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Abstract—This paper describes the results of a new combined

method that consists of a cooperative approach of several different

algorithms for automated change detection. These methods are

based on isotropic frequency filtering, spectral and texture anal-

ysis, and segmentation. For the frequency analysis, different band

pass filters are applied to identify the relevant frequency informa-

tion for change detection. After transforming the multitemporal

images using a fast Fourier transform and applying the most

suitable band pass filter to extract changed structures, we apply

an edge detection algorithm in the spatial domain. For the texture

analysis, we calculate the parameters energy and homogeneity

for the multitemporal datasets. Then a principal component

analysis is applied to the new multispectral texture images and

subtracted to get the texture change information. This method can

be combined with spectral information and prior segmentation of

the image data as well as with morphological operations for a final

binary change result. A rule-based combination of the change

algorithms is applied to calculate the probability of change for a

particular location. This Combined Edge Segment Texture (CEST)

method was tested with high-resolution remote-sensing images of

the crisis area in Darfur (Sudan). Our results were compared with

several standard algorithms for automated change detection, such

as image difference, image ratio, principal component analysis,

multivariate alteration detection (MAD) and post classification

change detection. CEST showed superior accuracy compared to

standard methods.

Index Terms—Change detection, disaster, edge detection, seg-

mentation.

I. INTRODUCTION

F OR change detection from remotely sensed images many

methods have been proposed and developed. An overview

and comparison of different change detection methods can be

found in [1]–[4] or [5]. Generally, change detection methods

can be divided into three categories [4]: (i) Image enhancement-
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methods, (ii) multitemporal analysis, and (iii) post classification

comparison. Other approaches combine several methods or con-

sist of novel methodologies (an overview can be found in [5]).

Image enhancement methods are based on unclassified

image data which combine the data mathematically to enhance

the image quality [6]. Examples of these are image difference,

image ratio, or principal component and regression analysis.

Multitemporal analysis methods are based on an isochronic

analysis of multitemporal image data [1]. This means that

n bands of an image taken on date T1 and n bands of an

image of the same area taken on date T2 are merged to form

a multitemporal image with 2n bands. This merged image is

then used to extract the changed areas [7]. Post classification

change analysis is based on a comparison of two independently

generated classification results for at least two dates T1 and T2.

This method also provides a change analysis; i.e., to determine

the kind of change. It is, however, very sensitive to the achieved

classification accuracy.

The large number of publications that deal with automated

or semi-automated change detection prove that this field is

an important research topic [8], for example, combine an

image differencing approach with vegetation indices [5], merge

image differencing with a principal component analysis [9],

use neural networks, whereas [10] and [11] involve fuzzy-set

theory for change detection. Other approaches are based on

object-based image analysis (see, for example [6] or [12]).

In summary, a wide range of different methods have been

developed. According to [13], these methods have a different

grade of flexibility, robustness, practicability, and significance.

Most authors, however, agree that there exist no single best

algorithm for change detection. Therefore, new methods are

still being developed or adapted especially for the detection

of damaged buildings and infrastructure in conflict or crisis

areas. This paper is no exception to this, as it describes the

development of, and the results for, a set of new change de-

tection algorithms. They were tested with very high resolution

(VHR) satellite images of the Darfur conflict area in Sudan.

Multitemporal images of the affected regions were recorded

by Quickbird-2 and are displayed on a web site that is hosted

by Amnesty International clearly showing the destruction for

several villages (http://www.eyesondarfur.org/villages.html).

With the permission of the satellite company Digital Globe, we

were able to use these preprocessed georeferenced Quickbird

data that were acquired before and after an attack for our change

analysis (see Section IV).

A fast detection and visualization of change in areas of crisis

or catastrophes are important requirements for planning and co-

ordination of help. However, a ‘best algorithm’ for the auto-

mated detection of changes for all applications has yet to be

1939-1404/$31.00 © 2012 IEEE



KLONUS et al.: COMBINED EDGE SEGMENT TEXTURE ANALYSIS FOR THE DETECTION OF DAMAGED BUILDINGS IN CRISIS AREAS 1119

developed if this is at all possible [13]. Therefore, the objec-

tive of our research was to develop a reliable and accurate auto-

mated algorithm to detect changes on man-made objects. This

algorithm should be used in catastrophic events or humanitarian

crises to show the impact of this particular event.

II. STANDARD CHANGE DETECTION METHODS

For a comprehensive assessment of the quality of any new

method it is essential to compare it to the performance of

standard change detection techniques. The proposed method is

an automatic approach; therefore we used for this comparison

semi automatic methods. Other, more specific methods use

often manual input or additional information such as GIS data

or different spectral bands. Software packages as Trimble’s

eCognition or Feature Analyst from Envi require too much

manual input. With this a comparison will be inadequate.

Therefore, we selected those that are available in most propri-

etary image processing systems. These methods are: 1) Image

difference; 2) Image ratio; 3) PCA; 4) Multivariate alteration

detection (MAD); and 5) post classification analysis.

Image difference is an easily understandable and imple-

mentable method [2]. It is based on calculating the per-pixel

gray value differences. For every pair of gray values at the

same location at dates T1 and T2 the difference is calculated.

If the resulting values are unchanged or do not exceed a

pre-determined threshold no change has occurred. The degree

of change is determined by the gray value differences. The

image ratio method is very similar to image differencing. For

every pair of gray values at the same location at dates T1 and

T2 the per-pixel ratio of the two values is calculated. Both

methods vary through different spectral band combinations, the

choice of thresholds, or different available spectral resolutions.

Especially, the choice of a suitable threshold level is a critical

factor, because of a time consuming manual interpretation and

the integration of a priori knowledge in the analysis process

[14].

The principal component (PC) transform is a statistical

method to calculate a new synthetic (uncorrelated) data space.

With this approach, it is possible to strengthen wavelength

dependent material specific differences. Detailed explanations

of this method can be found, for example, in [15] or [16].

Principal component analysis (PCA) can be used in different

ways for change detection [17]. In this study, we employ a

selective bitemporal PCA (for more information see [18]). Two

bitemporal spectral bands of the same location are analyzed in

a two dimensional feature space. As a result, all gray values are

located in relation to the two principal components. Usually,

the unchanged pixels show a high correlation with the first

principal component in contrast to the changed pixel. As a

consequence, the first principal component contains the ‘un-

change’ information and the second component the ‘change’

information [3].

Post classification analysis is based on a comparison of two

independent classification results for at least two dates T1 and

T2. This method allows the determination of the kind of change

from one class to another. For example, each input data set of T1

and T2 can be classifiedwith the unsupervised isodata algorithm

[14] using 20 classes.

The multivariate alteration detection (MAD) [19] uses

canonical correlation analysis to find relationships between

two datasets. The canonical analysis provides two sets of

linear combinations of the original data. The first two linear

combinations (canonical variates) have the largest correlation

(first canonical correlation). The second canonical variates

have the second largest correlation and are orthogonal to the

first canonical variates. Basis for the change detection approach

is the difference between these pairs of variates. The MAD

transformation is defined as

... (1)

III. COMBINED EDGE SEGMENT TEXTURE (CEST) ANALYSIS

FOR CHANGE DETECTION

Because simple methods such as image difference or image

ratio (see results in Section V) failed to detect reliably changes

of buildings in the study images, we had to develop a different

procedure for automated change detection. This procedure is

based on several different principles: frequency based filtering,

segmentation, and texture analysis. Four of these methods are

based on filtering in the frequency domain after a Fourier trans-

form ([20], [21]), one on segmentation and the others on tex-

ture features. The frequency domain is used because it allows

the direct identification of relevant features such as edges of

buildings. If no features are directly visible (such as partial de-

struction with still standing outside walls), texture parameters

are used for debris identification. A segmentation algorithm is

used to extract size and shape of buildings. These methods can

be combined in a decision tree for accuracy improvement. The

combination of these processing steps is called Combined Edge

Segment Texture (CEST) analysis.

A. Fourier Transform Based Algorithms

The Fourier transform is defined for s single-band or panchro-

matic images [22]. Based on a frequency analysis in the spec-

tral domain, isotropic band pass filters can be designed to high-

light selected frequencies and—as such—structures in the im-

ages. In a first step very narrow band pass filters are created.

All band pass filters are analyzed visually in the spatial domain.

In doing this it is possible to discern between high frequency

noise and frequency bands that contain information. Based on

this analysis different frequencies are combined to an informa-

tion enhancing band pass filter. Different single and multiple

frequency band pass filters can be designed covering the whole

range of available frequencies. The design of band pass filters

in the frequency domain is based on size and resolution of the

images, and the estimated size of buildings andman-made struc-

tures where changes are to be detected. The orientation of the

buildings has no influence due to the use of isotropic band pass

filters. The filtered images are then transformed back into the
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spatial domain for further analysis. Higher frequencies visu-

alize the position of building, the highest frequencies, however,

contain mostly noise and are not useful for object identification

and extraction. Lower frequencies contain mostly general image

background which is not used for further analysis. After several

tests, an optimum band pass filter is created which includes the

most appropriate information for building extraction. With an

image size of 1024 1024 pixels, this adaptive band pass filter

ranges from a spatial frequency of 100 to 378. Different tests

conclude that this filter can be adapted also to other images. For

an image with a pixel size of 2048 2048 this band pass filter

would have a spatial frequency from 200 to 756, respectively

[23]. To avoid the Gibbs problem, the filter was smoothed with

a Hanning window [20], [24].

After transforming T1 and T2 via FFT and the adaptive band

pass filtering four different methods are analyzed to extract the

changed structures: 1) subtraction in the frequency domain, 2)

correlation in the frequency domain, 3) correlation in the spatial

domain, and 4) edge detection in the spatial domain. Of these

methods, the best results are obtained using the edge detection

algorithm [23]. Consequently, we incorporated this method as

a standard into the CEST analysis. The Edge Detection in the

spatial domain consists of the following steps: The band pass

filtered images T1 and T2 are first transformed into the spatial

domain by an inverse FFT. Thereafter, an edge detection op-

erator is applied to both images. The best results are obtained

by the Canny edge detector [25]. To avoid small registration er-

rors morphological closing is used before subtracting the scenes

from each other; afterwards a morphological opening is applied.

B. Methods Based on Texture Parameters

Frequency based filtering is particularly suited to detect

changes in edge structures. If edges remain intact, however,

textural features may be used for change analysis. For the

calculation of texture parameters, we make use of the Haralick

features [26]. This is based on the gray-level co-occurrence

matrix (GLCM) [26]. The idea is that buildings can have higher

texture values than areas without buildings (see, for example,

[27]–[29]). This is especially true if the surrounding environ-

ment is very homogeneous and the buildings are very small or

destroyed (with surrounding debris). A GLC matrix describes

the likelihood of the change of the gray value i to gray value j

of two neighboring pixels [30]. In the calculation of a GLCM,

the frequency of all possible gray values combinations at two

neighbor locations is counted for a defined number of directions

(e.g., 0 , 45 , 90 or 135 ). The calculation of the average of

these matrices for every element yields a direction-independent

symmetric matrix.

Finally, to calculate the likelihood of a gray value change,

every value in this matrix is divided by the maximum number

of all possible gray value changes:

(2)

where V denotes the value in the symmetric GLCM, i and j are

the row and column index and N is the number of rows and

columns.

The calculation of the GLCM for images of high radiometric

resolution is very time consuming. To reduce this effect, [26]

suggest different texture features (the now well-known ‘Har-

alick’ features) which represent the characteristic of a matrix

in one comprehensive value. To achieve this result, the features

are calculated using a window technique [31]. Initial tests with

several Haralick features showed that ‘energy’ and ‘inverse dis-

tance moment’ (IDM, also known as ‘homogeneity’) produced

the best results for man-made objects (for more information see

[18], [30]). Consequently, these features were used for the CEST

method.

The GLCM (8 bit) for every image is calculated after an ini-

tial histogram matching of the multitemporal images. Based on

the GLCM, the texture features IDM and energy are computed

with differently sized windows (ranging from 3 3 to 17 17

pixels). Best results are obtained with a 13 13 window. The

calculated texture images at dates T1 and T2 are the input for

a selective bitemporal principal component analysis (PCA). In

comparison to other change detection methods like image dif-

ference, image ratio and regression analysis the PCA shows the

best results for the visualization of settlement change in arid re-

gions [18].

C. Change Detection Based on Segmentation

Object or segment based image analysis has gained a lot of in-

terest in the remote sensing community (see, for example, [32]).

Segmenting an image seems to be an excellent pre-analysis tool,

especially for images of very high resolution. Consequently, we

developed a segmentation procedure to be used for change de-

tection. The segmentation method that we developed for our

study is based on the Euclidean distance. The gray value range

is calculated and divided by a constant. The result is used as a

threshold. For each pixel, the Euclidean distance to each neigh-

boring pixel is calculated. If the Euclidean distance of the gray

values is below the threshold, they belong to the same segment.

After an independent segmentation of the images at dates T1

and T2, the segments of T1 are selected and used also for the

T2 image. For each segment, the T1-T2 correlation coefficient

is calculated. The result is assigned to each pixel in the seg-

ment. A new layer with the result of this segmentation is then

created. Segments with a high correlation represent no changes.

Segments with a low correlation represent changes.

However, if only one image is segmented, objects occurring

only in one image are not recognized as a segment in the other

image and are therefore assigned to a larger segment in this

image. After correlation this segment has probably a low value.

However, the change is not related to the whole segment, but

only to a part of it. To solve this problem, this procedure is re-

peated for the other image. For this step, the segments of T2 are

selected and superimposed on the T1 image. Again, the corre-

lation coefficient—this time between T2 and T1—is calculated

for all pixels in each segment. The segmentation is done inde-

pendently in both images. The results are combined using dif-

ferent conditional statements. If, for example, the T1 image con-

tains several buildings in a specific area which are not present

in the T2 image, there exists a high probability that this area

forms a large segment in T2 but is split into several small seg-

ments in T1. This would create incorrect change indications. As
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Fig. 1. Decision tree for the combination of change detection methods (CEST): Edges result of the edge detection based on filtering in the Fourier domain.
Segments result of the change detection using segmentation. Homogeneity and Energy results of the texture features. Numbers are related to the following
classes: Class unchanged buildings, class changed/destroyed buildings, class new buildings.

a final step, thresholds are used to extract the change segments

[22]. An implementation of the multiresolution approach [33]

was also tested, but the settings were not transferable to other

areas. Additionally, the algorithmwe used could be applied with

the same setting to other areas.

D. Combined Change Detection: The CEST Method

Finally, all three methods are combined in a decision-tree ap-

proach (Fig. 1). The basis for the classification is the result of

the change detection algorithm using edge detection based on

frequency filtering. If the edge parameter shows ‘no change’,

the pixel in the image is classified as ‘no change’. If the edge

parameter shows ‘new building’, the pixel is classified as new,

if the texture feature ‘energy’ is an agreement. If energy shows

‘change’ and one of the features ‘homogeneity’ or ‘segmenta-

tion’ shows ‘change’, the result is ‘new’. Otherwise, it is clas-

sified as unchanged. If the edge parameter shows ‘change’, it

is classified as ‘change’ if the texture feature ‘energy’ coin-

cides. If energy shows ‘no change’, the pixel will be classi-

fied as ‘no change’. If energy shows ‘new’ but the segment

and homogeneity parameters show ‘change’, the pixel is as-

signed to ‘change’. Otherwise it is classified as unchanged. The

CEST procedure was tested against the standard change detec-

tion methods described in 3.1.

E. Automatically Created Change Maps

The produced change images are to a large degree abstract

and hard to interpret. This holds particularly true for people not

related to remote sensing such as members of official organi-

zations or rescue forces. For planning after a crisis or a catas-

trophe, the interpretation of change images should be as easy as

possible. An algorithm was developed to automatically produce

a map which can be easily interpreted. The first step is to gen-

eralize the change image. Inside a 20 20 pixels window, the

amount of change is determined using the information in the

change image. The change percentage of this area is calculated

and then ranked into a number of distinctive general classes. If

less than 15% of the area has changed, all pixels are classified

as unchanged. Change above 80% marks extensive change and

change between 15% and 80% marks low to moderate change.

Areas of new buildings with a surface cover of at least 15% are

showed as ‘new areas’.

IV. STUDY AREA

CEST detection and change map generation methods are

now applied to the selected study sites in Darfur, Sudan. They

represent areas which experienced dramatic changes during

the Darfur conflict. This conflict is a dispute between different

ethnic groups and the Sudanese government. Although the

conflict in Sudan has recently been less intense than it has

been in the past, all sides to the conflict continue to commit

violations of international humanitarian law, such as attacks on

civilians and on humanitarian convoys. It is estimated that more

than 300.000 people have already died in this conflict and more

than two million people have been displaced (http://www.eye-

sondarfur.org/villages.html).
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Fig. 2. Geographic location of study site.

Fig. 3. Panchromatic Quickbird-2 image recorded on March 2, 2006 of the
town Abu Suruj (2048 2048 pixels). Images are provided by Amnesty Inter-
national, courtesy of Digital Globe.

The test area is located in South Darfur (Fig. 2) and shows

part of the town Abu Suruj in West Darfur. The images were

taken by Quickbird-2 on March 2, 2006; a subset of the scene

is presented in Fig. 3, before the attack (T1) and February 28,

2008 (Fig. 4) after the attack. These images were also provided

byAmnesty International, courtesy of Digital Globe. Because of

new settlement areas, this study site is very complex. It contains

changes due to destruction and—at the same time—changes due

to construction. A change detection procedure should be ca-

pable of depicting both types of change. This is demonstrated

in Fig. 5 which shows the manually digitized man-made struc-

tures. Black denotes no changes (background), white stands for

new buildings (construction) and gray for changed buildings

(destruction). Most changed buildings are located in the east of

the image with the new buildings in the west. Figs. 6 and 7 show

subsets of Figs. 3 and 4. The left images (Figs. 6(a) and 7(a))

present the panchromatic T1 image recorded on March 2, 2006

and the right images (Figs. 6(b) and 7(b)) the panchromatic T2

Fig. 4. Panchromatic Quickbird-2 image recorded on February 28, 2008 of the
town Abu Suruj (2048 2048 pixels). Images are provided by Amnesty Inter-
national, courtesy of Digital Globe.

Fig. 5. Manually digitized reference image of the town Abu Suruj. Black de-
notes no changes (background), white stands for new buildings (construction)
and gray for changed buildings (destruction).

image recorded on February 28, 2008. Fig. 6 displays buildings

which are destroyed in T2 but did exist in T1. The two existing

buildings in Fig. 7(a) were destroyed during 2007 but new build-

ings are constructed at the same place and are visible in T2.

A visual comparison and overlay of the existing man-made

structures shows a high correspondence for both images, so

that a new co-registration was not necessary and the problem

of possible pseudo change was negligible. These images were

used for the following analysis in the next section. They were
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Fig. 6. Subset of the panchromatic Quickbird-2 images recorded on March 2,
2006 (a) and on February 28, 2008 (b) of the town Abu Suruj. The image (a)
shows intact buildings and the image (b) destroyed buildings.

Fig. 7. Subset of the panchromatic Quickbird-2 images recorded on March 2,
2006 (a) and on February 28, 2008 (b) of the town Abu Suruj. The image (a)
shows two intact buildings which are destroyed in image (b) but also with new
buildings that were constructed on the same location.

Fig. 8. Result of change detection using image difference, black denotes no
changes (background), white stands for new buildings (construction) and gray
for changed buildings (destruction).

preprocessed using a histogram matching procedure. An atmo-

spheric correction is not applied, due to missing ground truth

data, sparse vegetation and only one image band.

V. RESULTS AND ACCURACY ASSESSMENT AND COMPARISON

In the following section, the classification results of the stan-

dard methods (Section II), the new CEST-method (Section III)

and the achieved accuracies are presented. For the accuracy as-

sessment three classes were selected:

Class 0 unchanged buildings

Class 1 changed or destroyed buildings

Class 2 new buildings.

The reference is a manual digitization of buildings through an

independent photointerpreter (see Fig. 5). Accuracy assessment

for classes 1 and 2 is based on 404 randomly chosen digitized

objects. Only for class 0 all 404 objects were used. If most of

the pixels inside an object are the pixels of the correct class, the

whole object was considered as correctly detected. Producers’

accuracy, users’ accuracy and the kappa coefficient are calcu-

lated for all scenarios.

A. Image Difference

By using different thresholds it is possible to detect the three

different classes (positive change, negative change and no

change). It can be seen, however, that large areas of pseudo

change are detected (Fig. 8). Due to brightness changes of

the sediment, change is especially detected in the north of

the image. Most of the new buildings which appear in the T2

image are detected. Buildings which are unchanged are often

identified as destroyed or changed buildings. These results are

also confirmed by the accuracy assessment (see Figs. 14 and

15).

B. Image Ratio

For image ratio, it is difficult to find a threshold between new

and changed/destroyed buildings. Therefore most of the build-

ings are detected as new buildings (Fig. 9). As with image dif-

ference, buildings which are unchanged are often detected as de-

stroyed or changed. This leads to the extremely low producers

accuracy of 8.2% for class 1 (changed or destroyed buildings).

The amount of detected pseudo change is relatively low in com-

parison to image difference.

C. PCA

The image processed with the PCA change detection proce-

dure shows a lot of pseudo change, especially in the south and

west of the image. Similar to the image ratio, most of the build-

ings are detected as new buildings (Fig. 10). Also, nearly 45%

of the unchanged buildings are classified as changed/destroyed.

30% of the destroyed or changed buildings, on the other hand,

are classified as unchanged.

D. Multivariate Alteration Detection (MAD)

TheMAD results are comparable with the results from Image

differencing (Fig. 11). There is still a lot of pseudo change ap-

pearing in the image; most of the change in the environment is

detected. 45% of the buildings which remain intact are not de-

tected.

E. Post Classification Analysis

For the post classification analysis we used the isodata al-

gorithm [14], because no appropriate training areas were avail-

able. For the analysis, three following classes are extracted:

new buildings, changed buildings and background or unchanged

buildings, respectively. The post classification result (Fig. 12)

produces the lowest accuracies (see Figs. 14 and 15). Neverthe-

less, the producer accuracy show 90% of the changed buildings

can be detected but the user accuracy shows that 50% of the

destroyed buildings are classified as unchanged. Nearly 80% of
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Fig. 9. Result of change detection using image ratio, black denotes no changes
(background), white stands for new buildings (construction) and gray for
changed buildings (destruction).

Fig. 10. Result of change detection using PCA, black denotes no changes
(background), white stands for new buildings (construction) and gray for
changed buildings (destruction).

the buildings which are new in image T2 are classified as un-

changed. Again, pseudo change poses a big problem.

F. CEST Method

As a first step, we assess the quality of the single methods that

make up CEST. A quantitative analysis, however, was only per-

formed for the combined CEST method. Because the Abu Suruj

area contains also new construction, the algorithm identifies

Fig. 11. Result of change detection using MAD, black denotes no changes
(background), white stands for new buildings (construction) and gray for
changed buildings (destruction).

Fig. 12. Result of change detection using post classification, black denotes no
changes (background), white stands for new buildings (construction) and gray
for changed buildings (destruction).

three classes. With the change detection based on frequency do-

main filtering and subsequent edge detection, it proved possible

to identify unchanged areas, new settlements and destroyed set-

tlements, even single huts and changed walls.

For the PCAmethod using the Haralick ‘energy’ feature, also

three classes can be extracted. This means that the direction of

changes can be depicted by this method (positive and negative

change). To find these classes, Otsu’s thresholding is used [34].
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Fig. 13. Result of change detection using the CEST method. This result com-
bines the advantages of all methods and generates the most accurate change
image. Three change classes can be identified: black denotes no changes (back-
ground), white stands for new buildings and gray for changed/destroyed build-
ings.

The location of the buildings is not very accurate in both im-

ages; the walls are wider than in reality and the area inside the

walls is often detected as change. This effect can be an indicator

for different viewing angles or illumination conditions in both

images.

The last of our newly developed methods, the segmentation

based change detection, produces better results for this test area

than the edge detection or the texture procedure. The boundaries

are clearly defined and objects can be better identified. Some

parts of the vegetation, however, are identified as changed build-

ings. Additionally, some noise appears.

Finally, these methods are combined in the CEST approach

to make use of the advantages of each individual algorithm. The

result is shown in Fig. 13. In comparison to the other methods,

this image contains far less noise. Also, misclassification of veg-

etation as changed buildings is significantly less. Similar to the

bitemporal PCA for the texture images, the results contain three

distinctive classes: black for no changes, white for new build-

ings and gray for changed/destroyed buildings. In addition, the

walls of the buildings are more accurate than for the PCA result.

In total, the combination of all three methods generates the most

reliable and accurate results for change detection.

G. Quantitative Analysis

The results of the visual analysis are confirmed by the

quantitative accuracy assessment. The accuracies of the

CEST-Method are the best in this study. 97% of the unchanged

buildings are correctly detected. Although nearly 35% of the

changed or destroyed buildings are identified as unchanged

the CEST result is still acceptable. In comparison to all other

Fig. 14. Users’ accuracy for the 3 classes (class 1 changed or destroyed
buildings, class 2 new buildings and class 3 unchanged buildings).

Fig. 15. Producers’ accuracy for the 3 classes (class 1 changed or destroyed
buildings, class 2 new buildings and class 3 unchanged buildings).

Fig. 16. Overall accuracy for the change detection methods in the Abu Suruj
area.

algorithms, however, this combined method shows the highest

users and producers accuracies and produces also less pseudo

change. Figs. 14 and 15 show the users’ and producers’ accu-

racies, respectively.

A comparison of overall accuracy is presented in Fig. 16. As

expected, the CEST approach shows the highest accuracy with

about 80%. Acceptable values are also associated with Delta

cue (72%) and PCA (71%). The worst results are produced by

the post classification approach with 40%. This demonstrates

clearly the inferiority of the selected standard methods for the

automated change detection in crisis areas.

Looking at Figs. 8–13, it is quite clear, that the CEST ap-

proach provides the best result whereas all other images present



1126 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 5, NO. 4, AUGUST 2012

TABLE I
HISTOGRAM VALUES OF THE FIGS. 8–13 IN COMPARISON TO THE REFERENCE

Fig. 17. Generalized change map of Abu Suruj: new buildings (green), low to
moderate change (yellow), extensive change (red).

a large amount of noise. This is confirmed by Table I, which

shows the number of pixels that are assigned to each class.

Evidently the CEST method has the highest correspondence

to the original values.

H. Change Map

Finally, a damage map can be created (Fig. 17). For this,

the original image of T2 is used as background for automati-

cally created change maps and for the results. Unchanged areas

are transparent, low to moderate change areas are shown as

yellow overlay, and areas of strong changes as red overlay. New

building areas are shown in green. If this technique is applied

to areas with catastrophic events, this change map makes it pos-

sible to quickly identify the most affected areas or the areas for

which high casualties are likely. For the Abu Suruj area, it could

be easily depicted that the town has increased, but also that large

parts have changed. Buildings were destroyed and new build-

ings were built on these sites or next to the destroyed buildings.

Fig. 18. Subset of the area Shangil: (a) Result of change detection (black: no
change, white: change), (b) image from 2005 and (c) image from 2006.

VI. TRANSFERABILITY

The method is also transferable to other scenes of Darfur.

Fig. 18 shows the region around Shangil, a sparsely populated

area which is the home of several thousands of displaced

civilians. The attacks on this village took place between 2005

and 2006. The images were taken by Quickbird on 10 March

2003—a subset of the scene is presented in Fig. 18(b)—before

the attack and 18 December 2006 (Fig. 18(c)) after the attack.

These images were also provided by Amnesty International.

It is visible, that the whole village was destroyed, some of

the structures were completely wiped out, some were burnt

down and are still partly visible. The change detection result

is displayed in Fig. 18(a). All destroyed buildings could be

detected. It seems that some of the buildings had just darker and

wider walls than in the T1 image. Thorough visual inspection

showed that the houses were indeed burnt down and these burnt

remains were still visible and just looked like darker and wider

walls.

In addition, the CEST method was tested in Munich, Ger-

many (Fig. 19). The center image subset shows the location

(parking lot) before the Oktoberfest, the world famous German

beer festival. The image at the right shows the festival area with

a large number of parked busses. The left image shows the de-

tected changes in white. The CEST method detected all busses

as changes to the previously empty parking lot. Due to problems

with orthorectification, different morphological operations had

to be applied. As a result, the unchanged spaces between the

parked busses were also assigned to the class ‘change’. It has to

be noted that at this point of time, only visual analysis for Mu-

nich has been performed. Statistical evaluations have not yet

been completed.

VII. CONCLUSION AND FUTUREWORK

In this paper, a new automated change detection method

(CEST) is presented. CEST combines adaptive filtering in the

frequency domain with edge detection in the spatial domain,

calculation of the texture features ‘homogeneity’ and ‘energy’

with a PCA change detection approach and segment based

correlation. This combined method is compared to five stan-

dard change detection algorithms (image difference, image

ratio, PCA, MAD, and post classification analysis). Results are

visually and quantitatively analyzed. The accuracy assessment

shows that the CEST method is far superior to the standard

techniques for change detection. Despite the fact that CEST

is more complex than the tested standards methods, CEST

can be completely automated and transferred to other areas.

The combined method yields an overall accuracy of 80% and
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Fig. 19. Subset of the area in Munich: (a) Result of change detection (black: no change, white: change), (b) image taken before the Oktoberfest and (c) image
taken during the Oktoberfest.

more than 90% of the unchanged buildings could be correctly

identified. The next steps will involve the inclusion of building

information which is stored in GIS or cadastral databases (if

available). Also, other more robust segmentation algorithms

will be tested for the combined method.
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