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ABSTRACT 

Emerging technologies present opportunities for system designers 

to meet the challenges presented by competing trends of big data 

analytics and limitations on CMOS scaling.  Specifically, 

memristors are an emerging high-density technology where the 

individual memristors can be used as storage or to perform 

computation. The voltage applied across a memristor determines 

its behavior (storage vs. compute), which enables a configurable 

memristor substrate that can embed computation with storage. 

This paper explores accelerating point and range search queries 

as instances of the more general configurable combined compute 

and storage capabilities of memristor arrays.  We first present 

MemCAM, a configurable memristor-based content addressable 

memory for the cases when fast, infrequent searches over large 

datasets are required.  For frequent searches, memristor lifetime 

becomes a concern.  To increase memristor array lifetime we 

introduce hybrid data structures that combine trees with 

MemCAM using conventional CMOS processor/cache hierarchies 

for the upper levels of the tree and configurable memristor 

technologies for lower levels.   

We use SPICE to analyze energy consumption and access time of 

memristors and use analytic models to evaluate the performance 

of configurable hybrid data structures.  The results show that with 

acceptable energy consumption our configurable hybrid data 

structures improve performance of search intensive applications 

and achieve lifetime in years or decades under continuous queries.  

Furthermore, the configurability of memristor arrays and the 

proposed data structures provide opportunities to tune the trade-

off between performance and lifetime and the data structures can 

be easily adapted to future memristors or other technologies with 

improved endurance. 

Categories and Subject Descriptors1
 

B.3.2 [Hardware]: Design Styles – associative memories. C.1 

[Computer Systems Organization]: Procesor Architectures – 

multiple data stream architectures, heterogeneous (hybrid) 

systems. E.1 [Data] – trees. 

General Terms 

Algorithms, Design, Performance, Reliability. 

Keywords 

Emerging technology, specialization, memory systems. 

1.   INTRODUCTION 
Workload and technology trends are significant driving forces 

behind computer systems design. Three significant current trends 

are large data sets, limits of CMOS power dissipation, and 

emerging technologies.  First, the desire to query and analyze an 
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increasingly large amount of data presents significant algorithm 

and systems challenges, e.g., [2, 6].  Second, the power 

dissipation limits of current CMOS packaging create an 

architectural trend toward the design of application accelerators 

that provide customized hardware for improving the performance 

of common workload scenarios [5, 12, 13, 34].  Third, scaling 

limits of CMOS motivate the need for alternative technologies to 

augment or supplant CMOS [3].  The confluence of these three 

trends presents an opportunity to explore new approaches that 

span traditional system abstraction boundaries from technology up 
through applications. 

This paper explores memristors⎯an emerging high-density 

technology⎯where the individual memristors can be used either 

for non-volatile storage or to perform computation [8, 9, 18, 19, 

29, 32, 35]. The voltage applied across a memristor determines its 

behavior (storage vs. compute), which enables configurable use of 

the memristor substrate to embed computation with storage. We 

propose using memristor arrays as a single combined 

compute/storage substrate that can be dynamically configured to 

provide customized computational support for big-data and other 

applications.  In this paper, we focus on two types of search 

operations (point and range queries) as specific instances of the 

more general specialized accelerators.  Search is an integral part 

of many applications including databases, machine learning, 

network routing, DNA sequencing; and recent research has 

explored methods for exploiting other new technologies for 
improving search [15] or database algorithms [7]. 

Memristors have the potential to provide higher capacity 

(10
12

/cm
2
) [32] than CMOS with  switching times as low as 1ns 

an external array access times  as low as 10ns [22, 29].  The 

memristive computation we explore is implication logic [4], 

which makes it possible to perform computation within the 

storage structure.  Unfortunately, memristors have much lower 

endurance (10
10

 write cycles [36]) than CMOS devices (10
16

 write 

cycles for SRAM [11]) and in-storage computing further 

exacerbates the problem since each implication logic operation 

could be a memristor write.  The challenge is to exploit the 

density and combined compute/storage aspect of memristors 
while maintaining acceptable lifetimes. 

To meet the above challenges we first propose MemCAM, a 

configurable memristor-based content addressable memory 

(CAM).  A search is performed by applying the same sequence of 

implication logic operations to each MemCAM cell in parallel.  

MemCAM can be used for either point or range queries by simply 

changing the allocation of memristors used for compute vs. 

storage and using a slightly different sequence of implication 

logic operations to perform greater than/less than comparisons 

instead of only equality.  MemCAM is best suited for low query 

rates since its lifetime is only a few minutes under continuous 

queries.  Standard wear leveling techniques are inadequate for 
MemCAM since all cells are accessed each query. 
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To provide long lifetime under high query rates, we introduce 

configurable hybrid data structures that use both conventional 

CMOS processors/cache hierarchies and memristors for 

compute/storage.  Our new data structures combine T-trees, B+-

trees, and MemCAM to obtain a balance between search time and 

lifetime by exploiting a heterogeneous computing environment.  

The upper levels of the trees, accessed frequently, are 

implemented in software using conventional processors and 

caching methods and serve to distribute requests over the less 

frequently accessed remaining data⎯a technique we call 

algorithmic wear leveling.  The memristor array and an associated 

programmable controller implements lower level tree traversal 

and/or MemCAM operations.  These new data structures can be 

reconfigured to trade between performance and lifetime for a 

specific usage scenario and to adapt to future memristors with 
improved endurance.  

The qualitative design space of memristor-based storage 

structures is shown in Figure 1. The lifetime of a memristor-based 

memory is the longest due to low write frequency and can be 

further improved by standard wear-leveling techniques.  However, 

the search time of a memristor-based memory is the longest, and 

increases as data size increases.  MemCAM has the shortest 

search time because all data items can be searched simultaneously 

but also has the shortest lifetime due to high write frequency. 

Wear leveling techniques cannot improve the lifetime of 

MemCAM because writes are already uniform. As long as 

endurance is limited for memristors, hybrid data structures are 

better choices because writes are distributed and occur less 
frequently per memristor. 

To evaluate our designs we use SPICE to model an individual 

memristor and analyze energy consumption and performance.  

The results show that it is feasible to build a 1Gbit MemCAM 

with 1cm x 1cm area.  For a K-bit search word, the energy 

consumption is (0.44+0.82*log2(K)) fJ/bit/search (for each data 

bit stored in MemCAM) and the search time is 16+20*log2(K)) ns 

for MemCAM supporting both point and range queries, and the 

energy consumption is (0.83+0.82*log2(K)) fJ/bit/search and the 

search time is (22+20*log2(K)) ns for MemTCAM supporting 

both point and range queries.  To evaluate the search performance 

and lifetime of the hybrid data structures we construct an analytic 

model, since it is impractical to simulate the large data sets 

required. We use 5nmx5nm memristors [22] (10
12

 memristors per 

cm
2
) instead of 50nmx50nm memristors (10

10
 memristors per 

cm
2
)  so we can show the full potential of memristor-based 

storage structures to improve the performance of search 

operations. Our results show that hybrid storage structures can 

utilize range search abilities, achieve better performance than 

memory-based T-trees, and improve lifetime from minutes to 

longer than 60 years. Furthermore, TB
+
-tree-CAM, a hybrid 

memristor-based storage structure combining T-tree, B
+
-tree and 

CAM, manages to balance between performance and lifetime and 

can outperform other storage structures when taking both 
performance and lifetime into consideration. 

We make three main contributions in this paper.  First, this work 

takes the first step in exploring the combined compute/storage 

aspects of memristor arrays.  Second, we propose configurable 

hybrid data structures to improve the performance and lifetime of 

search intensive applications. Finally, we provide configurability 

by using memristors as both storage and logic and by using both 

conventional CMOS processors/cache hierarchies and memristor 

technologies.  Designers can choose to configure a memristor 

array as CAM, random access memory or hybrid CAM-memory 
to trade among power, capacity, performance and lifetime. 

We organize the remainder of this paper as follows: Section 2 

introduces background knowledge. Section 3 summarizes our 

system overview. Section 4 describes in detail both cell design 

and match signal combination of MemCAM and the analysis of 

energy consumption and searching time. Section 5 proposes 

configurable hybrid memristor-based data structures and Section 6 

evaluates the designs. Section 7 presents related work and Section 
8 concludes. 

2.   Background 

2.1   Memristors 
The concept of a memristor was first predicted by Chua in 1971 

[8] as the fourth fundamental circuit element and a physical model 

and prototype was recently presented by HP Labs [9]. A 

memristor is a non-volatile two-terminal nanoscale device that can 

switch states between ‘on’ (switch-closed) and ‘off’ (switch-

open). A memristor array has ultra-high density (e.g. 10
11

 bits/cm
2
 

with a crossbar of approximately 17 nm half-pitch [17]) and could 

scale to 100 terabits/ cm
2
 at 10nm feature sizes [32]. Figure 2 

shows device schematic and cross bar circuit notation of a 

memristor. When a memristor is closed (w ≅ D), it has low 

resistance and we consider it to represent logical value ‘1’; when a 

memristor is open (w≅ 0), it has high resistance and we consider it 

to represent logical value ‘0’. Recent proposals seek to utilize 

memristors to create novel nanostores for use in providing high-

capacity nonvolatile memory for big-data workloads [28].  Our 

work seeks to complement that work by exploiting the additional 
capability of memristor arrays to perform computation. 

The natural logical operation to compute with memristors is 

material implication p→q [18].  Figure 3 shows two memristors 

used to perform implication logic. The voltage applied on 

memristor p, VCOND, is a reading voltage, which does not change 

the state of p.  The voltage applied on memristor q, VSET, is a 

writing voltage that may change the state of q depending on the 

initial states of both p and q.  RG is a resistance chosen between 

the ‘on’ state resistance and the ‘off’ state resistance. From the 

truth table in Figure 3 we can see that if we initialize q to be 0, the 

two memristors perform a NOT operation, q = ¬p.  As we show 

later, other more complex operations are possible and can be 

performed in parallel.  Although we focus on memristors in this 

paper, our techniques are applicable to any technology with 
similar properties. 
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Figure 2: Memristor structure (a) and circuit notation (b) 
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2.2   Alternative Implementations 
Associative lookup can be implemented in software (e.g., hash 

tables, balanced trees, etc.) and some languages (e.g., perl, java, 

python, etc.) provide direct support for data structures that expose 

the associative lookup interface (i.e., maps, associative arrays).  

Software implementations work very well for small data sets and 

applications that are latency and bandwidth tolerant.  For 

applications with large data sets, software associative lookup 

implemented on commodity hardware can incur significant delays 

when the data set is too large to fit in conventional CMOS 

physical memory and long latency disk accesses are required. The 

high-density of emerging memories provides the opportunity to 

provide much larger physical memory reducing the need for 

external disk access in many applications.  Furthermore, software 

implementations generally require a logarithmic number of 

memory accesses (e.g., balanced tree access).  For applications 

that require sustained high throughput, this logarithmic number of 

accesses may be unacceptable even for data sets that can fit into 

memory.  Hash tables may reduce the number of accesses to O(1) 

but at the expense of underutilized memory capacity since 

collisions must be avoided.  This wasted memory capacity may be 
unacceptable for many applications. 

An alternative to software associative lookup is to provide direct 

hardware support (specialization) in the form of content 

addressable memory (CAM).  These specialized memories 

provide additional circuitry to simultaneously compare the content 

of each location to a provided key and returning either the data 

associated with the key or a set of addresses for entries with 

matching keys.  This additional circuitry introduces overhead in 

terms of power consumption and access time.  These overheads 

can limit the capacity of CAMs implemented in CMOS 

technology. Additional delays could be incurred since in many 

applications, the address of a matching entry is used to access 

other storage such as DRAM or disk.  The capacity of CMOS-
based CAMs may also be limited by the rate of scaling.  

Memristors and other emerging high-density memories (e.g., 

STTRAM) could be used to create dedicated CAMs [11, 15].  

However, combining CMOS transistors with memristors 

unnecessarily limits density and increases manufacturing 

difficulty since the CAM cell size is determined by CMOS device 

sizes rather than memristor device sizes.  Alternatively, a 

specialized design using only memristors could be used to create a 

CAM [30].  Although these techniques could increase CAM 

capacity, traditional hardware CAMs are limited to equality 

comparisons and would incur significant capacity reductions to 

provide support for even slightly more complex operations (e.g., 

range query).  Therefore, we seek to complement the capacity 

advantages of an all memristor design with the flexibility of 

configurable computation allowing designs to be tailored to 
individual application requirements. 

Many applications perform more than just a simple comparison 

and thus can benefit from more general computational ability in 

the accelerator.  High-density resistive memory can also be used 

similar to FPGAs by configuring lookup tables (LUTs) to create 

specified circuits [16].  The work in this paper differs in that we 

seek to exploit the ability of memristor’s to perform implication 

logic (thus computation) in a programmable manner by 

controlling the voltages across memristors.  LUT-based 

computing is ideal for technologies where write latency/power is 

much greater than read latency/power.  We expect memristor 

write and read characteristics to be roughly equal and may be as 

low as 10ns  [22, 29].  Nonetheless, exploring the tradeoffs 

between LUT-based computing and sequencing implication logic 
steps is an interesting avenue to explore in future work. 

3.   System Overview 
Our overall system design is shown in Figure 4.  Although this 

structure places the memristor array on the physical memory bus 

along with conventional DRAM modules, it is possible to also 

utilize a 3D stacked fabrication process similar to that advocated 

for creating nanostores [28, 32].  Regardless of the specific 

packaging approach, we envision a memristor array that resides in 
the system’s physical address space.  

The memristor subsystem is composed of a memristor array and a 

programmable controller.  The processor communicates with the 

memristor array controller using memory-mapped operations.  

The controller is responsible for applying appropriate voltages to 

perform read/write or implication logic operations using the 

memristor array. Read/write operations are ‘external’ operations 

since peripheral CMOS circuitry is required to decode the address, 

evaluate the data read out (for reads) and decide the applied 

voltages based on the data to write (for writes). In contrast, 

implication logic operations are ‘internal’ operations on data 

already stored in memristors and the results are generated and 

stored in memristors without being read out externally. Therefore, 

external accesses will take much longer than the internal 

implication logic steps.  Applying voltages to perform a series of 

implication logic steps in sequence performs computation.  Note 

that this design does not cascade memristors to create 

combinational circuits, in contrast to conventional CMOS 

transistors.  However, parallelism can be exploited by using many 

memristors to perform multiple implication logic operations per 

step. 

 

Figure 4: System Overview of Configurable Memristor 

Array 
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Figure 3: Memristor Implication Logic for q = ¬p. 
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We assume a programmable memristor array controller where the 

program specifies the sequence of voltages to apply to the 

memristor array.  Partitioning of memristors between storage and 

computation is entirely under software control since it is the 

voltages that determine compute vs. storage.  We assume the 

controller can always perform read/write operations to any portion 

of the memristor array, even the memristors used for computation.  

Configuration/specialization occurs by specifying a particular 

program for the controller to execute that augments the traditional 

read/write memory behavior.  Unfortunately, there may not be 

arbitrary flexibility in mapping computation onto the memristor 
array while still providing high performance. 

 To achieve high density, crossbar arrays are used in the 

memristor array and thus voltages are applied to entire rows and 

entire columns.  Although it is possible set individual memristor 

voltages using this two-dimensional array, the rate of computation 

may be very slow.  Instead, the mapping of computation onto the 

memristor array should exploit the two-dimensional structure such 

that many memristors can share a single voltage setting and thus 

achieve parallel operation.  In this work we perform manual 

configuration/mapping of computation onto the memristor array, 
but automated mapping is an interesting avenue of future work. 

The configurability of memristor arrays creates a spectrum of 

potential designs.  As shown in Figure 5, on one end of the 

spectrum the memristor array is configured to provide only 

storage and can be used as nonvolatile memory while at the other 

extreme is pure computation.  In between these end points is a 

diverse set of options for providing customized application 

accelerators.  In this paper we focus on search operations and 

leave exploration of more sophisticated acceleration as future 
work.  

4.   MemCAM: memristor-based CAM 
This section presents our memristor CAM design (MemCAM).  

We begin with a description of a single MemCAM cell.  We focus 

on CAM cell design and match signal combination. We assume 

peripheral circuitry required to write into and read from the 

memristor array similar to that proposed elsewhere [35].  We 

designed both CAM and TCAM using memristors with similar 

comparison and match signal combination processes.  For brevity, 

we only present the details of the memristor TCAM design that 

supports both point and range query, we continue to use the 

generic term CAM to refer to this implementation.  If only CAM 

operations are required then a slightly different design could be 
configured that uses fewer memristors per entry. 

4.1   MemCAM cell design 
Figure 6 shows how memristors in an array are organized to form 

rows of MemCAM entries. Each row contains multiple entries 

(for simplicity we show only one entry per row), each entry 

contains multiple cells, and each cell is comprised of multiple 

individual memristors. Figure 7 shows a  MemCAM cell that can 

be used for both point and range queries.  D0 and ¬D1 are two 

memristors used to store two bits representing the data bit, and K 

is the memristor used to store the input key bit. We store ¬D1 

instead of D1 in order to save one step during the comparison 

process. M1 to M4 are memristors used to perform comparison and 

store match signals. M1 and M2 are used to store ¬D0 and ¬K first. 

K and M2 are then used to compute D0˅¬K and the result is stored 

in M2, and D0 and K are used to compute ¬D0˅K and the result is 

stored in K. M4 is then used to store the value of D1 and combined 

with the values of M2 and K. Finally, M3 and M4 are cleared and 
used to store the match signal for the MemTCAM cell. 

Table 1 shows the values and meanings of cell match signals 

based on the values of D (D1D0) and K. The comparison process 

includes eleven steps. Table 2 shows voltages applied to the 

control lines, X and Y1-Y7, in a CAM cell at each step. The 

difference between voltages applied on two control lines 

connected to a memristor is the voltage across the memristor. 

VCLEAR is the voltage required to switch a memristor to its ‘off’ 

state. Table 2 also shows the states of M1 through M4 at each step. 

During the comparison process, the states of D0 and ¬D1 are not 
changed so their states are not shown in Table 2. 

4.2   Match signal combination 

 

Figure 5: Spectrum of Configurable Memristor-based 

Computing 
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Figure 6: MemCAM/TCAM Organization  

 

Table 1: Values and meanings of cell match signals (M3 

& M4) based on stored Data and key bits.  

D1 D0 K M3=D1˄¬D0˄K M4=D1˄D0˄¬K  

0 0 0 0 0 
D == K 

0 1 1 0 0 

0 1 0 0 1 D > K 

0 0 1 1 0 D < K 

1 X X 0 0 D == K 
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X

D0 K M1 M2 M3 M4

Y7

¬D1

 

 Figure 7: MemTCAM cell design: each box is a 

memristor at a junction of the crossbar array. 
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After each CAM cell finishes the eleven-step comparison and 

generates its cell match signal (CMS), we need to combine the 

match signals from all cells in an entry to generate the entry match 
signal (EMS).  

We have: 

),...,,,( 1,2,1,0, −= niiiii CMSCMSCMSCMSnofCombinatioEMS  

in which EMSi is the match signal of the i
th

 entry in the CAM, 

CMSi,j is the match signal of the j
th

 cell in the i
th

 entry, and n is the 

number of cells in an entry, which is also the number of bits in the 
key word. 

We assume n to be power of two here and use recursive doubling 

[31] to combine match signals. For each Entry i, we first combine 

every CMS pair, CMSi,2j and CMSi,2j+1 simultaneously and store 

the result in the memristor used to store CMSi,2j+1. We then 

combine every CMS pair CMSi,4j and CMSi,4j+2 similarly. EMSi is 

in the memristor used to store CMSi,n-1 after log2(n) rounds.  Each 

round of match signal combination includes ten steps.  We use six 

memristors from two adjacent cells, including four memristors 
already storing the CMSs, to combine two CMSs from two cells. 

4.3   Discussion 
Using memristors as both memory and logic provides not only 

high density but also configurability.  Consider three alternatives: 

1) all memory, 2) all CAM or 3) partitioned memory+CAM.  

Furthermore, for any CAM portion, we can configure different 

number of entries with different key sizes, including very large 

keys (e.g., character strings). Specific configurations can be based 
on application requirements. 

However, one major disadvantage of MemCAM is that 

memristors have much lower endurance (10
10

 write cycles) than 

SRAM (10
16

 write cycles).  The lifetime of MemCAM is only a 

few minutes under continuous search operations. Unfortunately, 

memCAM’s lifetime cannot be improved by standard wear 

leveling techniques since all the cells are accessed simultaneously 

every cycle. To solve this problem, we need to design storage 
structures that reduce the average write frequency per cell. 

5.   Configurable Hybrid Data Structures 
This section presents several novel hybrid data structures for point 

and range queries that are designed to take advantage of the in-

place compute capabilities of memristors while alleviating the 

wear-out limitations.  They key insight behind our approach is to 

design data structures that naturally distribute operations over the 
memristor array. 

5.1   Overview 
We can reduce the average write frequency by utilizing the 

configurability of a memristor array. We can divide a memristor 

array into multiple partitions with each partition having the same 

capacity and configure one partition as CAM and the other 

partitions as memory. We can then ‘rotate’ the CAM partitions 
within the memristor array to achieve the benefit of wear leveling. 

The improvement of lifetime by using the hybrid memristor-based 

CAM-memory design is approximately proportional to the 

number of partitions. However, this design requires a large 

memristor array to obtain acceptable lifetime of a small 

MemCAM. For example, to achieve one month-lifetime for 1MB 

of MemCAM with continuous search operations requires a 35GB 

memristor array even if there are no writes to the memory 

partitions. With the improvement of memristor endurance in the 

future, this design may become more efficient, but currently the 

high storage overhead of the memristor-based CAM-memristor 
design makes it not practical. 

We can also reduce write frequency by designing a hierarchical 

storage structure. We can use a CMOS-based CAM as a buffer of 

MemCAM. We store hot data (data searched more frequently) in 

CMOS CAM buffer and store cold data in MemCAM.  The search 

frequency of MemCAM is reduced and so is the write frequency. 

The improvement of lifetime by using the hybrid CMOS-

memristor-based CAM design is dependent on the capacities of 

both CAMs and the access frequencies of both hot and cold data. 

Table 2: Memristor States and Applied voltages at Each Step of Comparison for Point and Range Query with TCAM 

(VCO = VCOND, VS = VSET, VCL=VCLEAR) 

 

 

K M1 M2 M3 M4 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

Step 1 K 0 0 0 0 0 0 VCL VCL VCL VCL 0 

Step 2 K ¬D
0

 0 0 0 VCO 0 VS 0 0 0 0 

Step 3 K ¬D
0

 ¬K  0 0 0 VCO 0 VS 0 0 0 

Step 4 K ¬D
0

 D
0
∨¬K  0 0 0 0 VCO VS   0 0 

Step 5 ¬D
0
∨K  ¬D

0
 D

0
∨¬K  0 0 VCO  VS  0 0 0 0 0 

Step 6 ¬D
0
∨K  ¬D

0
 D

0
∨¬K  0 D1 0 0 0 0 0 VS VC 

Step 7 ¬D
0
∨K  ¬D

0
 ¬D

1
∨D

0
∨¬K  0 D1 0 0 0 VS 0 VCO 0 

Step 8 ¬D
1
∨¬D

0
∨K  ¬D

0
 ¬D

1
∨D

0
∨¬K  0 D1 0 VS 0 0 0 VCO 0 

Step 9 ¬D
1
∨¬D

0
∨K  ¬D

0
 ¬D

1
∨D

0
∨¬K  0 0 0 0 0 0 0 VCL 0 

Step 10 ¬D
1
∨¬D

0
∨K  ¬D

0
 ¬D

1
∨D

0
∨¬K  D

1
∧¬D

0
∧K  0 0 0 0 VCO VS  0 0 

Step 11 ¬D
1
∨¬D

0
∨K  ¬D

0
 ¬D

1
∨D

0
∨¬K  D

1
∧¬D

0
∧K  D

1
∧D

0
∧¬K  0 VCO 0 0 0 VSET 0 
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Hot data has to be accessed 4x10
5
 times more frequently than cold 

data in order to achieve a one-year lifetime, which is unlikely for 
many applications and limits the application area of this design. 

Partitioning a memristor-based storage structure or adding a 

CMOS-based buffer alone cannot efficiently reduce write 

frequency. Thus we combine the two methods and propose a 

series of configurable hybrid data structures to utilize the 

computation ability of memristors and provide ‘algorithmic’ 

wear-leveling to improve lifetime. We start with a logical tree 

structure and divide it into two parts, the upper levels (the levels 

near the root) and the lower levels (the levels near the leaves). We 

then implement the two parts with different data structures and 

technologies. The upper levels can be implemented as a hash table 

or a T-tree and are stored in a CMOS-based storage structure (e.g., 

cache), and the lower levels can be implemented as a CAM or 

several B
+
-trees and are stored in a memristor-based storage 

structure. The main idea is to direct search through the upper-level 

implementation so only one part of the memristor-based storage 

structure is accessed per search (one or two partitions of CAM, or 

one or two B
+
-trees). The improvement of lifetime is proportional 

to the number of CAM partitions or B
+
-trees when the accesses 

are uniformly distributed. When the accesses are not uniformly 

distributed, we can apply wear-leveling techniques to improve 
lifetime. 

We decide the implementations of the two parts of the logical tree 

based on whether we can efficiently generate a hash function that 

is both uniform and order-preserving. A hash function is uniform 

if it maps the expected input as evenly as possible over its output 

range, and a hash function F is order-preserving if for inputs k1 

and k2, k1<k2 implies F(k1)<F(k2). The properties of hash 

functions, together with the implementations, decide the 

functionality of the data structure – whether it can support range 
search or not. 

When we can efficiently generate a hash function that is both 

uniform and order-preserving, we implement the upper levels as a 

hash table and the lower levels as a CAM (Hash-CAM). When we 

can efficiently generate a hash function which is only uniform but 

not order-preserving, we can still implement the logical tree as 

Hash–CAM but can only perform point search, which means that 

the comparison process can only decide that whether an entry is 

equal to the input key or not. If we also want to perform range 

search, in which we want to know whether an entry is greater 

than, or less than, or equal to the input key, we have to implement 

the upper levels as a data structure with sorted data instead of a 

hash table. We choose to implement the upper levels as a T-tree in 

this case (T-tree-CAM). Based on T-tree-CAM, we propose TB
+
-

tree and TB
+
-tree-CAM to provide more configurability so we can 

further improve lifetime. 

5.2   Hash-CAM 
A Hash-CAM is a hybrid hash table and CAM data structure used 

to implement a logical tree. The hash table is used to implement 

the i
th

 level of the tree with one node stored in one hash table 

entry. The CAM is divided into multiple partitions and one 

partition is linked with one hash table entry as shown in Figure 8. 

The hash table is used to store keys to direct search into one part 
of the CAM and the CAM is used to store all the records. 

For point search, the input key goes through the hash function and 

the search is directed to one CAM partition. The corresponding 

CAM partition is searched with the process described in Section 4 

and the matched results are read out based on entry match signals. 

For range search, the two input bound keys go through the hash 

function and the search is directed to two CAM partitions (bound 

CAM partitions). The two CAM partitions perform comparisons 

and output records with keys within the given range and any 
records in the partitions between the two bound CAM partitions.  

From the search process we can see that at most two CAM 

partitions perform computations per search. As a result, the 

improvement of lifetime is proportional to the number of CAM 

partitions (which is also the number of hash table entries) when 

searches are uniformly distributed among all CAM partitions or 

when searches are not uniformly distributes and wear-leveling 

techniques are applied to rotate data among CAM partitions. 

5.3   T-tree-CAM 
If we can only efficiently generate hash functions that are only 

uniform but not order-preserving, Hash-CAM can only support 

point search but not range search because records within a range 

may be distributed among all CAM partitions. In order to support 

range search, we replace the hash table with a T-tree to implement 
the upper levels of the logical tree. 

A T-tree is a data structure evolving from AVL trees and B-trees 

and mainly used in main-memory databases [20]. Figure 9 shows 

a T-tree node (T-node). It has a binary search nature similar to an 

AVL tree because it is a binary tree, and it has good update and 

storage characteristics similar to a B-tree because there are 

multiple elements per node. Compared with AVL trees, a T-tree 

requires fewer rotations upon delete and insert operations for 
rebalancing because of intra-node data movement. 

We implement the upper levels of the logical tree with a T-tree to 
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preserve the orders to support range search. The lower levels are 

implemented with a CAM. The CAM is divided into multiple 

partitions and one partition is linked with one node in the lowest 

level of the T-tree as shown in Figure 10. Both point search and 

range search in a T-tree-CAM are similar to a Hash-CAM. The 

only difference is that the input keys go through a T-tree instead 

of a hash function. As a result, the improvement of lifetime is also 

proportional to the number of CAM partitions (which is also the 

number of nodes at the lowest level of the T-tree) when wear-
leveling techniques are applied. 

5.4   TB+-tree 
T-tree-CAM does not require a uniform and order-preserving hash 

function to improve lifetime of memristor-based storage. 

However, the lifetime improvement is limited by the capacity of 

CMOS-based storage. In order to solve this problem, we propose 

a new hybrid data structure—a TB
+
-tree. A TB

+
-tree is a 

combination of T-tree and B
+
-tree. The upper levels of a logical 

tree are implemented by a T-tree and stored in CMOS-based 

storage and the lower levels are implemented by a forest of B
+
-

trees, stored in memristor-based storage, and traversed within the 

memristor array using the memristor controller. Each B+ tree is 

linked with a node at the lowest level of the T-tree as shown in 

Figure 11. For point search, we go through one path in one B
+
-tree 

to the leaf. For range search, we go through two paths in one or 

two B
+
-trees to the leaves. Only a part of at most two B

+
-trees, not 

two complete B
+
-trees, perform computations per search. We can 

obtain lower average write frequency (thus longer lifetime) 

compared with T-tree-CAM. We can also achieve more 

configurability based on changing the order of B
+
-tree. 

We implement lower levels using B
+
-tree instead of T-tree 

because B
+
-tree is shallower than T-tree, which reduces the 

average time required to perform search/delete/insert operations. 

B
+
-tree is not efficient for traditional main-memory databases 

because binary search is required to search within a sorted node 

and linear search is required to search within an unsorted node [7] 

which significantly increases search time.  However, the intra 

node search time can be improved by using the memristor array to 

perform comparisons between the input key and all the keys 

stored in a B
+
-tree node simultaneously. As a result, we can fully 

utilize the benefits of unsorted nodes to reduce write frequency. 

5.5   TB
+
-tree-CAM 

Both T-tree-CAM and TB
+
-tree have advantages and 

disadvantages. T-tree-CAM has shorter search time but limited 

lifetime. TB
+
-tree have longer lifetime but also longer search time. 

In order to balance performance and lifetime, we propose another 

configurable hybrid data structure in between, a TB
+
-tree-CAM as 

shown in Figure 12. In TB+-tree-CAM, we group leaf nodes of 

one subtree in one B
+
-tree and align them continuously in the 

memristor array so we can perform CAM search operations 
described in Section 5.   

The TB
+
-tree-CAM is the most general data structure and the 

previous tree-based structures can be viewed as degenerate cases 

that enable tuning an application to trade off performance (search 

latency) vs. lifetime. Figure 13 shows two options for tuning 

while maintaining support for insert/delete operations. Search 

operations follow black arrows and insert/delete operations follow 

gray arrows. In general, the root of the CAM allocated subtree can 

be any node of one B+-tree. If the root of the subtree is the root of 

the B
+
-tree, the TB

+
-tree-CAM becomes a T-tree-CAM (Figure 

13a). If the root of the subtree is one leaf node, TB
+
-tree-CAM 

becomes TB
+
-tree. If the root of the subtree is an internal node, 

TB
+
-tree-CAM becomes a data structure in between with 

moderate search time and lifetime (Figure 13b). 

5.6   Discussion 
We propose four hybrid data structures in this section. All the 

designs are based on a logical tree divided into two parts, the 

upper levels and the lower levels. The main idea is to partition the 

lower levels and for every search/insert/delete operations, direct 

access to one or two of the partitions through the upper levels. 

Since at most two partitions are accessed per operation, the write 

frequency is reduced for the same number of operation, which 

leads to lifetime improvement proportional to the number of 

partitions. We can decrease the number of partitions by decreasing 

the number of upper levels (an extreme case is MemCAM, in 

which the lower levels are implemented with a CAM and the 

number of partitions is 1) or increase the number of partitions by 

increasing the number of upper levels. Users/Designers can 

choose different numbers of partitions to trade between 

performance and lifetime based on the requirements of different 
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applications or when the endurance of memristors are improved 
by future research. 

6.   Evaluation 
We develop an analytic model to evaluate and compare the 

average record search time of six data structures, a CMOS-based 

T-tree, a memristor-based T-tree, a hybrid Hash-CAM, a hybrid 

T-tree-CAM, a hybrid TB
+
-tree and a hybrid TB

+
-tree-CAM. All 

six data structures have the upper levels stored in a CMOS-based 

cache. The CMOS-based T-tree has the lower levels stored in 

DRAM. The memristor-based T-tree has the lower levels stored in 

a memristor memory and uses conventional loads and stores to 

traverse the tree. The four hybrid data structures store the lower 

levels in a memristor array with combined compute and storage 

and can leverage the internal controller to traverse the trees. 

6.1   Energy and Access Feasibility Study 
We first evaluate the energy consumption and search time of 

MemCAM and then evaluate hybrid storage structures based on 

MemCAM performance. Although we anticipate 10
11

 

memristors/cm
2
 if we build the memristor array on 17-nm-wide 

nanowires [17] and 10
12

 memristors/cm
2
 with 5nm-scale 

memristors [1], we evaluate energy consumption and searching 

time of MemCAM based on a conservative design, a memristor 

array built on 50-nm-wide nanowires [4] with 50nm x 50nm x 

10nm memristors. Memristor density of the evaluated array is 10
10

 

memristors/cm
2
 and cell density is 10

9
 cells/cm

2
, which is 100 

times denser than CMOS-based CAM. 

We use a simplified SPICE model proposed by Mahvash and 

Parker [25] to simulate switching time and power consumption of 

a single memristor. The simulation results are then used to 

calculate the energy consumption and search time of MemCAM. 

The energy consumption and search time both depend on step 

time (time required to perform a step of operation). Step time 

depends on both switching time and RC delay, which can overlap 

because switching starts as soon as the voltage across a memristor 

goes beyond a threshold voltage (the lowest voltage that can 

switch a memristor). Based on the RC delay of 35 nm Cu-Low κ 

technology (250 ps for a 1 mm line [1]), methods such as repeater 

insertion are required to obtain a < 200ps RC delay for a 1-cm-

long 50-nm-wide line and we can then obtain a 2-ns step time. 

The final results show that it is feasible to build a 1Gbit 

MemCAM with 1cm x 1cm area. With 50nmx50nm memristors 

and K-bit keywords, for MemCAM supporting both point and 

range queries, the energy consumption is (0.44+0.82*log2(K)) 

fJ/bit/search (for each data bit stored in MemCAM) and the search 

time is (16+20* log2(K)) ns , and for MemTCAM supporting both 

point and range queries, the energy consumption is (0.83+0.82* 
log2(K)) fJ/bit/search and the search time is (22+20* log2(K)) ns. 

Based on the power consumption of a single memristor, we also 

estimate the power density of MemCAM. The power density of 

MemCAM is determined based on the power consumed by both 

memristors and wires. Previous studies show that wires consume 

up to 80% of the power [4]. However, in this experiment, the 

number of memristors and the number of wires are similar while 

in a 1cm x 1cm MemCAM there are 10
10

 memristors but only 2 x 

10
5
 wires. As a result, the wire power percentage in MemCAM 

should be much lower. Furthermore, wire power density can be 

reduced by methods that could dramatically reduce the wire 

resistance and capacitance [4] since interconnect power is 

proportional to the wire capacitance [2,36]. We conservatively 

assume that wires consume 50% of the total power, which leads to 

a total power density of approximate 55W/cm
2
 for 

MemCAM/MemTCAM supporting only point query and 

80W/cm
2
 for MemCAM/MemTCAM supporting both point and 

range queries. We expect similar power density as memristor 

feature size scales down, reaching the 10
12

 memristors/cm
2
 

density. The reason is that there is a linear relationship between 

the number of memristors per unit area and the memristor 

resistance and the power density depends on the ratio of the 

number of memristors per unit area to the memristor resistance.  

However, we must wait for experimental demonstrations of high-
density memristor arrays to further analyze the power dissipation. 

6.2   Analytic Model 
Table 3 shows the parameters we use to develop our analytic 

model.  We define record nodes as nodes containing pointers to 

the records. For the T-tree, all the nodes are record nodes. For the 

TB
+
-tree, all the nodes at upper levels and all the leaves are record 

nodes. Given the number of records NR, the order of the T-tree T 

(which means that there are at most T records in a T-node), the 

order of the B
+
-tree B (which means that each internal node in the 

B
+
-tree has at least B / 2!" #$  children and at most B children), and 

the number of upper levels LevelU, with the assumption of 100% 

node utilization (which means that every node has the maximum 

number of records) the total number of record nodes in the T-tree 

is N
T
=
N

R

T
and and the TB

+
-tree the number of record nodes 

is N
TB
= 2

LevelU −1+
N

R
− 2

LevelU −1( )×T
B

. 

The total number of record nodes in the T-tree (NT) is calculated 

by dividing the number of record (NR) by the order of the T-tree 

(T). The total number of record nodes in the TB+-tree (NTB) is the 

sum of the number of record nodes at the upper levels and the 

lower levels, and the number of record nodes at the lower levels is 

calculated by dividing the number of record nodes at the lower 
levels by the order of the B

+
-tree (B). 

Table 3: Analytic Model Parameters 

AvgTimeT Average record search time of the T-tree 

AvgTimeTB Average record search time of the TB
+
-tree 

LevelU Number of upper levels 

LevelLT Number of lower levels in the T-tree 

LevelLTB Number of lower levels in the TB
+
-tree 

LevelLTB’ Number of lower levels in the TB
+
-tree-CAM 

NodeTimeU Time to search a node at upper levels 

NodeTimeLT 
Time to search a node at lower levels in the T-
tree 

NodeTimeLTB 
Time to search a node at lower levels in the 
TB

+
-tree 

NT 
Total number of nodes storing records in the T-
tree 

NTB 
Total number of nodes storing records in the 
TB

+
-tree 

NR Total number of records 

T Order of the T-tree 

B Order of the B+-tree 
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We then determine the number of lower levels in the T-tree (Level 

LT) and the TB
+
-tree (LevelLTB). The number of lower levels in the 

T-tree is the difference between the total number of levels in the 

T-tree and the given number of upper levels: 

Level
LT
= log2

N
R

T

!

""
#

$$
− Level

U
. We assume that all the B

+
-trees in 

the TB
+
-tree have the same depth and the number of lower levels 

in the TB
+
-tree is equal to that depth, which is the logarithm of the 

number of record nodes in a B
+
-tree to based B, which 

produces Level
LTB

= log
B

N
R
− 2LevelU −1( )×T
2
LevelU

#

$

%
%

&

'

(
(

#

%

%
%

&

(

(
(

. 

When we search for a record, we first search for the record node 

containing the record and then search within the record node to 

find the record. For a record node at an upper level, we just need 

to access the upper levels from the root to reach it. For a record 

node in a lower level, we must traverse (access) all the upper 

levels first and then search the lower levels. The search process in 

the lower levels depends on the specific implementation: for 

software T-tree, using either CMOS or memristors, we search the 

corresponding subtree with the search process similar to the 

search process in the upper levels; for Hash-CAM and T-tree-

CAM, we search the corresponding CAM partition with the 

comparison and match signal combination described in Section 4; 

for TB
+
-tree, we go down the B

+
-tree to the leaf level and search 

the internal nodes with the comparison and match signal 

combination described in Section 4 to decide which subtree has 

the input key; for TB
+
-tree-CAM, we go through a per-defined 

number of B
+
-tree levels and search all the leaves in the 

corresponding subtree with the comparison and match signal 
combination described in Section 4. 

The time required to reach a node at the i
th

 upper level is 

i×NodeTime
U

 where i ∈ Z  and i ∈ 1,Level
U[ ] . The time 

required to reach a node at the i
th

 lower level in the T-tree is 

Level
U
×NodeTime

U
+ i×NodeTime

LT
 where i ∈ Z  and 

i ∈ 1,Level
LT[ ] . The time required to reach a node at the i

th
 lower 

level in the TB
+
-tree is 

Level
U
×NodeTime

U
+ Level

LTB
×NodeTime

LTB
 where i ∈ Z  and 

i ∈ 1,Level
LTB[ ] . 

We assume a random uniform distribution of keys to search and 

define the average record search time as the average time required 

to reach the corresponding record node. We also assume that each 

record node has the same number of records and calculate the 

average record search time by dividing the sum of the time 
required to reach each record node by the number of record nodes. 

Figure 14 shows how we calculate the average record search time 

for each of the five memristor-based data structures. We calculate 

the average record search time of a CMOS-based T-tree and a 

memristor-based T-tree by changing the value of NodeTimeLT in 

AvgTimeT. AvgTimeTB is the average record search time of a 

hybrid CMOS-memristor TB
+
-tree.  We also calculate the average 

record search time of Hash-CAM (AvgTimeHC), T-tree-CAM 

(AvgTimeTC), and TB
+
-tree-CAM (AvgTimeTBC) based on the 

MemCAM search time described in Section 4. The average record 

search time of Hash-CAM is the sum of the time to access the 

hash table and the time to search a CAM partition. The average 

record search time of a T-tree-CAM is the sum of the time to go 

through all upper levels in the T-tree and the time to search a 

CAM partition. The average record search time of TB
+
-tree-CAM 

is the sum of the time to go through all upper levels in the T-tree, 

the time to go through a predefined number of levels in a B
+
-tree, 

and the time to perform CAM-like search operation in a subtree. 

We do not consider the records in upper levels when we calculate 

the average record search time for these three hybrid storage 
structures because most of the records are in lower levels. 

6.3   Modeling Results and Analysis 
Our evaluation is based on 32MB cache and 128GB DRAM [33].  

Based on the densities of DRAM (15Gbit/cm
2
 [3]) and a 

memristor array (1Tbit/cm
2
 [32]), we assume an 8TB memristor 

memory and a 1TB MemCAM. We choose the number of records 

in a T-node (T) to be 10 and store 17 levels of T-tree in cache. We 

choose the number of records in a B
+
-tree node (B) to be 80 to 

balance between the depth and node utilization rate of the B
+
-tree. 

Table 4 shows the number of records we can store in different 

data structures assuming 100% node utilization rate for T-tree and 
75% node utilization rate for B

+
-tree. 

For CMOS-related parameters, we use the data from performance 

analysis of Intel’s latest processors [21] for NodeTimeU (16ns) 

and NodeTimeLC (60ns). For memristor-related paramters, we can 

still achieve 1-ns switching time as the scale of memristor goes 

from 50nm to 5nm (density going from 10Gbit/cm
2
 to 

1TGbit/cm
2
) since memristor switching time is proportional to 

ROFF/RON. The RC delay of wires increases as memristors scale 

down but we can use technologies such as repeater insertion in 

order to achieve the same RC delay at 5-nm scale and 50-nm 

scale. As a result, we can achieve similar search time at both 

scales. It requires one write (to write the key), two reads (one to 

read the comparison results, and one to read the address of the 

Table 4: Records For Each Data Structure 

Data structure Number of records 

Software CMOS-based T-tree 5.4 x 10
9
 

Memristor-based T-tree 3.4 x 10
11

 

Hash-CAM 
6.9 x 10

10
 

T-tree-CAM 

TB
+
-tree 

2.8 x 10
10

 
TB

+
-tree-CAM 

 

AvgTimeT =

{NodeTimeU × LevelU −1( )×2LevelU +1#$ %&

+NodeTimeU × LevelU × NT − 2
LevelU +1( )

+NodeTimeLT × LevelLT − 2( )×2
LevelU+LevelLT −1( )

+ 2
LevelU#

$
%
&

+NodeTimeLT × LevelLT × NT − 2
LevelU+LevelLT −1( ) −1( )#

$
%
&} / NT

 

AvgTimeTB = {NodeTimeU × LevelU −1( )×2LevelU +1#$ %&

+NodeTimeU × LevelU × NTB − 2
LevelU +1( )

+NodeTimeLTB × LevelLTB × NTB − 2
LevelU +1( )} / NTB

 

AvgTimeHC = HashTime+MemCAMSeachTime  

AvgTimeTC = NodeTimeU × LevelU +MemCAMSeachTime  

AvgTime
TBC

= NodeTime
U
× Level

U
+ NodeTime

LTB
× Level

LTB '

+MemCAMSeachTime

 

Figure 14: Access Time Equations 
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next node), and a comparison to search a node in the TB
+
-tree. We 

use 8-byte keys and 8-byte pointers thus the comparison time is 

136ns. We call the time required to perform a read/write operation 

to the memristor array from the peripheral circuitry memristor 

arrayread/write latency. We need peripheral circuitry to decode 

the address, evaluate the data read out (for reads) and decide the 

applied voltages based on the data to write (for writes) when we 

access the memristor array externally. As a result, the memristor 

array read/write latency (which varies from 10ns [22, 29] to 120ns 

[28]) is much longer than the step time of 2ns (where the 

operations occur inside the memristor array and the applied 

voltages  are known beforehand). As a result, NodeTimeLM varies 

from 166ns to 496ns. 

We first choose the number of records (R) to be 10
9
, therefore all 

the records can be stored in any of the six data structures, and 

compare the performance of the six data structures shown in Table 

4. Figure 15 shows the average record search time as we increase 

memristor array read/write latency from 10ns to 120ns. We can 

see that only Hash-CAM and T-tree-CAM perform better than 

memory-based T-trees. The performance of TB
+
-tree-CAM is 

between the performance of CMOS T-tree and Memristor T-tree 

and the performance of TB
+
-tree is worse than both memory-

based T-trees. 

We then choose the number of records (R) to be 10
10

, which 

means that the capacity of DRAM is no longer high enough to 

store all the records. Figure 16 shows the average record search 

time as we increase memristor array read/write latency from 10ns 

to 120ns. We do not show the performance of software/CMOS + 

DRAM in Figure 16 since it requires disk accesses for this data 

size and the average record search time increases to milliseconds. 

We can see from Figure 16 that Hash-CAM and T-tree-CAM still 

perform better than memristor-based T-tree. TB
+
-tree still 

performs worse than memristor-based T-tree but the performance 

gap decreases as memristor array read/write latency increases. 

TB
+
-tree-CAM outperforms memristor-based T-tree as long as 

memristor array read/write latency is longer than 40ns. In general, 

TB
+
-tree and TB

+
-tree-CAM perform better than when R is 10

9
. 

The reason is that when R is 10
9
, the node utilization rate of B

+
-

trees is low, which means that we cannot benefit from the 
shallowness of B

+
-trees. 

We then change the number of records from 10
9
 to 10

20
 to see 

how data size affects performance of the six data structures. From 

Figure 16 we can see that memristor-based T-tree has better 

performance when memristor array read/write latency is lower, so 

we choose memristor array read/write latency to be 10ns to have 

the best possible performance of memristor-based T-tree. The 

results are shown in Figure 17. We can see that the search time of 

CMOS-based T-tree, memristor-based T-tree, and TB
+

-tree 

increase as the number of records increases. The search time of 

Hash-CAM, T-tree-CAM, and TB
+

-tree-CAM remain almost the 

same. When the number of records goes beyond 10
16

, TB
+

-tree-

CAM outperforms memristor-based T-tree. 

We also calculate the theoretical maximum lifetime of the four 

hybrid data structures assuming continuous search operations, 

which is shown in Table 5.  Generally, lifetime increases as search 

time increases, since increased search time results in reduced 

write frequency. The exception here is T-tree-CAM, whose 

lifetime is limited by the capacity of cache. However, we can see 

that even in the worst case we can achieve a one-year lifetime. If 

we take into account the time required to read out the matched 

records, the lifetime will be even longer. 

 
Figure 15: Performance of various data structures vs. 

memristor latency (number or records, R, = 10
9
) 

 

Figure 16: Performance of various data structures vs. 

memristor latency (number or records, R, = 10
10

) 

 

Figure 17: Search Time vs. number of records 
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From the above analysis, we observe that reducing memristor 

external read/write latency below 40ns and if the number of 

records is smaller than 10
16

 then memristor-based T-tree is the 

best data structure for search applications. Otherwise, TB
+

-tree-

CAM performs better through combined compute and storage and 
has an acceptable lifetime. 

7.   Related Work 
A memristor-based crossbar memory system has been 

demonstrated by HP Labs [35].  Strategies and peripheral circuitry 

have been designed to write into and read from a memristor array. 

The memristor memory demonstrates much higher density and 

access time comparable to CMOS RAMs. A hybrid CMOS-

memristor CAM has also been proposed to achieve larger capacity 

[11].  However, combining CMOS transistors with memristors 
reduces bit density and increases manufacturing difficulty. 

Recently several researchers have explored spin-based devices for 

both storage and computing [15, 16, 27]. In STT-MRAM [16], 

one CMOS transitor and one magnetic tunnel junction (MTJ) are 

combined to build a cell.  In MTJ-based logic units [26], MTJs are 

used to perform logic operations on data stored in other MTJs.  

Our work focuses on memristor technology with wear out 

constraints.  Exploring more general configurable accelerators 
with different technologies is an interesting area of future work. 

Other emerging memory technologies with endurance problems 

include PCM (Phase Changing Memory). Recent work proposes 

new B+-tree algorithms for PCM to improve performance and 

reduce writes [7]. They design unsorted node organizations to 

reduce the number of writes incurred during insert and delete 

operations. Their results show that an approach where only the 

leaves are unsorted performs better than when all the nodes are 

unsorted. The reason is that it requires linear time to search within 

a node in PCM. However, with the computation ability of 

memristors, we can perform simultaneous comparisons and 

reduce search time within a node, which makes the unsorted 
scheme a better choice for in-place computing technologies. 

Extensive research has been performed on processing-in-memory 

(PIM) to improve performance by combining processing units and 

memory [10, 14, 24, 26]. Terasys [14] augments a standard 4-bit 

memory with a single-bit ALU controlling each column of 

memory. In DAAM (Dynamic Associative Access Memory) [24] 

a large number of small processing elements are put in a DRAM’s 

sense amps. DIVA [10] incorporates multiple PIM chips to a 

conventional microprocessor. Smart Memories [26] has multiple 

processing tiles which can be configured based on the 

requirements of applications. The main idea of PIM is to combine 
compute and storage, similar to our proposed data structures. 

Recent research [23] “disaggregated” memory to expand and 

share memory across servers. With memory capacity increase, we 

are able to store more data and obtain more benefits from our 

hybrid data structures.  Furthermore, by performing in-place 

computation the disaggregated memory could serve as an 
application appliance rather than simply memory. 

8.   Conclusion 
Memristors are an emerging technology with potential to provide 

high-density storage augmented with in-place computing through 

implication logic.  In this paper we explore this combined storage 

compute as a method to accelerate point and range search queries, 

which serve as specific instances of more general configurable 

accelerators.  We first show how to use implication logic to create 

a configurable CAM that can support both point and range 

queries; however, low endurance of memristors limits the benefit 

we can obtain from these storage structures. To more fully utilize 

the computation ability of memristors and overcome the 

endurance problem, we introduce novel data structures for use 
with memristor-based storage+compute structures. 

We first propose MemCAM, a configurable memristor-based 

CAM design. The computation ability of memristors makes it 

possible to perform range search using MemCAM while the high 

density of memristors provides an opportunity to build CAMs 

with large capacity and small area. We use SPICE to model 

memristor power and performance. With 50nmx50nm memristors 

and a K-bit search word, for a MemCAM supporting both point 

and range queries, the energy consumption is (0.44+0.82* 

log2(K)) fJ/bit/search and the search time is (16+20*log2(K)) ns , 

and for MemTCAM supporting both point and range queries, the 

energy consumption is (0.83+0.82* log2(K)) fJ/bit/search and the 
search time is (22+20* log2(K)) ns. 

We then propose a series of configurable hybrid data structures 

using both conventional CMOS cache hierarchies and memristor 

technologies to solve the endurance problem. These data 

structures can be reconfigured to trade between performance and 

lifetime and to adapt to future memristors with improved 

endurance. We use an analytic model to calculate and compare the 

performance and lifetime of two memory-based T-trees and four 

hybrid data structures. The results show that hybrid data structures 

can utilize MemCAM search abilities and improve lifetime from 

seconds to years.  Furthermore, TB
+
-tree-CAM, a hybrid CMOS-

memristor data structure combining T-tree, B
+
-tree and CAM, 

manages to balance between performance and lifetime and can 

outperform other data structures when taking both performance 
and lifetime into consideration. 
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