
204 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 3, MAY 2003

Combined Approach of Array Processing and
Independent Component Analysis for Blind

Separation of Acoustic Signals
Futoshi Asano, Member, IEEE, Shiro Ikeda, Member, IEEE, Michiaki Ogawa, Hideki Asoh, Member, IEEE, and

Nobuhiko Kitawaki, Member, IEEE

Abstract—In this paper, two array signal processing techniques
are combined with independent component analysis (ICA) to
enhance the performance of blind separation of acoustic signals
in a reflective environment. The first technique is the subspace
method which reduces the effect of room reflection when the
system is used in a room. Room reflection is one of the biggest
problems in blind source separation (BSS) in acoustic environ-
ments. The second technique is a method of solving permutation.
For employing the subspace method, ICA must be used in the
frequency domain, and precise permutation is necessary for all
frequencies. In this method, a physical property of the mixing
matrix, i.e., the coherency in adjacent frequencies, is utilized to
solve the permutation. The experiments in a meeting room showed
that the subspace method improved the rate of automatic speech
recognition from 50% to 68% and that the method of solving
permutation achieves performance that closely approaches that of
the correct permutation, differing by only 4% in recognition rate.

Index Terms—Array signal processing, blind signal separation,
independent component analysis, permutation, room reflection.

I. INTRODUCTION

I
T IS indispensable to separate acoustic signals and to pick up

signals of interest for applications such as automatic speech

recognition (ASR) when they are used in a real environment.

The framework of blind source separation (BSS) based on inde-

pendent component analysis (ICA) is attractive since it can be

used to separate multiple signals without any previous knowl-

edge of the sound sources and sound environment such as the

configuration of microphones (e.g., [1]) that is necessary in con-

ventional microphone-array signal processing (e.g., [2]). How-

ever, when applying BSS to an acoustical mixture problem such

as a number of people talking in a room, the performance of the

BSS system is greatly reduced by the effect of the room reflec-

tions/reverberations and ambient noise [3].

One method of reducing the effect of room reflections is

to employ directional microphones in the BSS framework

[4]. In this method, however, the system cannot track the
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movement of the sound sources. Another way to reduce the

effect of room reflections is to employ an acoustic beamformer

such as delay-and-sum (DS) beamformer (e.g., [5]). However,

for designing the beamformer, an array response database

consisting of transfer functions from possible source locations

to microphones or, at least, the configuration of the micro-

phone-array is required. This information is not available in the

BSS framework.

The authors previously proposed an alternative approach, the

subspace method, for reducing the effect of room reflections and

ambient noise [6]. In this method, room reflections are separated

from direct components in the eigenvalue domain of the spatial

correlation matrix based on the spatial extent of the acoustic sig-

nals. Then, the eigenvectors corresponding to the eigenvalues of

the direct components are used as a filter which selects the sub-

space in which the direct components lie and discards the sub-

space filled with the energy of reflections. As described in this

paper, the subspace method works as a self-organizing beam-

former focusing on the target sources and does not require any

previous knowledge of the array or sound field. Therefore, the

subspace method can be used in the framework of BSS. This

is understood from the fact that the subspace method is a spe-

cial case of principal component analysis (PCA) with ,

where and denote the number of nodes (channels) of the

input and the output of PCA, respectively [7]. PCA is known

as a method of unsupervised learning which does not require

any previous knowledge. In this paper, a combined approach of

the subspace method and ICA is proposed. In this method, the

subspace method is utilized as a pre-processor of ICA which re-

duces room reflections in advance, the remaining direct sounds

then being separated by ICA.

For combining the subspace method with ICA, the fre-

quency-domain ICA [8], [9] must be employed, since the

subspace method works in the frequency-domain. The biggest

obstacle in the frequency-domain ICA is the permutation and

scaling problem. In the frequency-domain ICA, the input signal

is first transformed into the frequency domain by the Fourier

transform. By using this transformation, a convolutive mixture

problem is reduced to a complex but instantaneous mixture

problem. This instantaneous mixture problem is then solved

at each frequency independently. In usual instantaneous ICA,

arbitrary permutation and scaling of the output is allowed.

However, in the frequency-domain processing for a convolutive

mixture such as that employed in this paper, different permu-

tations at different frequencies lead to re-mixing of signals in
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the final output. Also, different scaling at different frequencies

leads to distortion of the frequency spectrum of the output

signal.

For the scaling problem, the method proposed by [9], in

which the separated output is filtered by the inverse of the

separation filter, shows good performance. On the other hand,

for the permutation problem, a method using the correlation

between the spectral envelope at different frequencies (denoted

as Inter-frequency Spectral Envelope Correlation (IFSEC),

hereafter in this paper. See Appendix I for a brief explanation.)

has been proposed [9], but has been reported to sometimes

fail when the input signals have similar envelopes [3]. In this

paper, a new approach for solving the permutation problem is

proposed. This method utilizes the coherency of the mixing

matrices in several adjacent frequencies and is thus denoted as

Inter-Frequency Coherency (IFC) in this paper.

This paper is organized as follows: In Section II, the model

of the sound environment treated in this paper is described. In

Section III, an outline of the proposed BSS system is presented.

Moreover, some portions of the system which were proposed in

the previous studies but which are necessary for understanding

the following sections are briefly described. In Section IV, the

subspace method for reducing room reflections is detailed. In

Section V, a new method for solving the permutation is pro-

posed. In Section VI, results of experiments using real data to

evaluate the proposed system are reported.

II. MODEL OF SIGNAL

Let us consider the case when there are sound sources in

the environment. By observing this sound field with micro-

phones and taking the short-term Fourier transform (STFT) of

the microphone inputs, we obtain the input vector

(1)

Here, is STFT of the input signal in the th time frame

at the th microphone. The symbol denotes the transpose. In

this paper, the input signal is assumed to be modeled as

(2)

Matrix is termed the mixing matrix, its element,

, being the transfer function from the th source to the

th microphone as

(3)

The symbol is the magnitude of the transfer func-

tion. The symbol denotes the propagation time from the

th source to the th microphone. Vector consists of

the source spectra as , where

denotes the spectrum of the th source. The first term,

, expresses the directional components in .

On the other hand, the second term, , is a mixture of

less-directional components, which includes room reflections

and ambient noise.

TABLE I
OUTLINE OF THE ENTIRE BSS SYSTEM

Fig. 1. Proposed BSS filter network.

Fig. 2. Typical eigenvalue distribution.

Fig. 3. Relation of vectors.

III. BSS SYSTEM

A. Entire System

The flow of the proposed BSS system is summarized in

Table I, which lists each stage of the system, the obtained filter

matrices at each stage and the corresponding section in this

paper. A block diagram of the system is depicted in Fig. 1.
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Fig. 4. Rotation of the location vector. (a) Correct permutation and (b) incorrect permutation.

First, STFT of the multichannel input signal, , is ob-

tained with an appropriate time shift and window function. Once

STFT is obtained, the Fourier coefficients at each frequency are

treated as a complex time series. By doing this, the convolutive

mixture problem is reduced to a complex but instantaneous mix-

ture problem [9].

Next, the subspace method is applied to the input vector

to obtain the subspace filter . In this stage, room

reflections and ambient noise are reduced in advance of the

application of ICA. It should be noted that the node of the filter

network is reduced from to in this stage as depicted in

Fig. 1.

The instantaneous ICA is then applied to the output of the

subspace stage, to obtain the filter matrix . For

the sake of convenience, the product of and

(4)

is termed the separation filter, hereafter.

After obtaining this separation filter, the permutation and the

scaling problem must be solved. In this stage, the output of the

separation filter is processed with the permutation matrix

and the scaling matrix .

Finally, the filter matrices obtained in the above stages are

transformed into the time domain, and the input signal is pro-

cessed with this time-domain filter network.

B. ICA Algorithm

In this subsection, the ICA algorithm used in this paper is

briefly described. In this paper, the Infomax algorithm with

feed-forward architecture [10], [11] extended to complex data

[8] is used. In this stage, the input signal (the output of the

subspace filter) is processed with the filter matrix

as

(5)

The learning rule is written as

(6)

where the score function for the complex data is defined

as [12]

(7)

(8)

Fig. 5. Configuration of microphone array and sound sources.

TABLE II
PARAMETERS OF ASR

TABLE III
PARAMETERS OF THE BSS SYSTEM

The symbol is the th element of the vector . The ma-

trix is an identity matrix. The symbol denotes the Hermi-

tian transpose. The constant is termed the learning rate. The
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Fig. 6. Eigenvalue distribution.

symbol is the gain constant for the nonlinear score function,

assuming that the magnitude of is normalized.

C. Scaling Problem

In [9], it was proposed that the scaling problem be solved by

filtering individual output of the separation filter by the inverse

of separately. In this paper, the pseudoinverse of ,

denoted as , is used instead of the inverse of since

is not square due to employment of the subspace method.

The th component of , is filtered by

separately as

(9)

where and

corresponds to the recovered signal of the th

source observed at the th microphone. The operation (9) is

equivalent to

(10)

where denotes the th element of . The

symbol denotes an arbitrary microphone number. Equation

(10) can be written in the matrix-vector notation as

(11)

where is a diagonal matrix

(12)

and .

D. Filtering

Using the matrices obtained above, the final filtering matrix

in the frequency domain can be written as

(13)

The filtering is conducted in the time domain to avoid time-

domain aliasing. The time domain filters are obtained as the

inverse Fourier transform of as

(14)

where IDFT operator denotes the inverse DFT. The symbols

and denote the th element of the fre-

quency domain filter and its time domain correspondence,

respectively. The symbol denotes the windowing function.

The multiplication by the windowing function is necessary for

guaranteeing convergence of the impulse response of the filters

in the time domain and avoiding time-domain aliasing.

IV. SUBSPACE METHOD

A. Spatial Correlation Matrix

The spatial correlation matrix is defined as

(15)

Since the subspace method is conducted at each frequency in-

dependently, the frequency index is omitted in this section for

the sake of simplicity in notation.

Assuming that and are uncorrelated, can be

written as

(16)

Matrix is the cross-spectrum matrix of the

sources . Matrix is the correlation ma-

trix of . When includes room reflections of ,

and are correlated and the above assumption does not hold.

However, when the window length of STFT is short and the time

interval between the direct sound and the reflection exceeds this

window length, this assumption holds to some extent in a prac-

tical sense. A typical example of this is that a consonant portion

of speech is overlapped by the reflections of a preceding vowel

portion.

B. Properties of the Subspace Method

By taking the generalized eigenvalue decomposition of as

[13]

(17)
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Fig. 7. Directivity pattern obtained by the subspace method. (a), (b): Whole frequency range and (c), (d): a slice of (a) and (b) at 1200 and 2000 Hz.

we have the eigenvector matrix and the

eigenvalue matrix , where and

are the eigenvector and the eigenvalue, respectively. As

described in Section II, the noise includes the reflection/re-

verberation of the signals and, thus, the correlation matrix of

the noise, , cannot be observed separately. Therefore, in

this paper, is assumed. This assumption is equivalent

to the case in which the standard eigenvalue decomposition,

, is employed in the subspace method. In a

physical sense, this corresponds to the assumption that is

spatially white (e.g., [5]).

Based on the structure of and the assumptions described

above, the eigenvalues and eigenvectors have the following

properties [6], [13], [14].

Property1) The energy of the directional signals is

concentrated on the dominant eigenvalues.

Property2) The energy of is equally spread over all

eigenvalues.

Property3) , where de-

notes the eigenvectors corresponding to the dominant

eigenvalues.

Property4) , where

denotes the eigen-

vectors corresponding to the other eigenvalues.

The notation denotes the space spanned by the

column vectors of , i.e.,

. The notation denotes the orthog-

onal complement of . The subspaces and

are termed signal subspace and noise subspace, respectively.

The vectors and become the

basis of the signal subspace and the noise subspace, respec-

tively. A typical eigenvalue distribution and the corresponding

energy distribution that reflects Properties 1 and 2 are depicted

in Fig. 2 ( and is assumed). The relation of

vectors that reflects Properties 3 and 4 is depicted in Fig. 3

and is assumed).

C. Subspace Filter

In the subspace method, the input signal is processed as

(18)
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Fig. 8. Relative spectra of direct sound/reflection at the input/output of the system. (a) Source #1, direct sound; (b) Source #2, direct sound; (c) Source #1,
reflection; and (d) Source #2, reflection. Regarding the output spectra (ICA and ICA+ SS), the spectra at the output channel #2 are shown. SS: subspace method.

where the subspace filter is defined as

(19)

where . The term is a normal-

ization factor, the same as that used in PCA [1]. The term

plays a main role in the subspace filter that reduces the energy

of in the noise subspace as described in Appendix II.

V. PERMUTATION

A. Structure of Mixing Matrix

When the mixing matrix has the form of the model

shown in (3), the th column vector (location vector of the th

source) in the mixing matrix at the frequency and that at the

adjacent frequency are written as

...
...

(20)

Here, in (3) is assumed for the sake of sim-

plicity. From (20), it can be seen that the location vector is

which is rotated by the angle as depicted in Fig. 4(a).

Based on this relation (coherency) of the location vectors at the

adjacent frequencies, the relation of the mixing matrix can be

written as [15], [16]

(21)

where the matrix is the rotation matrix. When the

difference in frequency (frequency resolution of STFT) is

sufficiently small

(22)

and the angle between the location vectors at and , , is

small. Based on this, is expected to be the smallest for the

correct permutation as depicted in Fig. 4.

B. Method for Solving Permutation

Based on the above discussion, permutation is solved so that

the sum of the angles between the location vec-
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Fig. 9. Cross-talk suppression.

tors in the adjacent frequencies is minimized. An estimate of the

mixing matrix can be obtained as the pseudoinverse of the sep-

aration matrix [17] as

(23)

Let us denote the mixing matrix multiplied by the arbitrary per-

mutation matrix as

(24)

The permutation exchanges the row vectors of

(the column vectors of ). The column vectors of are

denoted as . The cosine of the

angle between the two vectors, and , is defined

as [18]

(25)

By using this, the permutation matrix is determined as

(26)

where the cost function is defined as

(27)

C. Confidence Measure

The above method assumes that the estimate of the mixing

matrix is a good approximation of the true mixing ma-

trix . However, at some frequencies, this assumption may

not hold due to the failure of ICA. Since the permutation at fre-

quency is determined based on only the information of the two

adjacent frequencies, and , and the permutation is solved it-

eratively with increasing frequency, once the permutation at the

certain frequency fails, the permutation in the succeeding fre-

quencies may also fail.

Fig. 10. Comparison of ASR rate for only ICA, ICA + PCA and ICA +
Subspace. SS: Subspace.

To prevent this, the reference frequency is extended to the

following frequency range:

for (28)

The cost function (27) is calculated at all frequencies in

this range. Let us denote the value of the cost function at

as . Next, a confidence measure

for is considered. When the largest value of the cost

function is close to with other permu-

tations, it may be difficult to determine which permutation is

correct, and the value of is not reliable. Based on this,

the following confidence measure is defined:

(29)

Here, denotes the set of all possible while denotes

without . The appropriate refer-

ence frequency is determined as with

(30)

The permutation is then solved using the information at this ref-

erence frequency as

(31)

VI. EXPERIMENT

A. Experimental Conditions

A signal separation experiment was conducted in an ordinary

meeting room with a reverberation time of 0.4 s. The configura-

tion of the sound sources (loudspeakers) and the microphones is

depicted in Fig. 5. A microphone array with , mounted on

a mobile robot (Nomad XR-4000), was used. The microphone

array was circular in shape with a diameter of 0.5 m. The im-

pulse responses from the sound sources to the microphones were

measured and then convolved with the source signal to generate

the input signal . For measuring the cross-talk and the

performance of the permutation, 50 pairs of Japanese sentences

were used. For measuring the ASR rate, 492 pairs of Japanese

words were used. As a speech recognizer, HTK software with

the phonetic model provided by Japanese Dictation Toolkit [19]
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Fig. 11. Theoretical value of the cost function F (P; k) and the confidence measure C(k) for k = 1.

Fig. 12. Measured value of the cost function F (P; k) and the confidence measure C(k) for k = 1.

was employed. The parameters of the ASR system are shown in

Table II. The parameters of the BSS system are summarized in

Table III.

B. Effect of Subspace Method

For constructing the subspace filter (19), the number of

sources, , is assumed to be known. The permutation in this

section is solved by using the cross correlation between the

output spectrogram and the source spectrogram (unknown in

real situation) as “correct permutation” for evaluating only

the effect of the subspace method. This method is denoted as

source-output correlation (SOC) hereafter.

Fig. 6 shows the eigenvalue distribution of . For the sake

of comparison, the eigenvalue distribution without reflection is

also shown. The eigenvalue distribution without reflection was

obtained by eliminating the reflections in the impulse response

using a window function. By comparing these, it can be seen that

the energy of the direct sound is concentrated on the two dom-

inant eigenvalues while the energy of the reflections is spread

over the other eigenvalues. Therefore, Properties 1-4 in Sec-

tion IV-B hold in a practical sense and the subspace method is

applicable. However, it should be noted that the eigenvalue dis-

tribution for the noise in Fig. 6 was not perfectly flat compared

with the ideal case depicted in Fig. 2. This is because the noise

is spatially colored to some extent and, thus the assumption,

, did not perfectly hold in the real situation. This mis-

match may result in the performance of the subspace filter being

lower compared with the case with the spatially white noise.

Fig. 7 shows the directivity pattern of the subspace filter.

From this figure, although it is not as clear as that of analyt-

ically designed beamformers, it can be seen that two acoustic

beams, which are complementary in channel 1 and 2, appear in

the directions of the sources, i.e., 0 and 60 . From this, it is

understood that the subspace filter works as a self-organizing

beamformer.

Fig. 8 shows the spectra of the direct sound and the reflection

of Source #1 and #2 at the input/output of the system separately.

For ease of viewing, the spectra were normalized by their input

spectrum. For comparison, the case of BSS without the subspace

method (only ICA) is also shown. In this case, the number of
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Fig. 13. Permutation error for K = 1 andK = 5. In the vertical axis, “T” denotes the case when the permutation is the same as that of “correct permutation”
while “F” denotes the case when the permutation is different.

microphones is and the two microphones closest

to the sound sources were used. From Fig. 8(c) and (d), it can

be seen that the reflections were reduced by 10-15 dB by the

subspace method. On the other hand, Fig. 8(a) shows the effect

of cross-talk suppression by ICA.

Fig. 9 shows the overall cross-talk suppression for 50 pairs of

sentences shown in ascending order of total performance. The

total performance is a simple sum of the cross-talk suppression

of channel 1 and 2. From this figure, it can be seen that around

10-15 dB of overall cross-talk suppression for each channel was

obtained.

Fig. 10 shows the results of the automatic speech recogni-

tion test applied to the output of BSS. As can be seen from this

figure, the recognition rate was improved by around 18% by

employing the subspace method (denoted as ICA Subspace)

compared to the case without the subspace method (only ICA).

For comparison, the case of ICA PCA was also tested. In this

case, the subspace filter, , was replaced by the

PCA filter, [1], in Fig. 1. The number of

microphones was in the same manner as that with only

ICA. The effect of PCA is only to orthogonalize the output of

PCA (input of ICA). On the other hand, in the case of ICA

Subspace, the subspace method has the effect of both orthog-

onalizing the output and reducing room reflections. Therefore,

from Fig. 10, it is considered that, in the 18% increase in ASR

rate, the effect of the orthogonalization accounts for around 5%

of the increase and the effect of the reflection reduction accounts

for the remaining 13% increase in ASR rate.

C. Permutation

Fig. 11(a) shows the theoretical value of the cost function

with for the model of the mixing matrix shown

in (3). In this figure, “Straight” corresponds to the case when

is unchanged, and “Cross” corresponds to the case when

the column vectors of are exchanged. For the model of

the mixing matrix, does not require any permutation. In

this case, therefore, Straight corresponds to the correct permuta-

tion, and Cross corresponds to the incorrect permutation. From

this figure, it can be seen that Straight shows the value close

to one for all frequencies while Cross shows a smaller value at

all frequencies except in the very low frequencies. The confi-

dence measure depicted in Fig. 11(b) shows high values

except at the very low frequencies. This means that the proposed

cost function can be used for solving permutation at all frequen-

cies except at the very low frequencies. The reason for Cross

showing a large value at the very low frequencies is that the

phase difference in the column vectors of is small at the

low frequencies.

Fig. 12(a) shows the cost function with ob-

tained from the trained filter network with real data. From

this figure, it can be seen that there are many vertical lines. These

vertical lines show that it is necessary to exchange the output at

those frequencies. In Fig. 12(b), it can be seen that the confi-

dence measure becomes low at some frequencies.

Fig. 13 shows the permutation error for and

. Permutation error is defined as the case when the result of

IFC differs from that of SOC (assumed as correct permutation).

When , permutation error “starts” at several frequencies

where is small and “propagates” toward the upper frequen-

cies. On the other hand, when , permutation error is al-

most completely corrected. This is due to the relations of ,

, being taken into account and the unreliable in-

formation being ignored by use of the confidence measure .

Fig. 14 shows the error rate. The input was 50 pairs of

Japanese sentences. It can be seen that the error rate was small

in the frequency range over 300 Hz (the region to the right of

the dotted vertical line). On the other hand, below 300 Hz, the

error rate increases. However, at these very low frequencies, the

performance of ICA is also reduced due to the phase difference

in being small, and the permutation sometimes becomes

meaningless.

Table IV shows a comparison of ASR rate when the permuta-

tion is solved by SOC and IFC. From this, the ASR rate reduced
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Fig. 14. Error rate in solving permutation. The error rate is plotted with “x”
below 300 Hz and with a solid line over 300 Hz.

TABLE IV
ASR RATE FOR DIFFERENT PERMUTATION METHODS [%]

by employing IFC is small (around 4%) compared with the error

rate for IFSEC reported in [3] (around 18%). In the application

of ASR, the contribution of the lower frequency component is

small due to the pre-emphasis [20]. Therefore, the permutation

error at very low frequencies is considered to be small.

VII. CONCLUSION

In this paper, an approach combining array processing and

ICA for the blind separation of acoustic signals in a reflective

environment was proposed. Two array processing techniques

were employed for pre- and post-processing of ICA.

As a pre-processor, the subspace method was employed to re-

duce the effect of room reflections. As shown in this paper, the

subspace method functions as a self-organizing beamformer fo-

cusing on the target sources and is suitable for the framework

of the blind separation. From the results of the experiments,

it was shown that the subspace method reduced the power of

the reflections by around 10 dB and improved the ASR rate by

around 18% for the array and the sound environment used in the

experiment.

The performance of the subspace method depends on both

the array configuration and the sound environment. Regarding

the array configuration, the subspace method is analogous to the

conventional DS beamformer since the subspace method has the

same noise reduction mechanism as that of the DS beamformer.

As for the sound environment, the directivity of reflections is as-

sumed to be small. This assumption holds when reflections are

coming from many directions and the coherency of the reflec-

tions between the microphones is reduced. The sound environ-

ment used in the experiment where the microphone array was

placed at some distance from the walls of the room meets this

condition. When there is a strong reflection with high directivity

such as when the microphone-array is placed close to a hard

wall, this assumption may not hold. In this case, some modifi-

cation may be required for the subspace method [21]. This case

must be treated in a future study.

As a post-processor, a new method for solving the permuta-

tion problem was proposed. This method utilizes the coherency

(continuity) of the mixing matrix at adjacent frequencies, a

physical property peculiar to acoustic problems. By employing

this method, the permutation error was reduced to 4% in terms

of the ASR rate. An advantage of this method is that, unlike

IFSEC, the performance of IFC is independent of source

spectra. Another advantage over IFSEC is that IFC does not

require a large memory space, such as that required for IFSEC,

to store the output spectrogram (see Appendix I), a desirable

feature for implementation in small-sized hardware such as

DSP (digital signal processor).

In this paper, the conventional ICA algorithm was employed

to combine the proposed pre- and post-array processing.

However, the recent progress of the ICA algorithm will lead to

the further improvement of the performance of the proposed

system.

APPENDIX I

IFSEC

As indicated in (25) and (27), the cost function of the pro-

posed method for solving permutation is written as

(32)

On the other hand, the cost function of IFSEC is written as

(33)

In IFSEC, this cost function is maximized in a manner similar

to that of the proposed method to solve the permutation. The

vector is the th column vector of the following matrix in a

manner similar to (24)

(34)

The matrix has the estimated spectral envelope (the

output of BSS smoothed by the moving-average) as a column

vector as

(35)

where

(36)

The symbol denotes the estimated spectral envelope at

the th channel, frequency , and the th time frame. The sym-

bols, , denote the period of spectrogram used for solving

the permutation.

As indicated in (32) and (33), the essential difference of the

proposed IFC and the conventional IFSEC is the vectors used

in their cost functions. The dimension of the vector in IFC is

always (8 in this paper), while that of IFSEC is dependent
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on the length of the spectrogram to be used for solving the per-

mutation. For example, when using 1 s of spectrogram with a

16-point frame shift, the dimension of the vector is 1000 for

IFSEC. From this, it can be known that the proposed IFC con-

sumes less memory space and computational load. It should be

noted that, for the sake of simplicity in explanation, IFSEC de-

scribed above was simplified. For further details, see [9].

APPENDIX II

AN ASPECT OF THE SUBSPACE METHOD AS A

SELF-ORGANIZING BEAMFORMER

According to Properties 1 and 3, the directional component

can be expanded with the subset of the basis vectors,

, as

(37)

where is the projection coefficient of onto the basis

vector . On the other hand, due to Property 2, is expanded

using all the basis vectors, , as

(38)

where is a projection coefficient of onto the basis

vector . Equations (37) and (38) can be written in a matrix-

vector notation as

(39)

(40)

where and

. Equation (40) can be split as

(41)

where

(42)

(43)

and and

. From (42) and (43),

and . Applying the subspace

filter to these components in (39), (42) and (43) and using the

properties of the eigenvectors, and ,

we obtain

(44)

(45)

(46)

From these, it can be seen that, by applying the subspace filter,

the components in the signal subspace and are pre-

served while the component in the noise subspace is can-

celled. When the number of microphones is considerably

larger than that of the number of sources , it is expected that

a large portion of can be cancelled by this subspace filter.

On the other hand, the DS beamformer in the frequency do-

main that focuses on the th target source can be expressed as

[22]

(47)

where

(48)

For the sake of simplicity, it is assumed that

in (3). By using the vector notation, (48) can be

written as

(49)

where denotes the th column vector of . The denominator,

, is employed as a normalization factor. By extending (47)

and (49) so that the target sources are focused, the DS beam-

former becomes

(50)

where

(51)

Applying the DS beamformer to

(52)

This is because, due to Property 4, .

According to the above discussion, the subspace filter and

the DS beamformer have the same noise reduction mech-

anism, i.e., a mechanism which cancels the component in the

noise subspace, . The essential difference in the subspace

method and the DS beamformer is that, in the DS beamformer,

knowledge of the mixing matrix is required in the design of

the beamformer as shown in (51) while, in the subspace method,

no previous knowledge is required. In this sense, the subspace

filter can be considered as a self-organizing beamformer.
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