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ABSTRACT

Single-carrier linear modulation techniques combined with frequency-domain equaliza-

tion provide a viable alternative to multicarrier techniques for combating multipath

fading in channels with large delay spread. Such modulations tolerate frequency offset

and have well controlled peak to average power ratio. They have comparable com-

plexity to orthogonal frequency division multiplexing (OFDM) systems, and are more

robust to synchronization errors. If error correction coding is used, then information

can be iteratively passed between the equalizer and the decoder to improve perfor-

mance. This is referred to as turbo equalization. To date, several turbo equalization

schemes have been proposed, but little work has been done to address the problem of

channel estimation for the turbo equalization process.

The work in this thesis considers frequency-domain turbo equalization with imper-

fect channel state information (CSI) at the receiver for different wireless channels. A

receiver structure incorporating joint frequency-domain turbo equalization and time-

domain channel estimation is developed. The novelty of this scheme lies in the com-

bination of time-domain channel estimation and frequency-domain turbo equalization,

and in its extension to high level modulation formats. The performance of the system

is investigated by a combination of analysis and computer simulation. It is found that

the system performs well over a range of dispersive channels.
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Chapter 1

INTRODUCTION

1.1 WIRELESS COMMUNICATIONS

The history of wireless communications began in 1895 when Italian inventor Guglielmo

Marconi successfully demonstrated the ability to communicate with ships sailing the

English channel [1]. Since then, new wireless communication methods and services

have been developed by people around the globe.

By 1934, a portion of the police stations in the United States had adopted wireless

communication systems for public safety using amplitude modulation (AM). Frequency

modulation (FM) was later adopted for these systems after Edwin Armstrong demon-

strated FM for the first time in 1935 [2]. After the late 1930s, FM was used as the

primary modulation technique.

Following the development of the cellular concept from Bell Laboratories in con-

junction with the development of highly reliable solid-state, radio frequency hardware

in the 1970s, cellular radio and personal communication services (PCS) became avail-

able to the general public [2]. The first generation (1G) cellular systems continued to

use analog modulation techniques such as FM. However, due to the explosive growth

in the number of users, further advances in technology and the increasing demand

for the transmission of digital data, digital modulation techniques were developed and

introduced into second generation (2G) cellular systems [3].

Recently, analog systems have been rapidly converted to digital systems [4]. As

technology continued to advance at a tremendous rate, third generation cellular (3G)

systems were born [3]. They allow users to receive live music, conduct interactive
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web sessions and have simultaneous voice and data access with multiple parties using a

single mobile handset, whether driving, walking, or standing still in an office setting [2].

Concurrent with the development of cellular systems, there has been an exponen-

tial growth in other areas employing wireless communications. These include internet

applications such as local and wide area wireless networks, and multimedia applica-

tions such as satellite and television broadcasting [5]. New standards and technologies

are being implemented to allow wireless networks to replace fiber optic or copper lines

between fixed points several kilometers apart. Similarly, wireless networks have been

increasing used as a replacement to wired networks within metropolitan areas [3, 6].

Today, the development of wireless communication systems continues by addressing

many of the operating constraints apparent in present systems. These include the

pressure to support more subscribers, the finite and tightly controlled allocations of

radio frequency spectrum, the desire for longer battery life, the desire to reduce the

cost of a system and the demand for higher data rates and quality of service (QoS).

Moreover, as communication systems continue to improve following these constraints,

the need to insert new technologies into commercial products quickly requires that the

design be done in a timely, cost-effective manner. These demands can be met through

the use of powerful computer-aided analysis [7], which is often the first step in the

development process.

In addition to the constraints mentioned above, channel characteristics in the phys-

ical layer also need to be taken into consideration in the development process. Wireless

channels are almost dispersive in nature. They allow signals transmitted from the

transmitter to travel through different paths before arriving at the receiver. This intro-

duces intersymbol interference (ISI) and it has a direct impact on system performance.

To insure successful transmission, the effect of ISI must be remedied.

The goal of this thesis is to demonstrate the functionality of a theoretical commu-

nications system by means of mathematical analysis and computer simulation. The

proposed system focuses on means of reducing ISI through channel estimation and fre-

quency domain Turbo Equalization. Results obtained from this study may be of use

in the future for practical implementation or further research purposes.
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The remainder of this chapter is organized as follows. First, the notation used

throughout this thesis will be defined. Second, the representation of signals in this

thesis is described. Third, the wireless channel including its characteristics and its

modeling are discussed. Finally, the scope and contribution of this thesis is explained.

1.2 NOTATION

The following notation will be employed throughout this thesis. Time-domain variables

will be denoted by lower-case letters and frequency-domain by upper-case letters. Vec-

tors and matrices will be shown in bold font and scalars in italic font. In addition, IN

denotes the (N ×N) identity matrix and 0M,N denotes the (M ×N) all-zeros matrix.

Furthermore, diag(·) denotes the diagonalization matrix operation, (·)∗ denotes the

complex conjugate operation, (·)H denotes the Hermitian operation, (·)T denotes the

transpose operation, and ⊗ denotes the convolution operation.

1.3 SIGNAL REPRESENTATION

In order to analyze communication systems, we must be able to represent signals in

a rigorous mathematical format. In this section, we summarize the various signal

representations employed in this thesis.

1.3.1 Representation of Passband Signals

In modern wireless communication systems, signals are transmitted in passband form,

where the center frequency is often orders of magnitude higher than the bandwidth

occupied by the signal. If we wish to analyze such systems, it is often convenient to

consider the complex baseband equivalent signal model.

Following the discussion in [8], consider a passband signal x(t) with bandwidth 2W

centered about some carrier frequency fc. This may be expressed as

x(t) = Re{x̃(t) exp(j2πfct)}

= xI(t) cos(2πfct) − xQ(t) sin(2πfct), (1.1)
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where x̃(t) is the complex envelope of x(t) and may be written as

x̃(t) = xI(t) + jxQ(t). (1.2)

The signals xI(t) and xQ(t) are both real valued baseband signals, and are referred to

as the in-phase and quadrature components of x(t), respectively. Let the signal x(t)

be applied to a linear time-invariant passband system with impulse response h(t) and

frequency response H(f). Assuming that h(t) has a bandwidth of 2B centered at fc

with B ≤ W , we may express h(t) in terms of its in-phase and quadrature components

as

h(t) = Re{h̃(t) exp(j2πfct)}

= hI(t) cos(2πfct) − hQ(t) sin(2πfct), (1.3)

where

h̃(t) = hI(t) + jhQ(t). (1.4)

Let the output of the system be denoted by y(t), where

y(t) = h(t) ⊗ x(t)

=

∫ ∞

−∞
h(τ)x(t − τ) dτ. (1.5)

Rewriting (1.5) in terms of the complex envelopes of x(t) and h(t), and using the

property that [8]

∫ ∞

−∞
Re

{
h̃(τ) exp(j2πfcτ)

}
Re

{
x̃(τ) exp(j2πfcτ)

}
dτ

=
1

2
Re

{∫ ∞

−∞
h̃(τ) exp(j2πfcτ) (x̃(τ) exp(j2πfcτ))∗ dτ

}

=
1

2
Re

{∫ ∞

−∞
h̃(τ) exp(j2πfcτ)x̃∗(τ) exp(−j2πfcτ) dτ

}
, (1.6)
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we obtain

y(t) =
1

2
Re

{∫ ∞

−∞
h̃(τ) exp(j2πfcτ)x̃(t − τ) exp(j2πfc(t − τ)) dτ

}

=
1

2
Re

{
exp(j2πfct)

∫ ∞

−∞
h̃(τ)x̃(t − τ) dτ

}
. (1.7)

Note that using x(−τ) in place of x(τ) has the effect of removing the complex con-

jugation of the right-hand side of (1.6). Since y(t) is also a passband signal, we may

represent y(t) in terms of its complex envelope ỹ(t) as

y(t) = Re{ỹ(t) exp(j2πfct)}

= yI(t) cos(2πfct) − yQ(t) sin(2πfct). (1.8)

If we compare equations (1.7) and (1.8), we see that ỹ(t) is related to x̃(t) and h̃(t) as

2ỹ(t) = 2yI(t) + j2yQ(t)

=

∫ ∞

−∞
h̃(τ)x̃(t − τ) dτ

= h̃(t) ⊗ x̃(t). (1.9)

Lastly, substituting (1.2) and (1.4) into (1.9) we obtain

2ỹ(t) = [hI(t) + jhQ(t)] ⊗ [xI(t) + jxQ(t)]

= [hI(t) ⊗ xI(t) − hQ(t) ⊗ xQ(t)]

+j[hQ(t) ⊗ xI(t) + hI(t) ⊗ xQ(t)]. (1.10)

Hence,

2yI(t) = hI(t) ⊗ xI(t) − hQ(t) ⊗ xQ(t) (1.11)

and

2yQ(t) = hQ(t) ⊗ xI(t) + hI(t) ⊗ xQ(t). (1.12)
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Note that there is a factor of two when relating the complex baseband signal model to

a passband signal.

The significance of this result is that it is possible to represent any passband system

in terms of its baseband equivalents. This representation provides the basis for effi-

cient simulation of passband systems as well as DSP implementation of complex filter

structures. Throughout the remainder of this thesis, complex baseband equivalent will

be used.

1.3.2 Vector Representation of Signals

Many signals in a communication system may be modeled as sample functions of ran-

dom processes [9]. If we wish to express the probability distributions associated with

these random processes, it is often convenient to represent a continuous signal in vector

form, which is usually constructed over an arbitrary interval. The vector components

are then random variables.

Consider a continuous time signal s(t) of duration T0 = [ta, tb]. One method for

constructing a vector representation of a continuous time signal is to express the signal

as a weighted sum of orthonormal basis functions φn(t), where

∫

T0

φi(t)φj(t) =





1, i = j

0, otherwise.

(1.13)

In cases where the continuous time signal is known to be from a set of M energy signals

{si(t)}, it is possible to express s(t) exactly in terms of N orthonormal basis functions,

where N ≤ M [10]. This leads to

si(t) =

N∑

n=1

sijφj(t)





ta ≤ t ≤ tb

i = 1, 2, . . . , M,

(1.14)
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where the coefficients sij are defined by

sij =

∫

T0

si(t)φj(t) dt





i = 1, 2, . . . ,M

j = 1, 2, . . . , N.

(1.15)

The vector representation is then given by

si = [si1, si2, . . . , siN ]T , i = 1, 2, . . . , M. (1.16)

One common use of this technique is representing signals within a signal constellation.

The normalized sine and cosine functions with period T0 are the orthonormal basis

functions, and each signal is represented as a 2-element vector.

An alternative approach to constructing vector representations of continuous time

signals is to sample the signal at evenly spaced instants, resulting in the vector

s = [s(t0), s(t1), . . . , s(tN−1)]
T , (1.17)

where

tn = ta + nτ, (1.18)

with the sampling period defined as

τ =
tb − ta

N
, (1.19)

where N is the total number of sampling instants.

Let fmax be the highest frequency component present in s(t). The sampling fre-

quency fs = 1/τ is set to be greater than 2fmax so that s(t) may be reconstructed from

the samples with no errors according to the sampling theorem. This technique is often

used in signal detection and processing where T0 is the period for each frame of signals.

In this thesis, signals within the signal constellation sets are represented as complex

numbers, which are equivalent to the 2-element vectors corresponding to the sine and

cosine basis functions. Sampling is used at the receiver to construct vector representa-
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tions of the received signal for signal detection and further processing.

1.4 THE WIRELESS CHANNEL

The effective design, assessment, and installation of a wireless system requires an ac-

curate characterization of the channel. The channel characteristics vary from one en-

vironment to another. In this section we will discuss these characteristics and the way

they may be modeled mathematically and in computer simulations.

In this thesis we consider wireless channels for two different scenarios. The first

scenario occurs when the communication terminals are non-stationary. In this scenario,

the channel model represents a mobile wireless channel and is suitable for communica-

tion between mobile transceivers. The second scenario occurs when the communications

terminals are stationary. In this scenario, the channel represents a fixed wireless chan-

nel and is suitable for communication between base stations or computer terminals,

such as wireless communication for local area networks (LANs) and metropolitan area

networks (MANs).

1.4.1 Physical Description

The environment in which a wireless communication system operates often contains

obstacles that are capable of reflecting electromagnetic waves radiated from the trans-

mitter. Examples of such obstacles include buildings, vehicles, trees, hills, and even

the ionosphere. As a result, the transmitted signal arrives at the receiver from vari-

ous directions using many different paths. This phenomenon is known as multipath

propagation and is illustrated in Fig. 1.1.

In general, the phase and amplitude of the component signals arriving at the re-

ceiver antenna will be different due to different obstacles in each path and the difference

in path lengths [11]. The resulting additive combination of the multipath components

at the receiver can be constructive or destructive depending on the phase fluctuations

in the received signals. These effects constitute the phenomenon commonly referred to

as multipath fading.
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Ionosphere

Figure 1.1 Multipath propagation of electromagnetic waves.

In addition to multipath fading, any relative motion between the transmitter and

the receiver will result in Doppler shifting of the received signals. Furthermore, due to

the variation in velocity of movement for each arriving path, the received signal exhibits

a spectrum of Doppler shifting. This spectrum is often referred to as the Doppler

spectrum. The amount of spreading of the transmitted signal frequency associated

with the Doppler spectrum is referred to as the Doppler spread.

1.4.2 The Classical Uncorrelated Scattering Model

The classical uncorrelated scattering channel model was developed to describe signal

transmissions over a variety of wireless channels having randomly time-varying impulse

responses. This is the underlying model used for the channels employed in this thesis.
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Here we define the classical uncorrelated scattering model following the discussion

presented in [12].

We start by defining the time-varying channel impulse response. If we transmit

an impulse δ(t) over a multipath transmission medium, the received signal will be a

sum of several impulses with different arrival times, magnitudes and phases. Assuming

that the effects of the medium are sufficiently random and the number of multipath

signal components is sufficiently large, the central limit theorem may be invoked. The

composite impulse response of the channel can therefore be accurately represented by

a complex Gaussian process given by

h(τ, t) =

L∑

i=1

Gi(t) exp(jφi(t))δ(τ − τi), (1.20)

where Gi(t) and φi(t) represent the amplitude and phase of the ith path arriving at

delay τi and L is the number of paths. This may be modeled as a tapped delay line

with time varying complex tap gains.

Now we assume that the signal variations on paths arriving at different delays are

uncorrelated and that the correlation properties of the channel are stationary. This

is referred to as wide-sense stationary uncorrelated scattering (WSSUS) [13]. This

means the autocorrelation of the observed impulse response at two different delays

and two different times has a non-zero value only when the delays are the same, and

depends solely on the difference in time of occurrence of the two impulse responses. In

mathematical notation, this is given by

Rhh(τ1, τ2; t1, t2) = E{h(τ1, t1)h(τ2, t2)} = Rhh(τ1;∆t)δ(τ1 − τ2). (1.21)

where ∆t = t1 − t2. For the special case where ∆t = 0, we get

Q(τ) = Rhh(τ ; 0). (1.22)

This is referred to as the delay power spectrum of the channel and it represents the

received power as a function of delay.
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Since h(τ, t) is a wide-sense stationary Gaussian process, the frequency response

H(f ; t) obtained by taking the Fourier transform on h(τ, t) with respect to τ is also

a wide-sense stationary zero-mean Gaussian process. To characterize the variations

in frequency statistically, we compute the frequency-domain autocorrelation function

defined as

RHh(f1, f2;∆t) = E{H∗(f1; t)H(f2; t + ∆t)}

=

∫ ∞

−∞

∫ ∞

−∞
E{h∗(f1; t)h(f2; t + ∆t)}

· exp (j2π(f1τ1 − f2τ2)) dτ1dτ2

=

∫ ∞

−∞
Rhh(τ1; ∆t) exp (j2π∆fτ1) dτ1

= RHh(∆f;∆t), (1.23)

where ∆f = f1 − f2. Taking the Fourier transform of (1.23) with respect to ∆t we get

RHH(∆f ; λ) =

∫ ∞

−∞
RHh(∆f;∆t) exp (j2πλ∆tτ1) d(∆t). (1.24)

For the special case where ∆f = 0, the transform gives

D(λ) = RHH(0;λ). (1.25)

This is referred to as the Doppler power spectrum of the channel and it represents the

power distribution of the Doppler shift.

The scattering function of a channel,

S(τ, λ) = RhH(τ, λ) (1.26)

is defined as the inverse Fourier transform of RHH(∆f, λ) with respect to the ∆f

variable, which is the Fourier transform of Rhh(τ, ∆t) with respect to the ∆t variable.

With the usual assumption that the time and frequency components are independent,

the formulation of the uncorrelated scattering function is obtained by decomposing the
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scattering function into the delay and Doppler spectra and is defined by

S(τ, λ) = Q(τ) · D(λ). (1.27)

In practice, in order to measure the scattering function of the channel, the received

signal in individual taps of a tapped delay line is analyzed in the frequency domain.

Having defined the scattering function for the classical uncorrelated scattering

model, various channels may be defined by specifying the delay power profile and the

Doppler power spectrum associated with each channel. In addition, for channels where

there is a line-of-sight (LOS) path between the transmitter and receiver, the channel

is defined by the scattering function plus a constant function. This function is often

specified in a similar form to the scattering function with the Doppler spectrum being

a single impulse.

1.4.3 Mathematical Model for Mobile Wireless Channel

The mobile wireless channel model used in the simulations of this thesis is based on

that of [14,15]. The channel response is assumed to have no LOS component and uses

11 equally spaced taps with 1µs spacing. The delay power profile for this particular

channel Q11−TAP (τ) is set to a truncated exponential function with mean 2.5µs and

maximum delay τmax = 10µs. This channel will be referred to as the 11-TAP channel

throughout the rest of the thesis, and the parameters for this channel are summarized

in Table. 1.1.

Table 1.1 11-TAP Channel Parameters.

No. of Taps 11

Tap spacing 1 µs

Doppler (fdT ) 0.001 for all taps

Power delay profile Exponential with mean 2.5µs, τmax = 10µs

The Doppler power spectrum for the 11-TAP channel is set to have the following
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response [11]

D11−TAP (f) =





1

π
√

f2
d
−f2

, |f | ≤ fd

0, otherwise,

(1.28)

where f is the frequency and fd is the maximum Doppler frequency. A graphical

representation of this Doppler power spectrum is show in Fig. 1.2.
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Figure 1.2 Doppler power spectrum for each of the 11 fading processes of the 11-TAP channel.

1.4.4 Simulating the Mobile Wireless Channel

To simulate a single fading process (from a total of 11) of the 11-TAP channel, we use

the filtered noise approach of [16]. For the channel impulse response hMobile(τi, t) at a

set delay τi, the filtered noise approach passes two independent additive white Gaussian

noise (AWGN) sources through specially designed Doppler filters, then combines them

to form the simulated complex channel impulse response as shown in Fig. 1.3
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Figure 1.3 Complex baseband model used to generate a single fading process.

The Doppler filters play an important role as they determine the amount of Doppler

spread. To obtain the Doppler spectrum of (1.28), the required filters have the impulse

response [16]

hd(t) = K
J1/4(2πfdTt)

4
√

t
, (1.29)

where K is a time-independent constant, J1/4(·) is the Bessel function defined as

J1/4(t) =
1

2π

∫ π

−π
exp(−j(ατ − t sin τ)) dτ

∣∣∣∣
α=1/4

. (1.30)

The value of hd(t) at t = 0 is given by

lim
t→0

K
J1/4(2πfdTt)

4
√

t
= K

4
√

fdTπ

Γ(5/4)
≃ 1.468813 4

√
fdT , (1.31)

where Γ(·) is the Gamma function defined as

Γ(t) =

∫ ∞

0
τ t−1 exp(−τ) dτ. (1.32)

Since (1.29) has infinite length, a windowed approximation is required. A suitable win-

dowing function, such as the Hanning window, is used to smooth the abrupt transition

caused by the truncation. Fig. 1.4 illustrates the time variation of power of a fading

process simulated using the filtered noise approach for a normalized Doppler frequency

of fdT = 0.05.
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Figure 1.4 Example of a single fading process simulated using the filtered noise approach of power
with fdT = 0.05.

For the complete channel h11−TAP (τ, t), the filtered noise approach is applied for

each of the 11 delays τi with the noise power adjusted so that the output power follows

the power delay profile Q11−TAP (τ).

1.4.5 Mathematical Model for Fixed Wireless Channel

The fixed wireless channel being considered in this thesis originates from a family of

channel models known as the Stanford University interim (SUI) channel models, which

have been adopted by the IEEE 802.16a standards committee for evaluating broadband

wireless systems in the 2 − 11GHz bands [17, 18]. There are six typical SUI channel

models, which are suitable for the three main suburban terrain types that are typical

of the continental US [19]. Terrain category A corresponds to a hilly environment with

moderate to heavy tree density. Terrain category B corresponds to a hilly environment

with light tree density (or a flat environment with moderate to heavy tree density),

and terrain category C corresponds to a flat environment with light tree density. The

SUI models corresponding to each terrain type are listed in Table 1.2.
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Table 1.2 SUI channel models and the associated terrain type.

Terrain Type SUI Channels

C SUI-1, SUI-2

B SUI-3, SUI-4

A SUI-5, SUI-6

Each of the six SUI channels is modeled as 3 distinct paths with different relative

powers and delays. For those channels that consists of a LOS path, the Doppler power

spectrum of the constant component associated with the LOS path is modeled as an

impulse at f = 0Hz. The Doppler power spectrum of the scattering component can be

described by the scattering function approximated by

DSUI(f) =





1 − 1.72
(

f
fd

)2
+ 0.785

(
f
fd

)4 ∣∣∣ f
fd

∣∣∣ ≤ 1

0
∣∣∣ f
fd

∣∣∣ > 1

(1.33)

and a graphical representation of this particular spectrum is shown in Fig. 1.5.
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Figure 1.5 Doppler power spectrum for each of the 3 fading processes of the SUI channel.
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For the work presented in this thesis, the SUI-5 channel model is considered. The

characteristics of the SUI-5 channel are summarized in Table. 1.3. Since no constant

component is present for each tap of the SUI-5 channel, it assumes no LOS.

Table 1.3 SUI-5 Channel Parameters [17].

Tap 1 Tap 2 Tap 3 Units

Delay 0 5 10 µs

Power (constant component) 0 0 0 linear

Power (scatter component) 0 -5 -10 dB

Doppler fd 2 1.5 2.5 Hz

1.4.6 Simulating the Fixed Wireless Channel

The filtered noise approach is also employed to simulate the SUI-5 channel [17]. The

Doppler filter coefficients are obtained as follows. First, we take the square root of the

Doppler spectrum DSUI(f) to obtain |HSUI(f)| for each of the 3 channel taps. The

Doppler spectrum for each of the 3 taps differs as they have different fd values. Second,

the real part of the inverse Fourier transform of |HSUI(f)| is taken as the impulse

response for the Doppler filters. Third, the impulse response is sampled according to

the number of filter taps required to produce the filter coefficients. The number of

filter taps can be determined as a tradeoff between accuracy and complexity. Lastly,

the filtered outputs are normalized to ensure that the average channel energy sums to

unity.

A simulated example of the SUI-5 channel power response following the charac-

teristics defined in Table. 1.3 with 256 Doppler filter taps is shown in Fig. 1.6. Note

that the SUI-5 channel has a maximum Doppler of 2.5Hz, so the minimum sampling

rate required is 5Hz. However, it is possible to increase the channel sampling rate to

suit the system of interest by means of interpolation. In Fig. 1.6, the sampling rate is

increased to 20Hz for better resolution.
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Figure 1.6 Example of SUI-5 channel power response simulated using the filtered noise approach
sampled at fs = 20Hz.

1.5 SCOPE OF THESIS

The thesis is primarily concerned with the investigation of frequency-domain turbo

linear equalization (FD-TLE) with imperfect channel state information (CSI). The

novelty lies in the proposed receiver structure, which is obtained by modifying and

integrating existing channel estimation and FD-TLE algorithms. The integrated system

is explored through detailed analysis and computer simulations. To the best of our

knowledge no published literature to date included an investigation of FD-TLE with

estimated rather than ideal CSI. This provides the motivation for the work of this

thesis, as well as the possibility of bringing FD-TLE systems one step closer to practical

implementation.
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1.6 ORGANIZATION OF THESIS

In this chapter some preliminary topics have been discussed. A brief introduction

to the history of wireless communications was given, followed by definitions for the

signal representation techniques employed in this thesis. Furthermore, a discussion

of the channel models that are of interest for the work presented in this thesis was

also included. In Chapter 2, some background information is provided to explain

the basic components in a typical communication system. These include, modulation

techniques, pulse shaping, introduction to turbo equalization, channel estimation, and

error correction coding. In Chapter 3, the proposed system model is defined. An in

depth discussion combined with examples of the turbo equalization process combined

with channel estimation is also presented in Chapter 3. In Chapter 4, the performance is

investigated by means of computer simulation. Lastly, a summary of the work presented

in this thesis and a discussion of possible extensions are given in Chapter 5.



Chapter 2

BACKGROUND

This chapter provides an overview of digital wireless communication theory and exist-

ing techniques that are relevant to the work presented in this thesis. A typical digital

wireless communication system is shown in Fig. 2.1, which consists of a transmitter,

a channel, and a receiver. At the transmitter, the encoder provides error correction

coding for the system, the modulator maps binary bits onto a signal constellation, and

the transmit filter provides pulse shaping of the transmitted signals. During transmis-

sion over a wireless channel, the effect of multipath propagation and receiver front end

noise alters the transmitted signal and causes data errors at the receiver output. At

the receiver, a portion of the overall received signal is used to update knowledge of

the current CSI estimate, which is passed from the channel estimator to the equalizer.

The equalizer then equalizes the received signals. The decoder then tries to correct any

errors using the constraints of the error correction code and outputs the decoded data.

Figure 2.1 A typical wireless communication system.
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2.1 MODULATION TECHNIQUES

The modulator of Fig. 2.1 varies the frequency, amplitude and/or phase of a carrier

may be varied in order to convey digital information [20]. For example, frequency-shift

keying (FSK) modifies the carrier frequency with time, pulse amplitude modulation

(PAM) varies the carrier amplitude with time and phase-shift keying (PSK) varies the

phase of the carrier with time.

The modulation techniques being considered in this thesis include quadrature phase

shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM), which have

4 and 16 constellation points, respectively. These techniques are considered as they are

linear modulations that provide high spectral efficiency while being relatively simple

to implement. The carrier frequency remains constant for both QPSK and 16-QAM.

Only the phase vary in time for QPSK, while both the amplitude and phase vary with

time for 16-QAM. In mathematical terms, the QPSK and 16-QAM signal constellations

with unit energy can be expressed as

XQPSK =

{
Xm = exp

(
j
π(2m + 1)

4

)
, m = 0 . . . 3

}
, (2.1)

and

X16−QAM =

{
Xm,n =

m√
10

+ j
n√
10

, m, n ∈ {1, 3}
}

, (2.2)

respectively.

Lastly, Gray mapping is used to map the coded bits to points in the signal con-

stellation. The QPSK and 16-QAM signal constellations with the Gray mapping used

in this thesis are shown in Fig. 2.2.
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Figure 2.2 Signal constellations employing Gray mapping.

2.2 PULSE SHAPING

Before we can transmit the modulated signal, it is necessary to pass it through a

transmit filter as shown in Fig 2.1. The purpose of the transmit filter is to provide

a pulse shape to the transmitted signal. Usually, the pulse shape needs to be chosen

carefully as it plays an essential role in determining the spectral characteristics of the

communication system. In particular, the Nyquist criterion must be satisfied for inter-

symbol interference (ISI) free transmission.

Consider the pulse shape p(t). If we wish to transmit real symbols at a rate

R = 1/T , assuming noise and channel effects are negligible, the Nyquist criterion

states that [8, 21]
∞∑

n=−∞
P (f − nR) = T (2.3)

must be satisfied. The simplest way to satisfy this criterion is to make P (f) a rectan-

gular function, resulting in the ideal response

PIdeal(f) =





1
2W , −W < f < W

0, |f | > W,

(2.4)
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where W is the overall system bandwidth defined by

W =
R

2
=

1

2T
.

The special value of the bit rate R = 2W is known as the Nyquist rate, and W is

known as the Nyquist bandwidth. Taking the inverse Fourier transform of the desired

rectangular function, we obtain the sinc function

pideal(t) =
sin(2π t

2T )

2π t
2T

= sinc

(
t

T

)
(2.5)

as the ideal pulse shape. However, this is not physically realizable due to the abrupt

transition of the rectangular function. A more practical approach is to use a function

with a rolloff at the cost of slightly increased bandwidth. To this end, a raised cosine

pulse shape is often used and is defined by [8]

pRC(t) =
sin(π πt

T )

πt

(
cos(παt/T )

1 −
(

4αt
2T

)2

)
, (2.6)

where α is a value between 0 and 1 that governs the amount of roll-off for the pulse

shape. Taking the Fourier transform of (2.6) yields

PRC(f) =





1
2W , 0 ≤ |f | < (1−α)

2T

1
2

[
1 + cos

(
π[(2T |f |)−1+α]

2α

)]
, (1−α)

2T ≤ |f | ≤ (1+α)
2T

0, |f | > (1+α)
2T

(2.7)

which includes a rolloff portion that has a sinusoidal form. The frequency response of

the raised cosine spectrum for different rolloff values is shown in Fig. 2.3(a). It shows

that the transitions in the magnitude response are less abrupt than in the ideal case.

Therefore, it is easier to approximate the raised cosine filter in comparison to the ideal

filter. The time response is shown in Fig. 2.3(b). It shows that the time response

decays at a faster rate than the ideal case, which suggests less energy is contained in

the tails of the pulse response.
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Figure 2.3 Response of ideal (α = 0) and raised cosine pulse shapes for different rolloff factors, α.

Another useful pulse shape that is related to the raised-cosine pulse shape is the

root raised cosine pulse shape. This is given by [22]

pRRC(t) =





1 − α + 4α
π , t = 0

α√
2

[(
1 + 2

π

)
sin

(
π
4α

)
+

(
1 − 2

π

)
cos

(
π
4α

)]
, t = ± T

4α

sin[π(1−α) t
T ]+ 4αt

T
cos[π(1+α) t

T ]
πt
T

[

1−( 4αt
T )

2
] , otherwise,

(2.8)

where the Fourier transform of (2.8) can be found by taking the square root of the

right hand side of (2.7), hence the name root raised cosine. When this pulse shape is

used at the transmitter for pulse shaping, the receiver often uses another root raised

cosine filter as a matched filter, resulting in an overall raised cosine pulse response for

the system. We note that both raised cosine and root raised cosine pulse shapes have

infinite duration. Therefore, they are usually truncated to a fixed number of symbol

intervals.

2.3 CONNECTION BETWEEN FOURIER SERIES AND FOURIER

TRANSFORMS

When a system employs frequency-domain processing, it is often necessary to represent

signals in the frequency-domain by taking the Fourier Transform of the time-domain
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signal. Furthermore, if the signal of interest is periodic, there will be a connection

between the Fourier series expansion and the Fourier transform of the signal. This

connection is useful as it can be applied to find the Fourier transform of a periodic

signal without evaluating complex integrals.

Following the discussion presented in [23], consider a periodic signal xp(t) with

period T and fundamental frequency f0 = 1/T . It is possible to represent xp(t) as a

linear combination of the fundamental frequency f0 and its harmonics. This is known

as the Fourier series expansion of the periodic sequence xp(t). In mathematical terms,

the Fourier series expansion of xp(t) in exponential form is given by

xp(t) =
∞∑

k=−∞
Xk exp(j2πkf0t), (2.9)

where the index k ranges from −∞ to ∞ and

Xk =
1

T

∫

T
xp(t) exp(−j2πkf0t) dt.

Note that the coefficient X−k is simply the complex conjugate of Xk.

If we multiply Xk by the period T and let T → ∞, which means kf0 → f , we

obtain the Fourier transform of the infinitely stretched out pulse x(t) corresponding to

one period of xp(t). That is

X(f) = lim
T→∞

TXk =

∫ ∞

−∞
x(t) exp(−j2πft) dt. (2.10)

This provides a frequency-domain representation of the aperiodic signal x(t). The

Fourier series coefficients for xp(t) and the Fourier transform of x(t) therefore have the

following relationship

Xk =
1

T
X(f)

∣∣∣∣
f=kf0

. (2.11)

2.4 TURBO EQUALIZATION

Multipath propagation and receiver front end noise corrupts the transmitted signal

causing errors in the received signal. Equalization is the process of recovering the
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original transmitted signal from the received signal. This process can be performed

in the time or the frequency-domain, and is carried out by the equalizer shown in

Fig. 2.1. Recent work has shown that frequency-domain equalization has advantages

over time-domain equalization when the delay spread of the channel extends over many

symbols [18]. However, the drawback of frequency-domain equalization is that block

oriented processing is required due to the block oriented nature of the discrete Fourier

transform (DFT). Hence, it will only work for quasi-static channels, which remain

essentially constant over at least one block.

If error correction coding is used, the receiver performance can be improved if

we allow information to be iteratively passed between the equalizer and the decoder.

This allows both stages to iteratively use information from each other to help make

their decisions on the received signal. This is referred to as turbo equalization and

was first proposed in [24]. Recently, several turbo equalization schemes have been

proposed [25–32]. A time-domain turbo equalization scheme was proposed in [25]. This

design requires knowledge of the channel state information (CSI), which is a drawback

if the channel is expected to change rapidly (fast fading) or if the CSI is difficult to

obtain. Following the work of [25], a frequency-domain turbo linear equalization (FD-

TLE) scheme was proposed in [26], which also required knowledge of the CSI. Using

the ideas in [26], a new frequency-domain turbo equalization scheme was proposed

in [32]. This algorithm was derived using fewer approximations than the scheme in [26].

However, it also assumed perfect CSI was available in the receiver and did not consider

any form of channel estimation.

There has been some research into turbo equalizers that do not require a priori

knowledge of the CSI [33–35]. One approach is to iteratively minimize a cost func-

tion [33, 34]. This approach was employed in [31] to jointly estimate the channel in

parallel with time-domain turbo equalization. Its disadvantage is that the variance

of the estimation error is not easily obtained from the soft outputs of the soft-input

soft-output (SISO) decoder. A similar time-domain scheme was given in [35]. It struc-

tured channel estimation as a Kalman state estimator. This is achieved by processing

the soft information from the decoding process as part of the statistical description of
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the channel. However, it leads to a very complex structure, especially for high-level

modulation formats.

The work presented in this thesis also considers the case where perfect CSI is not

available at the receiver. Here, the CSI is estimated in the receiver using pilot sequences.

The channel is assumed to be quasi-static so that frequency-domain turbo equalization

can be applied. Furthermore, the channel is assumed to have a relatively long delay

spread, which is well suited to the use of frequency-domain processing. Using the work

in [32], the minimum mean squared error (MMSE) linear estimation method is applied

in the turbo equalization process.

2.4.1 Minimum Mean Squared Error (MMSE) Linear Estimation

Following the derivation presented in [33], suppose that we have two sequences of

random variables {xn} and {yn} that are correlated. We wish to estimate xt for some

particular time t using the observation of {yn} at some set of times a ≤ n ≤ b. Let us

consider the linear estimator

x̂t =

b∑

n=a

ht,n yn + ct, (2.12)

where x̂n is the estimate of xn, and ht,a, . . . , ht,b and ct are scalar parameters of the

estimator. We would like to find the best such estimate in the sense that the mean

square error (MSE) is minimized, that is we want

minE
{
(x̂t − xt)

2
}

(2.13)

for all linear combinations of {yn}. The orthogonality principle states that x̂t solves

the above equation if and only if,

E {(x̂t − xt) yn} = 0 (2.14)
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for all yn, a ≤ n ≤ b . As a result, for the MMSE solution,

ct = E {xt} −
b∑

n=a

ht,n E {yn} (2.15)

Ht = R−1
y Rxy(t), (2.16)

where Ht = [ht,a, . . . , ht,b]
T , Ry is the autocovariance matrix of the vector (ya, . . . , yb)

T

and Rxy(t) is the crosscovariance vector between xt and {yn}. Hence, the MMSE

estimate of x̂t is given by

x̂t = E {xt} +

b∑

n=a

ht,n (yn − E {yn}). (2.17)

2.5 CHANNEL ESTIMATION

Referring to Fig. 2.1, a channel estimator is required in the receiver to estimate the

CSI. In general, the channel estimator uses the difference between a local copy of a

transmitted training sequence and the received signal as an error signal to estimate the

CSI.

The Kalman filter based approach of [35, 36] is a possible candidate for channel

estimation. However, in order to avoid the computational complexity of the Kalman

approach, we employ the generalized least mean squares (GLMS) estimator of [37] to

estimate the channel. It was formulated from its predecessor, the generalized recursive

least squares (GRLS) estimator of [38]. Both the GLMS and GRLS estimators are

Kalman like in structure, but have the benefit of not requiring a prior knowledge of the

channel correlation matrix. This is an advantage when the channel correlation matrix

is not easily obtainable. Furthermore, although the GLMS estimator performance has

been shown to be worse than the GRLS estimator in [37], it achieves a significant

reduction in complexity.
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2.5.1 The Generalized Recursive Least Squares (GRLS) Estimator

Following the work of [38], we now discuss the underlying model and the estimation

algorithm for the GRLS channel estimator. Then following the work of [37], we will

discuss the estimation algorithm for the GLMS channel estimator.

Consider a composite channel impulse response h(t, τ) = p(τ) ⊗ c(t, τ), where

p(τ) is the pulse shape and c(t, τ) is the channel impulse response. Let h(t, τ) span

Lh = Lp +Lc symbol intervals, as a result of p(τ) and c(τ) spanning Lp and Lc symbol

intervals, respectively. Let y(t) be the received signal due to the transmission of a

known training sequence {di} over the channel h(t, τ). The received signal y(t) is

sampled at a rate of 1/Ts = Ns/T , where Ns is the number of samples per symbol

interval. The ith received sample may be written as

yi =

Lp+Lc/2+κ∑

k=−Lp/2+κ

dkhi,i−kNs
+ ni, (2.18)

where yi = y(iTs), the channel spans Lh symbol intervals and κ = ⌊i/Ns⌋. The noise

samples ni are assumed to be Gaussian with zero-mean, and variance σ2
n.

Following [39], it is possible to decompose the discrete channel impulse response

into Ns parallel symbol-rate sub-channel impulse responses. Without loss of generality,

the lth received sample of the γth sub-channel may be written as

y
(γ)
l =

Lc+Lp/2+l∑

µ=−Lp/2+l

dµh
(γ)
l,l−µ + n

(γ)
l , (2.19)

where y
(γ)
l = ylNs+γ , n

(γ)
l = nlNs+γ , and h

(γ)
l,l−µ = hlNs+γ,(l−µ)Ns+γ , for γ = 0, . . . , Ns−1.

Provided that the channel is wide sense stationary (WSS), the γth sub-channel may

be modeled as a P th
V AR order vector autoregressive (VAR) process [40],

H(γ)
l =

PV AR∑

r=1

A(γ)
r H(γ)

l−r + N (γ)
l , (2.20)
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where A(γ)
r is the rth VAR coefficient matrix,

H(γ)
l = [h

(γ)
l,−Lp/2, . . . , h

(γ)
l,0 , . . . , h

(γ)
l,Lp/2+Lc−1]

T (2.21)

and N (γ)
l is the process noise vector. The VAR coefficient matrices may be obtained

using the channel statistics and solving matrix-vector Yule-Walker equations [40]. The

order of the VAR process is chosen as a trade-off between complexity and accuracy [41].

Observing the VAR process described by (2.20), we see that the VAR coefficient

matrices are in fact the coefficient matrices of a length PV AR matrix-vector predic-

tor. An alternative method of obtaining a set of predictor coefficient matrices is to

approximate the fading process associated with the µth channel coefficient of the γth

sub-channel as an N th
G order polynomial series [39]. Following [39], the N th

G order

polynomial prediction equation for the µth coefficient may be expressed as

h
(γ)
l,µ =

PG∑

r=1

urh
(γ)
l−r,µ + el,µ(NG, PG), (2.22)

where ur is the rth tap weight of a polynomial predictor of length PG and order NG

with NG < PG and e
(γ)
l,µ (NG, PG) is the prediction error, which is dependent on the

polynomial predictor order NG and length PG. This can also be expressed in matrix-

vector form as

H(γ)
l =

PG∑

r=1

UrH(γ)
l−r + E(γ)

l , (2.23)

where the Lh × Lh polynomial predictor matrix is Ur = urILh
and

E(γ)
l = [e

(γ)
l,1 (NG, PG), e

(γ)
l,2 (NG, PG), . . . , e

(γ)
l,Lh

(NG, PG)]T . (2.24)

We note that the computation of the polynomial prediction coefficients {u1, u2, . . . , ur}

does not require channel statistics. A list of unique coefficient values [38] for different

combinations of NG and PG is shown in Table 2.1.
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Table 2.1 Polynomial Predictor Coefficients For Different PG and NG [37].

Length Order Tap Coefficients

PG NG {u1, u2, . . . , uPG
}

1 0 {1}
2 0 {1/2, 1/2}
2 1 {2, -1}
3 0 {1/3, 1/3, 1/3}
3 1 {4/3, 1/3, -2/3}
3 2 {3, -3, 1}

Under the assumption that the prediction error E(γ)
l is very small, an alternative

state-space model for the γth sub-channel with unforced dynamics may then be formu-

lated as

h
(γ)
l+1 = Uh

(γ)
l , (2.25)

where h
(γ)
l = [H(γ)T

l ,H(γ)T
l−1 , . . . ,H(γ)T

l−PG+1]
T and

U =




U1 U2 . . . UPG−1 UPG

ILh(PG−1) 0Lh(PG−1),Lh


 . (2.26)

Using the state-space model of (2.25), the GRLS algorithm may be summarized as [38]

h
(γ)
l|l−1 = Uh

(γ)
l−1|l−1 (2.27)

P
(γ)
l|l−1 = λ−1UP

(γ)
l−1|l−1U

H (2.28)

h
(γ)
l|l = h

(γ)
l|l−1 + k

(γ)
l

(
y

(γ)
l − dlh

(γ)
l|l−1

)
(2.29)

P
(γ)
l|l = (ILhPG

− k
(γ)
l dl)P

(γ)
l|l−1 (2.30)

k
(γ)
l =

P
(γ)
l|l−1d

H
l

1 + dlP
(γ)
l|l−1d

H
l

, (2.31)

where λ is a number less than unity, P
(γ)
l|l is the inverse of the channel correlation matrix

and k
(γ)
l is the Kalman gain vector. The lth data vector is defined as

dl = [dl+Lc+Lp/2, . . . , dl+1, dl, dl−1, . . . , dl−Lp/2 | 01,Lh(PG−1)]. (2.32)
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The algorithm is initialized by setting the estimated channel state vector to the null

vector and P
(γ)
0|−1 = ζ−1ILhPG

, where ζ is a small positive real number.

2.5.2 The Generalized Least Mean Squares (GLMS) Estimator

The GLMS algorithm is a reduced complexity version of the GRLS algorithm. It is

derived by replacing the instantaneous inverse channel correlation matrix P
(γ)
l|l with

the matrix P̂(γ) = (liml→∞ E[P
(γ)
l|l ])−1, which is the inverse of the steady-state mean

of the correlation matrix. In order to evaluate P̂(γ), we require knowledge of the

autocorrelation matrix of the training data vector Rd = E[dH
l dl], the state transition

matrix U and the value of λ. These are known a priori, so we may evaluate P̂(γ) using

the offline recursion

P̂
(γ)
l|l−1 = λ−1UP̂

(γ)
l−1|l−1U

H (2.33)

Ψ
(γ)
l|l−1 = (ILhPG

+ DP̂
(γ)
l|l−1D

H)−1 (2.34)

P
(γ)
l|l = P̂

(γ)
l|l−1 − P̂

(γ)
l|l−1D

HΨ
(γ)
l|l−1DP̂

(γ)
l|l−1, (2.35)

where D is a (LhPG × LhPG) matrix, such that Rd = E[dH
l dl] = DHD, and P̂

(γ)
0|−1 =

P
(γ)
0|−1 = ζ−1ILhPG

. The steady-state approximation of the inverse correlation matrix

is therefore P̂(γ) = P̂
(γ)
l|l for large values of l. The number of recursions required to

obtain a good approximation was not mentioned in [37]. However, it has been found

by means of experimentation that no more than 500 iterations were sufficient for the

channels employed in this thesis work.

Recognizing that k
(γ)
l = P

(γ)
l|l dH

l [37] and replacing P
(γ)
l|l by P̂(γ), we may write the

lth update equation of the GLMS algorithm as

h
(γ)
l+1|l = U

(
h

(γ)
l|l−1 + P̂(γ)dH

l

(
y

(γ)
l − ŷ

(γ)
l|l−1

))
. (2.36)

Here, We note that the special case when PG = 1 and NG = 1, (2.36) reduces to the

standard least mean squares (LMS) algorithm.
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2.6 ERROR CORRECTION CODING

As already discussed, equalization combined with channel estimation can allow the

receiver to remove some of the channel impairments. To further improve the perfor-

mance, error correction coding is employed to help correct the errors that exist after

the equalization process, as shown in Fig. 2.1. In this thesis, binary convolutional

codes [42] will be used.

2.6.1 Binary Convolutional Codes

A binary convolutional code is generated by passing the message sequence through a

linear finite-state register (or finite-state machine). The redundant bits are generated

using modulo-2 convolutions defined by generator equations which describe the connec-

tions to the modulo-2 adders [21]. Here we assume the convolutional encoder structure

has a single input as this is sufficient for the work presented in this thesis. This is

illustrated in Fig. 2.4.

Figure 2.4 Encoder for the rate 1/2 (5, 7) convolutional code.

In general, let M be the memory or number of delay elements within the register,

and V be the number of modulo-2 adders. If we wish to encode a message sequence m

of length L, the resulting codeword sequence c will have length V(L + M). Hence, we

may express the code rate R as

R =
L

V(L + M)
. (2.37)

If the length of the message sequence L is significantly longer than the number of delay

elements M (which is typically the case) then L + M ≃ L and we may approximate
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the code rate by

R =
1

V . (2.38)

The constraint length K of a convolutional code refers to the number of shifts

required for an input message bit to be shifted out of the register so that it will not

have any more influence on the encoder output. Clearly, M + 1 shifts are required

for an encoder with M delay elements. Therefore, K = M + 1. An example of a 1/2

rate convolutional code with 2 delay elements and a constraint length of 3 is shown in

Fig. 2.4. The corresponding generator polynomial equations for the top and bottom

outputs are g(D) = 1 + D + D2 and g(D) = 1 + D2, respectively. A short hand

way of defining the generator equations is to take the coefficients of the generator

polynomials and express them as octal numbers. For example, g(D) = 1 + D + D2

may be expressed as 111(binary) = 7(octal) and g(D) = 1 + D2 may be expressed as

101(binary) = 5(octal). The code can therefore be referred to as the (5, 7) convolutional

code.

The structural properties of a convolutional encoder can be portrayed using a trellis

diagram. We define the state of a convolutional encoder according to the M message

bits stored in the shift register. For the convolutional encoder shown in Fig. 2.4, where

M = 2, there are 2M = 22 = 4 possible states. If we start and finish in the all-zero

(00) state, the trellis diagram is shown in Fig. 2.5. The solid and dashed lines represent

inputs of 0 and 1, respectively. The branches, or connections between states, are labeled

with the corresponding output bits.

Figure 2.5 Trellis diagram for the 1/2 rate convolutional encoder.
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The performance of a convolutional code is closely related to its minimum free

distance, dfree. This is defined as the Hamming distance between the all-zero codeword

associated with the all-zero path, and the codeword associated with the path with the

lowest weight starting and ending at the all-zero state, within the code trellis [43].

Using Fig. 2.5 as an example, the all-zero path and the lowest weight path in the trellis

are shown in Fig. 2.6. The corresponding codeword outputs are 000000 and 111011.

Therefore, the minimum free distance is dfree = 5. In general, a convolutional code with

a minimum free distance of dfree can correct up to t errors that occur within a length

of K if and only if dfree is greater than 2t [8,43]. Therefore, the minimum free distance

provides a good indication of the error correction capability of the convolutional code.

Figure 2.6 Minimum weight path starting and ending with the all-zero state.

Table 2.2 lists some rate 1/2 convolutional codes with maximum dfree for a given

constraint length (they were obtained using computer search methods) [21]. It is worth

noting that the (131,171) code is a standard code used in various real world applica-

tions [44] and has a stronger error correction capability than the (5, 7) convolutional

code. The corresponding encoder structure for this code is shown in Fig. 2.7.
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Table 2.2 Some rate 1/2 maximum free distance convolutional codes [21].

Constraint Generator Minimum Free

Length K Equations (octal) Distance dfree

3 5 7 5

4 15 17 6

5 23 35 7

6 53 75 8

7 133 171 10

8 247 371 10

9 561 753 12

10 1167 1545 12

11 2335 3661 14

12 4335 5723 15

13 10533 17661 16

14 21675 27123 16

Figure 2.7 Encoder for the rate 1/2 (133, 171) convolutional code.
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2.6.2 Decoding Convolutional Codes

Convolutional codes may be decoded using maximum-likelihood (ML) decoding or max-

imum a posteriori probability (MAP) decoding. For ML decoding, consider the (5, 7)

convolutional code and the QPSK signal constellation. Let c, x and y denote the en-

coded bits, the symbol sequence obtained from mapping the encoded codeword bits to

the signal constellation, and input to the convolutional decoder, respectively, as shown

in Fig. 2.1. Each element xi of the symbol sequence x corresponds to a point in the

signal constellation and each element yi of the sequence y corresponds to the received

version of xi. Clearly, yi will contain errors due to the channel, receiver front end noise,

and the equalization process through transmission. Denoting the error as a random

variable E, we may write yi = xi + ei, where ei is a sample of E. Often E may be

assumed to be Gaussian distributed with zero-mean and variance σ2
E
.

The goal of ML sequence estimation is to find the symbol sequence x̂opt, and

equivalently ĉopt, for which the a posteriori probability P(x|y) is maximized. That is,

x̂opt = arg

(
max
x∈C

P(x|y)

)
, (2.39)

where C is the set containing symbol sequences associated with every possible codeword.

Applying Bayes’ theorem1 to P(x|y), we obtain

P(x|y) =
P(x)P(y|x)

P(y)
. (2.40)

Realizing that P(y) is invariant to the information sequence x, (2.39) is equivalent to

x̂opt = arg

(
max
x∈C

P(x)P(y|x)

)
. (2.41)

Furthermore, it is often assumed that all sequences x ∈ C are equally likely, so P(x) is

a constant, meaning

x̂opt = arg

(
max
x∈C

P(y|x)

)
, (2.42)

1Bayes’ theorem is derived from the relationship between the conditional and joint probability of
events A and B as follows: P(A|B) · P(B) = P(B|A) · P(A) = P(A, B). It may also be written in the

alternative form as P(A|B) = P(B|A)·P(A)
P(B)

[45].
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which defines maximum likelihood detection.

A method to calculate (2.42) is to perform a step-by-step calculation. First,

lnP(yi|Xm) is calculated for all constellation points, Xm. Second, we associate the

encoder output for each state transition to the corresponding lnP(yi|Xm) as a branch

metric. Third, the path metric of a symbol sequence up to time i + 1 is defined as the

sum of the path metric for a symbol sequence up to time i and the branch metric of the

ith state transition. The initial path metric, corresponding to i = 0, is set to 0. Hence,

the path metric of a symbol sequence x is obtained as the sum of all branch metrics,

and the symbol sequence with the largest metric is chosen as x̂opt. When the error

introduced to y is Gaussian, lnP(yi|Xm) can be replaced by the Euclidean distance

between yi and Xm.

Although the step-by-step calculation method can be used to decode convolutional

codes, it leads to an exponentially increasing number of code sequences and metrics as

the length of the codeword increases [46]. Since the structure of the trellis associated

with a convolutional code repeats itself, substantial simplification of the decoding pro-

cedure can be achieved by considering only the code sequence with the largest metric

over all other code sequences with n > K trace backs that go through the same node.

This is known as the Viterbi algorithm (VA), and was first developed in [47]. The VA

was later shown to be optimal, as the simplification to the step-by-step approach does

not effect the selection of the best possible path through the trellis [48].

For the work of this thesis, the MAP decoding method known as the Bahl-Cocke-

Jelinek-Reviv (BCJR) algorithm is used instead of the VA. Although both algorithms

employ the trellis structure of convolutional codes [49], the BCJR algorithm is capable

of processing a soft input as well as providing soft output information, which is required

in the turbo equalization process. The BCJR algorithm is based on the assumption

that a convolutional encoder may be modeled as a discrete-time finite-state Markov

source, and in comparison to the VA, it maximizes the symbol a posteriori probabil-

ities instead of the sequence a posteriori probabilities. A detailed discussion of the

BCJR algorithm is presented in the next chapter as it is related closely to the turbo

equalization structure.
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2.7 SUMMARY

This background chapter summarized some of the underlying theory behind a typical

wireless communication system. These include modulation and pulse shaping tech-

niques, Fourier series and Fourier transform representation for periodic signals, equal-

ization, channel estimation and error correction coding. The signal constellations and

the coding scheme employed in this thesis were also defined in this chapter. How-

ever, the proposed FD-TLE system incorporating channel estimation has not yet been

defined. It will be presented in the next chapter, where a detailed discussion of the

proposed system and examples are given.



Chapter 3

FREQUENCY-DOMAIN TURBO LINEAR EQUALIZATION

WITH CHANNEL ESTIMATION

This chapter describes the proposed system. It uses the frequency-domain turbo linear

equalization (FD-TLE) algorithm of [32] and the channel estimation algorithm of [37].

A block diagram of the proposed system at complex baseband is shown in Fig. 3.1.

The novelty of the scheme lies in the combination of channel estimation with FD-TLE,

which has not been considered to date. Furthermore, we consider the extension to high

level modulation formats.

Figure 3.1 Proposed system using FD-TLE with channel estimation.
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3.1 SYSTEM OVERVIEW

We may abstract from the system diagram of Fig. 3.1, the signal processing operations

that take place in terms of a flow chart as shown in Fig. 3.2. Prior to data transmission,

the system is switched to training mode and a training sequence is transmitted to

train the channel estimator. The training sequence must be sufficiently long that the

estimator essentially converges. The system is then switched to data transmission

mode with the training sequence embedded in the unique word (UW) at the start of

each frame (c.f. Fig. 3.3). This allows the channel estimator to continue to track and

estimate the CSI for each data transmission block.

Figure 3.2 Overall proposed system operation flowchart.

At the transmitter, the binary data stream {bp} is encoded using a convolu-

tional code1. The encoded bits {cp} are fed to a symbol selector, which maps each

group of log2 M consecutive bits to a channel symbol from an M -ary constellation set

X = {Xi, i = 0, 1, . . . ,M − 1}. The signal constellations considered were defined in

Chapter 2. The channel symbol stream at rate f = 1/T is divided into non-overlapping

1A variety of codes such as turbo and/or low density parity check (LDPC) codes could also be used,
but the convolutional code is chosen for simplicity.
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blocks each containing NCS channel symbols. Each block is interleaved using a block

interleaver to produce the block of channel symbols

xNCS
= [x0, x1, . . . , xNCS−1]

T . (3.1)

It is assumed that the channel symbols {xn} are zero-mean, independent and identically

distributed with variance σ2
x. A known UW sequence of length NUW is appended to

each interleaved channel symbol block both as a prefix and as a suffix. This produces

the sequence

xNTotal
= [x−NUW

, . . . , x−1, x0, x1, . . . , xNCS−1, xNCS
, . . . , , xNCS+NUW−1]

T , (3.2)

where NTotal = 2NUW + NCS . The purpose of the UW prefix and suffix is to make

the convolution with the channel appear circular to the DFT [50]. The UW prefix

and suffix are also used to update the CSI in the channel estimator and to estimate

the variance of the equalization error for each frame of equalized received signals. The

composition of each transmission frame is summarized in Fig. 3.3 and the percentage

overhead O required for the transmission of each block can be calculated to be

O =
2 · NUW

NTotal
× 100%. (3.3)

Figure 3.3 The composition of a single transmission frame.

The symbol sequence is passed through a root raised cosine transmitter filter with

a rolloff of α and impulse response p(t) truncated to Lp symbol intervals. Here we

assume that Lp is large enough so that the change in the filter characteristic due to
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the truncation process is negligible. This produces the transmitted complex baseband

signal

s(t) =

NUW +NCS−1∑

n=−NUW

xnp(t − nT ), (3.4)

which is transmitted over a frequency selective fading channel.

The channel is modeled as a delay line with Lc independent and symbol spaced

taps. It is assumed that the channel impulse response which lasts Lc symbol intervals

is slowly time varying, and undergoes negligible change over each transmitted block.

Then, during the transmission of xNTotal
, the channel impulse response can be expressed

as

c(t, τ) =

Lc−1∑

n=0

cn(t)δ(τ − τn), (3.5)

where δ(·) is the dirac delta function, and τn and cn(t) are the delay and gain associated

with the nth tap at time t, respectively. Since the analysis presented in this section

of the chapter focuses on the channel impulse response corresponding to a single data

block, we may simplify the notation for the channel impulse response to

c(τ) =

Lc−1∑

n=0

cnδ(τ − τn), (3.6)

assuming the channel to be time-invariant over each block.

The signal s̃(t) at the output of the fading channel has the same form as s(t) and

is given by

s̃(t) =

NUW +NCS−1∑

n=−NUW

xnh(t − nT ), (3.7)

where h(t) = p(t)⊗c(t) is the overall impulse response that spans Lh = Lp+Lc symbols,

as illustrated in Fig. 3.4, assuming that the duration of the transmitted signal prefix is

set to be longer than the overall channel memory. Hence, h(t) = 0 outside the interval

[0, NUW T ]. It is not difficult to see that (3.7) can form a periodic extension based on

the interval 0 ≤ t ≤ (NCS + NUW − 1)T of duration NT , where N = NCS + NUW

defines its period. The fundamental frequency for this periodic extension is therefore

f0 = 1/NT .
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Pulse shape truncated to
4 symbol intervals

p(t)
Lp =

Channel impulse response
span = 2 symbol intervals

c(t)
Lc

Composite channel response
span 6 symbol intervals

h(t)
Lh = Lp + Lc =

Figure 3.4 Example to show the composite channel response h(t) spanning, for example, Lh =
Lp + Lc = 6 symbol intervals.

We may express the portion of s̃(t) that is used for the periodic extension, in terms

of its Fourier series expansion representation as

s̃p(t) =
+∞∑

k=−∞
S̃k exp

(
j
2πkt

NT

)
, (3.8)

where S̃k are the series coefficients. Let S̃p(f) be the continuous Fourier transform of

s̃p(t). By utilizing the connection between Fourier Series and Fourier Transforms, we
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obtain

s̃p(t) =
1

NT

+∞∑

k=−∞
S̃p

(
k

NT

)
exp

(
j
2πkt

NT

)

=
1

NT

+∞∑

k=−∞
P

(
k

NT

)
X

(
k

NT

)
H

(
k

NT

)
exp

(
j
2πkt

NT

)

=
1√
NT

+∞∑

k=−∞

P
(

k
NT

)
√

T

X
(

k
NT

)
√

N
H

(
k

NT

)
exp

(
j
2πkt

NT

)

=
1√
NT

+∞∑

k=−∞
PkXkCk exp

(
j
2πkt

NT

)
(3.9)

for 0 ≤ t ≤ NT , where Pk = P (k/NT )/
√

T ,

Ck = C(k/NT ) =

Lc−1∑

n=0

cn exp

(
−j

2πkτn

NT

)
(3.10)

and P (f) and C(f) are the continuous Fourier transforms of p(t) and c(t). In addition,

Xk is the kth component of the vector XN = [X0, X1, . . . , XN−1]
T , resulting from the

DFT of xN = [x0, x1, . . . , xN−1]
T , that is

XN = QNxN , (3.11)

where QN is the N -point DFT matrix, with value qn,k = exp(−j2πkn/N)/
√

N , in the

nth row and kth column for n = 0, 1, . . . , N −1 and k = 0, 1, . . . , N −1. Note that (3.9)

agrees with the result in [32], despite possible differences in derivation methods. As-

suming that p(t) is bandlimited to B = 1/THz, (3.9) reduces to

s̃p(t) =
1√
NT

N∑

k=−N

PkXkCk exp

(
j
2πkt

NT

)
(3.12)

for 0 ≤ t ≤ NT , since Pk = 0 for |k| > N .

The received signal can be expressed as

r(t) =

NUW +NCS−1∑

n=−NUW

xnh(t − nT ) + w(t), (3.13)
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where w(t) is additive white Gaussian noise (AWGN) with two-sided power spectral

density 2N0, as shown in Fig 3.5a. The signal r(t) is passed through an ideal lowpass

filter (LPF) having bandwidth 1/T and gain
√

T/2, which produces the bandlimited

random process

y(t) =

NUW +NCS−1∑

n=−NUW

√
T

2
xnh(t − nT ) + n(t), (3.14)

where n(t) is a Gaussian noise process having zero-mean and two-sided power spectral

density N0T for |f | ≤ 1/T , as shown in Fig 3.5b. An ideal LPF is chosen instead of a

matched filter because the received pulse shape is unknown since the channel is random

and unknown.

Figure 3.5 Noise PSD for (a) w(t) and (b) n(t).

The signal y(t) is sampled uniformly at rate fs = Ns/T . Assuming Ns = 2, two

samples are obtained in each symbol period2. The samples corresponding to the UW

prefix are used by the channel estimator to update the CSI before being discarded. Fur-

ther explanation of how the UW prefix is used to update the CSI will be presented later

in this chapter. Following (3.12) and (3.14), the remaining samples may be expressed

2Although Ns can take any integer value to accommodate Doppler, in most practical instances,
Ns = 2 is sufficient.
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as a 2N -dimensional vector given by y2N = [y0, y1, . . . , y2N−1], where

yi = y(ti) =

NUW +NCS−1∑

n=−NUW

√
T

2
xnh(ti − nT ) + ni

=

√
2

T
s̃p(ti) + ni

=
1√
2N

N∑

k=−N

PkXkCk exp

(
j
2πki

2N

)
+ ni, (3.15)

ti = iT/2 and i = 0, . . . , 2N − 1. The noise samples ni = n(ti) are independent and

identically distributed random variables having zero-mean and variance σ2
n = 2N0. We

note that since σ2
n does not undergo dramatic fluctuation, it is assumed to be known

at the receiver. This can be achieved by measuring the noise power explicitly.

A 2N point DFT is performed on the vector y2N , producing the vector

Y2N = [Y0, Y1, . . . , Y2N−1]
T = Q2Ny2N , (3.16)

whose kth component is given by

Yk =
1√
2N

2N−1∑

i=0

yi exp

(
−j

2πki

2N

)
(3.17)

for k = 0, . . . , 2N − 1. It can then be shown that

Yk = RkXk + Vk, (3.18)

where

Rk =





PkCk, k = 0, 1, . . . , N − 1

Pk−2NCk−2N , k = N, N + 1, . . . , 2N − 1

(3.19)

and the set of random variables {Vk} is statistically equivalent to {ni}. Furthermore,

we can write (3.18) in matrix form as

Y = RX2N + V, (3.20)
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where R = diag(Rk) is the composite channel matrix in the frequency domain, X2N =
[
XT

N |XT
N

]T
and V = [V0, V1, . . . , V2N−1]

T .

The matrix form Y of received samples in the frequency-domain as defined in (3.20)

forms the input to the minimum mean-squared error (MMSE) equalizer. Filtering Y by

an N ×2N equalizer filter matrix DTLE [ψ]
∣∣
ψ=1

produces the N -dimensional frequency-

domain estimate vector X̂N . Following the IDFT and the deinterleaving process, the

time-domain symbol estimate x̂
′

N is obtained. Passing x̂
′

N into the soft-input soft-

output (SISO) decoder then generates symbol a posteriori probabilities (APPs). These

are passed back to the equalizer through an interleaver and DFT block to make an

updated estimate of XN by adjusting the equalizer matrix to DTLE [ψ]
∣∣
ψ=2

. This

iterative process continues for a set number of iterations, then the decoded data is

obtained from the SISO decoder. A detailed discussion of this process will be presented

later in this chapter.

3.2 CHANNEL ESTIMATION EMPLOYING THE GLMS CHANNEL ESTIMATOR

As mentioned in the previous section, the UW sequence is used to train the channel

estimator and update the channel estimate from one transmission block to another.

Here we discuss the channel estimation process in detail, and show how the GLMS

channel estimation algorithm is employed.

We begin by considering the design of the UW sequence. First, the length of the

UW, NUW , is set to be longer than the maximum delay spread of the overall composite

channel response. That is, we choose NUW ≥ Lh. This is required not only to ensure

that the transmitted data block appears circular to the DFT block as mentioned earlier,

but also to ensure that the channel is estimated correctly. Second, each element of the

UW is a constellation point randomly chosen from the signal constellation of interest.

By making the UW sequence as random as possible, we ensure that the spectrum of

the UW sequence is as flat as possible, which makes the channel estimation process

more effective.

Next we consider the channel estimation process. Prior to training, an offline
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recursion is required for the GLMS estimator, as described in Chapter 2, to calculate

the so-called intermediate matrix P̂(γ). This needs to be performed only once, and

the result can be stored for use during channel estimation. During training, a training

sequence consisting of NTrain+Lh symbols is transmitted to train the channel estimator,

where NTrain corresponds to the number of estimate updates performed during the

training phase. This training sequence is denoted by

dTrain = [d0−Lh/2, . . . , d0, . . . , dNTrain
, . . . dNTrain+Lh/2−1]. (3.21)

We note that the addition of Lh extra symbols in the training sequence is required to

take into account the tail effects arising in linear convolution. As the system samples

the received signals at a rate of 2/T , the ith received sample may be written as

yi =

Lc+Lp/2+κ∑

k=−Lp/2+κ

dkhi,i−2k + ni. (3.22)

By decomposing the channel impulse response into two symbol-rate sub-channel im-

pulse responses, the lth received sample of the γth sub-channel may be written as

y
(γ)
l =

Lc+Lp/2+l∑

µ=−Lp/2+l

dµh
(γ)
l,l−µ + n

(γ)
l , (3.23)

where y
(γ)
l , n

(γ)
l , and h

(γ)
l,l−µ for γ = 0, 1 have all been defined in Chapter 2. We may

write the lth update equation of the GLMS algorithm for the γth discrete sub-channel

impulse response estimate as

h
(γ)
l+1|l = U

(
h

(γ)
l|l−1 + P̂(γ)dH

l (y
(γ)
l − ŷ

(γ)
l|l−1)

)
, (3.24)

where

dl = [dl+Lh−Lp/2, . . . , dl+1, dl, dl−1, . . . , dl−Lp/2 | 01,Lh(PG−1)]. (3.25)

After NTrain training updates, the transmitter is switched to data transmission

mode. Now we need to adjust our notation for the received samples as the channel is
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assumed to remain constant for the jth transmission block, and the training sequence

is now embedded in the UW prefix for each data block. Therefore, we define

yj,i =

Lh−Lp/2+κ∑

k=−Lp/2+κ

xj,khj,i−2k + nj,i, (3.26)

as the received samples associated with the UW prefix in each block, where i =

−2NUW , . . . ,−1 to comply with the indexing of the UW prefix. Decomposing the chan-

nel impulse response into two symbol-rate sampled sub-channel impulse responses, the

lth received sample of the γth discrete sub-channel for the jth data transmission block

may be written as

y
(γ)
j,l =

Lh−Lp/2+l∑

µ=−Lp/2+l

xj,µh
(γ)
j,l−µ + n

(γ)
j,l , γ = 0, 1. (3.27)

Only two samples, y
(0)
j,−NUW /2 and y

(1)
j,−NUW /2 are used to make the (NTrain+j)th update

of the channel since NTrain updates already took place during the training mode. Lastly,

since the UW sequence is random and independent for each data transmission block,

the vector dj for the (NTrain + j)th update is defined as

dj = [xj,−NUW /2+Lh−Lp/2, . . . , xj,−NUW /2, . . . , xj,−NUW /2−Lp/2 | 01,Lh(PG−1)]. (3.28)

Having described the channel estimation process, we note that when the channel

impulse response c(t) is symbol spaced and a root-raised cosine pulse shape is employed

for p(t), the discrete sub-channel impulse response with γ = 0 corresponds to the tap

gains {cn} of the channel response c(t), as shown in Fig. 3.6. Since the pulse shape

p(t) is fixed and known, it is sufficient to estimate only c(t) in order to obtain an

estimate of h(t). In particular, we are interested in estimating the tap gains {cn}. This

suggests that instead of estimating two discrete sub-channels, the estimator now only

has to estimate the first sub-channel, which means the computational complexity of the

channel estimation process is halved. This is easily achieved by decimating the received

samples during the training mode, as well as the received samples that correspond to
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the transmission of the UW sequence during the transmission mode by a factor of two.

In general, this approach can be extended to a system with Ns samples per symbol

interval by decimating the received samples by a factor of Ns where applicable3.

Sampled pulse shape p(iTs) Discrete form of c(t)

1st sub-channel (gamma=0) 2nd sub-channel (gamma=1)

Sampled composite channel obtained
from the convolution of withp(iTs) c(iTs)

Figure 3.6 Example to show how the discrete sub-channel impulse response for γ = 0 is the symbol-
rate sampled discrete impulse response of c(t).

3It is assumed that accurate symbol synchronization is available. In the case where accurate symbol
synchronization is not available, all Ns samples will need to be used in the estimation process.
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3.3 THE EQUALIZER FILTER MATRIX

We now derive the equalizer filter matrix DTLE [ψ] for the ψth iteration in the turbo

equalization process. Initially, we assume that the channel impulse response (CIR) is

perfectly known at the receiver, and derive the equalizer filter matrix DTLE [ψ] following

the work of [32]. Note that many of the intermediate steps included in the present

derivation were not shown in [32]. We then derive the equalizer filter matrix DTLE [ψ]

for the case where only estimated CIR is available at the receiver. This explicitly

illustrates the effect of channel estimation error.

Before starting the ψth iteration of the turbo equalization process, we note that

the data APPs produced by the SISO channel decoder in the previous iteration are

available except when ψ = 1. When ψ = 1, the data APPs are set to be equiprobable.

We use the notation APPn,l[ψ − 1] = P(xn = Xl|x̂l) to denote the APPs for the ψth

iteration.

Following the work of [32], we first define the zero-mean vectors

X̃N [ψ] = XN − E
x,ψ−1{XN} (3.29)

and

X̃2N [ψ] = X2N − E
x,ψ−1{X2N}, (3.30)

where

E
x,ψ−1

{
xn

}
=

M−1∑

l=0

APPn,l[ψ − 1]Xl. (3.31)

is the statistical average of xn with respect to the data vector x evaluated on the basis

of the APPs produced by the SISO decoder after ψ− 1 iterations {APPn,l[ψ− 1]}. We

may then define the modified received vector as

Ỹ[ψ] = Y − RE
x,ψ−1{X2N} = RX̃2N [ψ] + V, (3.32)

where R is the composite channel matrix in the frequency-domain as defined in (3.20).
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The resulting frequency-domain error is then given by

∆̃TLE [ψ] = DTLE [ψ]Ỹ[ψ] − X̃N [ψ], (3.33)

and the orthogonality principle in the frequency-domain can then be expressed as

E{∆̃TLE [ψ]Ỹ[ψ]H} = 0N×2N . (3.34)

Substituting (3.32) and (3.33) into (3.34), we obtain

E

{
∆̃TLE [ψ]Ỹ[ψ]H

}

= E

{(
DTLE [ψ]Ỹ[ψ] − X̃N [ψ]

)
Ỹ[ψ]H

}

= E

{(
DTLE [ψ]

(
RX̃2N [ψ] + V

)
− X̃N [ψ]

)(
RX̃2N [ψ] + V

)H
}

= E

{(
DTLE [ψ]

(
RX̃2N [ψ] + V

)
− X̃N [ψ]

)(
X̃2N [ψ]HRH + VH

) }

= E

{
DTLE [ψ]

(
RX̃2N [ψ] + V

)
X̃2N [ψ]HRH

}

+E

{
DTLE [ψ]

(
RX̃2N [ψ] + V

)
VH

}
− E

{
X̃N [ψ]X̃2N [ψ]HRH

}

−E

{
X̃N [ψ]VH

}

= DTLE [ψ]RE

{
X̃2N [ψ]X̃2N [ψ]H

}
RH + DTLE [ψ]E

{
VVH

}

−E

{
X̃N [ψ]X̃2N [ψ]H

}
RH

= DTLE [ψ]

(
RE

{
X̃2N [ψ]X̃2N [ψ]H

}
RH + σ2

nI2N

)

−E

{
X̃N [ψ]X̃2N [ψ]H

}
RH

= 0N×2N . (3.35)

Rearranging the terms in the penultimate line of (3.35) gives

DTLE [ψ]

(
RE

{
X̃2N [ψ]X̃2N [ψ]H

}
RH + σ2

nI2N

)
= E

{
X̃N [ψ]X̃2N [ψ]H

}
RH , (3.36)
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which may be solved to obtain the desired equalizer matrix as

DTLE [ψ] = E

{
X̃N [ψ]X̃2N [ψ]H

}
RH

·
(
RE

{
X̃2N [ψ]X̃2N [ψ]H

}
RH + σ2

nI2N

)−1

. (3.37)

Expanding the term E{X̃N [ψ]X̃2N [ψ]H} in (3.36) we obtain

E

{
X̃N [ψ]X̃2N [ψ]H

}

= E

{(
XN − E

x,ψ−1

{
XN

})(
X2N − E

x,ψ−1

{
X2N

})H }

= E

{
XNXH

2N

}
− E

{
XN

}
E

x,ψ−1

{
XH

2N

}
− E

x,ψ−1

{
XN

}
E

{
XH

2N

}

+E
x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

2N

}
. (3.38)

Instead of setting the terms associated with E{XN} and E{X2N} to zero, we replace

them with E
x,ψ−1{XN} and E

x,ψ−1{XH
2N}, respectively. This leads to the result

E

{
X̃N [ψ]X̃2N [ψ]H

}
= E

{
XNXH

2N

}
− E

x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

2N

}

= E

{
XN

[
XH

N |XH
N

] }

−E
x,ψ−1

{
XN

}
E

x,ψ−1

{[
XH

N |XH
N

] }

= E

{
XNXH

N

}
[IN |IN ]

−E
x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

N

}
[IN |IN ]

=

(
σ2

xIN − E
x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

N

})
J, (3.39)

where J = [IN |IN ]. Similarly,

E

{
X̃2N [ψ]X̃2N [ψ]H

}
= JH

(
σ2

xIN − E
x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

N

})
J. (3.40)

Since the signal constellations being considered in this thesis are normalized so that
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σ2
x = 1, equations (3.39) and (3.40) can be reduced to

E

{
X̃N [ψ]X̃2N [ψ]H

}
=

(
IN − E

x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

N

})
J, (3.41)

and

E

{
X̃2N [ψ]X̃2N [ψ]H

}
= JH

(
IN − E

x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

N

})
J, (3.42)

respectively. Lastly, substituting (3.41) and (3.42) into (3.37), we obtain the equalizer

matrix as

DTLE [ψ] = (IN − Φ[ψ])JRHKT [ψ], (3.43)

where

Φ[ψ] = E
x,ψ−1

{
XN

}
E

x,ψ−1

{
XH

N

}
(3.44)

and

KT [ψ] =
[
RJH (IN − Φ[ψ])JRH + σ2

nI2N

]−1
. (3.45)

The data APPs are exploited in the turbo equalizer only for the evaluation of the matrix

Φ[ψ] = [φi,p[ψ]], where φi,p[ψ] = E
x,ψ−1{Xi}Ex,ψ−1{X∗

p}. In particular, we have

φi,p[ψ] =
1

N

N−1∑

n=0

E
x,ψ−1

{
xn

}
exp

(
−j

2πin

N

)

·
N−1∑

l=0

E
x,ψ−1

{
xl

}∗
exp

(
−j

2πpl

N

)
, (3.46)

where

E
x,ψ−1

{
xn

}
=

M−1∑

l=0

APPn,l[ψ − 1]Xl. (3.47)

Note that we require knowledge of R, which contains information regarding the

transmitted pulse shape p(t) and the channel impulse response c(t). Since p(t) does

not change and is known for every transmission, only the channel impulse response c(t)

needs to be estimated as proposed in the system shown in Fig. 3.1.
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3.3.1 Effect of Channel Estimation Error

Now let us consider the situation when only an estimate of the channel response is

available. We then have

R̂ = R + E, (3.48)

where R is the actual frequency-domain channel response and E is a diagonal error

matrix arising from the estimation of R. Rearranging this, we have

R = R̂ − E. (3.49)

We then use R̂ − E in place of R in the derivation of the equalizer matrix to get

E

{
∆̃TLE [ψ]Ỹ[ψ]H

}

= E

{ (
DTLE [ψ]Ỹ[ψ] − X̃N [ψ]

)
Ỹ[ψ]H

}

= E

{ (
DTLE [ψ]

((
R̂ − E

)
X̃2N [ψ] + V

)
− X̃N [ψ]

)

·
((

R̂ − E
)
X̃2N [ψ] + V

)H
}

= E

{ (
DTLE [ψ]

((
R̂ − E

)
X̃2N [ψ] + V

)
− X̃N [ψ]

)

·
(
X̃2N [ψ]H

(
R̂ − E

)H
+ VH

)}

= DTLE [ψ]E

{(
R̂ − E

)
X̃2N [ψ]X̃2N [ψ]H

(
R̂ − E

)H
}

+DTLE [ψ]E

{
VVH

}
− E

{
X̃N [ψ]X̃2N [ψ]H

(
R̂ − E

)H
}

−E

{
X̃N [ψ]VH

}

= DTLE [ψ]

(
R̂E

{
X̃2N [ψ]X̃2N [ψ]H

}
R̂

)

+DTLE [ψ]

(
E

{
EX̃2N [ψ]X̃2N [ψ]HEH

}
+ σ2

nI2N

)

−E

{
X̃N [ψ]X̃2N [ψ]H

}
R̂H

= 0N×2N , (3.50)
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which gives the solution

DTLE [ψ] = (IN − Φ[ψ])JR̂HKT [ψ], (3.51)

which is formally identical to (3.43). In fact, we now have

KT [ψ] =
[
R̂JH (IN − Φ[ψ])JR̂H + E

{
EEH

}
JH (IN − Φ[ψ])J + σ2

nI2N

]−1
. (3.52)

This explicitly shows the effect of channel estimation error as a bias in the equalizer

gain matrix KT [ψ]. From this, it can be seen that the equalizer is compensating for

the estimated channel response R̂ rather than the actual response R.

Now let us examine the error matrix E and the matrix E{EEH}. Starting with

the channel response c(t), we can write it in mathematical form as

c(t) =

Lc−1∑

n=0

cnδ(t − τn). (3.53)

The estimated channel response may be written as

ĉ(t) =

Lc−1∑

n=0

(cn + en)δ(t − τn), (3.54)

where {en} are the errors introduced in the estimation process. Taking the Fourier

transform of ĉ(t) we obtain

Ĉ(f) =

Lc−1∑

n=0

(cn + en) exp (−j2πfτn)

=

Lc−1∑

n=0

cn exp (−j2πfτn) +

Lc−1∑

n=0

en exp (−j2πfτn)

= C(f) + E(f). (3.55)

Initially, both C(f) and Ĉ(f) are not band-limited if we examine (3.55). However,

the pulse shaping restricts the transmission bandwidth to have a maximum bandwidth

of 2/T . Therefore, the frequency range [−1/T, 1/T ] of Ĉ(f) is the frequency range of

interest. Within this range, Ĉ(f) is sampled accordingly to form the estimated discrete
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channel response. For the ease of explanation, let us suppose that the pulse shaping

function P (f) is a rectangular function with unity gain. Hence, Ĉ(f) = Ĉ(f) · P (f)

in the frequency range [−1/T, 1/T ]. Relating this to the estimated composite diagonal

channel matrix R̂, each element of R̂ is a sample obtained from Ĉ(f).

By writing R̂ = R + E, it is easy to see that each element of the diagonal ma-

trix E can be obtained by sampling E(f) =
∑Lc−1

n=0 en exp (−j2πfτn), defined previ-

ously in (3.55). Assuming that the estimation errors associated with each channel tap

{e0, . . . , eLc−1} are independent, we then obtain

E

{(
Lc−1∑

n=0

en exp (−j2πfτn)

)(
Lc∑

n=0

en exp (−j2πfτn)

)∗}
=

Lc−1∑

n=0

E {ene∗n} . (3.56)

This value is in fact the value for each component of the diagonal matrix E{EEH} for

the case where a rectangular pulse shape is used. The result is analogous to the MSD

calculation used in [37, 38] to evaluate the GRLS and GLMS estimator performances.

Here, we note that as Lc increases, the elements of the matrix E{EEH} will also

increase in value due to the summation
∑Lc−1

n=0 E {ene∗n}. Thus, we would expect an

increase in the number of channel taps to result in larger channel estimation errors.

On the other hand, if a root-raised cosine or a raised cosine pulse response is used for

P (f), the elements of the error matrix E will decrease in amplitude since P (f) ≤ 1.

Hence, E{EEH} will have components equal to or smaller than
∑Lc−1

n=0 E {ene∗n}, as

defined in (3.56).

Ideally, a constant bias needs to be set for each element of the matrix E{EEH}

in (3.52). The statistical properties of the channel estimation error are not known and

are usually not easy to specify. As noted in [37, 38], the estimation error is related

to the channel fade rate and the predictor length and order. In order to calculate

E{EEH} analytically or by means of computer simulation, we require the CSI to be

ideally known. This is not easily achieved in a practical system. We were able to

find values for
∑Lc−1

n=0 E{EEH} by means of computer simulation in the process of

evaluating the GLMS estimator performance for the 11-TAP and SUI-5 channel. The

results are presented in a later chapter of this thesis and it is seen that the MSD is
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small in magnitude, especially for high SNR values.

Examining the term E
{
EEH

}
JH (IN − Φ[ψ])J in (3.52), it is easy to see that

since elements of the matrix E{EEH} are small, the elements in the matrix resulting

from E
{
EEH

}
JH (IN − Φ[ψ])J will also be small. Hence, we may set this term to

zero as a good approximation and reduce the gain matrix of (3.52) to the approximated

form

KT [ψ] =
[
R̂JH (IN − Φ[ψ])JR̂H + σ2

nI2N

]−1
. (3.57)

We note that (3.57) has the same form as (3.45), which was obtained assuming ideally

known CSI. Clearly, since R̂ = R + E is used in (3.57) instead of the actual composite

channel R, a degradation in receiver performance is expected compared to the case of

perfectly known CSI since the equalizer is now ”mismatched” to the channel.

3.4 CALCULATING SOFT INFORMATION IN THE DECODER

Having derived the equalizer forward matrix DTLE [ψ], we now consider how the soft

information is calculated by the SISO decoder. Referring to Fig. 3.1, the output of

the equalizer is an estimate of the transmitted sequence. After deinterleaving, this

sequence becomes an estimate of the encoded message sequence. It is fed into the

SISO convolutional decoder, which generates soft a posteriori symbol probabilities.

Based on the discussion in [51], we now describe the BCJR algorithm [51], which is a

symbol-by-symbol maximum a posteriori (MAP) algorithm, and is used in this thesis.

Having defined the trellis structure of a convolutional code in Chapter 2, let S be

the number of code states, si, where i = 0, 1, . . . ,S − 1. We denote the state of the

encoder at time t by St and its corresponding output by xt. A state sequence of the

source ranging from time t to time t′ is denoted by St′
t = St, St+1, . . . , St′ , and the

corresponding output sequence by xt′
t = xt, xt+1, . . . , xt′ . The state transitions of the

convolutional encoder are governed by the transition probabilities

pt(si|sj) = P(St = si|St−1 = sj) (3.58)
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and the output of the convolutional encoder by the probabilities

qt(Xl|si, sj) = P(xt = Xl|St−1 = sj , St = si), (3.59)

where Xl is a point in the signal constellation. The encoder starts and terminates in the

all-zero state so that S0 = SN−1 = 0 within each block xNCS
, producing the output

sequence x
NCS−1
0 . The decoder examines the equalized signal sequence x̂

NCS−1
0 =

x̂0, x̂1, . . . , x̂NCS−1 and estimates the APPs of the states and transitions of the encoder.

In particular, the conditional APP associated with each node in the trellis is given by

P(St = si|x̂NCS−1
0 ) =

P(St = si, x̂
NCS−1
0 )

P(x̂NCS−1
0 )

, (3.60)

and the APP associated with each branch and the corresponding output symbol in the

trellis is given by

P(St−1 = sj , St = si|x̂NCS−1
0 ) =

P(St−1 = sj , St = si; x̂
NCS−1
0 )

P(x̂NCS−1
0 )

. (3.61)

To obtain the probabilities

λt(si) , P(St = si, x̂
NCS−1
0 ) (3.62)

and

σt(sj , si) , P(St−1 = sj , St = si, x̂
NCS−1
0 ), (3.63)

we consider the probability functions

αt(si) = P(St = si, x̂
t
0), (3.64)

βt(si) = P(x̂NCS

t+1 |St = si), (3.65)

and

γt(sj , si) = P(St = si, x̂t|St−1 = sj). (3.66)
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Exploiting the Markov property [9] we have [51]

λt(si) = P(St = si, x̂
t
0) · P(x̂NCS

t+1 |St = si, x̂
t
0)

= αt(si) · P(x̂NCS

t+1 |St = si)

= αt(si) · βt(si), (3.67)

and

σt(sj , si) = P(St−1 = sj , x̂
t−1
0 ) · P(St = si, x̂t|St−1 = j) · P(x̂NCS

t+1 |St = i)

= αt−1(sj) · γt(sj , si) · βt(si). (3.68)

For t = 1, 2, . . . , NCS we then obtain [51]

αt(si) =
S−1∑

j=0

P(St−1 = sj , St = si, x̂
t
0)

=
S−1∑

j=0

P(St−1 = sj , x̂
t
0) · P(St = si, x̂t|St−1 = sj)

=
S−1∑

j=0

αt−1(sj) · γt(sj , si). (3.69)

For t = 0, we have the boundary conditions

α0(si) =





1, i = 0

0, i 6= 0.

(3.70)

Similarly, for t = 0, 1, . . . , NCS − 1 we have the recursion

βt(si) =
S−1∑

j=0

P(St+1 = sj , x̂
NCS

t+1 |St = si)

=
S−1∑

j=0

P(St+1 = sj ,xt+1|St = si) · P(x̂NCS

t+2 |St+1 = sj)

=
S−1∑

j=0

βt+1(sj) · γt+1(sj , si), (3.71)
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with boundary conditions

βNCS
(si) =





1, i = 0

0, i 6= 0.

(3.72)

These boundary conditions can be achieved by forcing the last M input bits into the

convolutional encoder to be zero. Lastly, we may write

γt(sj , si) =
M∑

l=0

P(St = si, x̂t, xt = Xl|St−1 = sj)

=
M∑

l=0

P(St = si, x̂t, xt = Xl, St−1 = sj)

P(St−1 = sj)

=

M∑

l=0

P(x̂t, xt = Xl|St−1 = sj , St = si) ·
P(St−1 = sj , St = si)

P(St−1 = sj)

=
M∑

l=0

P(x̂t, xt = Xl|St−1 = sj , St = si) · P(St = si|St−1 = sj)

=
M∑

l=0

P(x̂t, xt = Xl, St−1 = sj , St = si)

P(St−1 = sj , St = si)
· P(St = si|St−1 = sj)

=
M∑

l=0

P(x̂t|xt = Xl, St−1 = sj , St = si)

·P(xt = Xl, St−1 = sj , St = si)

P(St−1 = sj , St = si)
· P(St = si|St−1 = sj)

=
M∑

l=0

P(x̂t|xt = Xl, St−1 = sj , St = si)

·P(xt = Xl|St−1 = sj , St = si) · P(St = si|St−1 = sj)

=
M∑

l=0

P(x̂t|xt = Xl, St−1 = sj , St = si) · qt(Xl|si, sj) · pt(si|sj). (3.73)

Examining (3.73), the term P(xt = Xl|St−1 = sj , St = si) = qt(Xl|si, sj) equals 1

if Xl corresponds to the output from the convolutional encoder changing from state sj

to state si, and 0 otherwise. This allows expression (3.73) to be reduced to

γt(sj , si) =
M∑

l=0

P(x̂t|xt = Xl) · qt(Xl|si, sj) · pt(si|sj). (3.74)

The term P(St = si|St−1 = sj) = pt(si|sj) is assumed to be equal for all valid state
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transitions, since there is no knowledge of the input to the encoder at the receiver.

This implies that if there are two branches out of each state, then P(St = si|St−1 =

sj) = 1/2. In general, if there are k inputs to a convolutional encoder, there will be

2k branches originating from each state. Therefore, P(St = si|St−1 = sj) = 1/2k. To

calculate P(x̂t|xt = Xl), we require knowledge of the distribution of the equalization

error σ2
e . Assuming that this error is Gaussian, we can estimate its variance for each

block transmission by taking the mean squared error of the equalized signal and the

UW suffix within each block. This method of calculating the variance of the estimation

error σ2
e is relatively simple and accurate since the UW suffix is known. Furthermore,

we can calculate P(x̂t|xt = Xl) by employing the Gaussian probability density function

and examining the Euclidean distance between x̂t and xt = Xl over all possible Xl,

followed by a normalization process to convert the densities into probabilities.

Lastly, we divide λt(si) and σt(sj , si) by P(x̂NCS−1
0 ) to obtain the conditional

probabilities

P(St = si|x̂NCS−1
0 ) =

P(St = si, x̂
NCS−1
0 )

P(x̂NCS−1
0 )

(3.75)

and

P(St−1 = sj , St = si|x̂NCS−1
0 ) =

P(St−1 = sj , St = si; x̂
NCS−1
0 )

P(x̂NCS−1
0 )

, (3.76)

following Bayes’ theorem.

3.4.1 Example for QPSK

An example is used to demonstrate how the probabilities P(x̂t|xt = Xl) are obtained.

In this case, we use a QPSK signal constellation. Using (3.74) we can then calculate the

symbol APPs. Suppose that we have the equalized signal sample x̂ = 0.3323 + j0.4172

as shown in Fig. 3.7.
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Figure 3.7 Example of a received signal in a system employing a QPSK signal constellation.

The values d2
1, d2

2, d2
3, and d2

4 are calculated to be

d2
1 =

(
1√
2
− 0.3323

)2

= 0.1405 (3.77)

d2
2 =

(−1√
2
− 0.3323

)2

= 1.080 (3.78)

d2
3 =

(
1√
2
− 0.4172

)2

= 0.0840 (3.79)

d2
4 =

(−1√
2
− 0.4172

)2

= 1.2641 (3.80)

Let us assume that the variance of the equalization error is σ2
e/2 = N0 = 0.5 in each

dimension4. It is obtained by calculating the mean squared error between the UW

suffix and the portion of the equalized signals corresponding to the UW suffix.

We may then obtain the relative density values from the Gaussian probability density

4N0 = 0.5 is just an assumed value for the purpose of this example. It does not reflect on actual
variance of equalization errors for the proposed system
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function as

pd1 =
1

2π ·
√

σ2
e

2

exp

[
− x̂ −Xl

σ2
e

]

=
1

2π ·
√

0.5
exp

[
−0.1405

2 · 0.5

]
= 0.1956 (3.81)

pd2 =
1

2π ·
√

0.5
exp

[
−1.0804

2 · 0.5

]
= 0.0764 (3.82)

pd3 =
1

2π ·
√

0.5
exp

[
−0.0840

2 · 0.5

]
= 0.2069 (3.83)

pd4 =
1

2π ·
√

0.5
exp

[
−1.2641

2 · 0.5

]
= 0.0636, (3.84)

which gives the normalized probabilities as

P(x̂|The 1st bit is 1) =
0.1956

0.1956 + 0.0764
= 0.7191 (3.85)

P(x̂|The 1st bit is 0) =
0.0764

0.1956 + 0.0764
= 0.2809 (3.86)

P(x̂|The 2nd bit is 1) =
0.2069

0.2069 + 0.0636
= 0.7649 (3.87)

P(x̂|The 2nd bit is 0) =
0.0636

0.2069 + 0.0636
= 0.2351 (3.88)

and hence,

P(x̂|x = 11) = 0.7191 · 0.7649 = 0.5500 (3.89)

P(x̂|x = 10) = 0.7191 · 0.2351 = 0.1691 (3.90)

P(x̂|x = 01) = 0.2809 · 0.7649 = 0.2149 (3.91)

P(x̂|x = 00) = 0.2351 · 0.2809 = 0.0660 (3.92)

These estimated probabilities are then used in (3.74) to calculate the symbol APPs.



3.4 CALCULATING SOFT INFORMATION IN THE DECODER 66

3.4.2 Example for 16-QAM

The same concept may be extended to a 16-QAM signal constellation to calculate the

symbol APPs. However, some modification is required as demonstrated by the following

example. Suppose that we have an equalized signal sample x̂ = 0.5123 + j0.4172 as

shown in Fig. 3.8.

Figure 3.8 Example of a received signal in a system employing a 16-QAM signal constellation.

The values d2
11, d2

12, d2
13, d2

14, d2
21, d2

22, d2
23, and d2

24 are calculated as

d2
11 = d2

12 = d2
13 = d2

14 =

(
1√
10

− 0.5123

)2

= 0.03844 (3.93)

d2
21 =

(
3√
10

− 0.4172

)2

= 0.2825 (3.94)

d2
22 =

(
1√
10

− 0.4172

)2

= 0.0102 (3.95)

d2
23 =

( −1√
10

− 0.4172

)2

= 0.5379 (3.96)

d2
24 =

( −3√
10

− 0.4172

)2

= 1.8656 (3.97)
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Again, let us assume that the variance of the estimation error is σ2
e/2 = N0 = 0.5

in each dimension. We may then obtain the following estimated probability density

values (assuming a Gaussian distribution)

pd11 = pd12 = pd13 = pd14 =
1

2π ·
√

0.5
exp

[
−0.03844

2 · 0.5

]
= 0.2166 (3.98)

pd21 =
1

2π ·
√

0.5
exp

[
−0.2825

2 · 0.5

]
= 0.0537 (3.99)

pd22 =
1

2π ·
√

0.5
exp

[
−0.0102

2 · 0.5

]
= 0.2228 (3.100)

pd23 =
1

2π ·
√

0.5
exp

[
−0.5379

2 · 0.5

]
= 0.1314 (3.101)

pd24 =
1

2π ·
√

0.5
exp

[
−1.8656

2 · 0.5

]
= 0.0348 (3.102)

which can be used to calculate the probability metrics as

P(x̂|x = 1000) = pd11 · pd21 = 0.2166 · 0.0537 = 0.5500 (3.103)

P(x̂|x = 1010) = pd12 · pd22 = 0.2166 · 0.2228 = 0.1691 (3.104)

P(x̂|x = 1011) = pd13 · pd23 = 0.2166 · 0.1314 = 0.1314 (3.105)

P(x̂|x = 1001) = pd14 · pd24 = 0.2166 · 0.0348 = 0.0348 (3.106)

Following this procedure and remembering to normalize the metrics, it is possible to

obtain P(x̂|x = Xl) for all Xl in the signal constellation. However, we can not substitute

P(x̂|x = Xl) into (3.74) since each Xl is labeled by outputs of the convolutional encoder

corresponding to two time instances. Therefore, we need to sum appropriate terms to

obtain P(x̂|00××), P(x̂|01××), P(x̂|10××), P(x̂|11××), P(x̂|××00), P(x̂|××01),

P(x̂| × ×10) and P(x̂| × ×11). For example, P(x̂|10 ××) = P(x̂|x = 1000) + P(x̂|x =

1010)+P(x̂|x = 1011)+P(x̂|x = 1001) = 0.8853. These values are then used in (3.74)

to calculate the symbol APPs.
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3.5 SUMMARY

This chapter has provided a detailed discussion of the proposed system. It includes an

overview of the system, the derivation of the equalizer forward matrix and shows how

it is related to the turbo equalization process. A detailed description of how the soft

information is calculated by the SISO decoder is also included with the aid of examples

to help the understanding of this concept. Simulation results for the proposed system

will be presented in the next chapter.



Chapter 4

COMPUTER SIMULATIONS

This chapter uses simulation to investigate the performance of the GLMS channel

estimator and the combined turbo equalization system for both the 11-Tap and SUI-5

channels. In all of the simulation results, it is assumed that the symbol period is T =

1µs1, and that the root-raised cosine pulse shape p(t) has a rolloff of α = 0.4 truncated

to Lp = 10 symbol intervals. The DFT order is N = 1024, where N = NCS + NUW as

defined in Chapter 3. The interleaver is a 64-by-16 block interleaver. For simulation

results involving bit-error rate (BER) measurements, a minimum of 250 bit errors were

collected for each signal-to-noise ratio (SNR). The SNR is defined as Eb/N0, where Eb

is the average received energy per information bit. This is given by [42]

Eb =
Es

R · log2 M
, (4.1)

where Es is the average received symbol energy for the M -ary signal constellation and

R is the code rate of the convolutional code.

The channel sampling rate needs to be set carefully to obtain valid simulation

results. For the two channels being considered in this thesis, the sampling rate of the

11-TAP channel does not require altering as the channel is defined in terms of the

normalized Doppler frequency fdT . On the other hand, the sampling rate of the SUI-5

channel needs to be set as the channel is defined in terms of the Doppler frequency fd.

Detailed explanation regarding the SUI-5 channel sampling rate will be presented in a

later part of this chapter.

1The symbol period is set to 1µs to result in a relatively long symbol delay spread for the system
operating with 11-TAP and SUI-5 channels.
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4.1 MOBILE WIRELESS CHANNEL

Referring to the description of the 11-TAP channel in Chapter 1, the 11-TAP channel

taps gains are 1µs apart, and have a maximum overall delay spread of τmax = 10µs.

Having defined the symbol period T = 1µs, each channel tap is equivalently symbol

spaced.

The length of the UW sequence NUW is set so that it is longer than the duration

of the composite channel impulse response. For the 11-TAP channel, the maximum

delay is 10µs, which corresponds to Lc = 10 symbol intervals. Therefore, the composite

channel impulse response will have a duration of Lc+Lp = 10+10 = 20 symbol intervals.

Hence, NUW is set to 25, which is greater than 20. Having defined N = 1024, the overall

length of the transmission block is N + NUW = 1049 and the amount of overhead for

each transmission is

O11−TAP =
25 × 2

1049
× 100% = 4.77%. (4.2)

The length NCS , which corresponds to the number of encoded channel symbols, is

therefore N − NUW = 999.

4.1.1 System Error Performance with ideally known CSI

Before simulating the system performance with ideally known CSI for the 11-TAP

channel, we conducted a series of simulations to investigate the distribution of the

equalization error. To do this, we transmitted blocks of symbols chosen randomly

from the signal constellation of interest (no coding) and plotted the histogram of the

equalization error at various received SNRs as shown in Fig. 4.1, 4.2, 4.3 and 4.4. The

solid line is a Gaussian density function with zero-mean and the mean squared value of

the equalization error (MSE) as the variance. The estimation error obtained after 2000

transmissions was plotted in a histogram with the area normalized to unity. Comparing

the histogram and the solid line, we can see that there is a close resemblance. The

resemblance is particularly good in the tails of the distribution, but at low SNR it is

not as good at the peak. At high SNR the error is almost exactly Gaussian. This shows

that the assumption that the equalization error is Gaussian is reasonable.
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(a) In-phase with MSE = 0.2799.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(b) Quadrature with MSE = 0.2799.

Figure 4.1 Distribution of the equalization error for the 11-TAP channel with ideally known CSI
after the initial iteration at a received SNR of 2dB and QPSK signal constellation.
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(a) In-phase with MSE = 0.1180.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(b) Quadrature with MSE = 0.1180.

Figure 4.2 Distribution of the equalization error for the 11-TAP channel with ideally known CSI
after the initial iteration at a received SNR of 10dB and QPSK signal constellation.
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(a) In-phase with MSE = 0.2116.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(b) Quadrature with MSE = 0.2116.

Figure 4.3 Distribution of the equalization error for the 11-TAP channel with ideally known CSI
after the initial iteration at a received SNR of 2dB and 16-QAM signal constellation.
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(a) In-phase with MSE = 0.0415.
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(b) Quadrature with MSE = 0.0415.

Figure 4.4 Distribution of the equalization error for the 11-TAP channel with ideally known CSI
after the initial iteration at a received SNR of 14dB and 16-QAM signal constellation.

System error performance with ideally known CSI for the 11-TAP channel with 4-

state (5, 7) and 64-state (133, 171) convolutional codes is shown in Fig. 4.5. Observing

the error performance for the 4-state (5, 7) convolutional code, we notice that most of

the gain is realized with 2 iterations. After 3 iterations, there is a gain of approximately

0.6dB and 2dB at a BER of 2× 10−4 for QPSK and 16-QAM, respectively. For a fixed

SNR, it appears that we get a larger performance improvement from using 3 iterations

when a 16-QAM signal constellation is used instead of a QPSK signal constellation.

A possible reason for this phenomenon may be the non-uniform energy levels and the

larger number of signal constellation points in the 16-QAM signal constellation. Since

the iterative process is effectively trying to remove the mean associated with each block

of received signals using the calculated symbol APPs, if the signal constellation is large

with non-uniform energy levels, it is more likely that the mean will have a more sig-

nificant deviation from zero in comparison to a small signal constellation with uniform

energy levels. However, as the number of constellation points increases, the Euclidean

distance between the constellation points decreases, which increases the sensitivity to

noise.

The error performance for the 64-state (133, 171) convolutional code shows similar

characteristics to those for the 4-state (5, 7) convolutional code. However, due to the

increase in the error correction capability, there is an improvement in error performance
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of approximately 2dB and 0.5dB, at a BER of 2 × 10−4 for QPSK and 16-QAM,

respectively, in comparison to the error performance for the 4-state (5, 7) convolutional

code. Here we note that the amount of coding gain is greater for QPSK than 16-QAM.

This is because the symbol selector maps encoder outputs after two consecutive time

instances to a symbol in the signal constellation for 16-QAM, which means each symbol

error introduced in the equalization process can result in a maximum of 4 consecutive

bit errors in the decoder. Furthermore, these errors can not be separated by the symbol

interleaver. This is a good motivation for the use of bit-interleaved coded modulation

(BICM) for 16-QAM. On the other hand, encoder outputs are mapped to a symbol

in the signal constellation directly for QPSK. So, each symbol error now corresponds

to a maximum of 2 bit errors in the decoder. Therefore, if we increase the error

correcting capabilities in the system, the coding gain will be greater when a QPSK

signal constellation is used compared to 16-QAM.

2 4 6 8 10 12 14 16

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Received Eb/No

B
E

R

1 iter. QPSK 4−state

2 iter. QPSK 4−state

3 iter. QPSK 4−state

1 iter. QPSK 64−state

2 iter. QPSK 64−state

3 iter. QPSK 64−state

1 iter. 16QAM 4−state

2 iter. 16QAM 4−state

3 iter. 16QAM 4−state

1 iter. 16QAM 64−state

2 iter. 16QAM 64−state

3 iter. 16QAM 64−state

Figure 4.5 BER performance of the FD-TLE system for the 11-TAP channel with 1/2-rate 4-state
(5, 7) and 64-state (133, 171) convolutional codes and perfectly known CSI.
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4.1.2 GLMS Estimator Performance

Before simulating the overall system, the performance of the GLMS channel estimator

is assessed. This is achieved by simulating the system in the training phase followed by

the transmission mode but with only the UW prefix being transmitted. The number

of UW prefix sequences transmitted in the transmission mode, which constitutes the

MSD measure of the estimated CSI is set to 232, and the number of initial CSI esti-

mate updates in the training mode, denoted by LT , may be varied. The mean square

deviation (MSD) error is used as a performance metric and is defined by [37,38]

MSD = E
[
||Hl − Ĥl|l−1||2

]
, (4.3)

where || · || denotes the Euclidean norm. We note that since the channel tap gains

are symbol spaced, estimation of the composite channel impulse response is the same

as estimating the tap gains of the channel impulse response c(t). Therefore, we may

substitute the equivalent Cl for Hl to obtain

MSD = E
[
||Cl − Ĉl|l−1||2

]
. (4.4)

The number of initial offline recursions for computing the intermediate matrix

for the GLMS estimator is set to 500 with λ = 0.975 and ζ = 0.1. The results

for LT = 52, 104, 156 and 208 are shown in Fig. 4.6, Fig. 4.7, Fig. 4.8 and Fig. 4.9,

respectively.
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Figure 4.6 GLMS estimator performance for the 11-TAP channel with LT = 52.
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Figure 4.7 GLMS estimator performance for the 11-TAP channel with LT = 104.
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Figure 4.8 GLMS estimator performance for the 11-TAP channel with LT = 156.
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Figure 4.9 GLMS estimator performance for the 11-TAP channel with LT = 208.
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Observing the results we notice that in general, as LT increases, the estimator

performance improves especially for PG = 3 and NG = 1, 2 at high SNRs. The estimator

settings of PG = 3 and NG = 0 perform best for SNRs up to around 10dB and then

PG = 3 and NG = 1 perform best for SNRs up to around 20dB for LT = 156. For SNRs

beyond 20dB, the estimator setting of PG = 3 and NG = 2 perform best. Since most

realistic high rate systems operate above 20dB SNR, the channel estimator should use

PG = 3 and NG = 2. However, for system evaluation purposes, we are also interested

in the SNR regions below the operating SNR value. Therefore, the setting of PG = 3

and NG = 1 is chosen for the evaluation of the overall system error performance for

the 11-TAP channel. Furthermore, for LT ≥ 156, the performance of the estimator

alters only slightly up to 20dB. Hence, the number of initial training symbols for the

overall system is set to 156. At 20dB SNR with LT = 156, the estimator MSD is

approximately 3 × 10−3. Table. 4.1 summarizes the estimator parameters chosen for

the simulation of the overall system.

Table 4.1 GLMS estimator parameters for the 11-TAP channel.

Parameter Value

No. of offline recursions 500

Forget factor (λ) 0.975

ζ 0.1

Predictor length (PG) 3

Predictor order (NG) 1

No. of training symbols (LT ) 156

4.1.3 Overall System Error Performance

Before simulating the overall system performance for the 11-TAP channel, we conducted

simulations to determine the distribution of the equalization error similar to what was

shown in Section 4.1.1. Histograms of the equalization error at various received SNRs

are shown in Fig. 4.10, 4.11, 4.12 and 4.13.
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(a) In-phase with MSE = 0.3374.
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(b) Quadrature with MSE = 0.3374.

Figure 4.10 Distribution of the equalization error for the 11-TAP channel with estimated CSI after
the initial iteration at a received SNR of 2dB and QPSK signal constellation.
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(a) In-phase with MSE = 0.1123.
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(b) Quadrature with MSE = 0.1123.

Figure 4.11 Distribution of the equalization error for the 11-TAP channel with estimated CSI after
the initial iteration at a received SNR of 10dB and QPSK signal constellation.
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(a) In-phase with MSE = 0.2920.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(b) Quadrature with MSE = 0.292.

Figure 4.12 Distribution of the equalization error for the 11-TAP channel with estimated CSI after
the initial iteration at a received SNR of 2dB and 16-QAM signal constellation.
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(a) In-phase with MSE = 0.0477.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(b) Quadrature with MSE = 0.0477.

Figure 4.13 Distribution of the equalization error for the 11-TAP channel with estimated CSI after
the initial iteration at a received SNR of 16dB and 16-QAM signal constellation.

Comparing the histogram and the theoretical Gaussian distribution, we can see

that there is a close resemblance especially at higher SNRs. For QPSK at low SNR,

the distribution of the equalization error deviates slightly from the theoretical Gaussian

distribution around the mean. However, it is still very similar overall in the tails of the

distribution. This demonstrates that the assumption of a Gaussian equalization error

is reasonable when estimated CSI is used in the equalizer.

System error performance when using a channel estimator with the settings of

Table 4.2 for the 11-TAP channel employing the 4-state (5, 7) or 64-state (133, 171)

convolutional code is shown in Fig. 4.14 and Fig. 4.15, respectively. Note that 156

initial training symbols were used, which corresponds to a delay of 156× 1µs = 156µs

before the transmission of data.

The simulation results illustrate that when only estimated CSI is available at the

receiver, the FD-TLE process improves performance using 2 iterations, but almost no

additional gain is achieved with 3 iterations. Moreover, the amount gained by the

second iteration has decreased in comparison to the perfect CSI case. When the 4-

state (5, 7) convolutional code is used, there is a performance degradation compared

to ideal CSI case at a BER of 10−4 of approximately 2dB and 4dB for QPSK and 16-

QAM, respectively, after 3 iterations. Similar degradation is present when the 64-state

(131, 171) convolutional code is used.
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Figure 4.14 Overall system performance for the 11-TAP channel with the 1/2-rate 4-state (5, 7)
convolutional code.
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Figure 4.15 Overall system performance for the 11-TAP channel with the 1/2-rate 64-state (133, 171)
convolutional code.
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4.2 FIXED WIRELESS CHANNEL

As described in Chapter 1, the SUI-5 channel spans 10µs which corresponds to 10

symbol intervals. Although the SUI-5 channel only contains 3 tap gains at 0, 5 and

10µs, the channel estimator estimates the channel assuming that tap gains exist for

every 1µs duration. This is similar to the case with the 11-TAP channel. However,

the tap gains that are of zero value will be estimated to have values close to zero,

provided that the estimator is tracking the channel correctly. Hence, the UW sequence

used to train the channel estimator is also set to have length NUW = 25. Following

the same argument as before for the 11-Tap channel, the amount of overhead for each

transmission for the SUI-5 channel is

OSUI−5 =
25 × 2

1049
× 100% = 4.77%, (4.5)

with the number of encoded channel symbols being NCs = N − NUW = 999.

The sampling rate for the SUI-5 channel is set as follows. First, we sample once

for the duration of every transmission frame rather than for every symbol interval.

Second, since the symbol interval is set at 1µs, each transmission frame corresponds to

a duration of 1049 × 1µs = 1.049ms. Third, using this value as the sampling period,

the sampling rate is calculated to be fs = (1.049 × 10−3)−1 = 953.29Hz ∼= 950Hz.

4.2.1 System Error Performance with ideally known CSI

Similar to the 11-TAP channel, we conduct simulations to investigate the distribution of

the equalization error before simulating the system performance for the SUI-5 channel

with ideally known CSI. Again, we transmit blocks of symbols chosen randomly from

the signal constellation of interest (no coding) and plot histograms of the equalization

error at various received SNRs as shown in Fig. 4.16, 4.17, 4.18 and 4.19. The solid line

is the Gaussian density function with zero-mean and the mean squared value of the

equalization error (MSE) as the variance. The estimation errors obtained as a result

of 2000 transmissions were plotted in a histogram form with the area being normalized

to unity.
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(a) In-phase with MSE = 0.24937.
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(b) Quadrature with MSE = 0.24937.

Figure 4.16 Distribution of the equalization error for the SUI-5 channel with ideally known CSI
after the initial iteration at a received SNR of 2dB and QPSK signal constellation.
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(a) In-phase with MSE = 0.05244.
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(b) Quadrature with MSE = 0.05244.

Figure 4.17 Distribution of the equalization error for the SUI-5 channel with ideally known CSI
after the initial iteration at a received SNR of 10dB and QPSK signal constellation.
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(a) In-phase with MSE = 0.17668.
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(b) Quadrature with MSE = 0.17668.

Figure 4.18 Distribution of the equalization error for the SUI-5 channel with ideally known CSI
after the initial iteration at a 2dB and 16-QAM signal constellation.
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(a) In-phase with MSE = 0.02561.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(b) Quadrature with MSE = 0.02561.

Figure 4.19 Distribution of the equalization error for the SUI-5 channel with ideally known CSI
after the initial iteration at a 14dB and 16-QAM signal constellation.

Comparing the histogram and the solid line, we can see that there is a close resem-

blance, which shows that the assumption of a zero-mean Gaussian distribution for the

equalization error is reasonable.

System error rate performances with ideally known CSI for the SUI-5 channel with

4-state (5, 7) and 64-state (133, 171) convolutional codes are shown is Fig. 4.20. Ob-

serving the error performance for the 4-state (5, 7) convolutional code, we notice that

most of the gain is obtained with 2 iterations. After 3 iterations, there is a gain of

approximately 0.5dB and 1.5dB at a BER of 6 × 10−5 and 6 × 10−4 for QPSK and

16-QAM, respectively. For a fixed SNR, it appears that we get more improvement

in performance after the second iteration using a 16-QAM signal constellation than a

QPSK signal constellation. These results are similar to what we found for the 11-TAP

channel. The error performance for the (133, 171) convolutional code also shows that

not much can be gained with 3 iterations. The coding gain obtained by using the

(131, 171) convolutional code as opposed to the (5, 7) convolutional code is approxi-

mately 2dB at a BER of 10−4 for QPSK and 0.5dB at a BER of 10−4 for 16-QAM after

3 iterations.
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Figure 4.20 BER performance of the FD-TLE system for the SUI-5 channel with a 1/2-rate 4-state
(5, 7) convolutional code and 64-state (133, 171) convolutional code and perfectly known CSI.

4.2.2 GLMS Estimator Performance

GLMS estimator performance for the SUI-5 channel is assessed using the same method-

ology described earlier for the 11-TAP channel. GLMS estimator performances for the

SUI-5 channel with LT = 52, 104, 156 and 208 are shown in Fig. 4.21, Fig. 4.22, Fig. 4.23

and Fig. 4.24, respectively.
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Figure 4.21 GLMS estimator performance for the SUI-5 channel with LT = 52.

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

M
S

D

P=3,N=0

P=3,N=1

P=3,N=2

Figure 4.22 GLMS estimator performance for the SUI-5 channel with LT = 104.



4.2 FIXED WIRELESS CHANNEL 86

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

M
S

D
P=3,N=0

P=3,N=1

P=3,N=2

Figure 4.23 GLMS estimator performance for the SUI-5 channel with LT = 156.
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Figure 4.24 GLMS estimator performance for the SUI-5 channel with LT = 208.
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We notice that as LT increases, the performance of the GLMS estimator for the

SUI-5 channel follows similar trends to those observed for the 11-Tap channel. The

estimator settings of PG = 3 and NG = 0 perform best up to around 10dB SNR and

then PG = 3 and NG = 1 perform best up to around 20dB for LT = 156. For SNRs

beyond 20dB, the estimator setting of PG = 3 and NG = 2 perform best. Since most

realistic high rate systems will operate above 20dB SNR, PG = 3 and NG = 2 should be

set for the channel estimator. However, for error performance evaluation purposes in

this thesis, we are interested in SNRs below the operating SNR. Therefore, the settings

of PG = 3 and NG = 1 are chosen for the evaluation of overall system error performance

for the SUI-5 channel. Furthermore, for LT ≥ 156, the performance of the estimator

varies only slightly up to 20dB. Hence, the number of initial training symbols for the

overall system is set to 156. At a SNR of 20dB for LT = 156, the estimator MSD is

approximately 5 × 10−3. Table. 4.2 summarizes the estimator parameters chosen for

the simulation of the overall system to evaluate the error performance.

Table 4.2 GLMS estimator parameters for the SUI-5 channel.

Parameter Value

No. of offline recursions 500

Forget factor (λ) 0.975

ζ 0.1

Predictor length (PG) 3

Predictor order (NG) 1

No. of training symbols (LT ) 156

4.2.3 Overall System Error Performance

Before simulating the overall system performance for the SUI-5 channel, we conducted

simulations to investigate the distribution of the equalization error similar to what was

done in Section 4.2.1. The histograms of the equalization error at various received

SNRs are shown in Fig. 4.25, 4.26, 4.27 and 4.28. Comparing the histogram and to a

theoretical Gaussian distribution, we can see that there is a close resemblance especially

at higher SNRs. For QPSK at low SNR, the distribution of the equalization error
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deviates slightly from the theoretical Gaussian distribution in the vicinity of the mean.

However, it is still very similar overall around the tails. This shows that the assumption

that the equalization error is Gaussian distributed is reasonable when estimated CSI is

used in the equalizer.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(a) In-phase with MSE = 0.3026.
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(b) Quadrature with MSE = 0.3026.

Figure 4.25 Distribution of the equalization error for the SUI-5 channel with estimated CSI after
the initial iteration at a received SNR of 2dB and QPSK signal constellation.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

error at the output of the equalizer

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

measured distribution

theoritical distribution

(a) In-phase with MSE = 0.0805.
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(b) Quadrature with MSE = 0.0805.

Figure 4.26 Distribution of the equalization error for the SUI-5 channel with estimated CSI after
the initial iteration at a received SNR of 10dB and QPSK signal constellation.
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(a) In-phase with MSE = 0.2533.
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(b) Quadrature with MSE = 0.2533.

Figure 4.27 Distribution of the equalization error for the SUI-5 channel with estimated CSI after
the initial iteration at a received SNR of 2dB and 16-QAM signal constellation.
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(a) In-phase with MSE = 0.0325.
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(b) Quadrature with MSE = 0.0325.

Figure 4.28 Distribution of the equalization error for the SUI-5 channel with estimated CSI after
the initial iteration at a received SNR of 16dB and 16-QAM signal constellation.

Overall system error performance for the channel estimator settings of Table 4.2 for

the SUI-5 channel and employing the 4-state (5, 7) or 64-state (133, 171) convolutional

code is shown in Fig. 4.29 and Fig. 4.30, respectively. Similar to the results obtained

for the 11-TAP channel, 156 initial training symbols were used, which corresponds to

a delay of 156 × 1µs = 156µs before the transmission of data.
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Figure 4.29 Overall system performance for the SUI-5 channel with the 1/2-rate 4-state (5, 7) con-
volutional code.
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Figure 4.30 Overall system performance for the SUI-5 channel with the 1/2-rate 64-state (133, 171)
convolutional code.
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The results shown in Fig. 4.29 and Fig. 4.30 illustrate that with estimated CSI,

the FD-TLE receiver is still able to improve performance using 2 iterations, but not

much additional performance can be gained for the third iteration. When the 4-state

(5, 7) convolutional code is used, there is a performance degradation of approximately

2dB at a BER of 10−4 for QPSK, and 4dB at a BER of 5 × 10−4 for 16-QAM, after

3 iterations. When the 64-state (131,171) convolutional code is used, there is a per-

formance degradation of approximately 3dB at a BER of 10−4 for QPSK, and 5dB

at a BER of 5 × 10−4 for 16-QAM, after 3 iterations. Similar to the results obtained

for the 11-TAP channel, the amount of gain, when using estimated CSI decreases in

comparison to the case with perfect CSI. We note that gain in performance is very

small for 16-QAM with estimated CSI in comparison to that observed with QPSK.

This suggests that the channel estimation error is sufficiently significant in the turbo

equalization process that not much gain can be obtained by passing the symbol APPs

back to the equalizer. It strongly suggests that the channel estimation error has to be

decreased in order to realize significant gains from turbo equalization when using larger

modulations schemes.

4.3 SUMMARY

GLMS channel estimator performance and overall system error performance for both

the 11-TAP and SUI-5 channels using QPSK and 16-QAM signal constellations have

been investigated in this chapter by means of computer simulation. It has been found

that not much can be gained in the turbo equalization process from using a third

iteration. Most of the gain is obtained from the second iteration for both the ideal or

estimated CSI cases. There is a performance degradation of approximately 2−4dB when

estimated CSI is used in the receiver. This is caused by the channel estimation error

influencing the equalization process. Furthermore, the amount of gain from the turbo

equalization process decreases in comparison to that when perfect CSI is available.



Chapter 5

CONCLUSION

5.1 SUMMARY

This thesis began with a discussion of wireless channels, focusing on the 11-TAP and

SUI-5 channels. These channels represents two different wireless environments as the

11-TAP channel represents a mobile environment and the SUI-5 channel represents a

fixed access environment.

Multipath propagation of signals in a wireless environment introduces ISI at the

receiver. In order to recover the transmitted signals correctly, equalization is required

at the receiver. Usually a channel estimator is also required at the receiver as the

equalizer requires some knowledge of the channel response.

In Chapter 2, a background literature search of various turbo equalization schemes

and channel estimation algorithms was presented. The frequency-domain turbo equal-

ization scheme of [32] and the GLMS channel estimation algorithm of [37] were empha-

sized as they are used in the proposed receiver structure.

In Chapter 3 various components of the proposed system were defined and the

integration of the channel estimator with the equalizer was discussed. The channel

estimator requires knowledge of the maximum delay spread of the channel, and uses

pilot sequences embedded in a UW prefix to update the channel estimate. Following the

derivation of the equalizer filter matrix of [32], a detailed derivation of the equalizer

filter matrix using estimated CSI was presented. It explicitly showed the effect of

channel estimation error.

In Chapter 4 system error performance was evaluated using computer simulation
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for both the 11-TAP and SUI-5 channels with QPSK and 16-QAM signal constellations.

It was found that three iterations between the equalizer and the decoder is sufficient.

In fact, most of the gain due to the iterative process is from the second iteration. In

addition, the gain due to turbo equalization using estimated CSI was observed to be

smaller than the gain obtained with perfect CSI. Simulation results also indicated that

good bit error performance is achievable using estimated CSI, with a loss ranging from

2dB to 5dB SNR in comparison to the ideal case. The amount of loss is dependent on

the channel and the signal constellation of interest. Lastly, the results clearly demon-

strate that improved performance of the turbo equalizer requires more accurate channel

estimation. This likely to result in increased complexity. For example, if the generalize

recursive least squares (GRLS) algorithm rather than the current GLMS approach were

to be used, increased accuracy in channel estimation would be obtained at the cost of

an increase in system complexity.

A point worth mentioning is that the overall performance could be improved

through the use of more powerful coding techniques. The (5,7) and (133,171) con-

volutional codes chosen for the proposed system are relatively basic. They could be

replaced with either a turbo code or a low density parity check code. Again this would

lead to increased system complexity.

As a final remark, the proposed system is highly flexible. It may be applied to other

channels provided that the maximum delay spread of the channel is upper bounded at

the receiver. Increasing the signal constellation size can increase the throughput, but

reduces the coding gain due to errors not sufficiently separable in the interleaving

process. Reducing the frame length can reduce the computational complexity for each

transmission block, but the amount of overhead for each block will increase. On the

other hand, if the frame length is set too long, the assumption of a quasi-static channel

is no longer valid. All these factors pose tradeoff in the design of the system and should

be carefully considered.
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5.2 FUTURE WORK

Block equalization approaches such as the one presented in this thesis assumes perfect

timing synchronization at the receiver. Therefore, the effect of timing errors would be

an interesting area for further research.

Actual measurements of the channel medium could be used to improve the accu-

racy of computer simulations. The simulation results obtained from actual channel

measurements would be useful for someone who wants to apply this system in a par-

ticular scenario.

The work presented has been theoretical in nature involving analysis and com-

puter simulation. The next logical development would be its implementation in DSP

hardware.

As seen from the simulation results, the GLMS channel estimator performance

varies for different predictor lengths and orders at different SNR values. So, for opti-

mum system performance, it would be beneficial to look at ways of determining the

channel estimator parameters while the system is in operation.

In the work presented in [52], the turbo equalization scheme of [32] has been ex-

tended to multiple-input multiple-output (MIMO) systems under the assumption that

perfect CSI is available at the receiver. Therefore, it is possible to extend the work

presented in this thesis to MIMO systems where the CSI is estimated. However, such

a study is beyond the scope of the present project.



Appendix A

SUPPLEMENTARY SIMULATION RESULTS

Computer simulations were set up to ensure correct implementation of the turbo equal-

ization algorithm of [32] and the GLMS channel estimator of [37] before incorporating

them in the proposed system. Following the simulation parameters specified in [32]

and [37], Fig. A.1 and Fig. A.2 show the simulation results in comparison to the pub-

lished results for the turbo equalization and the GLMS channel estimator, respectively.
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Figure A.1 FD-TLE error performance comparison.
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Figure A.2 GLMS estimator performance comparison with 26 training symbols.

Observing Fig. A.1 and Fig. A.2, we see that although the simulation results differ

slightly to the published results, the overall performance curves are of close proximity to

the published performance curves. It is possible that the slight difference in performance

curves occurred due to the variation of simulation tools and random number generators

employed.
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