
1

Combined Compute and Storage: Configurable Memristor
Arrays to Accelerate Search
Yang Liu, Chris Dwyer, Alvin R. Lebeck

Duke University

ABSTRACT

Emerging technologies present opportunities for system designers

to meet the challenges presented by competing trends of big data

analytics and limitations on CMOS scaling. Specifically,

memristors are an emerging high-density technology where the

individual memristors can be used as storage or to perform

computation. The voltage applied across a memristor determines

its behavior (storage vs. compute), which enables a configurable

memristor substrate that can embed computation with storage.

This paper explores accelerating point and range search queries

as instances of the more general configurable combined compute

and storage capabilities of memristor arrays. We first present

MemCAM, a configurable memristor-based content addressable

memory for the cases when fast, infrequent searches over large

datasets are required. For frequent searches, memristor lifetime

becomes a concern. To increase memristor array lifetime we

introduce hybrid data structures that combine trees with

MemCAM using conventional CMOS processor/cache hierarchies

for the upper levels of the tree and configurable memristor

technologies for lower levels.

We use SPICE to analyze energy consumption and access time of

memristors and use analytic models to evaluate the performance

of configurable hybrid data structures. The results show that with

acceptable energy consumption our configurable hybrid data

structures improve performance of search intensive applications

and achieve lifetime in years or decades under continuous queries.

Furthermore, the configurability of memristor arrays and the

proposed data structures provide opportunities to tune the trade-

off between performance and lifetime and the data structures can

be easily adapted to future memristors or other technologies with

improved endurance.

Categories and Subject Descriptors1

B.3.2 [Hardware]: Design Styles – associative memories. C.1

[Computer Systems Organization]: Procesor Architectures –

multiple data stream architectures, heterogeneous (hybrid)

systems. E.1 [Data] – trees.

General Terms

Algorithms, Design, Performance, Reliability.

Keywords

Emerging technology, specialization, memory systems.

1. INTRODUCTION
Workload and technology trends are significant driving forces

behind computer systems design. Three significant current trends

are large data sets, limits of CMOS power dissipation, and

emerging technologies. First, the desire to query and analyze an

1
 Yang Liu is currently with Oracle, this work was performed
while at Duke University.

increasingly large amount of data presents significant algorithm

and systems challenges, e.g., [2, 6]. Second, the power

dissipation limits of current CMOS packaging create an

architectural trend toward the design of application accelerators

that provide customized hardware for improving the performance

of common workload scenarios [5, 12, 13, 34]. Third, scaling

limits of CMOS motivate the need for alternative technologies to

augment or supplant CMOS [3]. The confluence of these three

trends presents an opportunity to explore new approaches that

span traditional system abstraction boundaries from technology up
through applications.

This paper explores memristors⎯an emerging high-density

technology⎯where the individual memristors can be used either

for non-volatile storage or to perform computation [8, 9, 18, 19,

29, 32, 35]. The voltage applied across a memristor determines its

behavior (storage vs. compute), which enables configurable use of

the memristor substrate to embed computation with storage. We

propose using memristor arrays as a single combined

compute/storage substrate that can be dynamically configured to

provide customized computational support for big-data and other

applications. In this paper, we focus on two types of search

operations (point and range queries) as specific instances of the

more general specialized accelerators. Search is an integral part

of many applications including databases, machine learning,

network routing, DNA sequencing; and recent research has

explored methods for exploiting other new technologies for
improving search [15] or database algorithms [7].

Memristors have the potential to provide higher capacity

(10
12

/cm
2
) [32] than CMOS with switching times as low as 1ns

an external array access times as low as 10ns [22, 29]. The

memristive computation we explore is implication logic [4],

which makes it possible to perform computation within the

storage structure. Unfortunately, memristors have much lower

endurance (10
10

 write cycles [36]) than CMOS devices (10
16

 write

cycles for SRAM [11]) and in-storage computing further

exacerbates the problem since each implication logic operation

could be a memristor write. The challenge is to exploit the

density and combined compute/storage aspect of memristors
while maintaining acceptable lifetimes.

To meet the above challenges we first propose MemCAM, a

configurable memristor-based content addressable memory

(CAM). A search is performed by applying the same sequence of

implication logic operations to each MemCAM cell in parallel.

MemCAM can be used for either point or range queries by simply

changing the allocation of memristors used for compute vs.

storage and using a slightly different sequence of implication

logic operations to perform greater than/less than comparisons

instead of only equality. MemCAM is best suited for low query

rates since its lifetime is only a few minutes under continuous

queries. Standard wear leveling techniques are inadequate for
MemCAM since all cells are accessed each query.

2

To provide long lifetime under high query rates, we introduce

configurable hybrid data structures that use both conventional

CMOS processors/cache hierarchies and memristors for

compute/storage. Our new data structures combine T-trees, B+-

trees, and MemCAM to obtain a balance between search time and

lifetime by exploiting a heterogeneous computing environment.

The upper levels of the trees, accessed frequently, are

implemented in software using conventional processors and

caching methods and serve to distribute requests over the less

frequently accessed remaining data⎯a technique we call

algorithmic wear leveling. The memristor array and an associated

programmable controller implements lower level tree traversal

and/or MemCAM operations. These new data structures can be

reconfigured to trade between performance and lifetime for a

specific usage scenario and to adapt to future memristors with
improved endurance.

The qualitative design space of memristor-based storage

structures is shown in Figure 1. The lifetime of a memristor-based

memory is the longest due to low write frequency and can be

further improved by standard wear-leveling techniques. However,

the search time of a memristor-based memory is the longest, and

increases as data size increases. MemCAM has the shortest

search time because all data items can be searched simultaneously

but also has the shortest lifetime due to high write frequency.

Wear leveling techniques cannot improve the lifetime of

MemCAM because writes are already uniform. As long as

endurance is limited for memristors, hybrid data structures are

better choices because writes are distributed and occur less
frequently per memristor.

To evaluate our designs we use SPICE to model an individual

memristor and analyze energy consumption and performance.

The results show that it is feasible to build a 1Gbit MemCAM

with 1cm x 1cm area. For a K-bit search word, the energy

consumption is (0.44+0.82*log2(K)) fJ/bit/search (for each data

bit stored in MemCAM) and the search time is 16+20*log2(K)) ns

for MemCAM supporting both point and range queries, and the

energy consumption is (0.83+0.82*log2(K)) fJ/bit/search and the

search time is (22+20*log2(K)) ns for MemTCAM supporting

both point and range queries. To evaluate the search performance

and lifetime of the hybrid data structures we construct an analytic

model, since it is impractical to simulate the large data sets

required. We use 5nmx5nm memristors [22] (10
12

 memristors per

cm
2
) instead of 50nmx50nm memristors (10

10
 memristors per

cm
2
) so we can show the full potential of memristor-based

storage structures to improve the performance of search

operations. Our results show that hybrid storage structures can

utilize range search abilities, achieve better performance than

memory-based T-trees, and improve lifetime from minutes to

longer than 60 years. Furthermore, TB
+
-tree-CAM, a hybrid

memristor-based storage structure combining T-tree, B
+
-tree and

CAM, manages to balance between performance and lifetime and

can outperform other storage structures when taking both
performance and lifetime into consideration.

We make three main contributions in this paper. First, this work

takes the first step in exploring the combined compute/storage

aspects of memristor arrays. Second, we propose configurable

hybrid data structures to improve the performance and lifetime of

search intensive applications. Finally, we provide configurability

by using memristors as both storage and logic and by using both

conventional CMOS processors/cache hierarchies and memristor

technologies. Designers can choose to configure a memristor

array as CAM, random access memory or hybrid CAM-memory
to trade among power, capacity, performance and lifetime.

We organize the remainder of this paper as follows: Section 2

introduces background knowledge. Section 3 summarizes our

system overview. Section 4 describes in detail both cell design

and match signal combination of MemCAM and the analysis of

energy consumption and searching time. Section 5 proposes

configurable hybrid memristor-based data structures and Section 6

evaluates the designs. Section 7 presents related work and Section
8 concludes.

2. Background

2.1 Memristors
The concept of a memristor was first predicted by Chua in 1971

[8] as the fourth fundamental circuit element and a physical model

and prototype was recently presented by HP Labs [9]. A

memristor is a non-volatile two-terminal nanoscale device that can

switch states between ‘on’ (switch-closed) and ‘off’ (switch-

open). A memristor array has ultra-high density (e.g. 10
11

 bits/cm
2

with a crossbar of approximately 17 nm half-pitch [17]) and could

scale to 100 terabits/ cm
2
 at 10nm feature sizes [32]. Figure 2

shows device schematic and cross bar circuit notation of a

memristor. When a memristor is closed (w ≅ D), it has low

resistance and we consider it to represent logical value ‘1’; when a

memristor is open (w≅ 0), it has high resistance and we consider it

to represent logical value ‘0’. Recent proposals seek to utilize

memristors to create novel nanostores for use in providing high-

capacity nonvolatile memory for big-data workloads [28]. Our

work seeks to complement that work by exploiting the additional
capability of memristor arrays to perform computation.

The natural logical operation to compute with memristors is

material implication p→q [18]. Figure 3 shows two memristors

used to perform implication logic. The voltage applied on

memristor p, VCOND, is a reading voltage, which does not change

the state of p. The voltage applied on memristor q, VSET, is a

writing voltage that may change the state of q depending on the

initial states of both p and q. RG is a resistance chosen between

the ‘on’ state resistance and the ‘off’ state resistance. From the

truth table in Figure 3 we can see that if we initialize q to be 0, the

two memristors perform a NOT operation, q = ¬p. As we show

later, other more complex operations are possible and can be

performed in parallel. Although we focus on memristors in this

paper, our techniques are applicable to any technology with
similar properties.

Hybrid Data

Structures

MemCAM

Memristor-

based

Memory

Lifetime

S
e
a
rc
h
 T
im
e

Figure 1: Design Space of Configurable Memristor

Arrays for Search
Doped Undoped

w

D

 (a) (b)

Figure 2: Memristor structure (a) and circuit notation (b)

3

2.2 Alternative Implementations
Associative lookup can be implemented in software (e.g., hash

tables, balanced trees, etc.) and some languages (e.g., perl, java,

python, etc.) provide direct support for data structures that expose

the associative lookup interface (i.e., maps, associative arrays).

Software implementations work very well for small data sets and

applications that are latency and bandwidth tolerant. For

applications with large data sets, software associative lookup

implemented on commodity hardware can incur significant delays

when the data set is too large to fit in conventional CMOS

physical memory and long latency disk accesses are required. The

high-density of emerging memories provides the opportunity to

provide much larger physical memory reducing the need for

external disk access in many applications. Furthermore, software

implementations generally require a logarithmic number of

memory accesses (e.g., balanced tree access). For applications

that require sustained high throughput, this logarithmic number of

accesses may be unacceptable even for data sets that can fit into

memory. Hash tables may reduce the number of accesses to O(1)

but at the expense of underutilized memory capacity since

collisions must be avoided. This wasted memory capacity may be
unacceptable for many applications.

An alternative to software associative lookup is to provide direct

hardware support (specialization) in the form of content

addressable memory (CAM). These specialized memories

provide additional circuitry to simultaneously compare the content

of each location to a provided key and returning either the data

associated with the key or a set of addresses for entries with

matching keys. This additional circuitry introduces overhead in

terms of power consumption and access time. These overheads

can limit the capacity of CAMs implemented in CMOS

technology. Additional delays could be incurred since in many

applications, the address of a matching entry is used to access

other storage such as DRAM or disk. The capacity of CMOS-
based CAMs may also be limited by the rate of scaling.

Memristors and other emerging high-density memories (e.g.,

STTRAM) could be used to create dedicated CAMs [11, 15].

However, combining CMOS transistors with memristors

unnecessarily limits density and increases manufacturing

difficulty since the CAM cell size is determined by CMOS device

sizes rather than memristor device sizes. Alternatively, a

specialized design using only memristors could be used to create a

CAM [30]. Although these techniques could increase CAM

capacity, traditional hardware CAMs are limited to equality

comparisons and would incur significant capacity reductions to

provide support for even slightly more complex operations (e.g.,

range query). Therefore, we seek to complement the capacity

advantages of an all memristor design with the flexibility of

configurable computation allowing designs to be tailored to
individual application requirements.

Many applications perform more than just a simple comparison

and thus can benefit from more general computational ability in

the accelerator. High-density resistive memory can also be used

similar to FPGAs by configuring lookup tables (LUTs) to create

specified circuits [16]. The work in this paper differs in that we

seek to exploit the ability of memristor’s to perform implication

logic (thus computation) in a programmable manner by

controlling the voltages across memristors. LUT-based

computing is ideal for technologies where write latency/power is

much greater than read latency/power. We expect memristor

write and read characteristics to be roughly equal and may be as

low as 10ns [22, 29]. Nonetheless, exploring the tradeoffs

between LUT-based computing and sequencing implication logic
steps is an interesting avenue to explore in future work.

3. System Overview
Our overall system design is shown in Figure 4. Although this

structure places the memristor array on the physical memory bus

along with conventional DRAM modules, it is possible to also

utilize a 3D stacked fabrication process similar to that advocated

for creating nanostores [28, 32]. Regardless of the specific

packaging approach, we envision a memristor array that resides in
the system’s physical address space.

The memristor subsystem is composed of a memristor array and a

programmable controller. The processor communicates with the

memristor array controller using memory-mapped operations.

The controller is responsible for applying appropriate voltages to

perform read/write or implication logic operations using the

memristor array. Read/write operations are ‘external’ operations

since peripheral CMOS circuitry is required to decode the address,

evaluate the data read out (for reads) and decide the applied

voltages based on the data to write (for writes). In contrast,

implication logic operations are ‘internal’ operations on data

already stored in memristors and the results are generated and

stored in memristors without being read out externally. Therefore,

external accesses will take much longer than the internal

implication logic steps. Applying voltages to perform a series of

implication logic steps in sequence performs computation. Note

that this design does not cascade memristors to create

combinational circuits, in contrast to conventional CMOS

transistors. However, parallelism can be exploited by using many

memristors to perform multiple implication logic operations per

step.

Figure 4: System Overview of Configurable Memristor

Array

VCOND VSET

p q

RG

p q q

0 0 1

0 1 1

1 0 0

1 1 1

Figure 3: Memristor Implication Logic for q = ¬p.

4

We assume a programmable memristor array controller where the

program specifies the sequence of voltages to apply to the

memristor array. Partitioning of memristors between storage and

computation is entirely under software control since it is the

voltages that determine compute vs. storage. We assume the

controller can always perform read/write operations to any portion

of the memristor array, even the memristors used for computation.

Configuration/specialization occurs by specifying a particular

program for the controller to execute that augments the traditional

read/write memory behavior. Unfortunately, there may not be

arbitrary flexibility in mapping computation onto the memristor
array while still providing high performance.

 To achieve high density, crossbar arrays are used in the

memristor array and thus voltages are applied to entire rows and

entire columns. Although it is possible set individual memristor

voltages using this two-dimensional array, the rate of computation

may be very slow. Instead, the mapping of computation onto the

memristor array should exploit the two-dimensional structure such

that many memristors can share a single voltage setting and thus

achieve parallel operation. In this work we perform manual

configuration/mapping of computation onto the memristor array,
but automated mapping is an interesting avenue of future work.

The configurability of memristor arrays creates a spectrum of

potential designs. As shown in Figure 5, on one end of the

spectrum the memristor array is configured to provide only

storage and can be used as nonvolatile memory while at the other

extreme is pure computation. In between these end points is a

diverse set of options for providing customized application

accelerators. In this paper we focus on search operations and

leave exploration of more sophisticated acceleration as future
work.

4. MemCAM: memristor-based CAM
This section presents our memristor CAM design (MemCAM).

We begin with a description of a single MemCAM cell. We focus

on CAM cell design and match signal combination. We assume

peripheral circuitry required to write into and read from the

memristor array similar to that proposed elsewhere [35]. We

designed both CAM and TCAM using memristors with similar

comparison and match signal combination processes. For brevity,

we only present the details of the memristor TCAM design that

supports both point and range query, we continue to use the

generic term CAM to refer to this implementation. If only CAM

operations are required then a slightly different design could be
configured that uses fewer memristors per entry.

4.1 MemCAM cell design
Figure 6 shows how memristors in an array are organized to form

rows of MemCAM entries. Each row contains multiple entries

(for simplicity we show only one entry per row), each entry

contains multiple cells, and each cell is comprised of multiple

individual memristors. Figure 7 shows a MemCAM cell that can

be used for both point and range queries. D0 and ¬D1 are two

memristors used to store two bits representing the data bit, and K

is the memristor used to store the input key bit. We store ¬D1

instead of D1 in order to save one step during the comparison

process. M1 to M4 are memristors used to perform comparison and

store match signals. M1 and M2 are used to store ¬D0 and ¬K first.

K and M2 are then used to compute D0˅¬K and the result is stored

in M2, and D0 and K are used to compute ¬D0˅K and the result is

stored in K. M4 is then used to store the value of D1 and combined

with the values of M2 and K. Finally, M3 and M4 are cleared and
used to store the match signal for the MemTCAM cell.

Table 1 shows the values and meanings of cell match signals

based on the values of D (D1D0) and K. The comparison process

includes eleven steps. Table 2 shows voltages applied to the

control lines, X and Y1-Y7, in a CAM cell at each step. The

difference between voltages applied on two control lines

connected to a memristor is the voltage across the memristor.

VCLEAR is the voltage required to switch a memristor to its ‘off’

state. Table 2 also shows the states of M1 through M4 at each step.

During the comparison process, the states of D0 and ¬D1 are not
changed so their states are not shown in Table 2.

4.2 Match signal combination

Figure 5: Spectrum of Configurable Memristor-based

Computing

……...

……... ……... ……...

……... ……... ……...

……... ……... ……...

……... ……... ……...

one memristor

one MemCAM/

MemTCAM cell with

multiple memristors

one MemCAM/

MemTCAM entry

with 3 cells

one MemCAM/

MemTCAM with

3 entries

Figure 6: MemCAM/TCAM Organization

Table 1: Values and meanings of cell match signals (M3

& M4) based on stored Data and key bits.

D1 D0 K M3=D1˄¬D0˄K M4=D1˄D0˄¬K

0 0 0 0 0
D == K

0 1 1 0 0

0 1 0 0 1 D > K

0 0 1 1 0 D < K

1 X X 0 0 D == K

Y2 Y3Y1 Y4 Y5 Y6

X

D0 K M1 M2 M3 M4

Y7

¬D1

 Figure 7: MemTCAM cell design: each box is a

memristor at a junction of the crossbar array.

5

After each CAM cell finishes the eleven-step comparison and

generates its cell match signal (CMS), we need to combine the

match signals from all cells in an entry to generate the entry match
signal (EMS).

We have:

),...,,,(1,2,1,0, −= niiiii CMSCMSCMSCMSnofCombinatioEMS

in which EMSi is the match signal of the i
th

 entry in the CAM,

CMSi,j is the match signal of the j
th

 cell in the i
th

 entry, and n is the

number of cells in an entry, which is also the number of bits in the
key word.

We assume n to be power of two here and use recursive doubling

[31] to combine match signals. For each Entry i, we first combine

every CMS pair, CMSi,2j and CMSi,2j+1 simultaneously and store

the result in the memristor used to store CMSi,2j+1. We then

combine every CMS pair CMSi,4j and CMSi,4j+2 similarly. EMSi is

in the memristor used to store CMSi,n-1 after log2(n) rounds. Each

round of match signal combination includes ten steps. We use six

memristors from two adjacent cells, including four memristors
already storing the CMSs, to combine two CMSs from two cells.

4.3 Discussion
Using memristors as both memory and logic provides not only

high density but also configurability. Consider three alternatives:

1) all memory, 2) all CAM or 3) partitioned memory+CAM.

Furthermore, for any CAM portion, we can configure different

number of entries with different key sizes, including very large

keys (e.g., character strings). Specific configurations can be based
on application requirements.

However, one major disadvantage of MemCAM is that

memristors have much lower endurance (10
10

 write cycles) than

SRAM (10
16

 write cycles). The lifetime of MemCAM is only a

few minutes under continuous search operations. Unfortunately,

memCAM’s lifetime cannot be improved by standard wear

leveling techniques since all the cells are accessed simultaneously

every cycle. To solve this problem, we need to design storage
structures that reduce the average write frequency per cell.

5. Configurable Hybrid Data Structures
This section presents several novel hybrid data structures for point

and range queries that are designed to take advantage of the in-

place compute capabilities of memristors while alleviating the

wear-out limitations. They key insight behind our approach is to

design data structures that naturally distribute operations over the
memristor array.

5.1 Overview
We can reduce the average write frequency by utilizing the

configurability of a memristor array. We can divide a memristor

array into multiple partitions with each partition having the same

capacity and configure one partition as CAM and the other

partitions as memory. We can then ‘rotate’ the CAM partitions
within the memristor array to achieve the benefit of wear leveling.

The improvement of lifetime by using the hybrid memristor-based

CAM-memory design is approximately proportional to the

number of partitions. However, this design requires a large

memristor array to obtain acceptable lifetime of a small

MemCAM. For example, to achieve one month-lifetime for 1MB

of MemCAM with continuous search operations requires a 35GB

memristor array even if there are no writes to the memory

partitions. With the improvement of memristor endurance in the

future, this design may become more efficient, but currently the

high storage overhead of the memristor-based CAM-memristor
design makes it not practical.

We can also reduce write frequency by designing a hierarchical

storage structure. We can use a CMOS-based CAM as a buffer of

MemCAM. We store hot data (data searched more frequently) in

CMOS CAM buffer and store cold data in MemCAM. The search

frequency of MemCAM is reduced and so is the write frequency.

The improvement of lifetime by using the hybrid CMOS-

memristor-based CAM design is dependent on the capacities of

both CAMs and the access frequencies of both hot and cold data.

Table 2: Memristor States and Applied voltages at Each Step of Comparison for Point and Range Query with TCAM

(VCO = VCOND, VS = VSET, VCL=VCLEAR)

K M1 M2 M3 M4 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Step 1 K 0 0 0 0 0 0 VCL VCL VCL VCL 0

Step 2 K ¬D
0

 0 0 0 VCO 0 VS 0 0 0 0

Step 3 K ¬D
0

 ¬K 0 0 0 VCO 0 VS 0 0 0

Step 4 K ¬D
0

 D
0
∨¬K 0 0 0 0 VCO VS 0 0

Step 5 ¬D
0
∨K ¬D

0
 D

0
∨¬K 0 0 VCO VS 0 0 0 0 0

Step 6 ¬D
0
∨K ¬D

0
 D

0
∨¬K 0 D1 0 0 0 0 0 VS VC

Step 7 ¬D
0
∨K ¬D

0
 ¬D

1
∨D

0
∨¬K 0 D1 0 0 0 VS 0 VCO 0

Step 8 ¬D
1
∨¬D

0
∨K ¬D

0
 ¬D

1
∨D

0
∨¬K 0 D1 0 VS 0 0 0 VCO 0

Step 9 ¬D
1
∨¬D

0
∨K ¬D

0
 ¬D

1
∨D

0
∨¬K 0 0 0 0 0 0 0 VCL 0

Step 10 ¬D
1
∨¬D

0
∨K ¬D

0
 ¬D

1
∨D

0
∨¬K D

1
∧¬D

0
∧K 0 0 0 0 VCO VS 0 0

Step 11 ¬D
1
∨¬D

0
∨K ¬D

0
 ¬D

1
∨D

0
∨¬K D

1
∧¬D

0
∧K D

1
∧D

0
∧¬K 0 VCO 0 0 0 VSET 0

6

Hot data has to be accessed 4x10
5
 times more frequently than cold

data in order to achieve a one-year lifetime, which is unlikely for
many applications and limits the application area of this design.

Partitioning a memristor-based storage structure or adding a

CMOS-based buffer alone cannot efficiently reduce write

frequency. Thus we combine the two methods and propose a

series of configurable hybrid data structures to utilize the

computation ability of memristors and provide ‘algorithmic’

wear-leveling to improve lifetime. We start with a logical tree

structure and divide it into two parts, the upper levels (the levels

near the root) and the lower levels (the levels near the leaves). We

then implement the two parts with different data structures and

technologies. The upper levels can be implemented as a hash table

or a T-tree and are stored in a CMOS-based storage structure (e.g.,

cache), and the lower levels can be implemented as a CAM or

several B
+
-trees and are stored in a memristor-based storage

structure. The main idea is to direct search through the upper-level

implementation so only one part of the memristor-based storage

structure is accessed per search (one or two partitions of CAM, or

one or two B
+
-trees). The improvement of lifetime is proportional

to the number of CAM partitions or B
+
-trees when the accesses

are uniformly distributed. When the accesses are not uniformly

distributed, we can apply wear-leveling techniques to improve
lifetime.

We decide the implementations of the two parts of the logical tree

based on whether we can efficiently generate a hash function that

is both uniform and order-preserving. A hash function is uniform

if it maps the expected input as evenly as possible over its output

range, and a hash function F is order-preserving if for inputs k1

and k2, k1<k2 implies F(k1)<F(k2). The properties of hash

functions, together with the implementations, decide the

functionality of the data structure – whether it can support range
search or not.

When we can efficiently generate a hash function that is both

uniform and order-preserving, we implement the upper levels as a

hash table and the lower levels as a CAM (Hash-CAM). When we

can efficiently generate a hash function which is only uniform but

not order-preserving, we can still implement the logical tree as

Hash–CAM but can only perform point search, which means that

the comparison process can only decide that whether an entry is

equal to the input key or not. If we also want to perform range

search, in which we want to know whether an entry is greater

than, or less than, or equal to the input key, we have to implement

the upper levels as a data structure with sorted data instead of a

hash table. We choose to implement the upper levels as a T-tree in

this case (T-tree-CAM). Based on T-tree-CAM, we propose TB
+
-

tree and TB
+
-tree-CAM to provide more configurability so we can

further improve lifetime.

5.2 Hash-CAM
A Hash-CAM is a hybrid hash table and CAM data structure used

to implement a logical tree. The hash table is used to implement

the i
th

 level of the tree with one node stored in one hash table

entry. The CAM is divided into multiple partitions and one

partition is linked with one hash table entry as shown in Figure 8.

The hash table is used to store keys to direct search into one part
of the CAM and the CAM is used to store all the records.

For point search, the input key goes through the hash function and

the search is directed to one CAM partition. The corresponding

CAM partition is searched with the process described in Section 4

and the matched results are read out based on entry match signals.

For range search, the two input bound keys go through the hash

function and the search is directed to two CAM partitions (bound

CAM partitions). The two CAM partitions perform comparisons

and output records with keys within the given range and any
records in the partitions between the two bound CAM partitions.

From the search process we can see that at most two CAM

partitions perform computations per search. As a result, the

improvement of lifetime is proportional to the number of CAM

partitions (which is also the number of hash table entries) when

searches are uniformly distributed among all CAM partitions or

when searches are not uniformly distributes and wear-leveling

techniques are applied to rotate data among CAM partitions.

5.3 T-tree-CAM
If we can only efficiently generate hash functions that are only

uniform but not order-preserving, Hash-CAM can only support

point search but not range search because records within a range

may be distributed among all CAM partitions. In order to support

range search, we replace the hash table with a T-tree to implement
the upper levels of the logical tree.

A T-tree is a data structure evolving from AVL trees and B-trees

and mainly used in main-memory databases [20]. Figure 9 shows

a T-tree node (T-node). It has a binary search nature similar to an

AVL tree because it is a binary tree, and it has good update and

storage characteristics similar to a B-tree because there are

multiple elements per node. Compared with AVL trees, a T-tree

requires fewer rotations upon delete and insert operations for
rebalancing because of intra-node data movement.

We implement the upper levels of the logical tree with a T-tree to

E
n
tr
y
 1

E
n
tr
y
 2

E
n
tr
y
 3

………………………..

E
n
tr
y
 h

P
a
rt
it
io
n
 1

P
a
rt
it
io
n
 2

P
a
rt
it
io
n
 3

………………………….

P
a
rt
it
io
n
 h

Software-

implemented

Hash Table

Memristor-

based CAM

Figure 8: HASH CAM

Data1 Data2 Data3 ……. Datam

Parent

Pointer

Left

Child

Pointer

Right

Child

Pointer

Figure 9: A T-tree Node (T-Node)

P
a
rt
it
io
n
 1

P
a
rt
it
io
n
 2

P
a
rt
it
io
n
 3

……………

P
a
rt
it
io
n
 h

Software-

implemented

T-tree

Memristor-

based CAM

P
a
rt
it
io
n
 4

P
a
rt
it
io
n
 h
-1

…………….

Figure 10: A T-tree CAM

7

preserve the orders to support range search. The lower levels are

implemented with a CAM. The CAM is divided into multiple

partitions and one partition is linked with one node in the lowest

level of the T-tree as shown in Figure 10. Both point search and

range search in a T-tree-CAM are similar to a Hash-CAM. The

only difference is that the input keys go through a T-tree instead

of a hash function. As a result, the improvement of lifetime is also

proportional to the number of CAM partitions (which is also the

number of nodes at the lowest level of the T-tree) when wear-
leveling techniques are applied.

5.4 TB+-tree
T-tree-CAM does not require a uniform and order-preserving hash

function to improve lifetime of memristor-based storage.

However, the lifetime improvement is limited by the capacity of

CMOS-based storage. In order to solve this problem, we propose

a new hybrid data structure—a TB
+
-tree. A TB

+
-tree is a

combination of T-tree and B
+
-tree. The upper levels of a logical

tree are implemented by a T-tree and stored in CMOS-based

storage and the lower levels are implemented by a forest of B
+
-

trees, stored in memristor-based storage, and traversed within the

memristor array using the memristor controller. Each B+ tree is

linked with a node at the lowest level of the T-tree as shown in

Figure 11. For point search, we go through one path in one B
+
-tree

to the leaf. For range search, we go through two paths in one or

two B
+
-trees to the leaves. Only a part of at most two B

+
-trees, not

two complete B
+
-trees, perform computations per search. We can

obtain lower average write frequency (thus longer lifetime)

compared with T-tree-CAM. We can also achieve more

configurability based on changing the order of B
+
-tree.

We implement lower levels using B
+
-tree instead of T-tree

because B
+
-tree is shallower than T-tree, which reduces the

average time required to perform search/delete/insert operations.

B
+
-tree is not efficient for traditional main-memory databases

because binary search is required to search within a sorted node

and linear search is required to search within an unsorted node [7]

which significantly increases search time. However, the intra

node search time can be improved by using the memristor array to

perform comparisons between the input key and all the keys

stored in a B
+
-tree node simultaneously. As a result, we can fully

utilize the benefits of unsorted nodes to reduce write frequency.

5.5 TB
+
-tree-CAM

Both T-tree-CAM and TB
+
-tree have advantages and

disadvantages. T-tree-CAM has shorter search time but limited

lifetime. TB
+
-tree have longer lifetime but also longer search time.

In order to balance performance and lifetime, we propose another

configurable hybrid data structure in between, a TB
+
-tree-CAM as

shown in Figure 12. In TB+-tree-CAM, we group leaf nodes of

one subtree in one B
+
-tree and align them continuously in the

memristor array so we can perform CAM search operations
described in Section 5.

The TB
+
-tree-CAM is the most general data structure and the

previous tree-based structures can be viewed as degenerate cases

that enable tuning an application to trade off performance (search

latency) vs. lifetime. Figure 13 shows two options for tuning

while maintaining support for insert/delete operations. Search

operations follow black arrows and insert/delete operations follow

gray arrows. In general, the root of the CAM allocated subtree can

be any node of one B+-tree. If the root of the subtree is the root of

the B
+
-tree, the TB

+
-tree-CAM becomes a T-tree-CAM (Figure

13a). If the root of the subtree is one leaf node, TB
+
-tree-CAM

becomes TB
+
-tree. If the root of the subtree is an internal node,

TB
+
-tree-CAM becomes a data structure in between with

moderate search time and lifetime (Figure 13b).

5.6 Discussion
We propose four hybrid data structures in this section. All the

designs are based on a logical tree divided into two parts, the

upper levels and the lower levels. The main idea is to partition the

lower levels and for every search/insert/delete operations, direct

access to one or two of the partitions through the upper levels.

Since at most two partitions are accessed per operation, the write

frequency is reduced for the same number of operation, which

leads to lifetime improvement proportional to the number of

partitions. We can decrease the number of partitions by decreasing

the number of upper levels (an extreme case is MemCAM, in

which the lower levels are implemented with a CAM and the

number of partitions is 1) or increase the number of partitions by

increasing the number of upper levels. Users/Designers can

choose different numbers of partitions to trade between

performance and lifetime based on the requirements of different

Software-

implemented

T-tree

Memristor-

based B+-trees

B+-tree 1

B+-tree 2

B+-tree 3

B+-tree 4

B+-tree h

B+-tree h-1

…………………...

…………………...

Figure 11: TB+-tree

Software-

implemented

T-tree

Memristor-

based B+-trees

B+-tree 1

B+-tree 2

B+-tree 3

B+-tree 4

B+-tree h

B+-tree h-1

…………………...

…………………...

P
a
rt
it
io
n
 1

……………

P
a
rt
it
io
n
 2

P
a
rt
it
io
n
 3

P
a
rt
it
io
n
 4

P
a
rt
it
io
n
 h
-1

P
a
rt
it
io
n
 h

Memristor-

based CAM

Figure 12: TB+-tree-CAM

18 19 20 21

7 8 9 10 29 30 31 32

Software-

implemented

T-tree

with T=4

Memristor-

based B+-trees

with B=3

5

2 5

0 1 2 3 4 5 6 11 12 13 14 15 16 17 22 23 24 25 26 27 28 33 34 35 36 37 38 39

13 16

16

23 27

27

35 37

37

Memristor-

based CAM

a) Faster Search / Shorter Lifetime (4 CAM Partitions)

18 19 20 21

7 8 9 10 29 30 31 32

Software-

implemented

T-tree

with T=4

Memristor-

based B+-trees

with B=3

5

2 5

0 1 2 3 4 5 6 11 12 13 14 15 16 17 22 23 24 25 26 27 28 33 34 35 36 37 38 39

13 16

16

23 27

27

35 37

37

Memristor-

based CAM

b) Slower Search / Longer Lifetime (8 CAM Partitions)

Figure 13: TB+tree-CAM Tuning Options w/ Support for

Insert & Delete

8

applications or when the endurance of memristors are improved
by future research.

6. Evaluation
We develop an analytic model to evaluate and compare the

average record search time of six data structures, a CMOS-based

T-tree, a memristor-based T-tree, a hybrid Hash-CAM, a hybrid

T-tree-CAM, a hybrid TB
+
-tree and a hybrid TB

+
-tree-CAM. All

six data structures have the upper levels stored in a CMOS-based

cache. The CMOS-based T-tree has the lower levels stored in

DRAM. The memristor-based T-tree has the lower levels stored in

a memristor memory and uses conventional loads and stores to

traverse the tree. The four hybrid data structures store the lower

levels in a memristor array with combined compute and storage

and can leverage the internal controller to traverse the trees.

6.1 Energy and Access Feasibility Study
We first evaluate the energy consumption and search time of

MemCAM and then evaluate hybrid storage structures based on

MemCAM performance. Although we anticipate 10
11

memristors/cm
2
 if we build the memristor array on 17-nm-wide

nanowires [17] and 10
12

 memristors/cm
2
 with 5nm-scale

memristors [1], we evaluate energy consumption and searching

time of MemCAM based on a conservative design, a memristor

array built on 50-nm-wide nanowires [4] with 50nm x 50nm x

10nm memristors. Memristor density of the evaluated array is 10
10

memristors/cm
2
 and cell density is 10

9
 cells/cm

2
, which is 100

times denser than CMOS-based CAM.

We use a simplified SPICE model proposed by Mahvash and

Parker [25] to simulate switching time and power consumption of

a single memristor. The simulation results are then used to

calculate the energy consumption and search time of MemCAM.

The energy consumption and search time both depend on step

time (time required to perform a step of operation). Step time

depends on both switching time and RC delay, which can overlap

because switching starts as soon as the voltage across a memristor

goes beyond a threshold voltage (the lowest voltage that can

switch a memristor). Based on the RC delay of 35 nm Cu-Low κ

technology (250 ps for a 1 mm line [1]), methods such as repeater

insertion are required to obtain a < 200ps RC delay for a 1-cm-

long 50-nm-wide line and we can then obtain a 2-ns step time.

The final results show that it is feasible to build a 1Gbit

MemCAM with 1cm x 1cm area. With 50nmx50nm memristors

and K-bit keywords, for MemCAM supporting both point and

range queries, the energy consumption is (0.44+0.82*log2(K))

fJ/bit/search (for each data bit stored in MemCAM) and the search

time is (16+20* log2(K)) ns , and for MemTCAM supporting both

point and range queries, the energy consumption is (0.83+0.82*
log2(K)) fJ/bit/search and the search time is (22+20* log2(K)) ns.

Based on the power consumption of a single memristor, we also

estimate the power density of MemCAM. The power density of

MemCAM is determined based on the power consumed by both

memristors and wires. Previous studies show that wires consume

up to 80% of the power [4]. However, in this experiment, the

number of memristors and the number of wires are similar while

in a 1cm x 1cm MemCAM there are 10
10

 memristors but only 2 x

10
5
 wires. As a result, the wire power percentage in MemCAM

should be much lower. Furthermore, wire power density can be

reduced by methods that could dramatically reduce the wire

resistance and capacitance [4] since interconnect power is

proportional to the wire capacitance [2,36]. We conservatively

assume that wires consume 50% of the total power, which leads to

a total power density of approximate 55W/cm
2
 for

MemCAM/MemTCAM supporting only point query and

80W/cm
2
 for MemCAM/MemTCAM supporting both point and

range queries. We expect similar power density as memristor

feature size scales down, reaching the 10
12

 memristors/cm
2

density. The reason is that there is a linear relationship between

the number of memristors per unit area and the memristor

resistance and the power density depends on the ratio of the

number of memristors per unit area to the memristor resistance.

However, we must wait for experimental demonstrations of high-
density memristor arrays to further analyze the power dissipation.

6.2 Analytic Model
Table 3 shows the parameters we use to develop our analytic

model. We define record nodes as nodes containing pointers to

the records. For the T-tree, all the nodes are record nodes. For the

TB
+
-tree, all the nodes at upper levels and all the leaves are record

nodes. Given the number of records NR, the order of the T-tree T

(which means that there are at most T records in a T-node), the

order of the B
+
-tree B (which means that each internal node in the

B
+
-tree has at least B / 2!" #$ children and at most B children), and

the number of upper levels LevelU, with the assumption of 100%

node utilization (which means that every node has the maximum

number of records) the total number of record nodes in the T-tree

is N
T
=
N

R

T
and and the TB

+
-tree the number of record nodes

is N
TB
= 2

LevelU −1+
N

R
− 2

LevelU −1()×T
B

.

The total number of record nodes in the T-tree (NT) is calculated

by dividing the number of record (NR) by the order of the T-tree

(T). The total number of record nodes in the TB+-tree (NTB) is the

sum of the number of record nodes at the upper levels and the

lower levels, and the number of record nodes at the lower levels is

calculated by dividing the number of record nodes at the lower
levels by the order of the B

+
-tree (B).

Table 3: Analytic Model Parameters

AvgTimeT Average record search time of the T-tree

AvgTimeTB Average record search time of the TB
+
-tree

LevelU Number of upper levels

LevelLT Number of lower levels in the T-tree

LevelLTB Number of lower levels in the TB
+
-tree

LevelLTB’ Number of lower levels in the TB
+
-tree-CAM

NodeTimeU Time to search a node at upper levels

NodeTimeLT
Time to search a node at lower levels in the T-
tree

NodeTimeLTB
Time to search a node at lower levels in the
TB

+
-tree

NT
Total number of nodes storing records in the T-
tree

NTB
Total number of nodes storing records in the
TB

+
-tree

NR Total number of records

T Order of the T-tree

B Order of the B+-tree

9

We then determine the number of lower levels in the T-tree (Level

LT) and the TB
+
-tree (LevelLTB). The number of lower levels in the

T-tree is the difference between the total number of levels in the

T-tree and the given number of upper levels:

Level
LT
= log2

N
R

T

!

""
#

$$
− Level

U
. We assume that all the B

+
-trees in

the TB
+
-tree have the same depth and the number of lower levels

in the TB
+
-tree is equal to that depth, which is the logarithm of the

number of record nodes in a B
+
-tree to based B, which

produces Level
LTB

= log
B

N
R
− 2LevelU −1()×T
2
LevelU

#

$

%
%

&

'

(
(

#

%

%
%

&

(

(
(

.

When we search for a record, we first search for the record node

containing the record and then search within the record node to

find the record. For a record node at an upper level, we just need

to access the upper levels from the root to reach it. For a record

node in a lower level, we must traverse (access) all the upper

levels first and then search the lower levels. The search process in

the lower levels depends on the specific implementation: for

software T-tree, using either CMOS or memristors, we search the

corresponding subtree with the search process similar to the

search process in the upper levels; for Hash-CAM and T-tree-

CAM, we search the corresponding CAM partition with the

comparison and match signal combination described in Section 4;

for TB
+
-tree, we go down the B

+
-tree to the leaf level and search

the internal nodes with the comparison and match signal

combination described in Section 4 to decide which subtree has

the input key; for TB
+
-tree-CAM, we go through a per-defined

number of B
+
-tree levels and search all the leaves in the

corresponding subtree with the comparison and match signal
combination described in Section 4.

The time required to reach a node at the i
th

 upper level is

i×NodeTime
U

 where i ∈ Z and i ∈ 1,Level
U[] . The time

required to reach a node at the i
th

 lower level in the T-tree is

Level
U
×NodeTime

U
+ i×NodeTime

LT
 where i ∈ Z and

i ∈ 1,Level
LT[] . The time required to reach a node at the i

th
 lower

level in the TB
+
-tree is

Level
U
×NodeTime

U
+ Level

LTB
×NodeTime

LTB
 where i ∈ Z and

i ∈ 1,Level
LTB[] .

We assume a random uniform distribution of keys to search and

define the average record search time as the average time required

to reach the corresponding record node. We also assume that each

record node has the same number of records and calculate the

average record search time by dividing the sum of the time
required to reach each record node by the number of record nodes.

Figure 14 shows how we calculate the average record search time

for each of the five memristor-based data structures. We calculate

the average record search time of a CMOS-based T-tree and a

memristor-based T-tree by changing the value of NodeTimeLT in

AvgTimeT. AvgTimeTB is the average record search time of a

hybrid CMOS-memristor TB
+
-tree. We also calculate the average

record search time of Hash-CAM (AvgTimeHC), T-tree-CAM

(AvgTimeTC), and TB
+
-tree-CAM (AvgTimeTBC) based on the

MemCAM search time described in Section 4. The average record

search time of Hash-CAM is the sum of the time to access the

hash table and the time to search a CAM partition. The average

record search time of a T-tree-CAM is the sum of the time to go

through all upper levels in the T-tree and the time to search a

CAM partition. The average record search time of TB
+
-tree-CAM

is the sum of the time to go through all upper levels in the T-tree,

the time to go through a predefined number of levels in a B
+
-tree,

and the time to perform CAM-like search operation in a subtree.

We do not consider the records in upper levels when we calculate

the average record search time for these three hybrid storage
structures because most of the records are in lower levels.

6.3 Modeling Results and Analysis
Our evaluation is based on 32MB cache and 128GB DRAM [33].

Based on the densities of DRAM (15Gbit/cm
2
 [3]) and a

memristor array (1Tbit/cm
2
 [32]), we assume an 8TB memristor

memory and a 1TB MemCAM. We choose the number of records

in a T-node (T) to be 10 and store 17 levels of T-tree in cache. We

choose the number of records in a B
+
-tree node (B) to be 80 to

balance between the depth and node utilization rate of the B
+
-tree.

Table 4 shows the number of records we can store in different

data structures assuming 100% node utilization rate for T-tree and
75% node utilization rate for B

+
-tree.

For CMOS-related parameters, we use the data from performance

analysis of Intel’s latest processors [21] for NodeTimeU (16ns)

and NodeTimeLC (60ns). For memristor-related paramters, we can

still achieve 1-ns switching time as the scale of memristor goes

from 50nm to 5nm (density going from 10Gbit/cm
2
 to

1TGbit/cm
2
) since memristor switching time is proportional to

ROFF/RON. The RC delay of wires increases as memristors scale

down but we can use technologies such as repeater insertion in

order to achieve the same RC delay at 5-nm scale and 50-nm

scale. As a result, we can achieve similar search time at both

scales. It requires one write (to write the key), two reads (one to

read the comparison results, and one to read the address of the

Table 4: Records For Each Data Structure

Data structure Number of records

Software CMOS-based T-tree 5.4 x 10
9

Memristor-based T-tree 3.4 x 10
11

Hash-CAM
6.9 x 10

10

T-tree-CAM

TB
+
-tree

2.8 x 10
10

TB

+
-tree-CAM

AvgTimeT =

{NodeTimeU × LevelU −1()×2LevelU +1#$ %&

+NodeTimeU × LevelU × NT − 2
LevelU +1()

+NodeTimeLT × LevelLT − 2()×2
LevelU+LevelLT −1()

+ 2
LevelU#

$
%
&

+NodeTimeLT × LevelLT × NT − 2
LevelU+LevelLT −1() −1()#

$
%
&} / NT

AvgTimeTB = {NodeTimeU × LevelU −1()×2LevelU +1#$ %&

+NodeTimeU × LevelU × NTB − 2
LevelU +1()

+NodeTimeLTB × LevelLTB × NTB − 2
LevelU +1()} / NTB

AvgTimeHC = HashTime+MemCAMSeachTime

AvgTimeTC = NodeTimeU × LevelU +MemCAMSeachTime

AvgTime
TBC

= NodeTime
U
× Level

U
+ NodeTime

LTB
× Level

LTB '

+MemCAMSeachTime

Figure 14: Access Time Equations

10

next node), and a comparison to search a node in the TB
+
-tree. We

use 8-byte keys and 8-byte pointers thus the comparison time is

136ns. We call the time required to perform a read/write operation

to the memristor array from the peripheral circuitry memristor

arrayread/write latency. We need peripheral circuitry to decode

the address, evaluate the data read out (for reads) and decide the

applied voltages based on the data to write (for writes) when we

access the memristor array externally. As a result, the memristor

array read/write latency (which varies from 10ns [22, 29] to 120ns

[28]) is much longer than the step time of 2ns (where the

operations occur inside the memristor array and the applied

voltages are known beforehand). As a result, NodeTimeLM varies

from 166ns to 496ns.

We first choose the number of records (R) to be 10
9
, therefore all

the records can be stored in any of the six data structures, and

compare the performance of the six data structures shown in Table

4. Figure 15 shows the average record search time as we increase

memristor array read/write latency from 10ns to 120ns. We can

see that only Hash-CAM and T-tree-CAM perform better than

memory-based T-trees. The performance of TB
+
-tree-CAM is

between the performance of CMOS T-tree and Memristor T-tree

and the performance of TB
+
-tree is worse than both memory-

based T-trees.

We then choose the number of records (R) to be 10
10

, which

means that the capacity of DRAM is no longer high enough to

store all the records. Figure 16 shows the average record search

time as we increase memristor array read/write latency from 10ns

to 120ns. We do not show the performance of software/CMOS +

DRAM in Figure 16 since it requires disk accesses for this data

size and the average record search time increases to milliseconds.

We can see from Figure 16 that Hash-CAM and T-tree-CAM still

perform better than memristor-based T-tree. TB
+
-tree still

performs worse than memristor-based T-tree but the performance

gap decreases as memristor array read/write latency increases.

TB
+
-tree-CAM outperforms memristor-based T-tree as long as

memristor array read/write latency is longer than 40ns. In general,

TB
+
-tree and TB

+
-tree-CAM perform better than when R is 10

9
.

The reason is that when R is 10
9
, the node utilization rate of B

+
-

trees is low, which means that we cannot benefit from the
shallowness of B

+
-trees.

We then change the number of records from 10
9
 to 10

20
 to see

how data size affects performance of the six data structures. From

Figure 16 we can see that memristor-based T-tree has better

performance when memristor array read/write latency is lower, so

we choose memristor array read/write latency to be 10ns to have

the best possible performance of memristor-based T-tree. The

results are shown in Figure 17. We can see that the search time of

CMOS-based T-tree, memristor-based T-tree, and TB
+

-tree

increase as the number of records increases. The search time of

Hash-CAM, T-tree-CAM, and TB
+

-tree-CAM remain almost the

same. When the number of records goes beyond 10
16

, TB
+

-tree-

CAM outperforms memristor-based T-tree.

We also calculate the theoretical maximum lifetime of the four

hybrid data structures assuming continuous search operations,

which is shown in Table 5. Generally, lifetime increases as search

time increases, since increased search time results in reduced

write frequency. The exception here is T-tree-CAM, whose

lifetime is limited by the capacity of cache. However, we can see

that even in the worst case we can achieve a one-year lifetime. If

we take into account the time required to read out the matched

records, the lifetime will be even longer.

Figure 15: Performance of various data structures vs.

memristor latency (number or records, R, = 10
9
)

Figure 16: Performance of various data structures vs.

memristor latency (number or records, R, = 10
10

)

Figure 17: Search Time vs. number of records

11

From the above analysis, we observe that reducing memristor

external read/write latency below 40ns and if the number of

records is smaller than 10
16

 then memristor-based T-tree is the

best data structure for search applications. Otherwise, TB
+

-tree-

CAM performs better through combined compute and storage and
has an acceptable lifetime.

7. Related Work
A memristor-based crossbar memory system has been

demonstrated by HP Labs [35]. Strategies and peripheral circuitry

have been designed to write into and read from a memristor array.

The memristor memory demonstrates much higher density and

access time comparable to CMOS RAMs. A hybrid CMOS-

memristor CAM has also been proposed to achieve larger capacity

[11]. However, combining CMOS transistors with memristors
reduces bit density and increases manufacturing difficulty.

Recently several researchers have explored spin-based devices for

both storage and computing [15, 16, 27]. In STT-MRAM [16],

one CMOS transitor and one magnetic tunnel junction (MTJ) are

combined to build a cell. In MTJ-based logic units [26], MTJs are

used to perform logic operations on data stored in other MTJs.

Our work focuses on memristor technology with wear out

constraints. Exploring more general configurable accelerators
with different technologies is an interesting area of future work.

Other emerging memory technologies with endurance problems

include PCM (Phase Changing Memory). Recent work proposes

new B+-tree algorithms for PCM to improve performance and

reduce writes [7]. They design unsorted node organizations to

reduce the number of writes incurred during insert and delete

operations. Their results show that an approach where only the

leaves are unsorted performs better than when all the nodes are

unsorted. The reason is that it requires linear time to search within

a node in PCM. However, with the computation ability of

memristors, we can perform simultaneous comparisons and

reduce search time within a node, which makes the unsorted
scheme a better choice for in-place computing technologies.

Extensive research has been performed on processing-in-memory

(PIM) to improve performance by combining processing units and

memory [10, 14, 24, 26]. Terasys [14] augments a standard 4-bit

memory with a single-bit ALU controlling each column of

memory. In DAAM (Dynamic Associative Access Memory) [24]

a large number of small processing elements are put in a DRAM’s

sense amps. DIVA [10] incorporates multiple PIM chips to a

conventional microprocessor. Smart Memories [26] has multiple

processing tiles which can be configured based on the

requirements of applications. The main idea of PIM is to combine
compute and storage, similar to our proposed data structures.

Recent research [23] “disaggregated” memory to expand and

share memory across servers. With memory capacity increase, we

are able to store more data and obtain more benefits from our

hybrid data structures. Furthermore, by performing in-place

computation the disaggregated memory could serve as an
application appliance rather than simply memory.

8. Conclusion
Memristors are an emerging technology with potential to provide

high-density storage augmented with in-place computing through

implication logic. In this paper we explore this combined storage

compute as a method to accelerate point and range search queries,

which serve as specific instances of more general configurable

accelerators. We first show how to use implication logic to create

a configurable CAM that can support both point and range

queries; however, low endurance of memristors limits the benefit

we can obtain from these storage structures. To more fully utilize

the computation ability of memristors and overcome the

endurance problem, we introduce novel data structures for use
with memristor-based storage+compute structures.

We first propose MemCAM, a configurable memristor-based

CAM design. The computation ability of memristors makes it

possible to perform range search using MemCAM while the high

density of memristors provides an opportunity to build CAMs

with large capacity and small area. We use SPICE to model

memristor power and performance. With 50nmx50nm memristors

and a K-bit search word, for a MemCAM supporting both point

and range queries, the energy consumption is (0.44+0.82*

log2(K)) fJ/bit/search and the search time is (16+20*log2(K)) ns ,

and for MemTCAM supporting both point and range queries, the

energy consumption is (0.83+0.82* log2(K)) fJ/bit/search and the
search time is (22+20* log2(K)) ns.

We then propose a series of configurable hybrid data structures

using both conventional CMOS cache hierarchies and memristor

technologies to solve the endurance problem. These data

structures can be reconfigured to trade between performance and

lifetime and to adapt to future memristors with improved

endurance. We use an analytic model to calculate and compare the

performance and lifetime of two memory-based T-trees and four

hybrid data structures. The results show that hybrid data structures

can utilize MemCAM search abilities and improve lifetime from

seconds to years. Furthermore, TB
+
-tree-CAM, a hybrid CMOS-

memristor data structure combining T-tree, B
+
-tree and CAM,

manages to balance between performance and lifetime and can

outperform other data structures when taking both performance
and lifetime into consideration.

9. Acknowledgements
Thanks to those that funded and contributed.

10. References
[1] "Interconnect Report. International Technology Roadmap for

Semiconductors (ITRS)," 2009.

[2] D. Agrawal, S. Das, and A. El Abbadi, "Big data and cloud

computing: current state and future opportunities," in

Proceedings of the Proceedings of the 14th International

Conference on Extending Database Technology, pp. 530-

533, 03/21/2011, 2012.

[3] S. I. Association, "International Technology Roadmap for

Semiconductors," 2010.

[4] J. Borghetti, et al., "Memristive switches enable stateful logic

operations via material implication," Nature, vol. 464 (7290),

pp. 873-876, 2010.

[5] S. Borkar and A. A. Chien, "The future of microprocessors,"
Commun. ACM, vol. 54 (5), pp. 67-77, 2011.

Table 5: Theoretical maximum lifetime of four hybrid data

structures (Taccess: memristor array read/write latency)

Data structure
Lifetime (years)

Taccess=10ns Taccess=60ns Taccess=120ns

Hash-CAM 2.4 3.9 5.7

T-tree-CAM 0.8 1.0 1.2

TB
+
-tree 88.6 139.5 200.7

TB
+
-tree-CAM 68.2 96.6 130.6

12

[6] F. Chang, et al., "Bigtable: a distributed storage system for

structured data," in Proceedings of the in Proceedings of the

7th Conference on USENIX Symposium on Operating
Systems Design and Implementation, 2006.

[7] S. Chen, P. B. Gibbons, and S. Nath, "Rethinking database

algorithms for phase change memory," in Proceedings of the

in Proceedings of the 5th Biennial Conference on Innovative

Data System Research (CIDR '11), 2011.

[8] L. O. Chua, "Memristor - the missing circuit element," IEEE

Transactions on Circuit Theory, vol. CT-18 (5), pp. 507-519,

1971.

[9] G. S. S. D. R. S. Dmitri B. Strukov and R. S. Williams, "The
missing memristor found," Nature, vol. 453, pp. 4, 2008.

[10] J. Draper, et al., "The architecture of the Diva processing-in-

memory chips," in Proceedings of the in Proceedings of the

16th International Conference on Supercomputing. New

York, USA: ACM, 2002, pp. 14-25, 2002.

[11] K. Eshraghian, et al., "Memristor MOS content addressable

memory (MCAM): hybrid architecture for future high

performance search engines," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. PP (99), 2010.

[12] H. Esmaeilzadeh, et al., "Dark silicon and the end of

multicore scaling," in Proceedings of the 38th annual

international symposium on Computer architecture. San
Jose, California, USA: ACM, 2011, pp. 365-376.

[13] H. Franke, et al., "Introduction to the Wire-Speed Processor

and Architecture," IBM J. Res. Dev., vol. 54 (1), pp. 27-37,
2010.

[14] M. Gokhale, B. Holmes, and K. Iobst, "Processing in

memory: the Terasys massively parallel PIM array,"
Computer, vol. Volume 28(4), pp. 23-31, 1995.

[15] Q. Guo, et al., "A Resistive TCAM Accelerator for Data-

Intensive Computing." International Symposim on
Microarchitecture (MICRO '11), 2011.

[16] X. Guo, E. Ipek, and T. Soyata, "Resistive computation:

avoiding the power wall with low-leakage, STT-MRAM

based computing," in Proceedings of the 37th annual

international symposium on Computer architecture. Saint-
Malo, France: ACM, 2010, pp. 371-382.

[17] G.-Y. Jung, et al., "Circuit fabrication at 17 nm half-pitch by

nanoimprint lithography," Nano Letters, vol. 6 (3), pp. 351-
354, 2006.

[18] P. J. Kuekes, "Material implication: digital logic with

memristors," Memristor and Memristive Systems Symposium,
2008.

[19] S. Kvatinsky, et al., "Memristor-based IMPLY logic design

procedure," in Proceedings of the Proceedings of the 2011

IEEE 29th International Conference on Computer Design,
pp. 142-147, 10/09/2011, 2011.

[20] T. J. Lehman and M. J. Carey, "A study of index structures

for main memory database management systems," in

Proceedings of the in Proceedings of the 12th International
Conference on Very Large Data Bases (VLDB '86), 1986.

[21] D. Levinthal, "Performance analysis guide for Intel®

CoreTM i7 processor and Intel® XeonTM 5500 processors."

[22] D. L. Lewis and H.-H. S. Lee, "Architectural evaluation of

3D stacked RRAM caches," in Proceedings of the in

Proceedings of IEEE International 3D System Integration
Conference, 2009.

[23] K. Lim, et al., "Disaggregated memory for expansion and

sharing in Blade servers," in Proceedings of the in

Proceedings of the 36th annual International Symposium on
Computer Architecture (ISCA '09), 2009.

[24] K. L. Liu, G. J. Lipovski, and C. Yu, "The dynamic

associative access memory chip and its application to SIMD

processing and full-text database retrieval," in Proceedings of

the in Proceedings of the 1999 IEEE International Workshop

on Memory Technology, Design, and Testing: IEEE
Computer Society, 1999.

[25] M. Mahvash and A. C. Parker, "A memristor SPICE model

for designing memristor circuits," in the 2010 53rd IEEE

International Midwest Symposium on Circuits and Systems
(MWSCAS), 2010.

[26] K. Mai, et al., "Smart Memories: a Modular Reconfigurable

Architecture," in Proceedings of the 27th Annual

International Symposium on Computer Architecture, pp. 161-
171, 2000.

[27] S. Patil and D. J. Lilja, "Performing bitwise logic operations

in cache using spintronics-based magnetic tunnel junctions,"

in Proceedings of the Proceedings of the 8th ACM

International Conference on Computing Frontiers, pp. 33,
05/03/2011, 2011.

[28] P. Ranganathan, "From microprocessors to nanostores:

rethinking data-centric systems," Computer, vol. 44 (1),
2011.

[29] W. Robinett, et al., "A memristor-based nonvolatile latch
circuit," Nanotechnology 21(2010) 235203, 2010.

[30] G. S. Snider, "Molecular Wire Content Addressable

Memory," vol. US 6952358 B2, U. S. P. Office, Ed.:
Hewlett-Packard Development Company, L.P., 2005.

[31] H. S. Stone, "An efficient parallel algorithm for the solution

of a tridiagonal linear system of equations," Journal of the

Association for Computing Machinery, vol. 20 (1), pp. 27-38,
1973.

[32] D. B. Strukov and R. S. Williams, "Four-dimensional address

topology for circuits with stacked multilayer crossbar

arrays," in Proceedings of the in Proceedings of the National

Academy of Science, pp. 20155-20158, 2009.

[33] C. A. Van Eysden and J. E. Sader, "Frequency Response of

Cantilever Beams Immersed in Viscous Fluids with

applications to the atomic force microscope: Arbitrary mode

order," Journal of Applied Physics, vol. 101 (4 044908
ARTN 044908), pp. -, 2007.

[34] G. Venkatesh, et al., "Conservation cores: reducing the

energy of mature computations," in Proceedings of the

fifteenth edition of ASPLOS on Architectural support for

programming languages and operating systems. Pittsburgh,
Pennsylvania, USA: ACM, 2010, pp. 205-218.

[35] P. O. Vontobel, et al., "Writing to and reading from a nano-

scale crossbar memory based on memristors,"
Nanotechnology, vol. 20, 2009.

[36] J. J. Yang, et al., "High switching endurance in TaOx

memristive devices," Applied Physics Letters, vol. Volume
97 (Issue 23), 2010.

