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Abstract

 In this paper, the issue of the determination of both thickness and elastic characteristics

from the  propagation  of  multiple  Lamb  waves  on  ex-vivo human  long  cortical  bones  is

addressed.  Prior  to  the  measurements  on bone,  the method is  validated  on cortical  bone-

mimicking  phantoms.  The  experimental  set-up  was  previously  developed  for  clinical

measurement  and  the  multi-Lamb  mode  response  is  analyzed  using  the  singular  value

decomposition signal processing method recently introduced in the field. The repeatability

and the trueness of the estimated parameters on bone-mimicking phantoms were found around

a few percent. Estimation of cortical thickness on bone samples was in good agreement with

cortical thickness derived from high-resolution peripheral quantitative computed tomography

data analysis of the samples.
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I. INTRODUCTION

Our  domain  of  interest  is  bone  characterization,  i.e. determination  of  structural  and

material properties by means of ultrasound waves. More precisely, our attention is focused on

long cortical bones at peripheral skeletal sites such as tibia or radius. These sites are mainly

examined by the use of the so-called axial transmission technique. Emitter(s) and receiver(s)

are aligned along the long axis of the bone in contact with the skin ( in vivo) or directly with

the bone specimen (ex vivo) using gel as coupling agent. The signals typically transmitted on

a distance of a few centimetres are processed to provide the characteristics of the propagation.

Using this technique, ultrasound guiding by cortical walls was evidenced in several  ex vivo

measurements and Lamb waves (LW) or their counterpart on curved interfaces were identified

[1-5].

Several  techniques  of  bone  characterization  based  on  the  frequency-dependent

characteristics  of  guided waves,  expressed  as  frequency-wavelength  or  frequency-velocity

relationship were reported. Moilanen et al. have exploited a unique branch of the spectrum,

the fundamental flexural mode (generally referred as A0 or F11), known to be predominantly

sensitive to the waveguide thickness [6-8]. With this method, cortical thickness of 40 human

radius  specimens was determined using an isotropic hollow tube model  for  bone.  Elastic

properties were fixed to tabulated values and the external radius was given. F11 dispersion

curve was obtained after selection of its transient response inside the whole multi-component

time response. Others studies were based on a multi-mode approach, including higher order

modes on bovine samples. Lefevre  et al.  [2] have determined the Young's modulus of two

femurs and a tibia using an isotropic plate model for bone, while the thickness and mass

density were supposed to be known.  Ta et al. [9] have estimated cortical thickness of eight

tibiae using a tube model from measurements of the three first longitudinal branches. In this

latter study, elastic properties were fixed to tabulated values. Multiple modes were resolved
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thanks to a time-frequency transform of a unique channel. The same group has also tested a

joint  approximate  diagonalization  of  eigen-matrices  to  separate  individual  components  of

guided waves. The method was applied to estimate cortical thickness of seven tibiae [10].

All these studies report on techniques for a separate determination of bone thickness or

bone elastic properties.  However,  both thickness and elastic properties participate to bone

strength, and we envision that a combined determination of both properties for one individual

patient would improve assessment of bone fragility. This assumption takes into account that

intracortical porosity is a predominant clinical factor of long bones fragility [11]. Porosity in

turn impacts mesoscopic elastic properties of cortical bone and in addition participates to the

overall elastic anisotropy of bone as the porous network related to the Haversian system in

cortical  bone is  preferentially  orientated  along the  axis  of  long  bones  [12-14].  Thus,  the

determination of  both  thickness  and cortical  mesoscopic  anisotropic elastic  characteristics

from axial  transmission measurements can be seen as an intermediate  step before further

studies focused on porosity and thickness.

Despite the few studies already cited and some others devoted to bone characterization,

most of the efforts focus on the experimental protocol and the signal processing. Experimental

measurements on bone are challenging, due to the issue of guided waves separation and to the

experimental  conditions.  Irregularities  of  bone  surface  or  intrinsic  properties  such  as

absorption in bone decrease the signal-to-noise ratio compared to laboratory measurements on

regular waveguides such as plates and tubes of circular cross section.

In our group, we have adopted a multichannel approach with the advantage of being able

to  use  a  compact  array  adapted  to  practical  clinical  measurements.  An  array  for  clinical

measurements is of reduced length to minimize the impact of the heterogeneity of overlaying

soft tissues, in particular their thickness, on the bone ultrasonic response. To resolve multiple

modes despite a reduced receiving length, a signal processing based on multichannel response

Page 3 of 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

Foiret J. Combined estimation of thickness and velocities                                        4

analysis has been introduced, which takes benefit of the singular value decomposition (SVD)

of the bone multichannel response [15]. The signal processing was then adapted to take into

account absorbing materials  [16]. The current performances of the data acquisition system

allowed us to explore the procedure of characterization.

The present paper reports on the reconstruction of both anisotropic elastic characteristic

and thickness on five ex vivo human radius specimens. The propagation model considered in

the following is Lamb wave (LW) propagation in the meridian plane of a transverse isotropic

plate. Prior to the application on bone, the method of parameters reconstruction is applied on

test case. The test cases focus on several single layers of constant thickness and a tube of

circular section, made of a cortical-bone mimicking material. On these test cases, the trueness

of the estimation of the elastic parameters was assessed by comparison of the estimates with

independent measurements performed using resonant ultrasound spectroscopy [17]. On bone

samples, the trueness of the thickness determination was assessed by comparison with the

cortical thickness derived from high resolution peripheral quantitative computed tomography

measurements (HR-pQCT).  

The experimental set-up and the signal processing are reported in Section II. In Section III,

the model parameters and the inversion procedure are detailed. Sections IV and V are devoted

to results and discussion, respectively.

II. EXPERIMENTAL MEASUREMENTS

A. Samples

Five human radius specimens with overlaying soft tissues removed were investigated. The

samples were excised from fresh cadavers. Ethics approval was granted by the Centre du Don

des Corps, (Paris, France). The tissue donors provided written consent to provide their tissues

for investigation in accordance with legal clauses stated in the French Code of public health.
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The specimens were kept frozen before use and gently warmed to room temperature before

data acquisition. For each sample, measurements were performed on a standardized region of

interest which extends along the length of the receiver array (~2cm) (Fig.1). The center of the

probe was placed at around 5.5 cm from the distal end. Measurements were performed on the

postero-lateral position.

Controlled measurements were carried out on four single plates of different thickness (1.30

mm, 2.30 mm, 3.35 mm and 4.15 mm) and one tube of circular cross section filled with air

with a thickness around 2 mm and external radius of 1 cm. The material of all samples is a

composite  made  of  short  glass  fibers  embedded  in  an  epoxy  matrix  (Sawbones,  Pacific

Research, MA, USA). The composite material is given as transverse isotropic.

Although cortical bone material and fibers reinforced material are heterogeneous in nature,

effective  homogenized  material  properties  are  investigated  by  ultrasound  waves  with

wavelengths  of  millimetric  order.  At  this  mesoscopic  length  scale,  the  bone  material  is

considered to be transverse isotropic with a plane of isotropy in the transverse cross-section of

the long bone. Axes x1 and x3 on  Fig.1 are supposed to be aligned with the direction of the

principal symmetry of the material. The plane (Ox1x2) is the isotropy plane. The axis  x3 is

oriented along the bone axis. Alternatively, in the controlled samples, the axis  x3 is in the

fibers direction and the axis x1 is normal to it.

B. Reference Measurements

Reference measurements were performed independently to the LW measurements to assess

the trueness of the LW-based estimation of the sample properties.

First, thickness was assessed on all samples. On plates and tube, thickness was directly

measured with a caliper. On bone specimens, the cortical thickness (Ct.Th) of the region of in-

terest measured by ultrasound was assessed using high resolution peripheral quantitative to-
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mography (HR-pQCT) with a voxel size of 82 µm (XtremCT (Scanco Medical, Switzerland).

Cortical thickness Ct.Th was assessed in a 9 mm long area centered on the location of the cen-

ter of the ultrasound probe. A region of interest (ROI) on tomographic cross-sections corre-

sponding to the transverse extent of the probe was defined by the operator (thick lines on

Fig.2). The normal direction of the outer contour (periosteal zone) is locally defined using

seven neighboring  pixels.  The  local  thickness  is  evaluated  by thresholding the  profile  of

Hounsfield units along the normal. A threshold was set to a constant value, corresponding to

half of the maximum value. Cortical thickness Ct.Th was then the average of thickness over

the ROI and over 110 cross sections corresponding to the reception length.

Secondly,  independent  measurement  of  stiffness  was available  for  the bone mimicking

phantom. Bernard et al. reported the stiffness coefficients obtained from measurements on a

cubic sample extracted from the 4 mm-thick plate using resonant ultrasound spectroscopy

(RUS) [17]. The results are gathered in Table 1. The stiffness c33, respectively c11, are related

to the pure compression bulk wave in the fibers direction, and respectively in the direction

normal to it.  The corresponding longitudinal bulk velocities are denoted  VL// and  VL┴.  The

stiffness  c55 is related to the pure shear wave with in plane polarization which propagates

along the symmetry axis or normal to it associated with the transverse bulk velocity VT.. The

relations between the stiffness coefficients, the mass density and the bulk velocities in given

directions write:

c11 = ρ VL┴
2 (1)

c33 = ρ VL//
2

c55 = ρ VT
2

The mass density ρ is equal to 1.64 g.cm-3.
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The term c13 is the non-diagonal term of the stiffness matrix.  Table I shows the stiffness

coefficients measured by RUS together with the corresponding bulk wave velocities deduced

from Eq 1.

C. Experimental Set-Up

The measurement configuration is  depicted on  Fig. 1.  The linear array of emitters and

receivers is aligned along the direction of the fibers. The custom made transducer array of

piezo composite elements (Vermon, Tours, France) includes a linear arrangement of several

emitters and receivers. This probe has a silicone front face with a thickness of around 2 mm.

In the experiments reported here, the probe includes NR = 24 receivers and NE = 5 emitters.

The array pitch is 0.8 mm. The minimum emitter-receiver distance is 8 mm. The shape of the

individual elements is rectangular with a length (8 mm) which is 10 times larger than the

width. Individual elements act as small elements along the width with broad angular beam

and as extended elements along the length with straight beam.

During  the  measurement,  each  emitter  is  excited  with  wideband  pulses  with  a  central

frequency of 1 MHz (-6 dB power spectrum spanning the frequency range of 0.5 to 1.6 MHz).

Signals are recorded at a sampling frequency of 20 MHz (1024 time samples, 12 bits). Before

recording, each signal is 16 times averaged by hardware. The driving electronics has been

manufactured by Althaïs Technologies (Tours, France).

D. Signal Processing

The multi-channels time series are transformed in the (wavenumber k, frequency f) plane

according to the method introduced in [15]. Moreover, this study has taken benefit of the last

improvements of the method, which enhances the response of attenuated guided waves [16].
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In this  study, the attenuation of guided waves originates in visco-elastic absorption in the

material.

One cycle of measurements consists in the sequential excitation of each of the NE emitters

and yields  NE×NR time series signals. First,  the  NE×NR time series are Fourier transformed

with respect to time and then the singular value decomposition is applied on the frequency

series.. Finally, the  NE reception singular vectors denoted  Un are used to form the so-called

Norm function  

( ) ( ) ( )
2

1

, ,
M

test
n

n

Norm f k f k α
=

= ∑ U e (2)

with the testing vector etest being a normalized attenuated plane wave of complex wavenumber

k +iα. The Norm function value ranges from 0 to 1 by construction. On the Norm function,

physical wavenumbers present in the response of the system exhibit as maxima close to 1.

The rank  M,  i.e. the number of singular vectors kept to form the  Norm function, is chosen

based on a estimation of the signal-to-noise ratio on the singular value spectrum. The method

offers the possibility of tuning two parameters to separate signal from noise: singular values

and/or the  Norm function can be thresholded.  The rank of the data matrix is heuristically

chosen by the operator and is frequency dependent. The maxima of the  Norm function are

located in the (f, k) 2D space and give the doublets (fexp, kexp) associated with the experimental

guided modes as described in Ref.[15, 16]. 

In these experiments,  the SVD based signal processing was employed with a constant

value of attenuation α=0.03 Np/mm as it was observed to provide reasonable enhancement of

the  Norm function. The discretization step was Δf = 5 kHz and Δk = 0.01 rad.mm-1. The

threshold applied on the Norm function was here chosen to 0.6.

E. Experimental Trajectories
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On the  example  depicted  on  Fig.  3, one  can  recognize  trajectories  represented  by the

maxima of the Norm function. These groups of couples (fexp, kexp) are classified and regrouped

in  N distinct  experimental  trajectories  following  the  apparition  order  in  function  of  the

frequency. Actually, measurements on laboratory samples (plates and tube) brought evidence

that the probe did perturb the measurements. Our analysis suggested that the front face of the

probe couples  the guided waves in  the sample.  These operational  conditions  required the

operator to manually reject the most perturbed experimental data. Among the data rejected,

the lowest phase velocities (associated to the highest wavenumbers) and data close to the

branching locations were withdrawn. An illustration is  given by the comparison of Fig.  3

which  shows  the  Norm  function  and  Fig.4  a.  on  which  crosses  represent  the  selected

trajectories for the same sample (1.30 mm-thick plate).

After the grouping of raw data into experimental trajectories, each trajectory is associated

to a specific Lamb branch numbered n. Lamb branches show up as piecewise curves as some

frequency  regions  are  not  observed.  This  effect  is  related  to  insufficient  out-of-plane

displacement  and  to  a  high  attenuation  due  to  absorption  in  the  material. To  reduce  the

ambiguity  on  the  link  between  an  individual  Lamb  branch  and  a  given  experimental

trajectory, a bank of calculated Lamb spectrum was compared to the experimental data. The

choice is  made on the basis  of a reasonable agreement of the overall  pattern (number of

branches,  trend  of  frequency-dependent  wavenumber)  of  both  data.  To  feed  the  bank  of

calculated spectrum, a reference mean elastic model is used  (Table 1) [18] and the unique

effect of thickness variation is considered.  We are particularly interested in cases with large

inter-samples changes in thickness and moderate inter-samples changes in elastic properties

which is a reasonable assumption for cortical bone.
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III. PARAMETERS IDENTIFICATION

A. Parameters

Solutions of the Lamb wave dispersion equation are frequencies f obtained as function of

given values of wavenumber  k and, for propagation in the meridian plane, they appear as

determined by prescribed thickness, mass density and stiffness c11, c33, c13, c55, as reported in

[19, 20]. In the field of non destructive testing, for anisotropic single layers, the search of

absolute elastic moduli (stiffness) has been the focus of several previous investigations, and

this  requires  prescribing the mass density and the thickness  [21-25].  In  the field of bone

characterization, within the framework of clinical measurements, (excluding biopsy), the mass

density cannot be known independently. In addition the mass density is subjected to inter-

individual variability for instance under the effect of the variability of intracortical porosity

[11]. The difficulty is overcome by formulating the dispersion equation as function of phase

velocities of the bulk wave, the mass density is then embedded in velocity parameters.

Alternatively,  Lamb wave equations can be formulated with one bulk wave velocity in  a

particular direction and three stiffness ratios (see Appendix). The pure shear wave velocity VT

in the direction of the fibers (Ox3) is chosen which writes as (Eq 1). The three stiffness ratios

c13/c11, c11/c55, c33/c11 are considered and the ratio e/VT was preferentially used. In conclusion,

the set of 5 plate parameters is (VT , c13/c11, c11/c55, c33/c11 , e/VT ).

B. Identification Process

Reconstruction of elastic properties and thickness is carried out by minimizing the error

function χ defined as the square differences between experimental and calculated frequencies

fexp and fcalc:
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( ) ( )( ) 2
exp exp exp

1

N
calc

n i n i
n i

f k f kχ
=

= −∑∑ (3)

where  the  subscript  n refers  to  the  experimental  trajectories  and  i to  the  number  of

experimental points in the trajectory n. In Eq. 3, fexp and fcalc belong to the same trajectory n

supposed to be pre-determined as a Lamb branch Sk or Al.

The  optimization  is  achieved  with  a  gradient  method  using  the  inbuilt  trust  region

reflective algorithm for non-linear minimization from Matlab (The MathWorks Inc., Natick,

MA)  using  Optimization  Toolbox  6.0.  The  parameters  are  restricted  to  certain  limits  by

specifying  simple  bound constraints  to  the  constrained optimizer  function.  Initial  guesses

were allowed to take random values in pre-defined intervals:  [0.5-2.5] (µs) for  e/VT , [1.0-2.0]

(mm.µs-1) for  VT , [0.2-0.7] for  c13/c11,  [1.1-2.5] for  c33/c11 and [2.5-3.9] for  c11/c55.. Note that these

intervals  are rather  large.  The convergence to  a  unique solution was checked by running

optimization process several times successively with new initial guess values.

IV. RESULTS

First,  results  on  plates  and  tube  are  presented.  Fig.  4 shows  experimental  trajectories

obtained for the four plates and for the tube. For all five initial guess, parameters converged

individually towards  the  same value  as  illustrated  by  Fig.  5 for  the  1.30  mm plate.  The

number of iterations increased with the plate thickness.

In  Table  2,  the  estimated  thickness  is  compared  to  the  reference  thickness.  Calliper

measurements  vary typically within 0.02 mm in the area of measurements.  Note that  the

variability of the estimated thickness is also at most 0.02 mm. The relative error on thickness

was lower than 2.5 %.

The repeatability and the trueness of the estimated material properties were explored. The

bulk waves velocities normal and parallel to the fibers are depicted on Fig 6. These values are

deduced from optimized parameters using the relations:
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3311 11
/ /

55 11 55

  ;     ;   L T L T

cc c
V V V V

c c c⊥ = = (15)

The intra-sample repeatability is calculated as the half-range divided by the median value

over 30 measurements (3 repositioning and 10 measurements by position). The intra-sample

repeatability is better than 10 m/s for  VT (<1%), better than 70 m/s for  VL┴  (<2.5%), better

than 50 m/s  for  VL//  (<1.5%) and better than 0.03 for the ratio  c13/c11  (<7%),. The  2.30 mm-

thick plate presents a repeatability two times worst than the other samples. The inter-sample

repeatability is better than 20 m/s for  VT (<1.5%), better than 90 m/s for  VL┴  (<3%), better

than 110 m/s for VL// (3%) and better than 0.03 for the ratio c13/c11 (<7%),.

Estimated  velocities are compared to RUS-based velocities obtained on the 4 mm thick

plate. Estimated velocities are consistent with the RUS-based velocities: over all plates and

tube, differences are inferior to 1.3 % for VT (around 20 m/s), inferior to 3% for VL┴ (around

90 m/s) and inferior to 2% for VL// (around 70 m/s).

Examination  of  the  goodness-of-fit  on  Fig.  4,  where  experimental  observations  are

superimposed to best-fit  curves calculated with optimized parameters,  indicates an overall

good agreement for the 4 plate samples.

Measurements on the tube were intended to investigate the effect of a non flat surface of

contact on the results.  Measurements on the tube did not reveal any flexural type waves,

associated to both tangential and radial particle displacement, but only longitudinal waves

with radial displacement. As illustrated on Fig. 4 and Fig. 6, measurements on tube of circular

cross section did not degrade the determination of thickness and elastic characteristics.

For the measurements on bone specimens, an overall decrease of the signal-to-noise ratio

was observed. For four samples over five, it was needed to smooth the experimental raw data

in order to use them as input in the optimization algorithm. Experiments together with the best

fits are shown on Figure 7. In this feasibility study, the repeatability was not assessed. Table 3
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gives the values of the estimated bulk wave velocities and the estimated thickness as well as

the cortical thickness derived from HR-pQCT analysis. Thickness values obtained with the

optimization method follow the same trend as the ones measured with HR-pQCT.  Table 3

indicates an overall agreement on thickness determination within few hundred microns. Inter-

sample variability of bulk wave velocities was higher for VL┴ (14%) than for VL// (around 3%)

and for VT (around 8 %). An overall agreement is obtained with studies on human bones based

on transverse transmission of ultrasound bulk waves through small samples extracted from

specimen reported in [12, 26, 27]. For example, according to the details of the measurements

on  human  femurs  tabulated  in  [26],  bulk  wave  velocities  measured  from  Lamb  wave

propagation  human radius are consistent with the bulk wave velocities measured on human

femur. In this study, VT was within 1788-1828 m/s depending on which site (postero-medial-

anterior or lateral) it was measured, while the VL┴ was between 2715-3066 m/s and VL// was

between 3750-3842 m/s.

V. DISCUSSION AND CONCLUSION

In this study, we report on a feasibility test for the combined determination of cortical

thickness and elastic characteristics on bone sample from the frequency-dependent properties

of Lamb waves. The method was first assessed on controlled samples with simple shape. The

identification process uses as parameters one bulk wave velocity, three stiffness ratios and a

parameter related to thickness, without the need of determination of the mass density.

Our present approach has several limitations which will be addressed in the future. Five

parameters are needed and this relatively high number of unknowns is a cause of uncertainty

and  inaccuracy  of  the  identification  process.  The  departure  from the  ideal  model  which

assumes a perfect transverse isotropy, a perfect alignment of the probe on the principal axis as

well as a non absorbing material also impact the accuracy. Another likely limitation, related to
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the current technology of the front cover of the prototype probe, was noticed as a parasitic

effect which smears the experimental data. Another weakness relates to the assignment of a

Lamb branch to each experimental  trajectory,  prior to  the parameters  optimization.  Semi-

automatic selection and classification of the experimental trajectories were heuristically done,

with the help of prescribed approximate material properties. Improvements are expected from

further  studies.  In  the perspective  of  clinical  measurements,  further  studies  will  take into

account  the  bidirectional  method  which  allows  to  correct  for  the  bias  on  wavenumber

measurements related to uneven soft tissue thickness in the region of measurements [28]

Despite these error sources, trueness of thickness and material properties and repeatability

were within few percents on controlled samples. Repetitive measurements without and with

repositioning help to draw the uncertainties of the estimates met in the experiments. Trueness

was evaluated with comparison to RUS measurements, whose results were available for one

of  the  controlled  samples  investigated  in  this  study.  RUS method was also  successful  in

investigating cortical bone samples  [29] and thus, future face-to-face comparison between

guided waves characterization of bone specimens and RUS estimation constitutes one of the

next step of this study.

 This study allowed to establish that the human radius sustains the propagation of

Lamb waves  of  higher  order:  A1,  S1,  S2 and  A3 were  identified  through  the  optimization

procedure. A second main outcome of the study is the proof of  feasibility of the combined

reconstruction of material properties and thickness from Lamb waves measurements, using a

compact array and SVD based signal processing. The method was applied on ex vivo radius

and participates to the main study which is the development of methods dedicated to in vivo

bone characterization.
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Appendix : Dispersion equation

Lamb wave dispersion equation in the meridian plane relates the angular frequency ω, and

the wavenumber component  k3 and  involves 6 parameters:  the plate thickness  e, the mass

density  ρ, and the stiffness  c11, c33, c13 and  c55 of the transverse isotropic material  [19, 20].

Alternatively, the parameters set  P={VT , c13/c11, c11/c55, c33/c11 } is adopted to formulate the

equation, where VT is the velocity of the pure shear wave in the longitudinal and transverse

direction and is defined by:

55 ;T

c
V

ρ
= (A1)

The wavenumber component k3 and ,
1
QS QLk verify:

( ) ( ) 1/22
2, 2

1 3

4

2
QS QLk k

−Σ ± Σ − Π
= , (A1)

where the sign + relates to quasi shear (QS) wave. Likewise, the sign  − relates to quasi

longitudinal (QL) wave. The index 1 and 3 relates to the axis (Ox1) and (Ox3) shown in Figure

1. The terms  Σ and Π are:

12 2
33 13 1311 11 11

2 2
11 55 11 11 55 3 55

1
2 1

T

c c cc c c

c c c c c V k c

ω
−   

 Σ = − − − + ÷ ÷
     

1 2 2
3311 11

2 2 2 2
55 3 11 55 3

1 1
1

T T

cc c

c V k c c V k

ω ω
−

     
Π = − − ÷  ÷ ÷

     
, (A2)

Following  equations  (32)  and  (34)  of  reference  [29],  the  dispersion  equation  of  the

symmetric Lamb modes Sn can be written as

1 1 1 1sin( 2)cos( 2) sin( 2)cos( 2)QS QL QL QS
S QS QLF B k e k e B k e k e= − , (A3a)
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The dispersion equation for the anti-symmetric modes An is obtained by inverting the QS

and QL upperscripts inside the parentheses in (A3a)

1 1 1 1sin( 2)cos( 2) sin( 2)cos( 2)QL QS QS QL
A QS QLF B k e k e B k e k e= − , (A3b)

The terms BQS,QL, and RQS,QL are given by:

, , 13
, , 3 1 , 1 3

11

( )( )QS QL QL QS
QS QL QS QL QL QS

c
B R k k R k k

c
= + +

2
2 , 233 11
3 1

11 55
,

,13 11
3 1

11 55

( )

1

QS QL

T
QS QL

QS QL

c c
k k

V c c
R

c c
k k

c c

ω 
− − 

 =
 

+ ÷
 

(A4)
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List of Tables

Table 1: 

Stiffness coefficients and bulk wave velocities. First line: RUS measurements of the bone

mimicking material from Ref [17] ; second line: reference mean elastic model used  for

bone samples [18]

Table 2

Plates and tube. Reference thickness eRef and LW-based determination of thickness.

Table 3

Bone specimens. Reference thickness (Ct.Thref) and LW-based estimation of cortical thickness

(Ct.Th).  Optimized bulk wave velocities VT,VL┴ and VL// and optimized anisotropy ratio c13/c11 .
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Table 1   

Stiffness
(Gpa)

Mass
density

Velocity
(mm.µs-1)

c55 c13 c11 c33 ρ VT VL┴ VL//

Phantom [17] 4.3 6.9 13.9 20.9 1.64 1.62 2.91 3.57

Bone 
mean material [18]

6 11.5 21.5 29.6 1.85 1.8 3.41 4.0
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Table 2

eref 
(mm)

e 
(mm)

1.30 ± 0.01 1.28 ± 0.01
2.30 ± 0.02 2.35 ± 0.02
3.35 ± 0.02 3.28 ± 0.01
4.15 ± 0.02 4.10 ± 0.01

Tube : 1.95 ± 0.02 1.94 ± 0.02
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Table 3

ID Ct.Thref

(mm)
Ct.Th
(mm)

c13/c11 VT

(mm.µs-1)
VL┴

mm.µs-1)
VL//

(mm.µs-1)

1 1.1 ± 0.2 1.0 0.55 1.68 2.70 3.84
2 1.5 ± 0.2 1.4 0.53 1.55 2.57 4.01
3 1.5 ± 0.3 1.6 0.41 1.86 3.49 4.13
4 1.7 ± 0.3 1.7 0.49 1.82 3.25 3.96
5 2.7 ± 0.3 2.7 0.40 1.91 3.50 3.87
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List of figures

Fig.1:  Measurement  configuration  with  the  multi-emitter/multi-receiver  probe.  Axis  x3  is
orientated along the bone axis or along the fibers in the bone mimicking plate

Fig.2: Transverse bone cross-sections obtained from HrpQCT meaurements. The red (color
online) area indicates the region of interest for thickness assessment

Fig.3: Norm function (frequency f, wavenumber k) for the 1.3 mm thick plate 

Fig.4: (Color online). Plates and tube samples. Superposition of one measurement (crosses)
and the best fit computed with the optimized parameters (lines) for the (a) 1.3 mm, (b)
2.30 mm, (c) 3.35 mm, (d) 4.15 mm-thick plates and (e) 2 mm-thick tube

Fig.5:  (Color  online).  Plates  and tube  samples.  Evolution  of  the  value  of  the  parameters
during  iterative  process  of  minimization.  Five  sets  of  random  initial  values  are
considered.

Fig.6: Plates and tube samples.  Estimated bulk wave velocities in  x1 and x3 directions as
function of the estimated thickness (bars). The width and height of the bars indicate
the  variability  of  the  estimations  over  30  meausrements  (3  repositionings  x  10
repetitive  measurements).  Horizontal  dotted  curves  indicate  reference  velocities  as
given in Table 1. Vertical dotted lines indicate reference thickness as given in Table 2.

Fig.  7:  Bone  specimens.  Superposition  of  one  measurement  (crosses)  and  the  best  fit
computed with the optimized parameters for each of the five bone samples.
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