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Abstract 35 
 36 

Co-evolution between humans and the microbial communities colonizing them has resulted in 37 

an intimate assembly of thousands of microbial species mutualistically living on and in their 38 

body and impacting multiple aspects of host physiology and health. Several studies examining 39 

whether human genetic variation can affect gut microbiota suggest a complex combination of 40 

environmental and host factors. Here, we leverage a single large-scale population-based cohort 41 

of 5,959 genotyped individuals with matched gut microbial shotgun metagenomes, dietary 42 
information and health records up to 16 years post-sampling, to characterize human genetic 43 

variations associated with microbial abundances, and predict possible causal links with various 44 

diseases using Mendelian randomization (MR). Genome-wide association study (GWAS) 45 
identified 583 independent SNP-taxon associations at genome-wide significance (p<5.0×10

-8
), 46 

which included notable strong associations with LCT (p=5.02×10
-35

), ABO (p=1.1×10
-12

), and 47 

MED13L (p=1.84×10
-12

). A combination of genetics and dietary habits was shown to strongly 48 
shape the abundances of certain key bacterial members of the gut microbiota, and explain their 49 

genetic association. Genetic effects from the LCT locus on Bifidobacterium and three other 50 

associated taxa significantly differed according to dairy intake. Variation in mucin-degrading 51 

Faecalicatena lactaris abundances were associated with ABO, highlighting a preferential 52 

utilization of secreted A/B/AB-antigens as energy source in the gut, irrespectively of fibre 53 

intake. Enterococcus faecalis levels showed a robust association with a variant in MED13L, 54 

with putative links to colorectal cancer. Finally, we identified putative causal relationships 55 

between gut microbes and complex diseases using MR, with a predicted effect of Morganella 56 

on major depressive disorder that was consistent with observational incident disease analysis. 57 
Overall, we present striking examples of the intricate relationship between humans and their 58 

gut microbial communities, and highlight important health implications. 59 

  60 
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Introduction 61 
 62 

Humans have co-evolved with the microbial communities that colonize them, resulting in a 63 

complex assembly of thousands of microbial species mutualistically living in their 64 

gastrointestinal tract. A fine-tuned interplay between microbial and human physiologies can 65 

impact multiple aspects of development and health to the point that dysbiosis is often 66 

associated with disease
1–3

. As such, increasing evidence points to the influence of human 67 

genetic variation on the composition and modulation of their gut microbiota.  68 
 69 

Past genetic studies have collectively revealed important host-microbe interactions
4–14

. 70 

Previous twin studies detected significant heritability signal from the presence and abundance 71 
of only a few microbial taxa, such as some Firmicutes

15
, suggesting a strong transientness and 72 

variability in gut microbial composition, as well as an important influence from external 73 

factors
6,15–18

. Nonetheless, a well-described association between Bifidobacterium levels and 74 
LCT-MCM6, governing the phenotype of lactase persistence throughout adulthood in 75 

Europeans, was uncovered in 2015
4
 and subsequently replicated by later studies

6,7,9–12
, 76 

suggesting a very strong influence of the evolution of dairy diet in modern humans on their gut 77 

bacteria. Additionally, genes involved in immune and metabolic processes
9
 but also disease

19
 78 

were also associated with gut microbial variation. Despite several promising findings, 79 

reproducibility across studies varying in sampling and methods is generally poor, and most 80 

previously reported associations lose significance after multiple testing corrections
20

. The 81 

individual gut microbiota is largely influenced by environmental variables, mostly diet and 82 

medication
21–23

, which could explain a larger proportion of microbiome variance than 83 
identifiable host genetic factors

9,10
. Biological factors could also influence the cross-study 84 

reproducibility of results. GWAS would typically not reproducibly identify genetic 85 

associations with taxa harbouring microbial functions potentially shared by multiple unrelated 86 
species

24,25
. Indeed, a certain degree of functional redundancy has been observed in human gut 87 

microbial communities
25

, which is believed to play a role in the resistance and resilience to 88 

perturbations
26–28

. However, both assembly and functioning in human gut microbial 89 
communities seem to be driven by the presence of a few particular and identifiable keystone 90 

taxa
29

, which exert key ecological and modulatory roles on gut microbial composition 91 

independently of their abundance
30,31

. Such taxa are relatively prevalent across individuals and 92 

thought to be part of the human “core” microbiota
30,31

, which makes them potentially 93 

identifiable through GWAS.  94 

 95 

Increasing sample size in studied populations could yield novel and robustly associated results, 96 

and alleviate the effect of confounding technical or biological factors. This could be achieved 97 

either by performing meta-analyses of GWAS conducted in various populations
12

, or by using 98 

larger cohort datasets. In this study, we used a large single homogenous population cohort with 99 

matching human genotypes and shotgun faecal metagenomes (N=5959; FINRISK 2002 100 

(FR02)) to identify novel genome-wide associations between human genotypes and gut 101 

microbial abundances (Figure S1). We further leveraged additional and extensive health 102 

registry and dietary individual data to investigate the effects of diet and genotype on particular 103 
host-microbial associations, and to predict incident disease linked to gut microbial variation. 104 

 105 

Results 106 
 107 

Genome-wide association analysis of gut microbial taxa  108 
 109 
Genome-wide association tests were applied to 2,801 microbial taxa and 7,979,834 human 110 

genetic variants from 5,959 individuals enrolled in the FR02 cohort, which includes all taxa 111 
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discovered to be prevalent in >25% of the cohort (Methods). Using a genome-wide 112 

significance threshold (p<5.0×10
-8

), a total of 478 distinct GTDB taxa, which represented 17% 113 

of all tested taxa and included 11 phyla, 19 classes, 24 orders, 63 families, 148 genera and 213 114 

species, were found to be associated with at least one genetic variant (Figure 1, Table S1). 115 

Conditional analysis found 583 independent SNP-taxon associations at genome-wide 116 

significance (Table S1). Heritability across the 2,801 taxa ranged between h
2
=0.001 to 0.214, 117 

with the highest values observed for taxa belonging to the Firmicutes and Firmicutes_A GTDB 118 

phyla, both of which encompassed half (241/476, 50.4%) of all associated taxa with genetic 119 
variation (Figure S2). There were no differences in SNP heritability between groups of 120 

associated or non-associated taxa at genome-wide significance (p=0.23).  121 

 122 
Three loci were strongly associated with microbial variation at study-wide significance, as 123 

shown on a Manhattan plot showing the lowest resulting p-value for each SNP tested against 124 

each of the 2,801 taxa (Figure 1, Table 1). There was no evidence of excess false positive rate 125 
in the GWAS (median λGC=1.0051) (Figure 1B). After conditional analysis, the strongest 126 

association by far (p=5.0×10
-35

) involved members of class Actinobacteria and rs3940549, a 127 

variant in the LCT-MCM6-ZRANB3 locus region which is in high LD (r
2
=0.87) with the well-128 

described LCT variant rs4988235 causing lactase persistence in adults of European ancestry 129 

(Figure S3). In total, 29 taxa were associated with the LCT-MCM6 region, including 18 below 130 

study-wide significance (Figure 1, Table S1). These involved Bifidobacterium-related 131 

Actinobacteriota and three taxa from the GTDB Firmicutes_A phylum which included 2 132 

uncultured species defined from metagenome-assembled reference genomes (UBA3855 133 

sp900316885 and CAG-81 sp000435795) (Table 1). The association of these three 134 
Firmicutes_A with LCT was still genome-wide significant after adjusting for Bifidobacterium 135 

abundances (Table S2). A variant in ABO (rs545971), expressing the histo-blood 136 

group ABO system transferase, was strongly associated (p=1.1×10
-12

) with levels of 137 
Faecalicatena lactaris. There was evidence for a second independent signal at ABO associated 138 

with the Collinsella genus (chr9:133271182; p=2.5×10
-8

) (Table S1, Figure 1). Rs187309577 139 

and rs143507801 in MED13L, expressing the Mediator complex subunit 13L, were found to be 140 
associated with genus Enterococcus (p=1.8×10

-12
) and the Enterococcus faecalis species 141 

(p=7.26×10
-11

), respectively (Table S1, Figure 1). 142 

 143 

Human gut microbiome keystone taxa are associated with genetic variation 144 
 145 

In total, we identified 31 distinct genetic variants associated (p<5.0×10
-8

) with 39 microbial 146 

taxa related to identified keystone species as listed by Banerjee et al. (2018)
29,32

, which 147 

included the Actinobacteria class
30

, Helicobacter pylori
29

, Bacteroides stercoris
33

, Bacteroides 148 

thetaiotaomicron
34

, Ruminococcus bromii
35

, Klebsiella pneumoniae
36

, Proteus mirabilis
36

, 149 

Akkermansia muciniphila
31

, and the archaeon Methanobrevibacter smithii
37,38

 (Figure 1C, 150 

Table S1). Only one documented keystone species from Banerjee et al.
29

, Bacteroides 151 

fragilis
39

, was not associated with genetic variation in our study. This observation suggests that 152 

keystone species, although defined as exerting selective modulation and not broad effects on 153 

microbiome composition variation, generally associates with human genetic variation, 154 
suggesting an intimate association with the human gut niche, in line with their reported key 155 

ecological roles in microbiome modulation and functioning. Our work highlights novel human 156 

genotypes possibly associated with keystone taxa (Table S1), which could further improve our 157 
understanding of their ecology. 158 

 159 

Combined effect of host genetics and dietary dairy intake on gut levels of LCT-associated 160 
bacteria 161 

 162 
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We compared the abundances of 4 bacterial taxa strongly associated with the LCT locus 163 

(Bifidobacterium genus, Negativibacillus genus, UBA3855 sp900316885 and CAG-81 164 

sp000435795) in individuals with different rs4988235 genotypes and dairy diets (Figure 2A). 165 

The abundance of Bifidobacterium in individuals producing lactase through adulthood 166 

(rs4988235:TT) was unaffected by dairy intake. However, lactose-intolerant individuals 167 

(rs4988235:CC) self-reporting a regular dairy diet had a significant increase in Bifidobacterium 168 

abundance (p=1.75×10
-13

; Wilcoxon-rank test). An intermediate genotype (rs4988235:CT) was 169 

linked to an intermediate increase (Figure 2A). This trend did not seem to be affected by age
40

 170 
(Figure S4). 171 

 172 

An inverse pattern was observed for the abundance distributions of Negativibacillus and 173 
uncultured CAG-81 sp000435795, for which abundances decreased in lactose intolerant 174 

individuals reporting dairy intake, as compared to rs4988235:TT individuals consuming dairy 175 

products (p=0.049 and p=0.041, respectively) (Figure 2A). Levels of UBA3855 sp900316885 176 
were unaffected by a dairy diet in lactose-intolerant individuals but were surprisingly lower in 177 

rs4988235:TT individuals who reported dairy intake (p=8.23×10
-5

) (Figure 2A). These 178 

opposite and contrasting effects of dairy intake on associated bacterial abundances in lactose-179 

intolerant individuals could reflect competition for lactose in the gut. Genus CAG-81 180 

abundances were the most negatively correlated with those of the other LCT-associated taxa 181 

(Figure S5), which suggests that this competition could be strong and prevalent enough to 182 

drive co-association at the LCT locus, possibly mediated by lactose intake (Figure 2B). 183 

 184 

Functional profiling of CAZymes in 11 Bifidobacterium species 185 

 186 
Of all 11 Bifidobacterium species prevalent enough in our study population to be included in 187 

the GWAS, only B. dentium was not associated with the LCT locus (p=1.70×10
-2

), nor was it 188 
co-abundant with any other Bifidobacterium species (Figure S6A). B. dentium has previously 189 

been suggested to have different metabolic abilities
41

. A clustering of carbohydrate-active 190 

enzymes (CAZyme) profiles from reference genomes of all 11 Bifidobacterium species 191 
revealed that B. dentium clustered apart from the 10 other species, which grouped consistently 192 

with their co-abundance patterns (Figure S6B). B. dentium harboured more genes encoding 193 

CAZyme families with preferred fiber/plant-related substrates (GH94, GH26, GH53) than 194 

other Bifidobacterium species, which seemed to harbour more milk oligosaccharide-targeting 195 

CAZyme families (GH129, GH112) than B. dentium (Figure S6B), which could relate to the 196 

observed association differences. This suggests that bacterial metabolic abilities can be strong 197 

drivers of co-abundance, and of association with human genetic variation. 198 

 199 

Functionally distinct ABO-associated bacteria are impacted differently by genotype and 200 

dietary fiber intake 201 
 202 

A variety of bacteria metabolize blood antigens, with potential applications in synthetic 203 

universal donor blood production
42,43

. Gut bacteria are particularly exposed to A- and B-204 

antigens in the gut mucosa of secretor individuals
44

. Our associations of Faecalicatena lactaris 205 
(p=1.10×10

-12
) and Collinsella (p=2.59×10

-8
) with ABO suggest a possible metabolic link with 206 

blood antigens. A comparison of CAZyme profiles across a set of reference genomes revealed 207 

3 CAZymes with blood-related activities in F. lactaris (GH110
45

, GH136
46

, CBM32
47

), but 208 
none in any of 9 Collinsella species (Figure 3A). More mucus-targeting and less fiber-209 

degrading enzymes were found in F. lactaris than Collinsella (Figure 3A), suggesting distinct 210 

functions in the gut. 211 
 212 
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As previously reported
5
, neither ABO blood types, nor secretor status had an impact on alpha 213 

and beta diversity (Figure S7). However, we observed that the effect of ABO genotypes on F. 214 

lactaris levels, underlying the association, were largely driven by secretor status, with 215 

increased abundances in secretor individuals from genotype groups rs545971:CT (p=3.6×10
-4

) 216 

and rs545971:TT (p=9×10
-4

), A (p=1.24×10
-5

) and AB blood type groups (p=1.24×10
-5

), but 217 

not in rs545971:CC genotype (p=0.4339), or B and O blood types individuals (Figure 3B). 218 

Levels in non-secretors did not vary across ABO genotypes or blood types (Figure 3B). 219 

Despite a slight increase in blood type A secretors, Collinsella only remained minimally 220 
affected by secretor status or blood group (Figure S8A). Taken together, this suggests that the 221 

secretion of soluble A and B-antigens strongly affects F. lactaris in the gut, possibly through 222 

reduced opportunity to use them as substrate. Both levels of F. lactaris and Collinsella were 223 
significantly higher when individuals were predicted to secrete A-, B- and AB-antigens in their 224 

gut mucosa (p<2.2×10
-16

 and p=1.3×10
-8

, respectively) (Figure S8B). 225 

 226 
A high fiber diet is thought to induce a metabolic transition from mucus-degrading to fiber-227 

degrading activities in the colon, as carbohydrates from fiber are more easily metabolized
48

. 228 

The increase in F. lactaris abundances in A/B/AB-secretors (defined as secreting A-, B- and 229 

AB-antigens) compared to non- A/B/AB-secretors remained strongly significant irrespective of 230 

fiber intake (p=1.15×10
-9

 in the low-fiber diet group, and p=4.4×10
-3 

in the high-fiber diet 231 

group), suggesting that either F. lactaris has a strong affinity for secreted A/B/AB-antigens, 232 

does not efficiently degrade dietary fiber, or will not easily switch to it as an energy source 233 

(Figure 3C). F. lactaris levels were increased in non-A/B/AB-secretors with a high fiber diet, 234 

implying a switch to fiber degradation or interaction with fiber-degrading bacteria (Figure 235 
3C). Collinsella variation in both A/B/AB-secretors and non-A/B/AB-secretors with high- and 236 

low-fiber diets was similar to the compounded abundances of 13 major mucin-degrading 237 

species in the human gut
49

, suggesting a similar ecological response in stark contrast with F. 238 
lactaris (Figure 3C, Figure 3D). 239 

 240 

MED13L association with Enterococcus faecalis as a putative link with CRC development 241 
 242 

The allele frequency of the MED13L rs143507801 variant (A>G), associated with levels of 243 

Enterococcus faecalis (p=7.26×10
-11

), was low (MAF=0.0111), consistent with reported allele 244 

frequencies in the gnomAD database
50

. In our study population, 131 individuals carried 245 

rs143507801:G allele, 130 being heterozygous (GA) and only one being homozygous (GG). 246 

We observed that E. faecalis levels were increased in heterozygous rs143507801:GA 247 

individuals (Figure 4). E. faecalis is a gut commensal, but also an opportunist pathogen 248 

believed to play a role in colorectal cancer (CRC) development, possibly through direct 249 

damaging of colorectal cells
51–56

. MED13L and MED13 encode for Mediator transcriptional 250 

coactivator complex modules associating with RNA polymerase II
57

, and as such specifically 251 

interact with cyclin-dependent kinase 8 (CDK8) modules described for their oncogenic 252 

activation of transcription during colon tumorigenesis
58

. Consequently, we observed slightly 253 

higher levels of E. faecalis (p=0.014) in 14 individuals enrolled in FR02 who had prevalent 254 

CRC at the time of sampling (Figure 4). Groups of individuals segregated by allelic variant 255 
and CRC status could not be compared robustly due to small sample size. Taken together, these 256 

results suggest a possible link between E. faecalis and CRC through the MED13 activation of 257 

CDK8 in colorectal tumours, which will need to be investigated further. 258 
 259 

Causal inference predictions between microbes and diseases highlight causal effect of 260 

Morganella on MDD 261 
 262 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.12.20193045doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.12.20193045
http://creativecommons.org/licenses/by/4.0/


Interpreting results of causal inference prediction using bacterial information entails to 263 

particular caution, due to the possibility of multiple and unaccounted confounding factors
11

, 264 

but can be useful to highlight potential focus for future research. Here, we predicted 96 causal 265 

effects in both microbe to disease and disease to microbe directions using bidirectional 266 

Mendelian Randomization (MR). Of these, 34 were from microbial levels as exposure to 267 

disease as outcome, with a large proportion of causal effects in psychiatric and neurological 268 

diseases (Table S5). For example, MR suggested an increased abundance of Faecalicoccus 269 

may have a causal effect on anorexia nervosa (OR=1.8  per SD increase in bacterial 270 
abundance; CI95%=1.3-2.5; p=2.0×10

-4
, MR method IVW)(Methods). Other examples included 271 

increasing abundances of Morganella and Raoultella predicted to have causal effects on major 272 

depressive disorder (MDD) (Table S5). When MR was performed in the reverse direction, 273 
using disease risk as an exposure and microbial levels as an outcome, most predicted causal 274 

effects involved autoimmune and inflammatory diseases but the strongest predicted causal 275 

effect involved type 2 diabetes (T2D) (Table S6). Doubling the genetic risk of T2D (possibly 276 
accompanied by external factors such as hypoglycaemic medications or metformin intake) was 277 

predicted to reduce levels of the uncultured CAG-345 sp000433315 species (Firmicutes 278 

phylum) by 0.14 SD (SE=0.04, p=3.0×10
-4

, MR method IVW). A few other examples included 279 

some degree of literature validation, such as the higher genetic risk for primary sclerosing 280 

cholangitis (PSC) causally impacting levels of the cholesterol-reducing Eubacterium_R 281 

coprostanoligenes
59

. Furthermore, a higher genetic risk for coeliac disease (CD) was predicted 282 

to increase abundances in 4 species previously reported to be more abundant in CD patients 283 

than controls
60

 (Table S6). Finally, a higher genetic risk for multiple sclerosis (MS) was 284 

predicted to cause a reduction in the abundance of Lactobacillus_B ruminis, consistent with the 285 
report that Lactobacillus sp. can reduce symptom severity in an animal model of MS

61
. 286 

 287 

The availability in our study dataset of up to 16 years of electronic health record follow-up 288 
after the initial sampling of the microbiota allowed for observational validation of predicted 289 

effects using MR. Of all causal predictions identified using MR, only the effect of Morganella 290 

on MDD could be validated by a statistically significant association with incident MDD 291 
(HR=1.11, CI95=1.01-1.22, per SD increase of bacterial abundance), after accounting for age, 292 

sex and BMI (Figure 5). In our GWAS, Morganella variation in the study population 293 

associated with a variant (rs192436108; p=6.16×10
-8

) in the PDE1A locus, which has 294 

previously been linked to depression
62,63

 and psychiatric disorders
64

. Taken together, these 295 

predicted links between Morganella and MDD suggest more efforts should be deployed into 296 

exploring the possible roles of this bacterium as part of the brain-gut axis metabolic 297 

modulation of health. 298 

 299 

Discussion 300 
 301 

Here, through GWAS and the subsequent investigation of functional and ecological factors 302 

contributing to the most robust human-microbe associations, we present a diverse and global 303 

picture of human-microbe interactions in a single cohort of ~6,000 European individuals. We 304 

find 3 genetic loci to be strongly associated with gut microbial variation. Two of these loci, 305 
LCT and ABO, are well-known and very segregated in human populations, possibly explaining 306 

why our homogenous European cohort identified them as being associated so strongly. A third 307 

more mysterious association with the MED13L locus highlights possible links with cancer 308 
while predictive causal inference highlights several diseases as being causally linked to gut 309 

microbes. 310 

 311 

Lactase persistence as a recently evolved strong modulator of gut bacterial abundances 312 

 313 
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Lactase persistence, or the continued ability to digest lactose into adulthood, is the most 314 

strongly selected single-gene trait over the last 10,000 years in multiple human populations
65

, 315 

believed to have spread amongst humans with the advent of animal domestication and the 316 

culturally transmitted practice of dairying
66

. In our study, as in previous work
4,6,7,11,12

, the 317 

association of LCT variants with Actinobacteria, more specifically Bifidobacterium, is by far 318 

the most statistically significant, suggesting a profound interaction between Actinobacteria and 319 

the human gut, in line with their reported keystone activities
30

. We reported a strong increase 320 

of Bifidobacterium levels in genetically lactose intolerant people reporting a regular 321 
consumption of dairy products

9
. This increase was not confounded by age in adults, despite 322 

Bifidobacterium levels generally decreasing with age in our cohort. While self-reported dietary 323 

information is not entirely reliable due to various social reasons
67,68

, our study population was 324 
large, and the differences were significant enough to consider this a robust observation. These 325 

observations can be explained by the evolutionary adaptation of Bifidobacterium species to 326 

specifically use human and bovine milk oligosaccharides as an energy source
69

. In adults 327 
unable to produce lactase in their small intestines, consumed lactose is likely to become 328 

available for colonic bacteria as an energy source to compete for (Figure 3A). Hints of a 329 

possible competitive relationship between Bifidobacterium and Negativibacillus, another LCT-330 

associated taxon were revealed, which could be mediated by lactose intake and will need to be 331 

investigated further in functional studies. 332 

 333 

Two interesting questions stem from our findings. First, the genetic determinants of lactose 334 

intolerance are known to vary across ethnicity
70

 and cross-population heterogeneity in the 335 

LCT-Bifidobacterium association was recently reported
12

. As more non-European-centric 336 
genetic studies are conducted worldwide

12,71,72
, examining this combined interaction between 337 

dairy diet and Bifidobacterium in different genetic backgrounds could bring new insights. 338 

Secondly, despite recent progresses, lactose intolerance is still largely underdiagnosed, and 339 
genetic prediction rates from large population studies exceed lactose intolerance prevalence 340 

rates obtained using physical tests
70

. In our work, we lacked information on lactose 341 

malabsorption symptoms in lactose intolerant individuals reporting a regular dairy diet. These 342 
people could experience discomfort symptoms without knowingly implicating their own 343 

lactose intake, but another possibility could be that the ability of Bifidobacterium to degrade 344 

lactose may alleviate the perceived symptoms of discomfort associated with lactose 345 

intolerance, therefore encouraging individuals to unknowingly continue consuming lactose that 346 

they would otherwise not be able to digest
73

. This possible probiotic effect would be interesting 347 

to investigate in controlled studies. 348 

 349 

Blood antigen secretion can influence levels of specific gut microbial commensals 350 
 351 

The ABO gene expresses a glycosyltransferase in many cell types, which determines the ABO 352 

blood group of an individual by modifying the oligosaccharides on cell surface glycoproteins. 353 

A comparison of humans and non-human primates has identified ABO (along with the MHC) 354 

as harbouring ancient multiallelic polymorphisms that are maintained across species
74,75

. 355 

Evolutionary selective pressures at this locus have been proposed to be linked to pathogen 356 
infection. Indeed, many infectious diseases such as norovirus infection, bacterial meningitis, 357 

malaria, cholera
76

, or even more recently SARS-CoV-2
77,78

 are associated with host blood type 358 

and secretor status
76

, suggesting that infection could be a driver of a strong balancing selection 359 
that has maintained ABO polymorphisms. Furthermore, blood type variation has been 360 

intriguingly linked to various chronic diseases
76

, such as heart and vascular diseases, gastric 361 

cancers, diabetes, asthma or even dementia
76

. Many of these chronic diseases are also 362 
associated with dysbiosis of the gut microbiota, which prompts interesting but largely 363 

unexplored parallel between gut commensals, blood types and disease
44

. Our study confirms 364 
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previous findings
5
 that secretor status or blood types do not seem to globally affect gut 365 

microbial alpha- or beta-diversity. It also confirms reports from two very recent studies: the 366 

first of these studies, a meta-analysis across five German cohorts, using 16S rRNA sequencing 367 

to characterize the gut microbiota, linked Bacteroides and Faecalibacterium to ABO and 368 

FUT2
79

. The second study, taking a functional approach, intriguingly associated bacterial 369 

lactose and galactose degradation genes to ABO variation in a cohort of 3,432 Chinese 370 

individuals
80

. Taken together, these findings suggest a broad association of ABO 371 

polymorphisms with microbial variation in various human populations. 372 
 373 

An important research effort aiming to enzymatically produce synthetic universal donor blood 374 

has driven a push for screening a large diversity of CAZymes, including bacteria, revealing 375 
substrate affinities for blood antigens across various microbes

42,43
. Here we highlight F. 376 

lactaris (formerly Ruminococcus lactaris), as a mucin-degrading commensal likely able to 377 

digest blood antigens through its predicted harbouring of GH110, GH136 and CBM32 378 
CAZyme family genes

45–47
. F. lactaris is strongly associated with ABO genetic variation in our 379 

European cohort, and is differentially abundant in people according to their predicted gut 380 

mucosal secretion of A/B/AB-antigens. Interestingly, our findings are not consistent with F. 381 

lactaris switching to a fiber-degrading activity in individuals reporting a high fiber diet, unlike 382 

other mucin-degrading bacteria in our study and in the literature
48

 and Collinsella, another 383 

ABO-associated taxon (Figure 3B). Our work suggests that some gut commensals such as F. 384 

lactaris appear to be very efficient and adapted metaboliser of A/B/AB-antigens in the gut, 385 

despite their predicted ability to degrade simpler carbohydrates in fiber. This could be an 386 

example of ecological niche differentiation in the gut, with impacts on associated F. lactaris 387 
microbial communities, of which Collinsella, also associated with ABO, may belong. 388 

 389 

Unexplored links with disease and the nervous system 390 
 391 

Although validation of the association is inconclusive because of the low prevalence of CRC 392 

cases and genetic variation in our study population, the association of MED13L rs143507801 393 
variant with Enterococcus faecalis suggested a putative link with CRC. It has been shown that 394 

MED13 could directly link a cyclin-dependent kinase 8 (CDK8) module to Mediator
81,82

, 395 

which is a colorectal cancer oncogene, amplified in colorectal tumours and activating 396 

transcription driving colon tumorigenesis leading to CRC
58

. This could explain a long 397 

suspected link between Enterococcus faecalis and development of CRC after having been 398 

found in higher concentrations in CRC patients than healthy individuals
51–55

. The suspected 399 

mode of action of E. faecalis on CRC development is currently unclear, but could be linked to 400 

extracellular free radical production directly leading to DNA break, point mutation and 401 

chromosomal instability in colorectal cells
56

. Although we saw a trend of E. faecalis being 402 

increased in abundance in prevalent CRC patients, and in MED13L variation, more focused 403 

work and a larger sample size will be required to precisely pinpoint a link between this 404 

bacterium and CRC through the Mediator complex, if any. 405 

 406 

Causal inference analysis highlighted a very promising example of interplay between a gut 407 
microbe and a complex disease. Among other suggested links with psychiatric diseases, we 408 

predicted that increasing abundances of Morganella and Raoultella could have causal effects 409 

on MDD. Members of the Enterobacteriaceae family, such as these two genera, have 410 
previously been found in higher levels in MDD patients

83
. Although caution is required when 411 

interpreting predictions of causality
84

, several studies elaborated the gut-brain axis hypothesis, 412 

and increasing evidence suggests that gut microbes are likely to influence host behavior via a 413 
systemic modulation of hormones and metabolites

85–87
. Most importantly, our MR-based 414 

observation was consistent with observed hazards using follow-up observational data up to 16 415 
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years after initial sampling. This observation supports previous experimental results showing 416 

an increase of IgM and IgA-related immune response against Morganella secreted 417 

lipopolysaccharide in major depression
88

. This finding potentially highlights the intimate 418 

influence of the gut-brain axis on humans. 419 

 420 

Our MR analysis suggested that known genetic risks of autoimmune and inflammatory 421 

diseases could also influence gut microbes. One explanation could be that disease susceptibility 422 

would affect host immunity and gut barrier integrity, which may favor an increase in some key 423 
microbes. However, several studies have shown that manipulating gut microbial composition 424 

could be a potential therapy for autoimmune and inflammatory diseases
89

, which would 425 

suggest that composition variation in specific gut microbe maybe a requirement for the 426 
penetration of a disease phenotype

90
. Further mechanistic studies are needed to untangle host-427 

microbe interactions in disease, and further interpret these predictions. 428 

 429 

The case for larger datasets and including uncultured novel species in metagenomic 430 

studies 431 
 432 

Our study highlights the benefits of increasing sample size to increase the statistical power for 433 

discovery. Although the LCT locus has been reported multiple times to be associated with 434 

bacterial taxa, our work is the first to report study-wide significant associations in a single 435 

cohort, at the strongest significance ever reported. The association with Bifidobacterium in our 436 

study was even stronger than the recent findings that used integrative data from 18,473 437 

individuals in 28 different cohorts
12

, emphasizing the importance of standardized methodology 438 
and homogeneity in participant ethnicity (especially when studying highly geographically 439 

distributed traits such as lactose intolerance traits
91

). ABO allelic variation is also notoriously 440 

affected by geography
92

, which could explain why some meta-analyses in non-homogenous 441 
populations could miss it or not. Importantly, metagenomic sequencing with standardized, 442 

robust taxonomic definitions
93,94

 can provide species-level characterization of microbial 443 

profiles in the gut of individuals, which is challenging when using 16S rRNA-based studies. 444 
An example from our work is the observation that Bifidobacterium dentium was prevalent but 445 

not associated with the LCT locus like all other Bifidobacterium species in the population. 446 

Observed difference in carbohydrate-active enzymes that are commonly found in other 447 

Bifidobacterium species may explain this difference
41

. Furthermore, GTDB taxonomic 448 

standardization results in greater taxon granularity, i.e. smaller, more discrete clades of similar 449 

phylogenetic depth than commonly known lineages or species
93,94

. In theory, this would 450 

increase overall accuracy
95

, as a weak association with a poorly-defined lineage may be caused 451 

by a strong association with a well-defined subset of that lineage, defined as a coherent group 452 

using GTDB
94

. Finally, a myriad of microbial taxa that are to date solely defined and 453 

represented by uncultured metagenome-assembled genomes (MAGs) in the GTDB database 454 

were found to be independently associated with various loci. Along with recent reports that the 455 

more gut microbiome diversity is explored, the more novel, unknown species are 456 

discovered
96,97

, this suggests that many discoveries are yet to be made in the field of human 457 

microbiome studies. 458 

  459 
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Material and methods 460 
 461 

Study population 462 
 463 

The FINRISK study population has been extensively described elsewhere
98

. FINRISK 464 

population surveys have been performed every 5 years since 1972 to monitor trends in 465 

cardiovascular disease risk factors in the Finnish population
98,99

. The FINRISK 2002 (FR02) 466 

study population has been extensively described elsewhere
98,100

. Briefly, it was based on a 467 
stratified random sample of the Finnish population aged between 25 and 74 years from six 468 

geographical areas of Finland
101

. The sampling was stratified by sex, region and 10-year age 469 

group so that each stratum had 250 participants. The overall participation rate was 65.5% (n = 470 
8,798). Selected participants filled out a questionnaire, then participated in a clinical 471 

examination carried out by specifically trained nurses and gave a blood sample from which 472 

various laboratory measurements were performed. They also received a sampling kit and 473 
instructions to donate a stool sample at home and mailed it to the Finnish Institute for Health 474 

and Welfare in an overnight mail. The follow-up of the cohort took place by record linkage of 475 

the study data with the Finnish national electronic health registers (Hospital Discharge Register 476 

and Causes of Death Register), which provide in practice 100% coverage of relevant health 477 

events in Finnish residents. For present analyses involving follow-up data, we used a follow-up 478 

which extended until 31/12/2018.  479 

 480 

The study protocol of FR02 was approved by the Coordinating Ethical Committee of the 481 

Helsinki and Uusimaa Hospital District (Ref. 558/E3/2001). All participants signed an 482 
informed consent. The study was conducted according to the World Medical Association’s 483 

Declaration of Helsinki on ethical principles.  484 

 485 

Cohort phenotype metadata and specific dietary information 486 

 487 

The phenotype data in this study comprised of demographic characteristics, life habits, disease 488 
history, laboratory test results and follow-up electronic health records (EHRs). More 489 

specifically, baseline dietary factors were collected. Participants were asked to provide answers 490 

to exhaustive diet questionnaires when they were enrolled in the study. Details of the method 491 

have been described previously
99

. To broadly assess diet information within the cohort 492 

participants, a binary variable was used to indicate whether individuals were self-reporting to 493 

follow various possible dietary restrictions. Dietary consumption of specific food product 494 

categories was also reported.  495 

 496 

Self-reporting of lactose-free diet and dietary fibre consumption 497 
 498 

Allelic distribution at the LCT-MCM6:rs4988235 variant responsible for lactase persistence in 499 

Europeans was as following in our study population: 1,936 (35%) individuals had the T/T 500 

allele conferring a lactase persistence phenotype through adulthood, allowing them to digest 501 

lactose, while 981 (18%) individuals had the C/C allele conferring lactose intolerance. Most 502 
individuals (n=2,611, 47%) had the intermediate allele C/T making them likely to be able to 503 

digest lactose. Most individuals reported a regular dairy intake in their diet (n=5,002, 89%), 504 

while 706 (12.5%) individuals reported a regular lactose-free diet.  505 
 506 

A total fiber consumption score was calculated from the questionnaires, reflecting the overall 507 

consumption of a combination of various fiber-rich foods such as high-fiber bread, vegetables 508 
(vegetable foods, fresh and boiled) and berries (fruits, berries and natural juices). The resulting 509 

total fiber index values ranged from 9 (low dietary fiber intake) to 48 (high dietary fiber 510 
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intake), with a median of 33. Comparisons of the effects of low- vs. high-fiber diets were made 511 

between the 1
st
 (n=1,213) and 4

th
 (n=1,132) quartiles of the total fiber index. 512 

 513 

Genotyping, imputation and quality control 514 
 515 

The genotyping was performed on Illumina genome-wide SNP arrays (the HumanCoreExome 516 

BeadChip, the Human610-Quad BeadChip and the HumanOmniExpress) and has been 517 

described previously
102

. Stringent criteria were applied to remove samples and variants of low 518 
quality. Samples with call rate <95%, sex discrepancies, excess heterozygosity and non-519 

European ancestry were excluded. Variants with call rate <98%, deviation from Hardy-520 

Weinberg Equilibrium (p<1×10
-6

), and minor allele count < 3 were filtered. Data was pre-521 
phased by using Eagle2 v2.3

103
. Imputation was performed using IMPUTE2 v2.3.0

104
 with two 522 

Finnish-population-specific reference panels: 2,690 high-coverage whole-genome sequencing 523 

and 5,092 whole-exome sequencing samples. To evaluate the imputation quality, we compared 524 
the sample allele frequencies with reference populations and examined imputation quality 525 

(INFO scores) distributions. Imputed SNPs with INFO >0.7 were kept for analysis. Post 526 

imputation quality control was carried out by using plink v2.0
105

. Samples with >10% missing 527 

rate were removed. Individuals with extreme height or BMI values were further excluded (31 528 

individuals with height<1.47m; 5 with BMI >50 were removed). Both genotyped and imputed 529 

SNPs were kept for analysis if they met the following criteria: call rate >90%, no significant 530 

deviation from Hardy-Weinberg Equilibrium (p>1.0×10
-6

), and minor allele frequency >1%. 531 

The post-QC dataset comprised 7,980,477 SNPs. 532 

 533 

Metagenomic sequencing from stool samples 534 
 535 

Stool samples were collected by participants and mailed overnight to Finnish Institute for 536 
Health and Welfare for storing at -20°C; the samples were sequenced at the University of 537 

California San Diego in 2017. The gut microbiome was characterized by shallow shotgun 538 

metagenomics sequencing with Illumina HiSeq 4000 Systems. We successfully performed 539 
stool shotgun sequencing in n=7,231 individuals. The detailed procedures for DNA extraction, 540 

library preparation and sequence processing have been previously described
101

. Adapter and 541 

host sequences were removed. To preserve the quality of data while retaining most of the 542 

disease cases, samples with a total number of sequenced reads lower than 400,000 were 543 

removed. 544 

 545 

Taxonomic profiling, quality filtering and data transformation 546 
 547 

Taxonomic profiling of FR02 metagenomes has been described elsewhere
100,106

. Briefly, raw 548 

shotgun metagenomic sequencing reads were mapped using the k-mer-based metagenomic 549 

classification tool Centrifuge
107

 to an index database custom-built to encompass reference 550 

genomes that followed the taxonomic nomenclature introduced and updated in the GTDB 551 

release 89
93–95

. This implies that unless specified otherwise, all taxonomic names in our study 552 

refer to their nomenclature in GTDB, which can be related to the original NCBI nomenclature 553 
using the GTDB database server: https://gtdb.ecogenomic.org/taxon_history/. 554 

 555 

Gut microbial composition was represented as the relative abundance of taxa. For each 556 
metagenome at phylum, class, order, family, genus and species levels, the relative abundance 557 

of a taxon was computed as the proportion of reads assigned to the clade rooted at this taxon 558 

among total classified reads. The relative abundance of a taxon with no reads assigned in a 559 
metagenome was considered as zero in the corresponding profile. For the purpose of this 560 

association study and because of reduced accuracy and power when considering rare taxa, we 561 
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focused on common and relatively abundant microbial taxa, defined as prevalent in >25% 562 

studied individuals, and defined with at least 10 mapped reads per individual. For the purpose 563 

of association, and as previous studies have reported that only some microbial taxa are 564 

inheritable
108

, we also removed taxa with zero SNP-heritability. This filtering resulted in a 565 

microbial dataset composed of a total of 2,801 taxa, including 59 phyla, 95 classes, 187 orders, 566 

415 families, 922 genera and 1,123 species.  567 

 568 

Taxonomic profiles derived from sequencing data are by nature compositional because of an 569 
arbitrary total imposed by the instrument

109
. The compositional data of microbial taxa is not 570 

independent and can lead to inappropriate use of linear regression. To overcome this artificial 571 

bias, all relative abundance values were transformed by centre-log-ratio (CLR)
110

. CLR 572 
transformed data can vary in real space and better fit the normality assumption of linear 573 

regression. To minimize the impact of zeros, the reads count profiles were shifted by +1 before 574 

the transformation. This process was performed using the R package compositions. When 575 
visually comparing relative abundances in groups of individuals throughout the manuscript, we 576 

used untransformed relative abundances, for better interpretability. Alpha (Shannon index) and 577 

beta (Bray-Curtis distance) diversity were calculated at genus level used functions in the R 578 

package vegan. 579 

 580 

Genome-wide association analysis 581 
 582 

The protocol followed in this study was described elsewhere
111

. Briefly, linear mixed model 583 

(LMM) implemented in BOLT-LMM
112

 was used to search for genome-wide associations 584 
accounting for the individual similarity. Since BOLT-LMM only accepts <1 million SNPs in 585 

modelling the genetic relationship matrix, SNPs were pruned at the threshold of r
2
<0.1 586 

(plink2
105

, command --indep-pairwise 1000 80 0.1), resulting in 106,201 independent SNPs. 587 
BOLT-LMM automatically performs leave-one-chromosome-out (LOCO) analysis to avoid 588 

proximal contamination. Although LMM accounts for the cryptic relatedness in individuals, 589 

there are still large population structure cannot be addressed. Thus, the top 10 genetic principal 590 
components (calculated by FlashPCA2

113
 based on the pruned SNPs mentioned above) were 591 

included as covariates. Age, gender, and genotyping batch were adjusted. As no genetic variant 592 

was reported to have large effect size on gut microbiota, statistic estimates were based on 593 

infinitesimal model which assumes small non-zero effect for large number of genetic variants. 594 

To identify independent associations, GCTA-COJO
114

 was used to conduct approximate 595 

conditional and joint analysis using individual genetic data. Window size was set to 10 Mb, 596 

assuming SNPs on different chromosomes or more than 10 Mb distance are uncorrelated. The 597 

resulting effect size (beta coefficient) indicated the number of standard deviation changes of a 598 

taxon’s CLR transformed abundance corresponding to one effective allele increase of SNP. 599 

 600 

As microbes interact non-independently with each other in the gut, as part of larger ecological 601 

and functional communities, matSpDlite
115,116

 was used to estimate the number of independent 602 

tests based on eigenvalue variance, the larger the eigenvalue variance the smaller the number 603 

of effective tests. The number of independent tests was 1,328 for 2,801 tested taxa. We used 604 
this information to calculate a Bonferroni-adjusted study-wide significant level for significant 605 

associations, which was set to 5×10
-8

/1328=3.8×10
-11

. A genome-wide significant threshold 606 

was set as 5×10
-8

. 607 
 608 

Prediction of ABO blood groups and secretor status 609 
 610 
SNP-based typing of ABO histo-blood group was performed. A combination of four SNPs

117
 611 

was used for the prediction, and a 98% concordance with phenotypically typed ABO histo-612 
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blood group has been reported for this method
5
. For blood group allele A, the two different 613 

types A1 and A2 were predicted by rs507666 and rs8176704 respectively. Blood group allele B 614 

was inferred from rs8176746 and blood group allele O was predicted by rs687289. As the 615 

combination of these SNPs are exclusive, no haplotype information was needed. To validate 616 

the accuracy of prediction, we compared it with the prediction using a different combination of 617 

SNPs
77

. The two predictions were highly consistent, with over 99.9% concordance. In addition, 618 

the distribution of ABO groups was consistent with the population distribution found in public 619 

database. Secretor status was predicted by the genotype of FUT2 variant rs601338, where AA 620 
or AG genotypes are secretors and GG genotypes are non-secretors. An 100% concordance 621 

between the variation in rs601338 and secretor status was reported in a study on Finnish 622 

individuals
118

. 623 
 624 

Bidirectional two-sample Mendelian randomization (MR) analysis 625 

 626 
Causal relationships between diseases and gut microbiota were investigated at genus and 627 

species levels only to maximise interpretability. In total, 213 species and 148 genera associated 628 

with at least one variant at genome-wide significant level (p<1×10
-8

) were included. GWAS 629 
summary results were collected for 46 diseases from MR-Base

119
 (Table S4). These included 630 

12 autoimmune or inflammatory diseases, 9 cardiometabolic diseases, 13 psychiatric or 631 

neurological diseases, cardiovascular diseases, 4 bone diseases and 8 cancers. For disease with 632 
more than one GWAS records, the record with the largest sample size was kept. 633 

 634 

Bi-directional causal inference was performed as follows to infer causal effects of microbial 635 

abundance variation (exposure) on disease risk (outcome), and of disease (exposure) on 636 

microbial abundance levels (outcome). To select the SNP instruments for microbial exposures 637 

in our study, we followed recommendations from a previous study showing that associated 638 

SNPs below a significance threshold of p<1×10
-5 

had the largest explained variance on 639 

microbial features
120

. For each taxon, GCTA-COJO was used to perform a conditional analysis 640 

to select independently associated SNPs at p<1×10
-5

. SNP instruments for disease exposures 641 

were selected at genome-wide significant threshold (p<5×10
-8

). Subsequently LD-clumping 642 

with a strict threshold (r
2
<0.001 in 1000G EUR within 10 Mb windows) was conducted to 643 

select independent instruments with the lowest p values for taxa and diseases, respectively. 644 
  645 

Effective alleles of all genetic variants were oriented to the risk-increasing alleles of exposures. 646 

For each inference, five different MR methods were used to estimate the causal effect: (1) 647 

inverse variance weighted (IVW)
121

, (2) weighted median
122

, (3) simple mode
123

, (4) weighted 648 

mode
123

 and (5) MR-Egger
124

. IVW is the most sensitive method which requires all 649 

instruments are valid. But in reality, it is hard to verify that no any genetic instrument violates 650 

any instrumental assumptions. Weighted median only requires at least half of the instruments 651 

are valid, making its inference robust to the cases where some instruments violating the 652 

assumptions. Simple mode and weighted mode rely on the largest group of similar instruments, 653 
reducing the effects of other instruments especially outliers. MR-Egger allows instruments 654 

having non-zero pleiotropy and provides way to test and estimate the pleiotropy effect in 655 

addition to causal estimate. As these methods are based on different assumptions, the 656 

consistency among them indicates a credible estimate
125

, even if discrepancy in these methods 657 

does not necessarily suggest the absence of causality. A predicted causal estimate was deemed 658 
interesting in our study if: (1) it reached a nominal p<0.05 for at least three of the five tested 659 

methods (Table S7), (2) directionality testing supported the causal direction, and (3) no 660 

significant casual effect in the reverse direction. In addition, MR-PRESSO
126

 was used to 661 
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formally detect and correct for the pleiotropic outliers. Analyses were conducted using the R 662 

package TwoSampleMR
119

.  663 

 664 

Cox proportional hazards regression 665 
 666 

Cox proportional hazards regression was conducted to test the association between baseline 667 

abundance of gut microbe and incident major depression (16 years follow-up, n=181 incident 668 

events). Microbial abundances were CLR-transformed and standardized to zero-mean and unit-669 
variance. The Cox models were stratified by sex and adjusted for age and log-transformed 670 

BMI, with time-on-study as the time scale. Participants with prevalent major depression at 671 

baseline were excluded. R function coxph() in the R package survival was used for this 672 
analysis.  673 

 674 

Profiling of carbohydrate-active enzymes (CAZymes) in bacterial genomes 675 
 676 

The standalone run_dbCAN2 v2.0.11 tool
127

 (https://github.com/linnabrown/run_dbcan) was 677 

used  to scan for the presence of CAZyme genes from public assembled bacterial genomes 678 

taken from the GTDB release 89 reference. We used a CAZyme reference database taken from 679 

the CAZy database
128

 (31
st
 July 2019 update). In total, we scanned 327 Bifidobacterium sp., 2 680 

Faecalicatena lactaris and 15 Collinsella sp. reference genomes included in GTDB release 89. 681 

Three methods were compared as part of the run_dbCAN2 procedure (HMMER, DIAMOND, 682 

and Hotpep). We considered a positive detection result when all three methods agreed on a 683 

CAZyme family identification. Identification of preferred reported substrates for the various 684 
CAZyme families was done manually from key publications

48,129
, from literature searches and 685 

from the CAZypedia website
130

. Certain CAZyme families have a broad range of substrates, 686 

many of which are still unknown, which results in our reported preferred substrates to be as 687 
accurate as possible, but non-exhaustive. 688 

 689 

Carbon impact and offsetting 690 
 691 

We used GreenAlgorithms v1.0
131

 to estimate that the main computational work in this study 692 

had a carbon impact of at least 531.94 kg CO2e, corresponding to 560 tree-months. As a 693 

commitment to the reduction of carbon emissions associated with computation in research, we 694 

consequently funded planting of 30 trees through a local Australian charity, which across their 695 

lifetime will sequester a combined estimated 8,040 kg CO2e, or 15 times the amount of CO2e 696 

generated by this study. 697 

 698 

  699 
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Main figure and tables 1031 
 1032 
Figure 1. Genome-wide association of human genetic and gut microbial variations. (A) Manhattan plot aggregating the top associations with microbial1033 
SNP was tested against each of the 2,801 taxa and the Manhattan plot shows the lowest resulting p-value for each SNP. Loci with associations above study-w1034 
level (p<3.8×10

-11
; red dashed line) are annotated with the human locus name and the corresponding associated microbial taxa. The blue dashed line denote1035 

significance level (p<5×10
-8

). (B) The distribution of genomic inflation factor (λGC) in 2,801 tested taxa [median(λGC)=1.0051; mean(λGC)=1.0059]. 1036 
visualization of the taxonomic diversity of genome-wide associated microbial taxa. The central root of the tree represents the Bacteria domain, the first 1037 
represents phylum, the second connected node class, the third order and the fourth family. Every node represents at least one associated taxa in the GWAS 1038 
significance level. The three smaller trees on the right highlight all taxonomic groups containing at least one taxon identified as associated with the LCT-M1039 
MED13L loci (blue edges and nodes denote taxa associated at study-wide significance level and purple edges and nodes denote taxa associated at genome-w1040 
level). The main tree is annotated to indicate phyla harbouring >10 distinct genome-wide associated taxa, as well as previously described keystone taxa. 1041 
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Figure 2. Interaction of human genotype, dairy diet and gut bacterial variation with the LCT locus. (A) The 4 panels present variation in microbial abu1043 
4 most significantly associated taxa with the LCT locus: Bifidobacterium, Negativibacillus, UBA3855 sp900316885 and CAG-81 sp000435795. Abundance1044 
across stratified groups of individuals from the FR02 cohort according to LCT-MCM6:rs4988235 genotype and self-reported dietary lactose intake (red: re1045 
blue: lactose-free diet). Sample sizes for groups of individuals self-reporting a regular dairy diet: rs4988235:TT (n=1,786), CT (n=2,413), CC (n=736); self-1046 
regular dairy diet or lactose-free diet: TT (n=150), CT (n=198), CC (n=245). All statistical comparisons denote the p-values of Wilcoxon rank test on the1047 
untransformed relative abundances. P-values thresholds are abbreviated as follow: *:p≤0.05; **:p≤0.01; ***:p≤0.001; ****:p≤0.0001. Only signifi1048 
comparisons are indicated. (B) Host genetics and gut microbes interact in the context of dairy intake and lactose intolerance.  1049 
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Figure 3. Functional profiling and effect of host genetics and dietary fiber intake on gut abundance variation of two bacterial taxa associated with the ABO locus 1052 
(A) Carbohydrate-active enzymes (CAZyme) distribution patterns in previously published F. lactaris and Collinsella reference genomes which were included in the GTDB 1053 
release 89 index used to classify metagenomes in this study. The heatmap indicates species abundance in corresponding CAZyme families, corresponding to the total count 1054 
of detected families for each species divided by the number of reference genomes examined for the same species. Values <1 indicate that less than one copy per genome of 1055 
the corresponding CAZyme family was detected for each, values >1 indicate that more than one copy per genome was detected. Preferred substrate groups are based on 1056 
literature search and descriptions on CAZypedia.org. (B) ABO-associated F. lactaris abundances are compared across stratified groups of individuals from the FR02 cohort 1057 
according to (left panel): ABO:rs4988235 genotype and predicted secretor status (blue: secretor status conferred by FUT2 rs601338:AG/AA genotype; red: non-secretor 1058 
status conferred by FUT2 rs601338:GG genotype) and (right panel) according to predicted A, AB, B and O blood types, and predicted secretor status. Sample sizes for 1059 
compared groups of individuals: secretor status with rs545971:C/C (n=1,538), C/T (n=2,493), T/T (n=1,050) and blood group A (n=2,178), AB (n=460), B (n=900), O 1060 
(n=1,543); non-secretor status with rs545971:C/C (n=266), C/T (n=437), T/T (n=175) and blood group A (n=383), AB (n=80), B (n=148), O (n=267). (C) ABO-associated 1061 
F. lactaris and Collinsella sp. abundances, as well as compounded abundances from 13 mucin-degrading species from Tailford et al. (2015), are compared across stratified 1062 
groups of individuals from the FR02 cohort according to the predicted A/B/AB-antigen secretion status and dietary fiber intake. The A/B/AB-antigen secretion status was 1063 
defined to segregate individuals according to the predicted phenotype of releasing soluble A/B/AB oligosaccharides branched onto a H-antigen into the gut mucosa. 1064 
A/B/AB-antigen secretors were defined as secretor individuals from blood types A, AB and B. Non- A/B/AB-antigen secretors were defined as non-secretor individuals and 1065 
O-antigen secretors. Fiber intake was compared in individual groups from the top and bottom quartiles of total fiber score based on dietary questionnaires and approximating 1066 
the amount of fiber in an individual’s diet. Sample sizes for compared groups of individuals: A/B/AB-antigen secretors (n=1393) following a low-fiber diet (n=723) or a 1067 
fiber-rich diet (n=670), or non- A/B/AB-antigen secretors (n=952) following a low-fiber diet (n=490) or a fiber-rich diet (n=462). All statistical comparisons denote the p-1068 
values of Wilcoxon rank test on the distributions of untransformed relative abundances. P-values thresholds are abbreviated as follow: *:p≤0.05; **:p≤0.01; ***:p≤0.001; 1069 
****:p≤0.0001. Only significantly different comparisons are indicated. (D) Host genetics and gut microbes interact in the context of fiber intake, secretor status and blood 1070 
types. 1071 
 1072 
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Figure 4. Effect of host genetics and prevalent colorectal cancer on gut levels of Enterococcus faecalis associated with MED13L variation across par1074 
FR02 cohort. Abundances are compared across individuals grouped according to (left panel): MED13L:rs143507801 genotype, (right panel): colorecta1075 
prevalence according to the Finnish Cancer Registry. The comparison between E. faecalis variation and MED13L:rs143507801 reflects the GWAS results 1076 
comparison of E. faecalis abundances in individuals with or without CRC at baseline was performed using a Wilcoxon rank test. Sample sizes for com1077 
individuals: rs143507801:A/A (n=5,825), G/A (n=130) (Note: only 1/5959 individual in our cohort was G/G); with CRC (n=14), without CRC at baseline (n=1078 

 1079 
 1080 
Figure 5. MR-based causal effects and incident depression analysis link Morganella with major depressive disorder. The plot shows results for 5 1081 
methods and hazard ratio for incident MDD in the FR02 cohort up to 16 years after baseline sampling using Cox model. 1082 
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Table 1. Study-wide significant SNP-taxon associations after GWAS. A full table including the associated genotypes and bacterial taxa at genome-wide sig1084 
as well as the full GTDB taxonomic path of all taxa are included in Table S1. 1085 
 1086 
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