (Fig 4.6). Antiproliferative action was 

detected in the IR and WIN2 + IR group at 24 h and all treatment groups at 48 h when 

compared to vehicle. Interestingly, significant decreases in viable cell number compared to time 

0 showed evidence for cell death in the IR treatment at 24 h and the WIN2 + IR treatment at 24 

and 48 h. This suggests that WIN2 and IR may be interacting via a cytotoxic mechanism in 4T1 

cells.  

 

Section 4.5 - Radiation but not WIN2 induces DNA damage in breast cancer cells  

 

Antiproliferative effects of IR have been linked to the induction of DNA damage 

(Narayanan et al. 1997). γH2AX is a protein recruited to DNA repair complexes that is rapidly 

degraded after the completion of DNA repair. As a result, it is used to monitor the DNA repair 

response process (Rogakou et al. 1999). Changes in γH2AX expression after radiation 

treatment were used to assess the potential influence of the WIN2/IR combination on DNA 

damage induction (1 h) and repair (24 h) in MCF-7, MDA-MB-231 and 4T1 cells (Fig 4.7-4.9).  

In MCF-7 cells, radiation significantly increased γH2AX expression at 1 h, while WIN2 

alone had no effect on γH2AX. Interaction comparison indicates that WIN2 had no effect on the 

level of γH2AX induction by IR at 1 h, which indicates WIN2 had no effect on DNA damage 

induction either alone or in combination with IR. By 96 h γH2AX levels in all treatments had 

  



 

 

93 

 

 

 
Figure 4.7 – DNA damage and repair in breast cancer cells treated with WIN2 and 
radiation. MCF-7 figure 4.4. γH2AX formation analyzed by flow cytometry at 1 h and 24 h after 
drug treatment. Data were normalized to percent of control; data presented reflect the means of 
3-5 individual experiments + se; *p<0.05 vs vehicle. 
 
Statistics  

1 h – Two way repeated measures ANOVA: WIN2-IR interaction (p=0.5521). IR 
treatment main effect (p=0.0003). 

1 h – Individual comparisons: Vehicle-IR (p=0.0233). Vehicle-WIN2 + IR (p=0.0240).  
24 h – Two way repeated measures ANOVA: WIN2-IR interaction (p=0.8510). IR 

treatment main effect (p=0.0343). 
24 h – Individual comparisons: no significant differences 
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Figure 4.8 – DNA damage and repair in breast cancer cells treated with WIN2 and 
radiation. MDA-MB231 cells were treated as in figure 4.5. γH2AX formation analyzed by flow 
cytometry at 1 h and 24 h after drug treatment. Data were normalized to percent of control; data 
presented reflect the means of 3-5 individual experiments + se; *p<0.05 vs vehicle. 
 
Statistics  

1 h – Two way repeated measures ANOVA: WIN2-IR interaction (p=0.1189). IR 
treatment main effect (p=0.0194). 

1 h – Individual comparisons: Vehicle-IR (p=0. 0289). Vehicle-WIN2 + IR (p=0. 0126).  
24 h – Two way repeated measures ANOVA: WIN2-IR interaction (p=0.6982). IR 

treatment main effect (p=0.0160). 
24 h – Individual comparisons: Vehicle-WIN2 + IR (p=0.0127) 
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Figure 4.9 – DNA damage and repair in breast cancer cells treated with WIN2 and 
radiation. 4T1 cells were treated as in figure 4.6. γH2AX formation analyzed by flow cytometry 
at 1 h and 24 h after drug treatment. Data were normalized to percent of control; data presented 
reflect the means of 3-5 individual experiments + se; *p<0.05 vs vehicle. 
 
Statistics  

1 h – Two way repeated measures ANOVA: WIN2-IR interaction (p=0.5203). IR 
treatment main effect (p=0.0063). 

1 h – Individual comparisons: Vehicle-IR (p=0.0138). Vehicle-WIN2 + IR (p=0.0078).  
24 h – Two way repeated measures ANOVA: WIN2-IR interaction (p=0.7009). IR 

treatment main effect (p=0.0313). 
24 h – Individual comparisons: Vehicle-WIN2 + IR (p=0. 0396) 
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 returned to baseline levels relative to vehicle demonstrating that WIN2 had no effect on the 

DNA repair process in MCF-7 cells.  

In MDA-MB231 and 4T1 cells radiation significantly increased γH2AX expression at 1 h 

and WIN2 alone had no effect. WIN2 + IR displayed no greater induction of γH2AX at 1 h than 

IR alone indicating WIN2 had no effect on DNA damage induction either alone or in combination 

with IR. By 96 h γH2AX levels in WIN2 alone and IR alone treatments had returned to baseline 

levels, but γH2AX in the WIN2 + IR treatment remained significantly different from vehicle. 

Nevertheless, statistical comparisons showed no significant interaction between the WIN2 and  

IR treatments indicating no presence of augmentation. These results confirm that like in MCF-7 

cells, WIN2 had no effect on the induction or repair of DNA damage in MDA-MB231 or 4T1 

cells.  

 

Section 4.6 - Radiation but not WIN2 induces senescence in MCF-7 cells 

 

Jones et al. (2005) established that radiation treatments induced growth arrest via 

senescence in MCF-7 cells. To test the induction of senescence, the β-galactosidase assay was 

used to quantify cells treated with vehicle, WIN2 (12 μM), IR (2 Gy) or WIN2 + IR (Fig 4.10A-B). 

At 96 h, radiation significantly induced senescence, WIN2 had no ability to induce senescence 

and interaction comparisons confirm WIN2 had no significant effect on the level of radiation-

induced senescence. These studies confirm previous reports that radiation inhibits growth via 

senescence (Jones et al. 2005), and in the absence of senescence it can be concluded that 

growth inhibition after WIN2 treatment is classical growth arrest.  
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Figure 4.10 – Senescence induction by radiation ± WIN2. MCF-7 cells were treated with 
vehicle, WIN2 (12μM), (2Gy) radiation or WIN2 + radiation. (A) Representative images of β-
galactosidase stained cells. (B) Quantification of β-galactosidase activity 96 h after drug 
treatment. Data were normalized to % of sample in (B); data presented reflect the means of 3 
individual experiments + se; *p<0.05 vs vehicle. 
 
Statistics  

(B) Two way repeated measures ANOVA: WIN2-IR interaction (p=0.6618). IR treatment 
main effect (F1,4=72, p=0.0011).  

(B) Individual comparisons: Vehicle-IR (p=0.0382). Vehicle-WIN2 + IR (p=0.0310) 
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Discussion 

 

It was originally hypothesized that WIN2 would augment the impact of radiation in breast 

tumor cells through an autophagic mechanism based on observations from Salazar et al. 2009 

and Bristol et al. 2012. In the studies presented above WIN2, IR and WIN2 + IR were capable of 

inducing autophagy in MCF-7 cells; however based on the inability of CQ to alter MCF-7 

response to WIN2, IR or WIN2 + IR, it can be concluded that autophagy is not relevant to the 

antiproliferative mechanisms for these three treatments, and furthermore autophagy is not 

involved in WIN2 augmentation of radiation.   

One discrepancy regarding autophagy induction in these studies and in the work of 

Bristol et al. (2012) is that in Bristol et al., CQ enhanced the antiproliferative effects of radiation 

in MCF-7 cells. A CQ induced enhancement of the antiproliferative effects of radiation was not 

observed in the studies presented above. This might be explained by the different doses of 

radiation used between the studies (1x2 Gy here; 5x2 Gy in Bristol et al.), which could lead to 

different autophagic mechanisms. In fact, Bristol et al. observed that autophagy had different 

mechanisms of action depending on the conditions of the system, which suggests that the 

relatively low radiation dose of 2 Gy used in the current work simply may not have been 

sufficient to induce the protective autophagy that was reported in Bristol et al. 2012.   

Previous studies have connected the antiproliferative actions of cannabinoids to ROS 

induced autophagy (Shrivastava et al. 2011, Donadelli et al. 2011, Dando et al. 2013). As 

autophagy was apparently not directly relevant to the antiproliferative mechanism of the 

WIN2/IR combination, and the antioxidants NAC and GSH were unable to rescue MCF-7 cells 

from the antiproliferative actions of the WIN2, IR or the WIN2 + IR combination, it can be 

concluded that ROS do not mediate the antiproliferative effects of WIN2, IR or WIN2 + IR.  On 

the other hand, it is well documented that ROS mediate the DNA damaging effects of radiation 
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therapy (Driessens et al. 2009), and NAC or GSH failed to protect MCF-7 cells from radiation 

might be confusing. However, this discrepancy can be explained by a report that has shown 

increased GSH levels from NAC treatment were unable to protect lung tumor cells from the 

antiproliferative effects of ionizing radiation (Wanamarta et al. 1998), and another study showed 

that overexpressing glutathione peroxidase in MCF-7 cells protected the cells from H2O2 

treatment but not radiation treatment (Liebmann et al. 1995). Based on the Wanamarta et al. 

and Liebmann et al. studies, it is understandable that NAC and GSH can protect MCF-7 cells 

from the antiproliferative effects of H2O2 but not from radiation.  

Annexin V and PI staining as well as DAPI nuclear staining showed that WIN2, IR and 

WIN2 + IR fail to induce apoptosis, necrosis and mitotic catastrophe in MCF-7 cells. The 

absence of these three cell death mechanisms as well as evidence that autophagy is not 

associated with the antiproliferative action of the WIN2/IR combination strongly argue that 

growth inhibition and not cell death is mediating the antiproliferative actions of WIN2, IR and 

WIN2 + IR. A growth inhibition hypothesis is also evident in the time course studies in MCF-7 

cells treated with WIN2, IR and WIN2 + IR, as well as reports from the literature where WIN2 

induced growth arrest as its primary mechanism of action (Park et al. 2011). Therefore, it 

appears likely that augmentation of IR induced growth inhibition by WIN2 is expressed in at 

least one of two ways, which is by the augmentation of one growth inhibitory pathway or the 

activation of two parallel growth inhibitory pathways. The two primary growth inhibitory pathways 

are senescence, involving the activation of a specific signalling process, or classical growth 

arrest, which is a more broad suppression of mitogenic signals (Blagosklonny et al. 2003). 

Previous studies have demonstrated using the β-galactosidase assay that radiation-induced 

growth inhibition is expressed as senescent growth arrest in MCF-7 cells (Jones et al. 2005). 

WIN2, however, failed to induce senescence or to augment the induction of senescence by 

radiation in MCF-7 cells. These combined observations demonstrate that growth inhibition by 
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WIN2 is mediated by classical growth arrest, either expressed as cell cycle arrest or growth 

delay, and the augmentation of IR treatment by WIN2 is expressed as two parallel pathways of 

growth inhibition, growth arrest and senescence.  

DNA damage is believed to be responsible for the induction of senescence by radiation 

in MCF-7 cells (Jones et al. 2005). Tracking the DNA damage response by monitoring the 

induction and decline of γH2AX (Rogakou et al. 1999) confirmed the presence of DNA damage 

by radiation in MCF-7 cells. These experiments also confirmed that WIN2 has no ability to 

enhance induction of DNA damage, induce DNA damage or alter the DNA repair process. Lack 

of interaction between WIN2 and IR treatment on γH2AX induction was also demonstrated in 

the MDA-MB231 and 4T1 cells. The absence of interaction between WIN2 and IR in the DNA 

damage response pathway supports the hypothesis that WIN2 and IR are acting via parallel 

mechanisms of growth inhibition rather than by a common pathway. 

The conclusion of parallel growth inhibitory pathways cannot be extended to the MDA-

MB231 and 4T1 cells for multiple reasons. First, MDA-MB321 cells have previously been shown 

to respond to radiation therapy via an apoptotic mechanism and not senescence (Jones et al. 

2005). Second, the time course viability studies for 4T1 cells shows that at 24 h radiation and 

WIN2 + radiation significantly decrease viable cell number compared to the 0 h controls, 

indicating cell death as opposed to growth arrest. These lines of evidence supporting radiation-

induced cell death mechanisms in MDA-MB231 and 4T1 cells do, however, allow for the 

conclusion that the interaction of WIN2 and IR in MDA-MB231 and 4T1 cells is different than for 

MCF-7 cells. If the mechanism of growth inhibition for WIN2 in MCF-7 cells extends to MDA-

MB231 and 4T1, it would be logical to hypothesize that radiation is inducing cell death in a 

percentage of the population and WIN2 is inducing growth arrest in the remainder. Evaluating 

this hypothesis of parallel mechanisms of growth inhibition and cell death in MDA-MB231 and 
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4T1 cells in future studies could provide a crucial insight about the interaction between WIN2 

and IR in MDA-MB231 and 4T1 cells. 

 

Summary  

Section 3 demonstrated WIN2 to possess the ability to significantly augment the 

antiproliferative effects of radiation treatment in breast cancer cells in vitro. This section 

provided evidence that this augmentation between WIN2 and IR occurs through parallel 

mechanisms of growth inhibition. Studies confirmed that radiation treatment induces senescent 

growth arrest in MCF-7 cells, which was previously demonstrated by Jones et al. (2005). WIN2 

treatment did not elicit a senescent response in MCF-7 cells, nor did it alter the extent of 

induction of senescence by radiation, but time course analysis showed a significant growth 

delay after WIN2 treatment. Cell death assays (apoptosis, necrosis, autophagy and mitotic 

catastrophe) confirm that a low level of cell death cannot explain the growth inhibitory actions of 

WIN2. In the absence of overt cell death and senescence, it was concluded that WIN2 causes a 

classical growth arrest event as either growth delay or cell cycle arrest. WIN2’s inability to alter 

the induction of senescence while still demonstrating augmentation allowed for the conclusion 

that WIN2 and IR induce separate but parallel mechanism of growth arrest.  
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Section 5 
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Establishing the receptor mediating the antiproliferative effects of WIN2 

 

There is well established evidence that the cannabinoid receptors 1 and 2 (CB1 and CB2) 

mediate the antiproliferative and/or cytotoxic actions of cannabinoids. CB1 has been shown to 

mediate cell death in glioma cells based on the observation that the selective CB1 antagonist 

SR141716 inhibited induction of cell death by ∆9-tetrahydrocannabinol (THC) (Salazar et. al 

2009). SR141716 also antagonized the growth inhibition of MCF-7 cells by the endogenous 

cannabinoid anandamide (AEA) (Melck et al. 2000). This argues for a CB1 mediated mechanism 

of growth inhibition by cannabinoids in MCF-7 cells. Even though Melck et al. (2000) found the 

expression of CB2 mRNA in MCF-7 cells, the CB2 selective antagonist SR144528 had no effect 

on AEA in MCF-7 cells further confirming CB1 actions, but other studies have reported that CB2 

mediated growth inhibition of breast cancer cells. In MDA-MB231 breast tumor cells, both 

cannabinoid receptor antagonists AM251 and SR144528, CB1 and CB2 respectively, partially 

suppressed growth inhibition by WIN55,212-2 (WIN2) in vivo, arguing for CB2 involvement as 

well as CB1 in cannabinoid growth inhibition (Qamri et al. 2009). CB2 involvement is supported 

by Caffarel et al. 2010, which reported that the CB2 selective agonist, JWH-133, inhibits in vivo 

ErbB2 positive mammary tumor growth, and Caffarel et al. 2006, which showed that SR144528 

but not SR141716 significantly antagonized the antiproliferative effects of THC in EVSA-T 

breast cancer cells in vitro. For these reasons both CB1 and CB2 were evaluated as potential 

mediators of WIN2 action in breast tumor cells. 

Based on gene reporter assays (O’Sullivan et al. 2007) and antagonist studies (Mestre et 

al. 2009) WIN2 is an activator of the peroxisome-proliferator activated receptor γ (PPARγ), and 

WIN2 activation of PPARγ induces apoptosis in hepatoma HepG2 cells (Giuliano et al. 2009). 

Although WIN2 actions at PPARy in MCF-7 cells have not been assessed, PPARγ has been 

found to be expressed in MCF-7 cells (Nwankwo et al. 2001), and continuous treatment with the 
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selective PPARy agonist troglitazone inhibited their growth (Yin et al. 2001). Both PPARα and 

PPARδ receptor mRNA have also been found in MCF-7 cells (Suchanek et al. 2002a and 

2002b). WIN2 has shown activity as an agonist for PPARα by driving luciferase transcription via 

a PPARα promoter (Sun et al. 2006). WIN2 action at PPARδ has not been determined and it 

remains unclear how PPARα/δ activation would affect MCF-7. 

Transient receptor potential-cation-channel subfamily V member 1 (TRPV1) is a non-

selective cation channel sensitive to AEA (Smart et al. 2000), and TRPV1 mRNA is found 

abundantly in MCF-7 cells (Ligresti et al. 2006). However, TRPV1 involvement in MCF-7 growth 

is uncertain. The TRPV1 agonist capsaicin has mixed effects in MCF-7 cells ranging from 

minimal (Tuoya et al. 2006) to significant (Thoennissen et al. 2010) growth inhibition. 

Furthermore, these studies do not link capsaicin action to TRPV1 either genetically or 

pharmacologically. Conversely the TRPV1 antagonist capsazepine sensitizes HCT116 colon 

cells to TRAIL induced apoptosis, which argues for a protective action of TRPV1 in cancer 

(Sung et al. 2012), but again capsazepine action were not linked to TRPV1 either genetically or 

pharmacologically. 

The primary aim of the following studies was to determine the potential receptor binding 

sites that may mediate the WIN2 antiproliferative action using molecular and pharmacological 

techniques. These included CB1 and CB2 receptors, peroxisome proliferator-activated receptors 

(PPARα-y), and TRPV1 receptors. RT-PCR was also used to quantify message for GPR55, a 

recently discovered cannabinoid sensitive target (Yin et al. 2009, Johns et al. 2007). Summary 

of the results presented below, will show WIN2 does not interact with CB1, CB2, PPARα-y or 

TRPV1; also no GPR55 message was detected. Studies, based on unpublished data from the 

laboratory of Dr. Dana E. Selley, were then performed to evaluate WIN2 potential as an 

antagonist of growth pathways activated by sphingosine-1-phosphate, SEW2871 and estradiol. 
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*statistical values reported in figure legends  

 

Abbreviations 

 

CB1-cannabinoid receptor 1; CB2-cannabinoid receptor 2; TRPV1-transient receptor potential 

cation channel subfamily V member 1; PPAR-peroxisome proliferator-activated receptors; AEA-

anandamide; WIN2-WIN55,212-2; THC-∆9-tetrahydrocannabinol; S1P-sphingosine-1-

phosphate; E2-estradiol; GPCR- G protein coupled receptor 
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Results 

 

Section 5.1 - CB1 and CB2 do not mediate WIN2 elicited antiproliferative effects in MCF-7 

cells 

 

As CB1 and CB2 receptor-dependent growth inhibition has been reported in breast cancer 

cells (Melck et al. 2000, Qamri et al. 2009), RT-PCR was used to qualitatively confirm the 

expression of these receptors in MCF-7 cells. CB2 receptor mRNA was clearly identified, while a 

weak signal was found for CB1 (Fig 5.1A). The respective CB1 and CB2 receptor antagonists, 

AM251 (4 µM) and AM630 (4 µM) were evaluated for their ability to prevent WIN2-induced 

inhibition of cell growth (Fig 5.1B). Neither AM251 nor AM630 antagonized WIN2 growth 

suppression. Higher doses of the antagonists could not be used due to inhibition of MCF-7 cell 

growth. This lack of antagonism by AM251 and AM630 is strongly indicative of a CB1 and CB2 

receptor-independent mechanism. 

 

Section 5.2 - Members of the peroxisome-proliferator activated receptor family do not 

mediate WIN2 elicited antiproliferative effects in MCF-7 cells 

 

Given the apparent lack of CB1 and CB2 receptor involvement in the antiproliferative 

effects of WIN2 (section 5.1), the contribution of other WIN2 sensitive targets were assessed. 

RT-PCR confirmed the presence of PPARγ mRNA in MCF-7 cells (Fig 5.2A), but the PPARγ 

receptor antagonist GW9662 (10 µM) did not reduce the antiproliferative effects of 12 µM WIN2 

(Fig 5.2B). The PPARγ receptor agonist pioglitazone (PGZ) and pan-PPAR agonist bezafibrate 

were tested for antiproliferative activity in MCF-7 cells (Fig 5.2C-D), but neither recapitulated 

WIN2 growth inhibition further confirming WIN2 is not inhibiting MCF-7 growth via PPAR  
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Figure 5.1 – The antiproliferative effects of WIN2 in MCF-7 cells are mediated through a 
non-cannabinoid receptor mechanism of action. (A) RT-PCR for the CB1 and CB2 receptors 
in MCF-7 cells. CHO cells transfected with human CB1 or CB2 receptors were used as a positive 
control. (B) MCF-7 cells were treated with vehicle or WIN2 (12 µM) and vehicle, AM251 (4 µM), 
or AM630 (4 µM) for 24 h. Cell count with trypan blue was used to assess cell viability at 96 h. 
Data presented reflect the means of 3 individual experiments + se; no significant difference 
found. None transformed control viable cell numbers as mean +se - 2247442+746329  
 
Statistics 

(B) Two way repeated measures ANOVAs: AM251-WIN2 interaction - (p=0.7429); 
AM630-WIN2 interaction - (p=0.4901).  
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Figure 5.2 – PPAR receptor activation does not mediate WIN2 effects in MCF-7 cells. (A) 
RT-PCR for PPARγ (B) MCF-7 cells were treated with vehicle or WIN2 (12 µM) and vehicle or 
GW9662 (10 µM). (C) MCF-7 cells were treated with vehicle or WIN2 (12 µM) and vehicle or 
pioglitazone (40 µM). (D) MCF-7 cells were treated with bezafibrate (0-100 µM) and vehicle or 
WIN2 (12 µM) . Cells count with trypan blue was used to assess cell viability at 96 h (A, B and 
C). Crystal violet assessed population density at 96 h (D). Data presented reflect the means of 3 
individual experiments + se; no significant difference found.  
 
Statistics 

(B) Two way repeated measures ANOVA: GW9662-WIN2 interaction (p=0.3208).  
(C) Two way repeated measures ANOVA: PGZ-WIN2 interaction (p=0.1670). PGZ 

treatment main effect (p=0.5385).  
(D) Two way repeated measures ANOVA: Bezafibrate-WIN2 interaction (p=0.9981). 

Bezafibrate treatment main effect (p=0.8611).  
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receptor activation. PGZ and bezafibrate also had no effect on the WIN2-mediated growth 

inhibition when given in combination (Fig 5.2 C-D). Together these experiments show that WIN2 

fails to activate or antagonize all members of the PPAR receptor family. 

 

Section 5.3 - TRPV1 is not involved in WIN2 mediated antiproliferative actions in MCF-7 

cells 

 

TRPV1 was evaluated as a potential target of WIN2 action after other well established 

WIN2 sensitive targets were experimentally eliminated. RT-PCR confirmed the presence of 

mRNA for TRPV1 in MCF-7 cells (Fig 5.3A), but the TRPV1 receptor antagonist capsazepine 

(10 µM) failed to reduce the antiproliferative effects of WIN2 (Fig 5.3 B). Furthermore, 100 µM 

of the TRPV1 agonist capsaicin (CAP) failed to elicit antiproliferative activity alone (p=0.1410; 

Fig 5.3C). CAP was also given in combination with WIN2 (Fig 5.3C), but no significant 

interaction between treatments was found. These studies indicate that WIN2 was unlikely to be 

inhibiting the growth of MCF-7 cells via interaction with the TRPV1 receptor.  

 

Section 5.4 - GPR55 mRNA is not found in MCF-7 cells 

 

WIN2 has not been shown to activate GPR55 (Johns et al. 2007, Yin et al. 2009), but 

AEA, THC and CP55,940 activated GPR55 using a β-arrestin or GPR55 activated luciferase 

reporter assay (Yin et al. 2009). However, depending on the study, the cannabinoid agonist 

abnormal-cannabidiol showed both a neutral activity (Yin et al. 2009) and agonist activity (John 

et al. 2007) at GPR55. This suggests a system specific effect of some cannabinoids at GPR55. 

Therefore, GPR55 was assessed as a potential target for the anti-proliferative actions of WIN2 

in MCF-7 cells. RT-PCR qualitatively proved that no GPR55 mRNA was detectable in MCF-7  
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Figure 5.3 – WIN2 has no interaction with TRPV1 in spite of its mRNA expression in MCF-
7 cells. (A) RT-PCR for TRPV1 (B) MCF-7 cells were treated with vehicle or WIN2 (12 µM) and 
vehicle or capsazapine (10 µM). (C) MCF-7 cells were treated with vehicle or WIN2 (12 µM) and 
vehicle or capsaicin (100 µM). Cell count with trypan blue was used to assess cell viability at 96 
h. Data presented reflect the means of 3 individual experiments + se; no significant difference 
found.  
 
Statistics  

(B) Two way repeated measures ANOVA: CPZ-WIN2 interaction (p=0.2164) 
(C) Two way repeated measures ANOVA: CAP-WIN2 interaction (p=0.8076). CAP 

treatment main effect (p=0.1410) 
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Figure 5.4 – GPR55 mRNA was not found in MCF-7 cells. Representative blot of three.  
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cells (Fig 5.4), and a lack of GPR55 expression eliminated the need for further assessment of 

its involvement in WIN2 mediated anti-proliferative actions. 

 

Section 5.5 - MCF-7 cell sensitivity to growth inhibition by WIN2 is increased under 

serum free conditions 

 

Studies to be presented next will utilize a low serum condition. Pertinent to this, 

Jacobsson et al. (2001) reported that AEA has different potencies for inhibiting C6 glioma cell 

growth depending on the serum concentration used in media. To assess the antiproliferative 

and stereospecific actions of WIN2 under low serum conditions, dose-responses for WIN2 and 

its inactive enantiomer WIN55,212-3 (WIN3) were compared using 0.1% serum conditions (Fig 

5.5). Comparison of WIN2 and WIN3 show that WIN2 retains it dose-dependent and 

stereospecific inhibition of MCF-7 cell growth under low serum conditions, and comparisons of 

the ED50 for WIN2 under low (3.13+0.29 µM) and normal (11.96+1.65 µM) serum also show 

WIN2 to be more potent under low serum with a potency ratio of 3.39 relative to normal serum 

conditions. The ED50 for WIN2 in normal serum was reported in section 3.1.  

 

Section 5.6 - WIN2 antagonizes growth stimulation by sphingosine-1-phosphate and 

SEW2871 but not estradiol 

 

Unpublished studies by Dr. Dana E. Selley suggested WIN2 has actions at the 

sphingosine-1-phosphate (S1P) system, and the S1P signaling system has been shown 

important to the proliferation of MCF-7 cells (Sarkar et al 2005). These data suggested that 

WIN2 inhibited MCF-7 cell growth through activity at S1P receptors; therefore studies were 

designed to evaluate the S1P system as a potential site for the antiproliferative actions of WIN2  
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Figure 5.5 – Influence of low serum (0.1%) conditions on response of MCF-7 cells to WIN2 
and WIN3. MCF-7 cells were treated with WIN2 (1-10μM) and WIN3 (1-10μM) and cell growth 
monitored by the crystal violet assay 96 h after treatment. Data presented reflect the means of 3 
individual experiments + se; *=p<0.05 vs WIN3 at each respective concentration of drug; 
darkened symbols=p<0.05 vs vehicle. 
 
Statistics  

Two way repeated measures ANOVA: drug-dose interaction (F10,22=9.6, p<0.0001) 
Individual comparisons: WIN2-WIN3 4-10 µM (p<0.025). WIN2-vehicle 5-10 µM 

(p<0.025). WIN3-vehicle (no significant differences) 
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Figure 5.6 – WIN2 interferes with sphingosine-1-phosphate induced growth stimulation. 
MCF-7 cells were incubated under low serum conditions with 100 nM sphingosine-1-phosphate 
± WIN2 (3 µM). Trypan blue exclusion was used to assess cell viability at 96 h post treatment. 
Values are presented as percent of control and represent means+se for 3-4 replicate 
experiments; * p<0.05 vs vehicle; #p<0.05 indicated by bars.  
  
Statistics  

Two way repeated measures ANOVA: WIN2-S1P interaction (F1,4=20.8, p=0.0103) 
Individual comparisons: S1P-vehicle (p=0.0302). Vehicle-WIN2 (no significant difference). 

S1P-WIN2 + S1P (p=0.0074).  
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in MCF-7 cells. Under low serum conditions of 0.1 percent serum, 100 nM S1P stimulated MCF-

7 cell growth, which was subsequently suppressed by WIN2 (3 µM); this concentration of WIN2 

was not able to inhibit basal cell growth by itself (Fig 5.6).  

In complementary studies, a sub-effective dose of WIN2 (8 µM) under normal serum 

conditions prevented the growth stimulatory effects SEW2871 (5 µM), the synthetic S1P1 

receptor-selective agonist (Fig 5.7A). In contrast, 25 µM THC failed to inhibit growth stimulation 

by SEW2871 (Fig 5.7B). The differential actions of WIN2 and THC indicate that not all 

cannabinoids are capable of antagonizing SEW2871 induced breast tumor cell growth. To 

explore the possibility that WIN2 might be interfering with another growth stimulatory pathway, 

cells were exposed to 100 nM estradiol in the absence and in the presence of 8 µM WIN2 (Fig 

5.8); however, WIN2 failed to antagonize the growth stimulating effects of estradiol. In summary, 

these studies show that WIN2 antagonism of growth stimulation appears to be selective for the 

S1P signaling system. 

 

Section 5.7 - WIN2 does not antagonize S1P-stimulated [35S]GTPγS binding 

 

Agonist-stimulated [35S]GTPγS binding assays were used to test the ability of WIN2 to 

antagonize S1P stimulated G protein activation. S1P (0.1,1 and 10 µM) was incubated alone or 

in combination with WIN2 (30 µM; Fig 5.9). WIN2 was unable to alter S1P-stimulated 

[35S]GTPγS binding, which may or may not suggest WIN2 has capacity to antagonize S1P 

signaling at S1P receptors (further elaboration in discussion). WIN2 stimulated [35S]GTPγS 

binding was also not found to be significantly greater than basal levels. The S1P receptor 

system has 5 receptors (Rosen et al. 2009), and Dr. Dana Selley’s work has implicated WIN2 as 

a partial agonist at S1P1 receptors. The inability of WIN2 to stimulate [35S]GTPγS binding in 

MCF-7 cells could reflect that S1P1 receptors are not present in MCF-7 cells or that S1P1 
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receptors are not present in high enough density compared to other S1P receptors to allow 

detection. 
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Figure 5.7 – WIN2 but not THC interferes with SEW2871 induced growth stimulation. 
MCF-7 cells were incubated with (A) 5 µM SEW2871 ± 8 µM WIN2 or (B) 5 µM SEW2871 ± 25 
µM. Trypan blue exclusion was used to assess cell viability at 96 h post treatment. Values are 
presented as % of control and represent means+se for 3-4 replicate experiments; * p<0.05 vs 
vehicle; #p<0.05 indicated by bars.  
 
 
Statistics  

(A) Two way repeated measures ANOVA: WIN2-SEW2871 interaction (F1,4=36.3, 
p=0.0038) 

(A) Individual comparisons: Vehicle-SEW2871 (p=0.0254). Vehicle-WIN2 + SEW2871 
(p=0.0416). SEW2871-WIN2 + SEW2871 (p=0.0038) 

(B) Two way repeated measures ANOVA: THC-SEW2871 interaction (p=0.5969). 
SEW2871 treatment main effect (F1,4=19.7, p=0.0113) 

(B) Individual comparisons: Vehicle-SEW2871 (p=0.0178). Vehicle-WIN2 + SEW2871 
(p=0.0131).  
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Figure 5.8 – WIN2 fails to interfere with estradiol induced growth stimulation. MCF-7 cells 
were incubated with 100 nM estradiol ± 8 µM WIN2. Trypan blue exclusion was used to assess 
cell viability at 96 h post treatment. Values are presented as % of control and represent 
means+se for 3-4 replicate experiments; * p<0.05 vs vehicle; #p<0.05 indicated by bars.  
 
 
Statistics  

Two way repeated measure ANOVA: WIN2-Estradiol interaction (p=0.7317). Estradiol 
treatment main effect (F1,6=14.4, p=0.0090) 

Individual comparisons: Vehicle-estradiol (p=0.0062). Vehicle-WIN2 + estradiol 
(p=0.0098). 
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Figure 5.9 – WIN2 does not antagonize S1P stimulated G protein activation. Sphingosine-
1-phosphate stimulation of [35S]GTPγS binding (0.1-10 µM) + 30 µM WIN2. WIN2 was also 
tested alone as a control. Data presented as % stimulation and represent mean+se for 3-7 
replicate experiments. No significant differences detected between S1P and S1P + WIN2.  
 
Statistics  

Two way repeated measures ANOVA: WIN2-S1P interaction (p=0.3580). S1P treatment 
main effect (F1,21=9.5, p=0.0011) 
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Discussion 

 

Known cannabinoid sensitive targets are not mediating WIN2 effects 

 

In the current studies, WIN2 was not antagonized by the CB1 selective antagonist AM251. 

This is surprising because the CB1 selective antagonist SR141716 suppressed AEA inhibition of 

MCF-7 cell growth in Melck et al. 2000. Both WIN2 and AEA are agonists for the CB1 receptor 

and should mimic each other’s actions at CB1 (Sim et al. 1996, Showalter et al. 1996). The most 

likely explanation for this discrepancy is the differences between mRNA expression of CB1 in 

MCF-7 cells between the studies. Melck et al. reported a clear expression of CB1 message in 

MCF-7 cells while my work showed a poorly detected level of CB1 message. This is unexpected 

but differences in RT-PCR results within MCF-7 cells are not unfounded. Varying RT-PCR 

results in MCF-7 cells include a strong signal for both CB1 and CB2 (Melck et al. 2000), low 

expression of both (Ligresti et al. 2006), no expression of either (Takeda et al. 2008), CB1 

(McKallip et al. 2005) or CB2 alone (Caffarel et al. 2006). Differences in the RT-PCR protocol 

could explain the differences in CB1 expression reported in the presented studies compared to 

Melck et al., but they would not explain the inability of AM251 to antagonize WIN2 here and full 

reversal of AEA growth inhibition by SR141716 in Melck et al. Two more likely explanations are 

that either WIN2 is more potent at a secondary target, which is masking WIN2 actions at those 

CB1 receptors present, or the expression of CB1 in MCF-7 cells is different between these 

studies due to genomic differences in the cell lines. 

Published reports support the possibility of genomic differences between Melck et al.’s 

work and the work presented above. One study demonstrated that genomic instability can 

contribute to cancer progression by showing that subclones of the murine fibrosarcoma UV-

2237 derived at different times after thawing of stock cells had significant differences in their 
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metastatic potential when injected into C3H mice (Cifone and Fidler et al. 1981). A more recent 

demonstration linked genetic instability to alterations in tumor population heterogeneity. 

Masramon et al. 2006 used DNA fingerprinting by arbitrarily primed PCR in various colon cancer 

cell lines (SW480, LoVo and HT116) to measure increases in heterogeneity in each population 

after clonal expansion when compared to parent cells. Genomic instability manifesting as 

changes in genetic heterogeneity could easily explain the variability in cannabinoid receptor 

expression between the studies described above: Melck et al. 2000, Ligresti et al. 2006, Takeda 

et al. 2008, McKallip et al. 2005, Caffarel et al. 2006. Nevertheless, based on the present work it 

can be concluded that WIN2 is not acting via CB1 under the current experimental conditions.  

In the present studies, WIN2 failed to interact with CB2, PPARy and TRPV1, all of which 

have previously been shown to mediate potential antiproliferative roles in cancer (Qamri et al. 

2009, Caffarel et al. 2010, Yin et al. 2001, Thoennissen et al. 2010). Although message for all 

three receptors was identified by RT-PCR, the antagonists AM630 (CB2), GW9662 (PPARy) and 

capsazepine (TRPV1) failed to antagonize WIN2 action (Walpole et al. 1994, Ross et al. 1999, 

Bendixen et al. 2001). The agonists, pioglitazone (PPARy) and capsaicin (TRPV1), also failed to 

recapitulate antiproliferative effects of WIN2 when administered to MCF-7 cells with the same 

drug treatment protocol used for WIN2. PPARα/δ are known to be expressed in MCF-7 cells 

(Suchanek et al. 2002a and 2002b), but bezafibrate, the pan-PPAR agonist, also failed 

recapitulate WIN2 inhibition of MCF-7 cell growth. In the end, these studies indicate that CB2, 

TRPV1 and all members or the PPAR family are not involved in the antiproliferative effects of 

WIN2. 

Convergent lines of evidence eliminate the possibility of GPR55 involvement in WIN2 

mediated effects. β-arrestin luciferase reporter assay and GPR55 activated luciferase reporter 

assay in transfected Hek-293 cells (Yin et al. 2009), as well as [35S]GTPγS binding assays in 

HEK-293T cell over expressing GPR55 (Johns et al. 2007), have shown GPR55 to be sensitive 
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to a variety of cannabinoids. However, WIN2 was unable to activate GPR55 in either of these 

studies suggesting it may not be an agonist for GPR55. In addition, GPR55 has been linked to 

tumor growth stimulating effects. Expression of GPR55 in human tumors was correlated with 

decreased patient survival, overexpression of GPR55 in HEK, EVSA-T and T98G cells 

increased growth rates, and GPR55 knockdown decreased growth rates in EVSA-T and T98G 

cells (Andradas et al. 2011). These growth stimulating effects of GPR55 were further supported 

by Pineiro et al. (2011) when genetic knockdown of GPR55 decreased growth rates in PC-3 and 

OVCAR3 cells. However, the strongest evidence for lack of GPR55 involvement in WIN2 growth 

inhibition is that RT-PCR indicated no GPR55 message present in MCF-7 cells utilized in these 

studies. 

 

WIN2 acts through the sphingosine-1-phosphate fatty acid signaling network 

 

S1P is present at concentrations between 0.1 µM in fetal bovine serum used for culturing 

and 0.8-1 µM in human plasma (Murata et al. 2000), and can be synthesized intracellularly by 

sphingosine kinase 1 (cytoplasmic/membrane) and 2 (nuclear) (Rosen et al. 2009). S1P is also 

known to activate the 5 known S1P G protein coupled receptors (GPCRs), S1P1-5, (Rosen et al. 

2009). S1P has been implicated in a host of disease processes including arthritis, asthma, 

atherosclerosis, cancer, diabetes and osteoporosis (Maceyka et al. 2012, Orr Grandy et al. 

2012). Cancer related effects of S1P include increased proliferation, cell transformation, cell 

death evasion, drug resistance, inflammation, metastasis and angiogenesis (Takabe et al. 2008, 

Pyne et al. 2010). In MCF-7 breast cancer cells, knocking down sphingosine kinase 1 (SPK1) 

depresses chemotactic migration, increases apoptosis after adriamycin treatment and 

decreases proliferative rates (Sarkar et al. 2005). Western blotting and RT-PCR in MCF-7 cells 

demonstrates strong expression of S1P3, which has been identified as a mediator of SPK1 
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growth stimulating properties (Wang et al. 1999, Sukocheva et al. 2006, Hadizadeh et al. 2008, 

Sukocheva et al. 2013). RT-PCR analysis identified S1P2 expression in MCF-7 cells, although to 

a lesser extent than S1P3, and conflicting reports suggest S1P1 may or may not be expressed 

(Wang et al. 1999, Hadizadeh et al. 2008, Sukocheva et al. 2013). Unlike S1P3, S1P1 & 2 have 

not been assessed for pro-growth or survival activity in MCF-7 cells. One report also identified 

S1P receptor-independent effects in MCF-7 cells for S1P inhibition of motility (Wang et al. 

1999), which indicates further undiscovered complexity present in the S1P signaling system.  

In the current work a sub-effective dose of WIN2 antagonized growth stimulation by S1P 

and the synthetic S1P1 receptor agonist SEW2871 in MCF-7 cells. Antagonism of S1P and 

SEW2871 indicates that WIN2 actions interact at some point along the S1P signaling pathway, 

although it cannot be determined if this interaction is direct or indirect. Interestingly, THC failed 

to antagonize SEW2871 growth stimulation demonstrating that antagonism of S1P signaling is 

not a function that generalizes to all cannabinoids. This lack of generalized effects for S1P 

action across cannabinoid agents might explain why WIN2 and the other aminoalkylindoles 

were unique in their ability to augment the anti-proliferative effects of radiation. Therefore, it is 

possible that antagonism of S1P signaling is required for augmentation of the antiproliferative 

actions of radiation in MCF-7 cells. Future studies should address this possibility starting with 

testing the other two aminoalkylindoles shown to augment the antiproliferative effects of 

radiation, JWH-015 and pravadoline, in combination with S1P and SEW2871. Future studies 

should also evaluate WIN2 interactions with S1P signaling in combination with radiation 

treatment, although, this will be easier to test once the interaction between WIN2 and S1P 

system is more fully understood.  

Although a specific intersection between WIN2 actions and S1P growth signaling has not 

been identified by these studies, multiple lines of evidence narrow the pool of potential sites of 

action. WIN2 antagonism of S1P or SEW2871 growth stimulation and lack of interference with 
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estradiol-induced growth stimulation demonstrates that WIN2 is not antagonizing cell cycle 

machinery utilized by both growth stimulating pathways. Additionally, WIN2 antagonism of 

exogenous S1P or SEW2871 shows that WIN2 is not altering intracellular S1P synthesis or 

degradation. As a result, WIN2 is likely to be acting on the S1P receptors, intracellular signaling 

machinery that is downstream of the S1P receptor, or an alternate pathway that intersects with 

the S1P signaling system.  

Evaluating WIN2 actions at S1P receptors is the likely place to start based on 

unpublished work from our collaborator, Dr. Dana Selley, which indicates that WIN2 acts as a 

partial agonist at S1P1 receptors. S1P1 is potentially expressed in MCF-7 cells, as discussed 

above (Wang et al. 1999, Hadizadeh et al. 2008, Sukocheva et al. 2013), and if WIN2 acts as a 

partial agonist at S1P1 it could also act as a partial antagonist, explaining the observations seen 

with WIN2 in the studies presented in this work. However, when considering what is known 

about S1P receptors in MCF-7 cells, evaluating the hypothesis that WIN2 is a partial antagonist 

for S1P receptors becomes challenging. First, it is unknown if S1P1 receptors are involved in 

growth signaling in MCF-7 cells. Second, S1P3 receptors have been linked to growth stimulation 

in MCF-7 cells (Sukocheva et al. 2006, Sukocheva et al. 2013), but Dr. Dana Selley’s work has 

not clearly addressed if WIN2 has actions at S1P3 receptors. Additionally, those reports 

demonstrated S1P3 associated growth stimulation as an intermediary of non-genomic estrogen 

growth signaling (Sukocheva et al. 2006, Sukocheva et al. 2013). Finally, while S1P3 receptors 

might be the dominant S1P receptor in MCF-7 cells and a mediator of estrogen growth 

stimulation, studies presented in this document have demonstrated that WIN2 antagonism of 

S1P growth stimulation is estrogen independent in nature, which would suggest S1P3 is not 

involved in the WIN2 mediated antagonism of S1P growth stimulation. Furthermore, WIN2 

antagonized growth stimulation by the S1P1 receptor selective agonist SEW2871 (Sanna et al. 

2004), which does argue for an S1P1 dependent mechanism.  
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[35S]GTPγS binding studies were used to potentially answer some of these questions, but 

WIN2 could neither significantly stimulate [35S]GTPγS binding alone, nor could it antagonize 

S1P stimulated [35S]GTPγS binding. At first, these results suggest that WIN2 it not acting as a 

partial agonist/antagonist at S1P receptors but there are other possibilities to consider. The 

most obvious is that the duration of WIN2 treatment in the [35S]GTPγS binding and cell count 

studies are different, 2 vs. 24 h respectively, and therefore the [35S]GTPγS binding studies do 

now accurately mimic observations from the cell count studies. It is also possible that the 

kinetics for [35S]GTPγS binding are different between S1P receptors, and the [35S]GTPγS 

binding studies presented here are demonstrating a preference for one S1P receptor over the 

other providing an incomplete pictures of WIN2 action. Another possibility is that S1P1 receptors 

are expressed at considerably lower levels than S1P3 receptors, and the [35S]GTPγS binding 

assay is simply not sensitive enough to detect actions at these receptors. Any of these 

eventualities would prevent the [35S]GTPγS binding assay from being able to determine if WIN2 

is acting at S1P1 as either a partial antagonist, which would inhibit S1P signaling, or as a partial 

agonist which would cause receptor downregulation, effectively silencing the S1P system. 

Future studies could address these possibilities. qRT-PCR and western blotting could identify 

the S1P receptors present in these MCF-7 cells and determine whether  WIN2 has effects on 

the levels of receptor expression after treatment. Selective genetic knockout or pharmacological 

antagonism of S1P receptors can detect if WIN2 antagonism of S1P growth stimulation is 

mediated through a specific S1P receptor. Also, further [35S]GTPγS binding studies using longer 

incubation times and either genetic knockdown or pharmacological antagonism of S1P3 

receptors could more accurately test the involvement of S1P1 receptors in MCF-7 cells, 

assuming qRT-PCR and western blotting can confirm their expression.  

It does also remain possible that WIN2 actions are not mediated by the S1P receptors, 

and WIN2 actions occur either further downstream of the receptor or in a secondary pathway 



 

 

127 

 

 

that antagonizes S1P signaling indirectly. For instance, growth stimulation by S1P occurs 

through RAS signaling. When SPK1 is antagonized and knocked down in T24 bladder cancer 

cells, RAS-GTP is decreased (Shu et al. 2001). Based on the involvement of RAS in S1P 

dependent cell growth, as well as WIN2 demonstration of classical growth arrest in section 4 of 

this document, RAS is a logical candidate for future studies examining the effects of WIN2 in 

MCF-7 cells. AKT is another possible target based on work from Park et al. (2011), who 

reported a WIN2 induced G1 cell cycle growth arrest in gastric cancer cell that was rescued by 

overexpression of active myristoylated-AKT. Lastly, Osawa et al. (2001) showed that S1P 

treatment protected hepatoma cells from apoptosis and increased p-AKT expression, while 

SPK1 antagonism increased apoptosis and decreased p-AKT expression. Based on these two 

studies AKT should also be considered a candidate for evaluation in future studies.  

A substantial amount of work remains to accurately identify the site of action for WIN2 in 

MCF-7 cells, and whether that site of action is responsible for the observed augmentation of 

radiation by WIN2 presented in previous chapters. Nevertheless, it can be concluded from the 

work presented here that WIN2 has actions that intersect with and antagonize the S1P signaling 

system.  

 

Summary  

 

Section 3 of this document showed that WIN2 was able to augment the antiproliferative 

actions of radiation in MCF-7 cells, and section 4 attributed this augmentation to parallel 

mechanisms of growth arrest. This section, section 5, was focused on elucidating the receptor 

mediating WIN2 signaling in MCF-7 cells. RT-PCR and pharmacological analysis was used to 

exclude the involvement of known cannabinoid sensitive targets CB1, CB2, PPARα-γ, TRPV1 

and GPR55. WIN2 antagonism of S1P associated growth stimulation, however, indicated a 
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novel site of action for WIN2 in MCF-7 cells that interacts with or is present in the S1P signaling 

system. Future studies are still required to determine the novel site of actions and confirm that 

WIN2 actions at this site mediate the WIN2/IR augmentation.  
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Section 6 
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Summary, Discussion and Future Studies 

 

The primary findings of this work are that WIN55,212-2 (WIN2) has the capacity to 

augment the antiproliferative effects of radiation in breast tumor cells, and that other 

cannabinoids that fail to have this effect do not interfere with the actions of radiation. Studies in 

MCF-7 cells were confirmed in MDA-MB231 cells and 4T1 cells. WIN2 augmentation of the 

antiproliferative effects of radiation were also shown to be stereospecific using the inactive 

enantiomer of WIN2, WIN55,212-3 (WIN3). These findings serve as effective proof of principle 

that WIN2, or similar compounds could enhance patient survival if given in combination with 

radiation, but due to complications with the in vivo studies, discussed below, it remains 

imperative that future studies expand this work beyond the in vitro models used here.  

Opposite to its combination with radiation, WIN2 failed to augment the effects of 

doxorubicin (Adriamycin) in MCF-7 cells. As is the case with radiation, ADR induces 

senescence in MCF-7 cells (Jones et al. 2005; Goehe et al. 2012). One possible explanation for 

why WIN2 enhanced the antiproliferative effects of radiation but not doxorubicin is that 

senescence induced by doxorubicin is different than senescence induced by radiation. Bristol et 

al. (2012) demonstrated that blockade of autophagy after radiation treatment forced the cells to 

switch from an entirely senescent response to cell death through apoptosis, while Goehe et al. 

(2012) demonstrated blockade of autophagy after ADR treatment only caused a delay in the 

onset of senescence without a significant enhancement of the antiproliferative effects of ADR. 

With these differing reports of senescent responses in MCF-7 cells, it cannot be assumed that 

WIN2 actions will interact with radiation and ADR in the same way.  

The mechanism of action for the WIN2/IR combination identified in vitro was studied 

primarily in the MCF-7 cell model. Radiation-induced senescence, assessed by β-galactosidase 

staining, confirmed previous findings of radiation-induced senescence (Jones et al 2005); 
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however, WIN2 had no effect on the extent of senescence induction. Quantification of DNA 

damage and repair by γH2AX labelling also indicated that WIN2 did not increase the extent of 

DNA damage or interfere with cellular repair of DNA elicited by radiation treatment. Salazar et 

al. (2009) showed that a ∆9-tetrahydrocannabinol (THC) treatment in U87-MG glioblastoma 

induced autophagy that was toxic to tumor cells, and studies presented here show autophagy 

was clearly induced by both radiation and WIN2. However, pharmacological blockade of 

autophagy did not interfere with the effectiveness of the combination treatment, demonstrating 

that cellular sensitivity to radiation was not augmented by WIN2 via autophagy. Annexin V and 

PI staining combined with DAPI imaging of nuclear morphology demonstrated that apoptosis, 

necrosis and mitotic catastrophe were not induced by the WIN2/IR combination. When the 

effects of the WIN2/IR combination on senescence are considered in the absence of cell death, 

it can be concluded that WIN2 is likely to be inducing classical growth arrest, either as a growth 

delay or cell cycle arrest type event, and this is confirmed by temporal studies. Additionally, this 

classical growth arrest conclusion combined with the temporal studies indicates that the 

augmentation of the antiproliferative effects of radiation by WIN2 is mediated by parallel 

mechanisms of classical growth arrest (WIN2) and senescent growth arrest (IR).  

Subsequent studies were designed to identify the receptor(s) mediating the 

antiproliferative actions of WIN2 in breast tumor cells. Although expression of CB1, CB2, PPARy 

and TRPV1 were shown in the MCF-7 cells, pharmacological experiments using various 

agonists and antagonists of these selected receptor pathways demonstrated that CB1, CB2, 

PPARy and TRPV1 were not mediating the antiproliferative effects of WIN2. Pharmacological 

experiments were extended to show that PPARα-γ were also not involved in the antiproliferative 

mechanism of WIN2. GPR55 was excluded as a potential target based on a lack of receptor 

expression, as well as reports that GPR55 supports tumor growth and does not interact with 

WIN2 (Johns et al. 2007; Yin et al. 2009; Andradas et al. 2011; Pineiro et al. 2011; Perez-
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Gomez et al. 2012). Previous work in CB1 knockout brains has demonstrated that WIN2 has 

actions at a GPCR that is as of yet unidentified in the literature, which supports the possibility 

that WIN2 is acting at a novel site of action (Brievogel et al. 2001). With all known cannabinoid 

sensitive targets eliminated as potential sites of action for WIN2, studies were designed to 

address possible interactions with sphingosine-1-phosphate (S1P) (Selley D., unpublished 

data).    

A sub-effective dose of WIN2 antagonized growth stimulation by S1P receptor agonists 

(S1P and SEW2871) in MCF-7 cells; this finding connects the antiproliferative properties of 

WIN2 to the S1P signaling pathway, but it does not identify a specific target of action. Several 

complementary lines of evidence did, however, narrow the pool of potential candidate sites. For 

example, WIN2 did not antagonize the growth stimulating effects of estradiol, confirming that the 

mechanism for WIN2 is specific to S1P signaling. Also, WIN2 antagonism of exogenous S1P 

and SEW2871 shows that WIN2 is not altering intracellular S1P synthesis or degradation. 

[35S]GTPγS binding studies were attempted to confirm or refute the involvement of WIN2 

actions at the S1P receptors, but limitations of the studies prevent a conclusion of this nature. 

Future studies are still requires assess WIN2 actions at or on the S1P receptors present within 

MCF-7 cells.  

It is also possible that WIN2 is directly antagonizing a downstream component of the S1P 

signaling system, but this cannot be concluded since WIN2 could be acting outside of the S1P 

signaling pathways causing alterations to the S1P signaling system indirectly. One example of 

this type of indirect mechanism is the inhibition of MCF-7 growth by methanandamide (MAEA) 

reported by Laezza et al. (2006; 2010). MAEA treatment caused down regulation of HMG-CoA 

reductase leading to decreases in pools of mevalonic acid and prevented various proteins from 

trafficking to the membrane from the cytosol, one of which included the well-known growth 

stimulating protein RAS. This indirect down regulation of RAS by MAEA was shown to inhibit 
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growth of MCF-7 cells. Although WIN2 may cause down regulation of RAS in MCF-7 cells, it is 

unlikely that WIN2 would do so by down regulating HMG-CoA reductase. MAEA was shown to 

down regulate HMG-CoA via a CB1 dependent mechanism in Laezza et al. 2006, and studies 

presented in this document demonstrated that CB1 is not involved in the actions of WIN2. 

Nevertheless, based on the classical growth arrest mechanism associated with WIN2 in MCF-7 

cells presented here, and Shu et al.’s (2001) demonstration of S1P signaling through RAS, it 

would be logical to evaluate RAS under WIN2 treatment. Initial studies would determine RAS 

levels and activity after vehicle, WIN2, IR and WIN2 + IR treatments.  

A second potential target was identified in studies reported by Park et al. (2011), where 

WIN2 induced AKT down regulation and a G1 cell cycle growth arrest in gastric cancer cells that 

were rescued by overexpression of active myristoylated-AKT. Caffarel et al. (2010) also showed 

AKT dependent growth inhibition where overexpression of AKT in N202.1A breast cancer cells 

prevented both THC and JWH-133 from inhibiting cell growth. Furthermore, S1P signaling was 

connected to AKT in hepatoma cells where S1P administration decreased apoptosis and 

increased p-AKT expression, and antagonism of the kinase responsible for S1P production, 

sphingosine kinase 1, increased apoptosis and decreased p-AKT expression (Osawa et al. 

2001). Quantifying AKT and p-AKT levels after vehicle, WIN2, IR and WIN2 + IR treatment in 

MCF-7 cells would evaluate potential involvement of AKT in the WIN2 mediated mechanism of 

growth inhibition. 

There still remains a great deal of work to do before identification of the site of action for 

WIN2 can be elucidated conclusively. These studies may also include broader studies that 

utilize microarray, proteomic or metabolomic work to identify novel targets and non-canonical 

mechanisms that were not hypothesized here, and even when this site of action is identified it 

must still be connected to the WIN2 mediated augmentation of radiation. Nevertheless it can be 
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concluded from the work presented in this document that WIN2 has the capacity to interact with 

the S1P signaling system in some capacity to affect growth.  

In addition to MCF-7 cells, discussed above, studies were completed using the WIN2/IR 

combination in the MDA-MB231 cell line where WIN2 demonstrated significant augmentation of 

the antiproliferative effects of radiation. Similar to the augmentation in MCF-7 cells, the 

augmentation in MDA-MB231 cells was also confirmed to be stereospecific in nature using 

WIN3. Time course studies showed that a growth inhibitory phenotype was present in MDA-

MB231 cells as was present in MCF-7 cells. Mechanistic studies were not performed in MDA-

MB231 cells, in part due to the differences in the reported mechanisms of action for radiation in 

MCF-7 and MDA-MB231 cells, senescence and apoptosis respectively (Jones et al. 2005). 

Identification of a target of action for WIN2 in MCF-7 cells could guide receptor evaluations in 

MDA-MB231 cells, but until a novel site of action is elucidated all cannabinoid sensitive targets 

(CB1, CB2, PPARα-y, TRPV1 and GPR55) must be systematically evaluated in MDA-MB231 

cells just as they were in MCF-7 cells. This systematic evaluation would also include the 

interaction between WIN2 and S1P growth stimulation.  

The WIN2/IR combination also augmented the effects of radiation in 4T1 cells in vitro. 

However, in vivo studies using the 4T1-Balb/c syngeneic tumor growth model failed to show 

augmentation of the antiproliferative effects of radiation by WIN2. However, this lack of 

augmentation was likely confounded by the fact that WIN2 did not inhibit tumor growth alone in 

these animals, which was entirely unexpected since the dose of WIN2 used in the combination 

study was based on a previous dose-response study in the 4T1-Balb/c model where WIN2 

significantly inhibited tumor growth. It is unclear why WIN2 failed to replicate its inhibition of 

tumor growth in vivo between the two studies, and, to date, no variables have been identified 

that could explain the differences between the studies. Studies should be conducted to 

ascertain the effects that WIN2 and IR have in combination using a whole animal, but future 
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efforts utilizing the MCF-7 model in immune compromised mice implanted with estrogen pellets 

might prove to be a better approach.  

Contrasting the breast cancer cells used (MCF-7, MDA-MB231 and 4T1 cells), MCF-10A 

cells are a non-transformed immortalized breast epithelial cell line that was used in these 

studies to test the ability of WIN2 to augment the toxicities of radiation to normal cells. While 

high doses of WIN2 (30 μM) did augment radiation mediated antiproliferative actions in MCF-

10A cells, the dose of WIN2 used in the MCF-7 cell studies (12 μM) was unable to elicit growth 

inhibition by WIN2 alone or in combination with radiation in MCF-10A cells. This finding 

demonstrates that WIN2 is less potent in the non-transformed MCF-10A cells, and this lower 

potency suggests a therapeutic window in treatment that would create selectivity for cancer cells 

over normal tissue. As non-cancerous tissues in the body exist largely in a non-proliferative 

state, if WIN2 is acting through a classical growth arrest mechanism without inducing cell death, 

then adverse effects on non-cancerous tissue would be even more unlikely to occur in the whole 

animal. Nevertheless, future studies should be performed using proliferating non-cancerous 

tissues such as gastrointestinal epithelial cells to determine if WIN2 is capable of antagonizing 

their growth, because unlike focused irradiation, WIN2 will be distributed throughout the body by 

systemic blood circulation.  

In addition to testing the WIN2/IR combination in multiple cells lines, multiple 

cannabinoid/IR combinations were tested in MCF-7 cells. These include THC, CBD, nabilone, 

CP55,940 and methanandamide, which all failed to interact with radiation in MCF-7 cells. The 

aminoalkylindoles, JWH-015 and pravadoline however, significantly augmented the effects of 

radiation at the highest concentrations tested (45 μM). Later studies showed that WIN2 

antagonized S1P stimulated growth but THC failed to replicate this antagonism, which may 

have provided some indications as to why only some cannabinoids interacted with radiation. 
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Pertinent future studies will include testing JWH-015 and pravadoline as antagonists of S1P 

stimulated growth in MCF-7 cells.  

Future work should include structure-activity relationship studies to screen analogs of 

WIN2 for compounds that are more efficacious at inhibiting MCF-7 cell growth and/or 

augmenting the antiproliferative effects of radiation. Structure-activity relationship studies could 

be performed even in the absence of a confirmed target of action for WIN2. Identification of 

more efficacious analogs of WIN2 as antagonists of S1P stimulated growth, could additionally 

screen for compounds that possess less profound cannabimimetic effects compared to the 

parent compound WIN2, as these side-effects have impeded clinical development of WIN2 thus 

far (Howlett et al. 2002; Pertwee et al. 2010). Decreases in the cannabimimetic effects of these 

drugs could also enhance their likelihood of FDA approval, which is the first step to using novel 

drugs with radiation augmenting properties like WIN2 to prolong patient survival.  
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