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Abstract This paper investigates the periodic orbits around
the triangular equilibrium points for 0 < μ < μc, where μc

is the critical mass value, under the combined influence of
small perturbations in the Coriolis and the centrifugal forces
respectively, together with the effects of oblateness and radi-
ation pressures of the primaries. It is found that the perturb-
ing forces affect the period, orientation and the eccentricities
of the long and short periodic orbits.
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1 Introduction

The restricted three-body problem has five equilibrium
points, two triangular and three collinear. The collinear
points L1, L2, L3 are unstable for any value of mass ratio
μ of the smaller primary to the total mass of the primaries,
while the triangular points L4, L5 are stable for 0 < μ < μc ,
where μc is the critical mass value of the mass ratio μ of the
finite bodies (Szebehely 1967).

Due to the rotational motion, periodic orbits exist in the
restricted three-body problem, long and short periodic or-
bits are found around the equilibrium points. Elements that
could be used to describe the motion of an infinitesimal body
relative to the primaries are categorized as orbital and non
orbital elements. Angular momentum and total energy are
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the integrals available to measure the shapes and sizes of the
orbits but are not directly observable. Therefore, eccentric-
ities, inclination and semi major axes of the orbits are used
to determine the shapes, orientation and sizes of the orbits.

In recent times perturbing forces such as oblateness and
radiation forces of the primaries as well as the Coriolis
and centrifugal forces have been considered variously in the
studies related to the equilibrium points of the restricted
three-body problem. Sharma (1987) studied the linear sta-
bility of the restricted problem in which the bigger primary
is a source of radiation and the smaller primary an oblate
spheroid. He proved that the collinear equilibrium have con-
ditional retrograde elliptical periodic orbits around them,
while the triangular points have long or short periodic ret-
rograde elliptical orbits for the mass parameter μ such that
0 < μ < μc. He further showed that the eccentricity of the
retrograde elliptical periodic orbits increases with oblate-
ness and decreases with radiation forces.

By using second order parametric expansions, the fam-
ilies of periodic orbits generated from the inner collinear
equilibrium point in a binary system were numerically de-
termined by Ragos et al. (1991). Long and short periodic
solutions with similar character of periodicity of L4 were
identified. It was also found that finite periodic solutions in
the vicinity of L1 are stable.

In the case of restricted three-body problem in which the
primaries are triaxial rigid bodies, Sharma et al. (2001) ob-
served that the triangular points have long and short peri-
odic elliptical orbits for μ such that 0 < μ < μc. Ishwar and
Elipe (2001) obtained the secular solutions of the triangu-
lar equilibrium points in the restricted three-body problem
in which the smaller primary is an oblate spheroid and the
more massive primary is a source of radiation. They found
that the triangular points have long and short periodic retro-
grade elliptical orbits.
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In a recent paper (AbdulRaheem and Singh 2006), the
stability of equilibrium points of the restricted three-body
problem under the combined influence of small perturba-
tions in the Coriolis and the centrifugal forces, together with
the effects of oblateness and radiation of the primaries were
investigated. It was found that the range of stability of the tri-
angular points decreases for μ such that 0 < μ < μc while
the collinear points remain unstable.

In this paper, using the same assumptions, results and
parameters as in our aforesaid paper of 2006, we study
the periodic solutions of the generalized problem around
the triangular equilibrium point L4 within the stable region
(0 < μ < μc). Thereafter, we characterize the periodic or-
bits to be elliptical. Further, we describe the eccentricities
and the orientations of the periodic orbits.

2 Equations of motion

Let m1 and m2 denote the masses of the bigger and smaller
primaries respectively, and m the mass of the infinitesi-
mal body. Let A1 and A2 denote the oblateness coefficients
of the bigger and smaller primaries respectively such that
0 < Ai � 1, (i = 1,2). Further, we denote the respective
radiation factors for the bigger and smaller primaries as qi

(i = 1,2) such that 0 < 1 − qi � 1, (i = 1,2). Let the para-
meters ϕ and ψ denote the Coriolis and centrifugal forces,
arising due to rotational motion, respectively. We denote the
small perturbations in the Coriolis and centrifugal forces
by ε and ε′ respectively such that ϕ = 1 + ε, |ε| � 1 and
ψ = 1 + ε′, |ε′| � 1.

Let (x, y) be the coordinates of the infinitesimal body in
the orbital plane. Following the notations and terminology
of Szebehely (1967), the equations of motion of the infini-
tesimal body in the dimensionless barycentric-synodic coor-
dinate system (AbdulRaheem and Singh 2006) are

ẍ − 2nϕẏ = �x,

(1)
ÿ + 2nϕẋ = �y,

where the potential is

� = 1

2
n2ψ(x2 + y2) + 1 − μ

r1
q1 + μ

r2
q2

+ 1 − μ

2r3
1

A1q1 + μ

2r3
2

A2q2, (2)

the distances of the primaries from the infinitesimal body are

r2
1 = (x − μ)2 + y2,

(3)
r2

2 = (x + 1 − μ)2 + y2

and n, the perturbed mean motion of the primaries is given
by

n2 = 1 + 3

2
(A1 + A2). (4)

Equations of motion (1) admits the Jacobi integral

ẋ2 + ẏ2 − 2� + C = 0, (5)

where C is the Jacobian constant.

3 Periodic orbits

We denote the equilibrium points and their positions as
L(x0,±y0). Let a small displacement in (x0, y0) be (ξ, η).
Then the corresponding characteristic equation of our prob-
lem is (AbdulRaheem and Singh 2006)

λ4 − (
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xx�
0
yy − (

�0
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)2 = 0,

(6)

where, the superscript 0 indicates that the partial derivatives
of the potential � are evaluated at the equilibrium point L4.
In evaluating the partial derives we restrict ourselves to lin-
ear terms in ε and ε′, and neglect their products with Ai and
1 − qi (i = 1,2).

In the stable region 0 < μ < μc , the characteristic equa-
tion (6) has pure imaginary roots. Hence the motion is
bounded and is composed of two harmonic motions given
by

ξ = C1 cos s1t + S1 sin s1t + C2 cos s2t + S2 sin s2t,

(7)
η = C1 cos s1t + S1 sin s1t + C2 cos s2t + S2 sin s2t,

with different frequencies s1 and s2, where
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The frequency s1 is for the long periodic orbit while s2 is for
the short periodic orbit. The coefficients C1, S1,C1 and S1

are the long periodic terms while C2, S2,C2 and S2 are the
short periodic terms.

4 Elliptical orbits

The expansion of � around the triangular point L4 is

� = �0 + 1

2
�0

xxξ
2 + �0

xyξη + 1

2
�0

yyη
2 + O(3). (9)

It can be shown that (9) is a quadratic form and indicates
that the periodic orbits around L4 are elliptical.

4.1 Orientation

Equation (9) can be expressed in the form

� = Lξ2 + Mξη + Nη2 + U, (10)

where
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We introduce the variables ξ̄ and η̄ in (10) by the transfor-
mation

ξ = ξ cos θ − η sin θ,

(11)
η = ξ sin θ + η cos θ.

This is equivalent to a rotation of the coordinate system ξ, η

through angle θ . We choose θ such that the terms containing
ξ̄ η̄ in the equation equal to zero. The new quadratic form is
given as

� = Lξ
2 + Mη2 + U. (12)

By setting the term containing ξη equal to zero we have
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4.2 Eccentricities of the ellipses

The eccentricities are given by equations (Szebehely 1967)

ei = (1 − α2
i )

1
2 ,

where

αi = 2si

s2
i + λ

(i = 1,2). (14)

The term λ is one the roots of the characteristic equation
obtained from the relation C = 2�. For i = 1, we have
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and
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5 Discussion

It is clear from (8) that the small perturbations in the Cori-
olis and the centrifugal forces, radiation and oblateness of
the primaries affect the long and short periods. For small
μ, the frequency s1 of the long period increases with incre-
ments in the forces while s2, the frequency of the short pe-
riod deceases with increments in the same parameters. The
implication is that the period of the long period orbit de-
creases while that of short period orbit increases. However,
the two orbits coincide at the critical value of the mass ratio
μc, where the periods are equal (see Fig. 1).

In the absence of small perturbations in the Coriolis and
the centrifugal forces, when the primaries are neither radi-
ating nor oblate, our results agree with Szebehely’s results
(1967). In the absence of perturbations and radiations, we
validate the results of Sharma et al. (2001). When there are
no perturbations, the smaller primary is not radiating and the

bigger primary is not oblate, we verify the results of Ishwar
and Elipe (2001), and of Sharma (1987).

It is easily seen from (10) that the periodic orbits around
L4 are elliptical. The orientation of the orbits with respect
to the rotational coordinate system is determined. Equation
(13) indicates that the perturbing forces affect the size of the
angle of inclination of the orbits. For small μ, an increase
in the perturbing forces produces corresponding increase in
the inclination angle of the orbits, thereby changing the ori-
entation of the orbits along the ξ coordinate.

In the absence of small perturbation in the centrifugal
force, when the primaries are neither radiating nor oblate,
the orientation corresponds to the orientation of the classi-
cal problem obtained by Szebehely (1967). When there is no
perturbation in the centrifugal force and primaries are not ra-
diating, we verify the orientation of the problem of Sharma
et al. (2001). In the absence of perturbation in the centrifugal
force, when the bigger primary is radiating and the smaller
primary is oblate, we validate the orientation of Ishwar and
Elipe’s problem (2001).

Equations (15) and (16) describe the eccentricities of the
long and short periodic orbits around the point L4 respec-
tively. The eccentricity of the long period orbit decreases
with increments in small perturbation in the centrifugal
force, radiations and oblateness coefficients of the primaries,
while the eccentricity of the short period orbit increases with
increments in the same parameters. The implication of this
is that the ellipticity of the orbits is adjusted due to the ef-
fects of the perturbing forces. In fact, the two orbits coincide
at the critical mass value μc, and the eccentricities of the or-
bits are equal (see Fig. 2).

Both of them generalize the eccentricities of the classical
problem (Szebehely 1967). For small μ, when there are no
perturbations in the Coriolis and the centrifugal forces, the

Fig. 1 Frequencies of the long
and short periods, where
series1 = s1 and series2 = s2
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Fig. 2 Eccentricities of the long
and short periodic orbits, where
series1 = e1 and series2 = e2

smaller primary is not radiating and the bigger primary is
not oblate, our results correspond to the results of Ishwar
and Elipe (2001).

6 Conclusion

Periodic orbits around the triangular equilibrium points L4

for 0 < μ < μc, where μc is the critical mass value, were
studied under the combined influence of perturbations in the
Coriolis and the centrifugal forces, radiations and oblate-
ness of the primaries. It is observed that small increment
in the perturbing forces causes decrease in the period of the
long periodic orbit, while the period of the short periodic or-
bit increases. The two periods coincide at the critical mass
value μc. The effects of the small increment in the perturb-
ing forces results in the shift of the inclination angle of the
orbits thereby adjusting the orientation of the orbits. Again
the small increment in the perturbing forces led to decrease
in the eccentricity of the long periodic orbit while that of the
short periodic orbit increases thereby adjusting the shapes
of the orbits. Since the problem of space dynamics is how

to construct satellites that will move around in the neigh-
borhood of celestial bodies, it is hoped that results of this
research will be useful for space engineers in sending satel-
lites to stable regions.
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