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Abstract

When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount 

of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful 

and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly 

informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures’ 

models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared 

error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain ran-

dom/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial 

acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are 

compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by 

a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that 

leads to a good estimate of the structure’s behavior and model parameters without the need of preliminary measurements 

for model updating.

Keywords Design of experiments · Tower-like structures · Experimental validation · Mean-squared error · Fisher 

information matrix · Modal analysis

1 Introduction

For assessing civil engineering structures, methods for 

designing optimal experiments (DoE) increasingly come to 

the fore. It often takes a lot of effort, especially in the case of 

tall structures, to equip the structure with the measurement 

devices, the associated cables and controllers. This makes it 

inevitable to develop a proper design for the measurement 

setup.

In other fields like biological or chemical engineering 

many approaches for the DoE are well known and applied 

[3, 12–14]. Nowadays, measurement concepts in civil 

engineering mainly arise from the engineer’s experience 

and the available knowledge about the structure. Usually, 

an equal distribution of the sensors is used when there is 

no further information of the structure available [5, 6, 37]. 

Others make use of the modal information, such as natu-

ral frequency and modeshape, to gain the optimal sensor 

placement [18, 28]. To improve this practice, it is useful to 

apply methods of DoE in order to place sensors at significant 

positions and also to possibly reduce the amount of sensors, 

which is accompanied with reducing costs for the measure-

ments [18, 36].

In general, experiments on civil structures can be divided 

into two cases. On the one hand, field tests are conducted 

on existing structures in their environment. These tests are 

often referred to as short- or long-term monitoring tests. The 

surrounding conditions cannot be controlled, but only moni-

tored or evaluated by e. g. specimen tests of the soil or wind 

measurements. On the other hand, specimens, small struc-

tural parts or down-scaled full structures can be observed 

under controlled conditions in the laboratory.
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Inherent to both cases are measurement errors which can 

be random (aleatoric) and/or systematic (epistemic). For 

a proper DoE it is important to consider the measurement 

errors and noise in order to obtain the optimal sensor setup. 

Comprehensive overviews on measurement errors, their 

determination and principle calculation are given in [8, 15, 

31].

Concerning optimal design of experiments, many meth-

odologies have been developed, and starting from full-fac-

torial designs many more followed [1, 9, 10, 19, 26]. For 

instance, the Fisher Information Matrix (FIM) is used as 

an estimate of the covariance matrix. When applying any 

optimality criterion from literature, optimal designs can be 

found, e.g. [2, 33] and [35]. Further on, in [3, 12, 14, 24] 

an approach is used, where the mean-squared error (MSE) 

between an estimate and the true function is calculated to 

obtain the optimal design. Comparisons between different 

optimality criteria for the FIM and also regarding the MSE 

can be found in literature, e.g. [3, 4, 16]. Comparing both 

methods, the FIM approach can only account for random 

errors. The noise is typically considered as a normal distri-

bution with zero mean and a constant standard deviation. 

The MSE, on the contrary, can cope with both random and 

systematic errors. It is minimizing the difference between 

the noisy and the exact data. Investigations concerning dif-

ferent error descriptions for both approaches have been dis-

cussed in [27].

Another proposed criterion in literature for DoE is the 

information entropy, which is a measure of the uncertainty 

of the estimate of the model parameters [22, 23]. Many other 

approaches, e. g. optimizing the sensor placement with a 

two-step procedure for better predictions of the dynamic 

response reconstruction [34] or an iterative procedure where 

the Modal Assurance Criterion (MAC) value is used as the 

optimality criterion [7] are available.

In this paper, different error descriptions are used on one 

application example in order to work out similarities, differ-

ences and robustness of the different DoE methods. A novel 

DoE approach which is making use of the Fisher Information 

Matrix (FIM) and the mean-squared error (MSE) in combi-

nation is presented and compared to existing ones. The DoE 

is performed on a tower-like structure, where a PVC pipe 

serves as the test object. For the identification of the opti-

mal experimental setup before conducting the experiment 

itself, artificially created measurement data from a numerical 

model are used here. Additionally, experiments on the pipe 

are made under laboratory conditions in order to verify the 

optimal designs.

In Sect. 2 the methods used for error description and DoE 

are presented. Followed by Sect. 3, where the application 

example is introduced both as a laboratory experiment as well 

as a numerical simulation. The results of the investigations 

are shown and compared in Sect. 4. This is followed by the 

discussion of the results in Sects. 5 and 6 is concluding the 

findings.

2  Error description and design 
of experiments

2.1  Error description for the synthetic data

In order to simulate experimental measurement data it is nec-

essary to introduce an error description to artificially generated 

data as experimentally received data is always prone to meas-

urement uncertainties. For the scope of this paper, both error 

types as mentioned in Sect. 1 are considered. Both error types 

are inherent in all errors that belong to one of the two types. 

Also, later on different levels are used, respectively. Generally, 

the total error in measurements � consists of two parts:

where �
(j)

sys,i
 is the systematic (epistemic or also bias) error 

and �
(j)

rand,i
 represents the random (aleatoric) error for each 

timestep i from one to the maximal number of timesteps nt 

and per measurement location j from the first to the last one 

n
sens [8].

Once the total error � is added to the true data v, fictitious 

measurement data u

is generated to be used in the numerical investigations. In 

Eq. 2 y represents the spatial and t the temporal domain, 

respectively.

Within the given research, the random error �
(j)

i
 is designed 

relative to the minimal amplitude

for every data set from all measurement locations. Fur-

ther on, the random error is given by a normal distribution 

�
(j)

i
= N(0, �2) with zero mean and variance �2 . This leads 

to the data corrupted with noise as in

The systematic error is assumed to be relative to the exact 

data and the fictitious data can be derived from

where �
(j)

i
 denotes the factor of the relative error. A combi-

nation of the two afore-mentioned error descriptions estab-

lishes as follows:

(1)

�
(j)

i
= �

(j)

sys,i
+ �

(j)

rand,i
, i = 1,… , nt, j = 1,… , nsens,

(2)u(y(j), ti) = v(y(j), ti) + �
(j)

i

(3)vmin = min
y(j)

max
ti

|v(y(j), ti)|, vmin > 0

(4)�
(j)

rand,i
= �

(j)

i
⋅ vmin .

(5)�
(j)

sys,i
= �

(j)

i
⋅ v(y(j), ti) ,
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An exemplary visualization of the error descriptions result-

ing from Eqs. 4 and 6 is shown in Fig. 1.

2.2  Evaluation of experimental data

The experimental data are used to obtain the optimal sen-

sor setup considering the observed eigenfrequencies. That 

is why a comparison is made between the eigenfrequencies 

which are obtained from the setup using all positions f all

b
 and 

the sensor setups picking s positions f (s)
c

 . The indices b and 

c account for the number of eigenfrequency.

The Euclidean norm between the first numbers of meas-

ured eigenfrequencies is used to gain a quality measure for 

each sensor setup. Since, not necessarily, every eigenfre-

quency can be obtained by any setup, a preselection needs 

to be made. Therefore, a case discrimination corresponding 

to the number of missing eigenfrequencies n
miss.f

 from these 

first eigenfrequencies follows as

where f all

b
 and f (s)

c
 belong to the same mode shape, but not 

necessarily to the same number of eigenfrequency, because 

some expected eigenfrequencies might not have been 

detected by each setup and, therefore, the frequencies are 

not ranked in the same position. Accordingly, the sensor 

setups can be ordered and from the value of the experimental 

optimality criterion J
exp

 the number of missing frequencies 

from the first six eigenfrequencies can be easily determined, 

because the number before the decimal point corresponds 

to n
miss.f

.

2.3  Design of experiments on numerical model

2.3.1  DoE using Fisher Information Matrix

One way to find the optimal sensor positions is to use a 

modified approach on the FIM ( � ). From the Cramér-Rao 

(6)�
(j)

i
= �

(j)

sys,i
+ �

(j)

rand,i
= �

(j)

i
⋅ v(y(j), ti) + �

(j)

i
⋅ vmin .

(7)

Jexp(�) =

⎧
⎪
⎨
⎪
⎩

nmiss.f +
‖f all

b
− f (s)

c
‖2

max(‖f all
b

− f
(s)
c ‖2)

if nmiss.f = 0, 1, 2,

nmiss.f if nmiss.f ≥ 3,

inequality the FIM can be used as the lower bound estimate of 

the covariance matrix ���[33]

While taking a numerical model that is representing the con-

sidered structure, the response functions with added noise 

are considered to be the experimental recordings. When 

the noise is regarded as a random normal distribution as 

described in Sect. 2.1 and the errors are spatially uncorre-

lated, the FIM becomes

where � are the measurement time histories and �̂ are the 

estimated model parameters of interest.

As stated before, the FIM can only take random errors into 

account. If systematic errors are large the FIM approach is 

neglecting them and might lead to not fully optimal experi-

mental designs. As known from literature, e.g. [2], the optimal 

design can be found by evaluating the FIM by any optimality 

criterion [32]. For further use the D-optimality

is chosen, because of its relative simplicity and the main 

advantage of this criterion is the independence of different 

scaling in the parameters, e.g. use of different units [11]. To 

decrease the variance of the estimator, the determinant of 

�
−� needs to be minimized.

2.3.2  DoE using mean-squared error

Often material parameters for a numerical model are com-

pletely unknown or only a certain range is known. So, the aim 

of an optimal design can for instance be the parameter iden-

tification to obtain a good estimate of the parameters, which 

can be used for further calculations. When the exact and true 

parameters � are known, the mean-squared error between the 

estimated �̂ and the true ones �

(8)��� ⪰ �
−�

.

(9)

�(�̂(�)) =
1

�2

nt

∑

i=1

nsens

∑

j=1

(

��(ti, y(j);�̂)

��̂

)⊺(

��(ti, y(j);�̂)

��̂

)

,

(10)J
FIM

(�) = det(�−�)

(11)���(�̂(�)) = ‖�̂(�) − �)‖2

Fig. 1  Exemplary visu-

alization of the true solution 

v of acceleration time history 

(bold dashed line) and of accel-

eration data corrupted by errors: 

random error urand (gray line) 

and random + systematic error 

(usys + u
rand) (dash with dotted 

line) (color figure online)
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can serve as the objective function for finding the optimal 

design, where �̂ is depending on the sensor locations vector 

� = [y(1), y(2),… , y(j)] . As a first step to gain estimates of the 

parameters an initial guess is needed. Afterwards, the best fit 

between the data corrupted with noise and the data obtained 

with the estimated parameters is searched for by adjusting 

the model parameters. The cost function as found in [33] 

can be written as

where nsens denotes the number of sensors and nt corresponds 

to the number of timesteps. Additionally, the condition that 

the number of sensors is greater or equal to the number of 

unknown parameters has to be fulfilled. The afore-mentioned 

optimization process needs to be conducted a statistically 

significant amount of times k for each combination of the 

sensor locations vector � (setup) and for every error descrip-

tion. The average

is then taken to find the optimal setup and thus the optimal 

sensor placement per error description.

There are two different options considered in this paper to 

calculate the best design. First, the known true parameters � 

can be used and minimizing the difference between the mean 

estimated parameters �̄ and the exact ones �

lead to the optimal design. Or second, as in most cases, the 

true solution is not known and the empirical covariance 

matrix is calculated with the help of the estimated param-

eters �̂ and the mean of the estimated ones �̄ as in [29]

For finding the optimal design any optimality criterion can 

be used. For continuity again the D-optimality criterion

which needs to be minimized is chosen as in Eq. 10.

2.3.3  Combination of Fisher Information Matrix 

and mean-squared error

Here, the authors propose a new method that is combining the 

FIM and the MSE approach by using both advantages. First of 

(12)JSSE =

nt

∑

i=1

nsens

∑

j=1

(

v(ti, y(j);�̂) − u(ti, y(j))

)2

,

(13)�̄(�) =
1

k

k
∑

l=1

�̂
l
(�)

(14)J
(1)

MSE
(�) =

1

k

k�

l=1

‖�̂
l
(�) − �‖2

(15)���(�) =
1

k − 1

k
∑

l=1

(

�̂
l
(�) − �̄(�)

)(

�̂
l
(�) − �̄(�)

)⊺

.

(16)J
(2)

MSE
(�) = det(���(�)) ,

all such a combination is regarding the random as well as the 

systematic errors in the DoE. Second, the computation costs 

for MSE can be reduced drastically.

As described in the previous Sects. 2.3.1 and  2.3.2 the 

approach using the FIM can only take random errors into 

account, while the MSE approach is able to handle both kinds 

of error, random and systematic. Therefore, it is wise to think 

about the types of error that can be inherent in the measure-

ments. When it can be assumed that only random errors occur, 

utilizing the FIM is sufficient, but if errors can be also system-

atic the method using the MSE is recommended.

Anyhow, the method using MSE is computationally much 

more costly than the FIM approach. Considering the FIM 

method, the best designs can be calculated within seconds with 

any normal workstation computer. On the other hand, using 

the MSE approach leads to significantly higher computation 

times even when parallelization approaches and a computa-

tional cluster are used. Main reasons are the large number of 

samples per sensor setup to handle it statistically and the large 

amount of possible sensor combinations which need to be cal-

culated depending on the optimization algorithm.

When errors are not only random it is wise to reduce the 

amount of combinations for the calculation of the MSE. There 

are two objectives that need to be fulfilled. First, the variance 

is kept small with the use of the criterion based on the FIM 

( J
FIM

 ) and, second, a MSE approach ( J
(1),(2)

MSE
 ) is leading to a 

small bias. Therefore, a three-step approach is suggested here: 

1. Calculation of the best designs with usage of an opti-

mality criterion on the FIM; following a selection of a 

certain number of best designs, e.g. best 10 or 100, best 

20% or setups with a value of the optimality criterion 

J
select

FIM
 which is below a set limit.

2. Usage of those selected designs for calculating the MSE 

and resorting of the designs.

3. Weighting of both approaches to find the optimal sensor 

design; see Eq. 17.

The optimal design is a trade-off between the minimization of 

the variance by using the FIM and the reduction of the bias by 

calculating the MSE. In order to accomplish a common opti-

mality criterion both parts are summarized and weighted. The 

overall optimality criterion Jglob is then calculated by

where 0 ≤ � ≤ 1 is the weighting factor and p ∈ {1, 2} dis-

tinguishes between the two options used in Sect. 2.3.2 to 

calculate the objective value for the MSE approach. J select

FIM
 

(17)

J
(p)

glob
(�) =�

J
select

FIM

max(J select
FIM

)
⋅

min(J
(p)

MSE
)

min(J select
FIM

)

+ (1 − �)
J

(p)

MSE

max(J
(p)

MSE
)

,
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and J
(p)

MSE
 are normalized by the maximum value of the opti-

mality criterion per error description for the chosen setups 

for FIM and MSE, respectively. Additionally different scal-

ing between the two methods is circumvented by multiplying 

J
select

FIM
∕max(J select

FIM
) with the ratio of the minimum values 

of J
(p)

MSE
 to J select

FIM
 . The globality of the criterion in Eq. 17 

can not be guaranteed for either of the approaches FIM nor 

the MSE, but because of the general idea of finding a sensor 

distribution with small variance and small bias it is ensured 

to be leading to a setup that fulfills the general idea. As both 

approaches consider the variance, the obtained sensor setup 

should be optimal in the sense of the variance and good in 

the sense of the bias.

3  Application on a tower‑like structure

For validation of the findings due to the DoE process a 

tower-like structure is used under laboratory conditions. 

Therefore a large amount of sensors is used in order to be 

able to see the differences between different setups with 

leaving out several sensor positions. The extensive search 

considering all possible sensor combinations is used as the 

reference. Therefore, the number of sensors and hence the 

amount of unknown parameters ought to be kept small to 

finish the computations for all sensor setups in a reasonable 

amount of time. Here, the parameters of interest are two 

Young’s moduli, therefore the number of considered sen-

sors is chosen to be three according to general findings on 

optimal experimental design. The optimal number of sen-

sors is given by 0.5 ⋅ n
par(npar + 1) , where npar denotes the 

number of parameters to be identified. This rule guarantees 

that both sufficient information are provided (e.g. leading to 

non-singular Fisher matrices) and the efficiency is gained 

by keeping the number of measurements as low as possible 

[17].

3.1  Laboratory experiments on a cantilever beam

3.1.1  Experimental setup

A PVC pipe DN 100 (nominal diameter = 100 mm ) serves 

as the tower-like structure with a free length � = 2.88 m as 

shown in Fig. 2a, b. The clamped support is realized by a 

bucket filled with concrete. Over the length there are two 

distinguishable cross sections. The upper two thirds (Sec-

tion A–A) consist of only one PVC pipe in the lower third 

(Section B–B) another sliced PVC pipe of same diameter is 

pulled over the inner one, which leads to different stiffnesses 

in the two parts.

Moreover a thin metal stripe is attached to the inner pipe 

from the outside along the total height to be able to use 

magnetic mounting for the accelerometers. The acceleration 

data is recorded in both horizontal directions x and z at 24 

equally distributed locations over the height with a distance 

of 12 cm between each one, cf. Fig. 2a.

For the measurements two different kinds of sensors, as 

depicted in Fig. 2c, d are used. In order to gain informa-

tion in two directions, two 1D sensors are mounted on a 

cube (PCB 352C33, Fig. 2c) and from the 3D sensors (PCB 

356A16, Fig. 2d) only two channels are used for the record-

ings. In total there are 48 channels from the acceleration 

measurements and one from the impulse hammer’s (PCB 

086D20) signal that is used as excitation, to be analyzed. 

Unfortunately the sensor at the height of 168 cm happened 

to be malfunctioning and therefore the corresponding meas-

urements are taken out of the data set. In total, signals of 

47 channels are taken into consideration for the further 

analyzes.

Fig. 2  Sketch of the experimen-

tal setup of (a) the cantilever 

beam (PVC pipe, DN 100) 

with two different sections: 

Section B–B in lower third 

(two PVC pipes around each 

other) and Section A–A in the 

upper two thirds, green box 24 

discrete and equally distributed 

sensor positions with accelera-

tion measurements in x- and 

z-direction, (b) PVC pipe with 

24 measurement locations with 

(c) two 1D sensors on a cube 

and (d) 3D sensor attached with 

magnets (color figure online)
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3.1.2  Optimal sensor placement using experimental data

Although, the parameters of interest, the Young’s moduli, 

cannot be identified directly from the acceleration time 

history measurements, an evaluation of the numerically 

found DoE based on the experimentally gained data needs 

to be performed. Therefore, the identification of modal 

parameters, i. e. of the eigenfrequencies, is used to assess 

the quality of the obtained DoE setups.

To serve the reduction of time and costs the aim is to 

find the best setup with three out of the 24 applied sensor 

positions given the condition that the first six eigenfre-

quencies are of interest. Due to a sensor malfunction the 

two sensors at the height of 168 cm had to be taken out of 

consideration and so the number of possible sensor com-

binations is reduced to 

(

23

3

)

= 1771 . According to 

Sect. 2.2 and Eq. 7 the norms for all 1771 sensor combi-

nations calculated and ordered.

3.2  Numerical representation of the cantilever 
beam

3.2.1  Numerical FEM model

For finding the optimal sensor positions before the struc-

ture is equipped with any measurement device a numeri-

cal FEM model of the pipe is used. In order to represent 

the different cross sections in the lower and the upper 

two thirds different Young’s moduli E
i
 are assigned to 

the respective parts. The Young’s modulus of the lower 

part is 2.4 times higher than the one of the upper part. 

The density is set to values found in literature with 

� = 1390 kg∕m3 . The general setup for the numerical 

investigations and the values of the material properties 

are shown in Fig. 3.

A Bernoulli beam model

represents the PVC pipe with 24 elements assigned. This 

results in 8 elements belonging to the lower third and 16 ele-

ments are forming the upper two thirds. Damping is excluded 

from the dynamic analysis as its effect on the optimal sensor 

positions is considered to be negligibly small. The vibration 

is realized by a harmonic excitation with f = 0.9 ⋅ f
6
 (90% 

(18)

d
2

dy2

(

EI
�2w

�y2

)

+ �
�2w

�t2
= q(y, t)

with q(y(24), t) = q0 ⋅ sin(2�ft), w(y, 0) = 0,
�w

�t
(y, 0) = 0,

w(0, t) = 0,
�w

�y
(0, t) = 0,

�2w

�y2
(0, t) = 0,

�3w

�y3
(0, t) = 0,

of the 6th eigenfrequency) and an amplitude of q
0
= 5 N on 

the top node of the structure and for the analyses only the 

steady-state response according to [30] is taken into account.

3.2.2  Optimal sensor placement using FEM model

The vector of the parameters of interest � = (E1, E2)
⊺ con-

sists of the Young’s moduli for each of the two sections (cf. 

Sect. 3.2.1). To consider some modeling errors that weaken 

the structure 80% of the true E
1
 and E

2
 , respectively, are 

used as the initial guess for the optimization process. The 

experimental data are represented by acceleration time 

measurements in two orthogonal directions (see Fig. 3) at 

all 24 nodes of the beam. The measurement data were cre-

ated artificially to be able to find the optimal sensor setup 

before conducting the experiment itself. In order to gain 

fictitious measurement data, artificial noise was added to 

the “exact” signals, where the Young’s moduli are set to the 

exact values. In total, nine different error type combinations 

and levels, which are shown in Table 1, were used.

In total 

(

24

3

)

= 2024 different combinations of sensor 

positions are possible and have to be evaluated for each of 

the nine error descriptions. As mentioned in Sect. 2.3.3 the 

FIM and MSE approaches are combined in order to save 

computational time. In this study it was decided that those 

designs from the FIM calculation are chosen where the value 

of the optimality criterion is less or equal to twice the value 

of the best design, which means

(19)J
select

FIM
≤ 2 ⋅ min(J

FIM
) .

Fig. 3  Sketch of the cantilever beam of height � with two differ-

ent Young’s modulus: in the lower third E
1
 and the upper two thirds 

E
2
 , 24 discrete and equally distributed sensor positions, cross sec-

tion A–A and B–B; � = 2.88 m , d
o
= 1.10e−1 m , t

w
= 2.7e−3 m , 

E
1
= 5.28e9 N∕m2 and E

2
= 2.20e9 N∕m

2 and excitation force q
0
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Continuing with the best selected setups, within the 

Nelder–Mead algorithm [21] the fictitious acceleration 

measurements with the initial guess of the Young’s moduli 

E
i
 were fitted k = 1000 times to get a statistically sufficient 

amount of samples [20, 27]. This procedure was followed 

for the list of the chosen setups after the FIM evaluation for 

each of the nine error descriptions. The combined optimality 

criterion from Eq. 17 is then used to gain the ordered list of 

optimal setups. Here, the weighting factor is chosen to 

� = 0.3 , because the influence of the preselection by the FIM 

method during the combined approach on the optimal design 

is already high. Choosing a lower value for � gives more 

weight on the optimality criterion using the MSE, which has 

not been considered in the preselection process. The setup 

with the smallest value of J
(p)

glob
 is chosen to be the optimal 

one.

4  Results

This section is dealing with results of the experimental test-

ing and the numerical investigations. Finally, a comparison 

between the obtained results is drawn.

4.1  Experimental study

For the experimental tests, one data set of acceleration time 

histories for each of the 46 working sensors and the force 

time history from the impulse hammer, which is exciting the 

structure horizontally in a −135
◦ angle w.r.t. the z-axis as 

depicted in Fig. 3 on the top of the pipe, is used. The gath-

ered data are analyzed with the MATLAB Toolbox MACEC 

[25] using the data-driven Stochastic Subspace Identifica-

tion (SSI). The system orders are calculated from 2 to 50 

in increasing steps of 2 and the number of blocks is set to 

30 and the model order is 12, which is twice the number of 

eigenfrequencies of interest. The first six mode shapes with 

their corresponding eigenfrequencies that are identified by 

the use of all available sensor data are displayed in Table 2. 

As expected by slicing the outer pipe and attaching the metal 

stripe as well as the acceleration sensors along the result-

ing gap the eigenfrequencies of orthogonal mode shapes are 

slightly different in the two directions. 

According to this procedure the gained eigenfrequencies 

f (3)
c

 for every sensor setup using three sensor locations with 

three pairs of acceleration time histories as output data and 

the impulse hammer’s force as input data are calculated. 

Despite careful peak-picking and adjustment of the SSI set-

tings, errors could have been introduced during the eigenfre-

quency identification process. The obtained frequencies are 

used for the evaluation of the best setups according to Eq. 7 

for each of the setups. Ten setups, which give the best value 

of the experimental optimality criterion J
exp

 are presented 

in Table 3.

Accordingly, the distribution of the recognized eigen-

frequencies out of the first six eigenfrequencies is given 

in Fig. 4a, where the number of setups is plotted over the 

number of identified eigenfrequencies using three out of 24 

sensor positions from the experimental data. In few cases 

only all six eigenfrequencies can be measured, but in most 

cases five or four of the first six eigenfrequencies are able 

Table 1  Factors (unitless) for the different noise levels corresponding to the error index number, where �
(j)

i
 denotes the random error and �

(j)

i
 is 

the systematic relative error

e 1 2 3 4 5 6 7 8 9

�
(j)

i
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

�
(j)

i
0 0 0 0.05 0.05 0.05 0.10 0.10 0.10

Table 2  Eigenfrequencies f all

b
 

and mode shapes for the first 

six modes b = 1… 6 from 

experimental testing with 

impulse hammer excitation and 

use of all 24 sensor positions

mode b 1 2 3 4 5 6

mode
shape

fall

b
[Hz] 4.215 4.375 19.76 23.47 50.81 65.43
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to be identified. All sensor setups where at most half of the 

eigenfrequencies are identified (Eq. 7, n
miss.f

≥ 3 ) are left out 

of consideration for further investigations.

Additional information is shown in Fig. 4b, where the 

number of setups is plotted over the number of identified 

eigenfrequencies per orthogonal pair of the first six eigen-

frequencies. From the first pair with the first and second 

eigenfrequency mostly only one of them is identified. The 

second pair with f
(3)

3,4
 is usually represented with both eigen-

frequencies and in around 25% of the cases only one of them 

can be measured. For the last pair it is very likely that both 

eigenfrequencies f
(3)

5
 and f

(3)

6
 are identifiable.

4.2  Numerical investigation

The afore-described numerical FE model from Sect. 3.2.1 is 

used to apply the combined approach of FIM and MSE from 

Sect. 2.3.3 and their individual results, respectively.

4.2.1  Results of FIM calculation

The D-optimality value is calculated for every of the 

2024 possible sensor setups. The best value is found to 

be min J
FIM

= 5.1945e − 7 for the setup { 3, 4, 24} as to 

be seen in Table 4 and Fig. 5. Thereafter, the value of the 

optimality criteria needs to be J select

FIM
≤ 1.0389e−6 accord-

ing to Eq. 19 for the further considered setups. This con-

straint leads to 82 out of 2024 chosen setups that make 

up around 4% . This saves around 96% of computational 

time for the following MSE approach. The ten best of the 

further regarded setups that were preselected by the FIM 

approach are presented in Table 4.

4.2.2  Results of MSE calculation

For the calculation of the optimal sensor placement both 

approaches from Eqs. 14 and 16 are used. The optimal 

Table 3  Display of the ten best measurement setups after the evalua-

tion of the experimentally gained data on the laboratory pipe, where 

y
1
 , y

2
 and y

3
 represent the sensor positions of each setup which are 

displayed column-wise; additionally J
exp

 gives the value of the asso-

ciated optimality criterion

Rank 1 2 3 4 5 6 7 8 9 10

y
1

13 5 6 17 9 5 15 11 8 12

y
2

17 18 9 18 11 6 17 17 17 17

y
3

19 20 20 20 20 20 20 20 20 20

J
exp

0.037 0.057 0.062 0.062 0.063 0.070 0.077 0.083 0.096 0.112

Fig. 4  Detection of eigenfre-

quencies using three out of 24 

sensor locations based on the 

experimental data
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f1,2 f3,4 f5,6

0

200

400

600

800

1,000

1,200

1,400

1,600

Pairs of eigenfrequencies

N
u
m

b
er

o
f
se

tu
p
s

2

1

0

(b) Identification of the number of eigen-

frequencies depending on the pair of

eigenfrequencies

Table 4  Display of ten best 

chosen measurement setups 

after the evaluation of the FIM 

approach, where y
1
 , y

2
 and y

3
 

represent the sensor positions 

of each setup that is displayed 

column-wise

Rank 1 2 3 4 5 6 7 8 9 10

y
1

3 3 3 3 2 3 3 3 3 3

y
2

4 13 9 17 3 9 21 12 4 13

y
3

24 24 24 24 24 13 24 24 13 17

J
FIM

 [e-7] 5.20 5.26 5.30 5.73 5.89 6.08 6.35 6.61 6.64 6.67

J
exp

1.66 1.63 1.63 1.63 1.63 1.63 1.63 1.65 1.64 1.63
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sensor setups per error description are given in Table 5 

and Fig. 5.

4.2.3  Results of combined method

Furthermore, the results of the combined method are pre-

sented in Table 6 and in Fig. 5 according to Eq. 17. There 

are some differences in the optimal setups to be seen. 

Using the combined approach leads to other optimal set-

ups for e = 4… 8 than for using Eq. 14. Also, for the com-

parison of the MSE approach using the covariance matrix 

in Eq. 16 gives different optimal designs in the case of 

every investigated error description except the 9th one. Of 

course, the number of optimal setups which differ from 

the combined method depends on the weighting factor � 

in Eq. 17. For � = 0 the combined method is equivalent to 

one of the MSE approaches, and on the other hand, when 

� = 1 it corresponds to the FIM approach alone.

Additionally, it is visible that the best setups for the 

different error descriptions become more aligned than in 

Fig. 5, s.t. the best setup depends less on the actual data 

error or error description. Calculating the experimental 

criterion J
exp

 for every error description leads to similar 

values for the different errors. This states a robustness of 

the DoE approach concerning any error description.

4.3  Comparison of numerical and experimental 
results

Comparing the optimal sensor setups per error description 

between numerical and experimental investigations is not 

an easy task, because as stated in Sect. 4.1 in most cases not 

all eigenfrequencies and corresponding mode shapes can 

be identified by using a setup consisting out of three differ-

ent sensor positions. Therefore, the introduction of Eq. 7 is 

very useful, because the integer part of J
exp

 is directly cor-

responding to the number of unidentified frequencies for the 

current setup. The corresponding values for Eq. 7 are also 

given in Table 6 in order to be able to compare the numeri-

cal with the experimental results. The values of J
exp

 make 

it obvious that for the ten best setups using the combined 

approach with Eq. 14 and using Eq. 16, respectively, always 

one of the first six eigenmodes is not identified. This incident 

is predicted in Fig. 4a, because only a few number of setups 

is able to recognize all six first eigenfrequencies of the struc-

ture and the majority is able to identify four or five of them.

Regarding the best setups per error description gained by 

the numerical simulation and the three best ones from the 

experiment an overview is given in Fig. 5. Comparing these 

best setups reveals differences between the proposed sensor 

positions. Again, the main fact is that with the experimen-

tally gained best setups all first six eigenvalues are identified, 

Table 5  Best sensor setup per 

error description e for MSE 

with use of Eqs. 14 and 16, 

where y
1
 , y

2
 and y

3
 represent the 

sensor positions of each setup; 

additionally the optimality 

criterion values J
(1),(2)

MSE
 and J

exp
 

are displayed

e y
1

y
2

y
3 J

(1)

MSE
J

exp
y

1
y

2
y

3 J
(2)

MSE
J

exp

1 3 8 10 1.21e−6 1.63 3 9 13 2.32e−4 1.63

2 4 13 17 2.03e−4 1.63 3 4 9 5.94e−1 1.65

3 4 12 24 3.13e−3 1.67 3 9 13 2.84e−1 1.63

4 1 3 20 1.56e−4 1.62 2 10 13 7.28e−2 1.62

5 1 2 12 7.14e−4 1.63 2 10 13 2.34e0 1.62

6 2 12 20 1.21e−2 1.62 2 13 18 1.18e−2 1.62

7 3 11 21 7.00e−4 1.60 2 10 13 2.84e0 1.62

8 3 11 13 1.68e−3 1.62 2 10 13 1.59e−1 1.62

9 3 4 24 1.62e−2 1.66 3 4 24 2.67e−2 1.66

Table 6  Best sensor setup 

per error description e for the 

combined method with use 

of Eq. 17 and � = 0.3 , where 

y
1
 , y

2
 and y

3
 represent the 

sensor positions of each setup 

which are displayed column-

wise; additionally J
(1),(2)

glob
 , the 

optimality criterion of the 

combined method and J
exp

 that 

gives the value of the associated 

optimality criterion from the 

experiment are displayed

e FIM + MSE with Eq. 14 FIM + MSE with Eq. 16

y
1

y
2

y
3 J

(1)

glob
J

exp
y

1
y

2
y

3 J
(2)

glob
J

exp

1 3 8 10 1.43e-11 1.63 3 9 24 1.15e-5 1.63

2 4 13 17 4.38e-9 1.64 3 4 24 4.57e-4 1.63

3 4 12 24 6.54e-8 1.64 3 4 24 6.55e-3 1.63

4 3 4 13 6.63e-9 1.63 3 13 24 8.09e-6 1.63

5 3 9 13 2.85e-8 1.63 3 4 24 4.48e-5 1.63

6 3 4 24 1.01e-7 1.63 3 4 24 1.22e-3 1.63

7 3 4 21 8.52e-8 1.63 3 13 24 1.30e-3 1.63

8 3 13 24 1.36e-7 1.63 3 4 24 2.07e-3 1.63

9 3 4 24 4.99e-7 1.63 3 4 24 1.29e-2 1.63
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but when looking at Fig. 4a it becomes obvious that this 

is only true for 20 out of the 1771 sensor setups, which is 

about 1.1% of the setups. For all other 1751 sensor setups at 

least one of the first six eigenfrequencies cannot be detected. 

Applying the DoE approaches leads to setups, where one of 

the first six eigenmodes is missing.

5  Discussion

5.1  Combined method

The combination of the two methods using FIM and MSE is 

having three main advantages. First of all, the FIM approach 

which can only deal with random errors is extended in such 

a way that by taking the second step with calculating the 

MSE for each setup also systematic errors can be taken into 

account. Even more important is the fact that the comput-

ing time for MSE can be reduced by preselecting the sensor 

setups after gaining the results of the optimality criterion 

used on FIM. Nevertheless, the robustness to the different 

error descriptions needs to be mentioned, too. In this paper 

it is suggested to select only setups which satisfy Eq. 19. 

This leads to around 4% of all setups and conclusively the 

computation time for MSE can be reduced by 96% , which 

evens out the long computation time of the MSE approach 

as the main disadvantage considering parallel computing in 

both cases.

Nevertheless, the optimality criterion of the com-

bined method Jglob is using the optimality criteria of both 

approaches using FIM and MSE for finding the optimal 

sensor setup. As the preselection process after calculating 

J
FIM

 is already very strong on selecting sensor position 

candidates it is recommended to use 0 ≤ � < 0.5 in Eq. 17, 

because the emphasis is then on the value of the optimality 

criterion for MSE, which has not been considered before.

Comparing all found best sensor setups from the FIM 

and the MSE approaches alone as well as from the com-

bined approach, they are all leading to sensor placements, 

where one of the first six eigenfrequencies was not found 

compared to the experimental results. From Fig. 5 it is 

obvious that the sensor setups suggested by the combined 

approach are different to the results from the FIM and the 

MSE methods alone, but as the values of the experimental 

optimality criterion J
exp

 in Tables 4, 5 and  6 show, the 

ones of the combined approach are not worse than the ones 

of the extensive search. For comparability the MSE was 

calculated for all possible sensor position combinations; 

therefore, it can be used as the reference for any other 

regarded setup. It can be summarized that preselecting 

a small number of sensor setups from all possible com-

binations does not corrupt the final best setups in such a 

way that the value of the experimental optimality criterion 

deteriorates. Hence, the combined approach is reducing 

the computation time drastically by leading to similar 

results as the extensive search.

Fig. 5  Best sensor setup per 

error description e for the 

combined method with use of 

J
(1)

glob
 (FIM + MSE with Eq. 14, 

black circle) and J
(2)

glob
 (FIM + 

MSE with Eq. 16, black cross 

symbol), also for MSE with use 

of Eq. 14 (gray circle) and MSE 

with use of Eq. 16 (gray cross 

symbol) and best setup for FIM 

(gray circle with asterisk) in 

the first column in comparison 

with the experimental results for 

the three best obtained setups 

(numbers 1 to 3) (color figure 

online)
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5.2  Comparison of numerical simulation 
and experimental testing

In order to compare the numerical and the experimental 

results one needs to keep in mind that the parameters of 

interest for the evaluation criteria are not the same. The 

numerical DoE approach is estimating the Young’s mod-

uli and the first six eigenfrequencies ought to be identified 

by the experiment. Nevertheless, both kinds of parameter 

describe the structure from a global point of view and the 

results show that the DoE for identifying the Young’s moduli 

are confirmed to a large extend by the experimental findings.

Evaluating the experimental data shows that only a 

minority of sensor setups is able to identify all of the first six 

eigenfrequencies which are considered in this investigation 

(cf. Fig. 4). Actually, there are only 20 out of 1771 which 

correspond to 1.1% of all experimental setups, where six 

eigenfrequencies were identifiable. Though, every optimal 

sensor setup per error description and optimality criterion as 

listed in Table 6 leads to five out of the first six eigenmodes. 

This result is good, because even when only five eigenfre-

quencies are identified from the circular cross section of the 

structure it is known that the mode shapes appear in pairs 

where to each eigenmode a nearby orthogonal eigenmode 

exists.

Another finding of the investigations is that both the 

numerical and the experimental analyses, which are both 

subjected to errors originating from e. g. the model, the 

numerical calculation itself or on the other hand measure-

ment errors occur, lead to an optimal sensor placement 

where the sensors are not equally distributed over the height 

when three sensor positions are to be chosen. It is opposing 

the assumption that equal sensor distribution is good and no 

further investigations need to be made before conducting an 

experiment or monitoring of a structure.

6  Conclusions

As the results of the experiment show it is crucial to find 

good sensor positions in order not to miss any relevant infor-

mation, e. g. eigenfrequency or Young’s moduli of the struc-

ture. Considering the optimal sensor placements, always five 

out of the first six regarded eigenfrequencies were identified. 

Additionally, using the the almost perfect rotational symme-

try of the cross section, the range of the missing frequency 

with the according mode shape can be estimated.

With the combined approach both random and system-

atic errors can be included in the data, but the computation 

time is highly reduced compared to only applying the MSE 

approach. Since the selection process via the criterion used 

on the FIM is already very strong, it is recommended to 

use a small weighting factor � < 0.5 in Eq. 17. Comparing 

the results of the combined approach with the reference, 

which is received by the MSE approach, the values of the 

experimental optimality criterion are on the same level for 

both. Via the combined approach the computation time can 

be reduced drastically compared to using the MSE method 

only without worsening the results gained by the suggested 

best sensor setups. Nevertheless, the combined approach is 

leading to feasible sensor setups that can be used directly.

When comparing the results of the combined method 

and the experimental results they are not exactly the same. 

Neither the combined method nor the FIM approch nor the 

MSE approach alone suggested any of the sensor setups, 

where all considered first six eigenfrequencies are identified. 

A reasonable explanation is that due to intentionally omit-

ting the model updating before calculating the optimal sen-

sor placement the differences between the numerical model 

and the experimental one are present throughout the calcula-

tions. Another source for the differences is the error inherent 

in the measurement data, which might not have been well 

described by one of the nine error descriptions considered 

in this work. More research in the field of error estimation 

should be conducted. Additionally, there is an influence 

coming from the starting model as the initial guess for the 

Young’s moduli has a certain impact on the identification 

of the exact ones.

Concluding, the combined method is applicable for the 

optimal sensor placement, which was also shown by the 

small-scale experimental application. The main goal for 

future work is to transfer the findings to larger structures 

such as tall buildings, broadcasting towers or wind turbines.
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