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Abstract. Detection of low-level image features such as edges or corners has
been an essential task of image processing for many years. Similarly, detectors
of  such image features constitute basic building blocks of almost every image
processing system. However, today’s growing amount of vision applications
requires at least twofold research directions: search for detectors that work
better than the other, at least for a chosen group of images of interest, and – at
the other hand – search for new image features, such as textons or oriented
structures of local neighborhoods of pixels. In this paper we present a new
approach to the old problem of corner detection, as well as detection of areas in
images that can be characterized by the same angular orientation. Both
detecting techniques are based on a scale-space tensor representation of local
structures, and present computationally attractive image feature detectors.

1 Introduction

The paper addresses the problem of detection of locally-oriented structures and
corners in images or sequences of images. Although, the problem of feature detection
has been studied for many years and by many researchers [5][4][9][7][8][15][16],
there is still growing demand on computationally efficient algorithms. One of the
measures of a detector efficiency is its time-memory complexity, but also or even
more frequently, its robustness in respect to different scenes for real images. The
latter can be stated in terms of a repeatability and detection quality in respect to the
amount of thresholds that need to be defined for a given detector. Very profound
overview of over six corner detectors, as well as advanced methods of their
examination, was presented by Schmid and Mohr [11].

The combined method for detection of corners and locally-oriented structures,
presented in this paper, belongs to a group of signal based methods. For corner
detection it can be conceived as a modified version of the Harris detector [5], mostly
due to the precise computation of directional derivatives. Simultaneously, this method
allows for better localization of image features by restricting a detection area to
contours found in images. The method can be easily applied not only for detection of
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corners, but also for detection of common pixel clusters that are characterized by the
same local orientation.

The presented theoretical foundations, as well as practical implementation issues,
came from the research in the field of stereo processing methods and a quest for an
image feature detector that lets avoid false matches during stereo processing [3].
However, the presented concepts are by no means limited only to the stereo
processing. They can be used in almost any image processing system, such as for
example image and video indexing which consists of retrieval of interested points that
are further used in a database search. Comparative video indexing method, based on a
multiresolution contrast energy, presents paper by Bres and Jolion [2].

2 Tensor Detector of Local Structures in Pixel Neighborhoods

Let us analyze an image with local neighborhood U defined around a point x0 (Fig. 1)
where each point has been additionally endowed with a directional vector, e.g. an
intensity gradient.

U

x0 x1

x2 q1

q2

w

Fig. 1. Local neighborhood of a pixel x
0
 with shown local gradient vectors q

i
 and structural

vector w

The goal now is to find such a vector w that in a uniform way represents all other
directional vectors qi from U(x0). In order to compare vectors we use their inner
product.

Additionally we assume the following:
1. Direction of w is invariant under rotation of π radians;
2. Angle and module of w follow signal changes in an image;
3. There is an additional measure of coherency of the local structure.

Thus, the vector w at a point x0 is an estimator of an average orientation in a
neighborhood U(x0) that maximizes the following formula [6]:
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The square of the inner product in (1) fulfills the invariant assumption on rotation
of π radians. Otherwise parallel and anti-parallel configurations of vectors would
cancel out.

Let us introduce a symmetric tensor T, defined as follows:
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where q(x) qT(x) stands for an outer product of vectors and U is a local neighborhood
of pixels around the point x0. Components of T can be described by the following
formula:

xdxqxqT
U

jiij )()(∫= .  (3)

Taking into account (1) to (3), the problem of finding structural vector w is reduced
to the solution of the maximization problem which is as follows [6]:

)(max)(max wwQ
T

ww
T= . (4)

Expression (4) is fulfilled if w is an eigenvector corresponding to the maximum
eigenvalue of T. Thus, the problem of finding structural vector w reduces to the
analysis of eigenvalues of T. It can be solved analytically, as follows [3]:
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whereas trace Tr(T) of T, which will be helpful further on during the classification of
image structures, can be expressed as:

)Tr(21 T=+=+ yyxx TT . (6)

Based on (5), (6), and basic algebra we can try to classify local structures in images
based on eigenvalues and trace of T. Results summarizes the Table 1.

Table 1. Classification of local structures based on eigenvalues and rank of T

Rank of T Eigenvalues Type of a local structure in an image
0 1 = 2 = 0 Constant intensity value.
1 1 > 0,    2 = 0 Ideal local orientation. The eigenvector,

corresponding to the eigenvalue different from zero,
points in a direction of maximum changes of
intensity.

2 1 > 0,    2 > 0 Both eignevalues greater than zero mean changes in
all directions of a local neighborhood. The structure
vector can be found if one eigenvalue is dominating.

2 1 = 2 > 0 An isotropic gray value structure. Intensity changes
equally in all directions.
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Eigenvectors of T are formed as a columns of an adjoint matrix [T� 1]ad, as
follows:
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where a and b are linearly dependent eigenvectors, i denotes an eigenvalue of T.
Taking into an account (5) we obtain:
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A proper sign of the square root in (8) is chosen based on an eigenvalue.
In order to fulfill the rotation invariant assumption, an angle of the searched

structural vector must change as a doubled angle (�����	 ������	 ��	 ��	 � of an
eigenvector corresponding to the maximum eigenvalue.  Thus, from the simple
tangent relationship
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and from (8) we obtain easily:
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Because of the orthogonality of eigenvectors, result (10) does not depend on the
choice of a particular eigenvalue in (5).
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we can finally discover components of w which can be described as:
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The structural vector (12) can now be extended by a third component which is
equal to the trace of the tensor T:
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Thanks to this new component in (13�	 �	 ���	 �����������	 ��	 ���	 1 �	 2 = 0
���������	���������	����	��	���	 1 �	 2 > 0  (ideal isotropy).

For low-level features detection, the modified version of the structural vector w’
takes the form of the vector s with components defined as follows:
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The first component in (14) is not changed from the corresponding component of
w’. The third component c of (14) constitutes a convenient coherency measure [10]:
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Coefficient c takes on 0 for ideal isotropic areas or structures with constant
intensity value, and up to 1 for ideally directional structure.

2.1   Determining Structural Tensor for Different Scales

Introducing some window function h(x) into (3) the structural tensor components can
be expressed as follows [6]:
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Formula (16) describes a convolution of a window function and product of
directional gradients. Thus, for digital realizations (16) reduces to the following
computation:

)(ˆ
jiij RRFT = , (17)

where 
ijT̂  stands for discrete values of the structural tensor T, F is a smoothing

operator in a local neighborhood of pixels, Rk is a discrete gradient operator in k-th
direction. The required quality of the detectors is achieved in practice by application
of proper discrete gradient masks Rk in (17) – the most isotropic filter the better
results. We found that the best results were obtained with matched filters such as the
one proposed by Simoncelli [12], with the smoothing prefilter pk and differentiating
filter dk masks in a form as follows:
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The formulas (3) and its implementation (17) can be extended to comprise
information on different scales [13]. In this method it is accomplished by applying F
in a form of Gaussian smoothing kernels of different size – an idea proposed by
Weickert [14][1]. Based on (17) we obtain the general expression for the components
of the structural tensor T at different scales:
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where ρ denotes a scale and Fρ is a Gaussian kernel.

3 Detector of Locally-Oriented Structures in Images

The equations (14), (15), and (19) can be directly used for detection of locally-
oriented structures in the sense of the tensor detector of local structures in pixel
neighborhoods. For a searched pixel blobs Ω  that angular orientation is in a given
range sϑ, based on (14), we propose the following rule for their detection:
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where τϑ is a threshold for detection accuracy, while τc is a threshold for coherency. In
our implementation, components of the structural tensor are computed in accordance
with formula (19) and with differentiating filters (18).
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4 Corner Detector

For detection of corners we compute eigenvalues (5) of the structural tensor which
components for different scales are computed in accordance with the formula (19) and
filters (18). Thus we obtain the following rule for detection of corners:

( ) ( ) ( ){ }Kiiiiii yxyxyx τ≥≥=Κ ,,:, 21 . (21)

where τK is a threshold for eigenvalues.
To avoid a cumbersome selection of a threshold parameter for eigenvalues, a

special priority queue was developed – Fig. 2.

λi

x i

y i

xi+1

yi+1

λ i+1

0 N-1

Fig. 2. Priority queue for selection of corners that comply with an assumed quality

For all elements of the queue it holds that λi ≤λi+1.  If a new corner point is found then
it can be inserted into the proper cell of the queue depending on its lowest eigenvalue.
All the time the queue fulfills the constraint λi ≤λi+1. If a new element is inserted, then
the element at index 0 is removed. This voting scheme allows for automatic selection
of the best N interest points.

With this data structure it is also possible to impose additional constraints, e.g. on a
minimal allowable distance among adjacent corner-points. This way we can search
for more “distributed” corner positions in an image. For example we can search for
interest points that are at least two pixels apart.

5 Experimental Results

To test the presented concept we used many real and artificial images, four of them
are shown in Fig. 3. Presented tests in this paper are comparative and do not check for
repeatability of the detectors (that is the issue of a further research).

a b c d

Fig. 3. Test images: real images (a, b), artificial images (c, d)
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5.1   Experimental Results of Locally-Oriented Structures

Tests for locally-oriented structures for experimental images in Fig. 3 and exemplary
orientations are presented in Fig. 4.

a – vertical orientations (85-95°)

b – horizontal orientations (0-10°)

c – horizontal orientations (0-10°) at a coarse scale

Fig. 4. Results of the tensor detector of locally-oriented structures in test images. Found interest
points are marked with a green color

The first row of Fig. 4 shows interest points that angular orientation of their local
structures is in the range 85-95°. Most of the points have been detected correctly,
although for gradually changing intensity in artificial images not all points are
detected. This is due to flawed discrete gradient computation in areas of uniformly
changing intensity values. Fig. 4b depicts interest points with a horizontal angular
orientation (0-10°), while Fig. 4c shows the same computations but for different scale
(Gaussian mask 13×13). In all experiments the threshold τϑ was set to 0.05 and τc to 0.

5.2   Experimental Results of Corner Detection

Fig. 5 contains experimental results of the corner detector with different working
parameters for test images in Fig. 3.
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a – max. 200 corners, self distance of detected points not limited

b – max. 200 corners, self distance set to be at least 1 pixel

c – the same as (b) but at a coarse scale

Fig. 5. Results of the corner detector for test images. Found interest points are marked with a
green color

Fig. 5a depicts test images with marked corner points without any constraint on
their mutual position. No threshold value was needed as well, because of the voting
technique (Fig. 2). The length of the priority queue was: N=200.

An additional constraint on pixel positions was set for experiments presented in
Fig. 5b. In this case we search for the best interest points, but also it is guaranteed that
the found points are at least 1 pixel from each other. Fig. 5c depicts results obtained
with the same settings but at a different scale (Gaussian filter 9×9).

6 Conclusions

In this paper we have presented a novel concept of detection of interest points based
on the tensor representation of local structures in images. Two types of detectors was
considered: the detector of angular orientations and the corner detector. Theoretical
foundations of both have been shown, as well as their practical implementations. The
advantages of the detectors can be stated as follows:
• Combined detector of corners and oriented-structures.
• Precise localization due to matched directional filters.
• Scale space operations.
• No threshold for corner detection due to the voting mechanism.
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• Tensor method can be easily extended to a third dimension and then directly
applied to examination of interest points, e.g. in video sequences.

At the other hand, the known drawback are as follows:
• Gradient computation cannot work properly for uniformly changed intensities.
• The presented detector has not been yet tested in regard to its repeatability in a

sense stated by Schmid and Mohr [11].
Numerous experiments showed great usefulness of the presented techniques for

low-level image processing. The proposed corner detector was designed especially for
stereo matching. It was successively used then for computation of the epipolar
geometry for real images.
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