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Abstract A functional electrical stimulation controller is

presented that uses a combination of feedforward and

feedback for arm control in high-level injury. The feed-

forward controller generates the muscle activations

nominally required for desired movements, and the feed-

back controller corrects for errors caused by muscle fatigue

and external disturbances. The feedforward controller is an

artificial neural network (ANN) which approximates the

inverse dynamics of the arm. The feedback loop includes a

PID controller in series with a second ANN representing

the nonlinear properties and biomechanical interactions of

muscles and joints. The controller was designed and tested

using a two-joint musculoskeletal model of the arm that

includes four mono-articular and two bi-articular muscles.

Its performance during goal-oriented movements of vary-

ing amplitudes and durations showed a tracking error of

less than 4� in ideal conditions, and less than 10� even in

the case of considerable fatigue and external disturbances.

Keywords Feedback control � Musculoskeletal

modeling � Functional electrical stimulation � Shoulder �
Elbow

1 Introduction

Functional electrical stimulation (FES) systems restore

function after spinal cord injury by stimulating paralyzed

muscles to contract in appropriately coordinated patterns.

Various FES systems have been developed that benefit

different populations, such as standing systems for people

with paraplegia [9], and hand grasp systems for people with

mid-cervical level spinal cord injuries [15]. We are inter-

ested in expanding the FES benefits to individuals with

high-level tetraplegia, whose entire upper extremity is

essentially paralyzed. This FES system aims to restore

shoulder and arm function to this population, and allow

them to move their arm throughout a functional workspace.

Current FES systems include highly developed

hardware (e.g., implanted stimulators and numerous elec-

trodes), but very basic control algorithms to calculate the

stimulation patterns needed for the desired function,

namely, predefined patterns, fixed for every task [15]. This

limits the functional benefit of the FES system to a set

number of tasks, and does not guarantee its performance in

the presence of muscle fatigue or unexpected perturbations.

A more sophisticated controller is needed for our upper-

extremity FES system, because unlike the cyclic move-

ments of the lower extremity, upper-extremity tasks are

goal directed [8]. This means that the amplitude, speed and

direction of the motions change continuously, so the con-

troller needs to continuously calculate the stimulation

patterns for a wide range of motions commanded by the

user.

There are different control strategies used in existing

FES systems. Feedforward control is commonly used in

clinical practice [13, 15]. The output of this type of con-

troller depends only on the user command, and not on the

system performance. The advantage of this design is that it

does not need sensors to measure the system output, but the

disadvantage is that it is unable to make corrections if the

actual movement deviates from the desired movement.

Feedback control uses sensors to monitor the system
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output, so it can correct for errors in the system trajectory [8].

Feedback is necessary in order to maintain good tracking

performance in the presence of fatigue and any external

disturbances encountered. However, inherent delays in the

response of the system can cause problems to the feedback

controller [1], especially in the case of fast movements

[23]. Therefore, a combination of feedforward and feed-

back control has the best results, and is the preferred

control method in several FES system designs [1, 6, 20],

including the one presented in this paper.

The feedforward controller is typically an inverse-

dynamic model of the controlled system [19]. Since an

actual inverse-dynamic model is usually not available, data

collected from the system itself are used to train an artifi-

cial neural network (ANN) to behave like the inverse-

dynamic model. An ANN that includes time-delayed inputs

can approximate any dynamic system based solely on the

knowledge of inputs and outputs [19]. In order to train the

network to represent the inverse dynamics of the system,

inputs and outputs are recorded from the system and used

as the outputs and inputs, respectively, of the ANN. This

has been used in many FES controllers of single-joint,

single-muscle systems [2, 3, 6, 20, 26]. However, in the

case of a system with multiple muscles crossing one joint,

the inverse of the system is not unique, and the ANN will

train on the average of possible solutions, which is not

always a correct solution [14].

For this reason, we have used the actual inverse-

dynamic model of the system to train the ANN in the

feedforward component of our controller. Optimization

was used to ensure uniqueness of the solution. In [10], the

inverse-dynamic model itself was used as a feedforward

controller, but a relatively simple model had to be designed

so that it was fast enough to run in real-time. An ANN,

however, is a system of simple processing elements, con-

nected into a network by a set of weights [19], so it is

computationally light. Off-line training of the ANN

according to the inverse-dynamic model allows us to

include all the complexities of the musculoskeletal system

in a real-time controller.

For the feedback part of the controller, the feasibility of

PID controllers for use in FES applications has been

examined [1, 6, 25]. However, the performance of these

controllers has been limited. As discussed in [20], PID

controllers are linear and have been incapable of providing

good control over highly nonlinear musculoskeletal sys-

tems [4]. Moreover, the PID controllers mentioned above

were all tested in single-joint, single-muscle systems, but

the complexity of musculoskeletal systems increases sub-

stantially when they include more degrees of freedom and

more muscles, some of them bi-articular, that cause

mechanical coupling between joints [3]. A multivariable

feedback controller that uses PI control is described by Lan

[17], but its performance was only evaluated under iso-

metric conditions. These authors suggest that nonlinear

control methods may be necessary for control of move-

ments of a multi-joint system.

In order to address these issues, we have created a

neuro-PID controller for the feedback loop, which com-

bines the attractive features of PID control (robustness and

ease of implementation) with the nonlinear nature of ANN.

The goal of the ANN is to model the nonlinear relation-

ships among muscles and joints, allowing the linear PID

controller to deal solely with the dynamic response.

The feedforward–feedback FES controller presented in

this paper was designed and tested in simulation. Model-

based evaluations were used to explore various control

strategies before implementing invasive, expensive FES

systems in human subjects. The model-based approach is

intended to allow initial development of the control system

to a point where a human implementation can be justified.

The model used includes two joints, and six muscles, two

of them bi-articular. This system is sufficiently complex to

include both the nonlinear properties of the muscles

themselves and the nonlinearities and complicated inter-

actions between multiple muscles and joints. The controller

was evaluated for a large set of goal-directed movements

that cover the range of both joints. Muscle fatigue and

external disturbances were also simulated to evaluate the

performance of the controller for realistic conditions.

2 Methods

2.1 The model

The model used to design and test the controller is a two-

dimensional model of the upper extremity, in the horizontal

plane (no gravity). It includes six muscles (anterior and

posterior deltoid, long head of the biceps, brachialis, long

and lateral head of the triceps) and two degrees of freedom

(shoulder flexion–extension and elbow flexion–extension).

The range of the shoulder angle is from -20 to 110�, and

the range of the elbow angle is from 0 to 170�. Four of the

muscles are mono-articular, and two (long head of biceps

and long head of triceps) are bi-articular. A schematic of

the model is shown in Fig. 1.

The muscle and joint parameters for the model were

obtained from cadaver studies by Klein-Breteler et al. [16].

These parameters include the position of joint centers,

inertial parameters for body segments, and the optimal fiber

length, origin and insertion, tendon slack length, and

physiological cross-sectional area of every muscle. The

muscle model is a Hill-type model that includes contraction

dynamics, force-length dependence and force-velocity

dependence. It was developed by McLean et al. [18].
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The model can run both forward and inverse-dynamic

simulations. In the forward-dynamic mode, the inputs are the

activations of the six muscles, and the outputs are the angles

and angular velocities of the two joints. In the inverse-

dynamic mode, the inputs are the desired angles and angular

velocities of the two joints, and the outputs are the required

muscle activations. Both modes are used in the controller

design and testing, as described in the next section. In the

case of inverse-dynamic simulations, an optimization rou-

tine is needed to distribute the muscle forces based on the

required joint torques, since there are more muscles than

degrees of freedom. The objective function currently used

was proposed by Praagman [21] to minimize energy

consumption:

Em ¼ Ef þ Ea ¼ m c1

Fm

PCSA
þ c2

Fm

Fmax

� �2
( )

ð1Þ

where Ef and Ea are the muscle energy consumption due to

the detachment of cross bridges and re-uptake of calcium,

respectively, m is the muscle mass, Fm is the muscle force,

PCSA is the physiological cross-sectional area, Fmax is the

maximum muscle force, and c1 and c2 are two constants

chosen such that 50–50 contribution from the linear and

nonlinear terms at 50% activation is reached [21].

2.2 The controller

The controller consists of a feedforward and a feedback

part (Fig. 2). The feedforward part is an ANN trained to

behave like the inverse-dynamic model of the arm, so that

it can generate the muscle activations required for a

desired movement, based on knowledge of system

dynamics. This ANN is a two-layer network with a sig-

moidal transfer function in the hidden layer, and a linear

transfer function in the output layer. The inputs are the

shoulder and elbow angles, and four past values of the

angles, each delayed by 80 ms, used to estimate angular

velocity. The outputs are activation levels for the six

muscles.

Training of this ANN was done using data from inverse-

dynamic simulations using the model. Forty movements

with a duration of 60 s each were used for training. The

movements were trajectories covering the range of both

shoulder and elbow angles, with bell-shaped velocity pro-

files. The bell-shaped curves had random amplitudes,

within the range of the angles, and random maximum

velocities, up to 4 rad/s. This is the type of trajectory seen

in goal-directed movements performed by able-bodied

subjects [12], and it covers a wide range of amplitudes and

frequencies, which is a desired characteristic for ANN

learning [23]. In order to improve learning, Gaussian white

noise with mean zero and standard deviation equal to 5% of

the maximum angle was added to the input data, as

described in [20]. The ability of the network to approxi-

mate the inverse-dynamic model was quantified using the

root mean squared error between the original model-based

activations (i.e., the outputs of the inverse-dynamic simu-

lations) and ANN-predicted muscle activations (i.e., the

output of the ANN that approximates the inverse-dynamic

model) as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðyANN

i � ymodel
i Þ2

N

s
ð2Þ

Networks with different numbers of neurons in the

hidden layer were trained, and it was found that the

network with 15 neurons had the smallest testing RMS

error: 0.07 (no units, this is normalized muscle activation

ranging from 0 to 1). Consequently, this ANN was chosen

as the feedforward part of the controller.

The feedback part of the controller was designed as a

traditional PID controller in series with a static ANN. The

PID controller is described by:

uiðtÞ ¼ KPieiðtÞ þ KDi
deiðtÞ

dt
þ KIi

Z t

0

eiðtÞ; i ¼ 1; 2 ð3Þ

where KPi, KDi and KIi are the proportional, derivative and

integral gains for the shoulder (i = 1) and the elbow

(i = 2). The outputs of the PID controller (u1 and u2) then

serve as the inputs to the static ANN. The PID controller

gains were tuned using the Ziegler–Nichols step response

method, which correlates the controller parameters to fea-

tures of the step response [5], with additional manual fine-

tuning. The values found after tuning were: KP = 2.5,

anterior

elbow

wrist

shoulder

1

2

3

4

5

6

shoulder angle

elbow angle

y

x

Fig. 1 The two-dimensional model of the human arm used in this

study. It has two degrees of freedom (shoulder flexion–extension and

elbow flexion–extension), and six muscles numbered in the figure: 1
anterior deltoid, 2 posterior deltoid, 3 brachialis, 4 lateral triceps, 5 long

head of biceps, and 6 long head of triceps. 1 and 2 cross the shoulder

joint, 3 and 4 cross the elbow joint, and 5 and 6 cross both joints
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KI = 3 and KD = 1 for the shoulder angle, and KP = 2.5,

KI = 5 and KD = 1 for the elbow angle.

The feedback ANN has the same architecture as the

feedforward ANN (two layers, sigmoidal and linear transfer

function in the hidden and output layer, respectively).

However, this ANN is static, since it uses only the present

angle values (and no past values) as inputs. In order to obtain

training data, a 100 by 100 grid of shoulder and elbow angles

was created, and inverse-dynamic simulations were run with

these angles as constant inputs. From each simulation, we

recorded the set of muscle activations calculated by the

model in the steady state at each of the 10,000 positions. The

angles and the corresponding muscle activations were used

to train networks with different numbers of neurons in the

hidden layer, and the network with 10 neurons was chosen

because its RMS error of 0.09 was the lowest.

The controller was then tested using forty 60-s trajec-

tories, similar to the trials used for training (i.e., goal-

directed movements with bell-shaped velocity profiles of

different amplitudes and maximum velocities) but not the

same. Its performance was quantified using the RMS error

between the desired and actual trajectory (Eq. 2).

In order to investigate the benefits of each component of

the controller, the feedforward-only (FF) component,

feedback-only (FB) component, and combination of feed-

forward and feedback (FF ? FB) components were tested

separately.

To test the performance of the controller for more

realistic, non-ideal conditions, a simple model of muscle

fatigue was incorporated into the model. For this fatigue

model, the maximum force (Fj) of each muscle was line-

arly reduced according to the equation:

FjðtÞ ¼ F0jðtÞð1� 0:005� tÞ; j ¼ 1; . . .; 6 ð4Þ

where F0j is the maximum isometric force for muscle j.

Using a ‘‘fatigue rate’’ of 0.005 resulted in a 50% force

reduction over 100 s, which has also been used by [1]

and [20]. The performance of the controller in the

presence of fatigue was tested using forty 160-s goal-

oriented movements, similar to the ones described ear-

lier, and ten cyclical 160-s movements, with repeated

reaching between two randomly chosen goals. The

cyclical movements were included because they can

clearly show the effects of increasing muscle fatigue on

the model trajectory. The performance of the controller

in the presence of fatigue was quantified using the RMS

error between the desired and actual trajectory (Eq. 2)

for all 50 trials.

To test the ability of the controller to resist external

disturbances, forces of different amplitudes were applied

to the wrist of the model, in both the x (medial-lateral)

and y (anterior–posterior) directions. The forces were

applied during goal-oriented movements similar to those

described earlier, and tended to displace the arm from

the desired trajectory. They had bell-shaped amplitudes,

and lasted between 1 s (simulating, for example, a sud-

den push) and 10 s (e.g., carrying an object along the

trajectory). The maximum amplitude of the perturbations

was drawn from a normal distribution with standard

deviation 1 N and four different means: 1, 5, 10 and

15 N, to simulate smaller or larger disturbances. Ten 60-s

goal-oriented movements were used for testing: first they

were performed without perturbations, and then they

were performed again for each case of force amplitude

(about 1, 5, 10 and 15 N). The mean RMSE between the

desired and actual trajectory was calculated for the ten

trials in each case.

Finally, the trajectory errors were also expressed in

terms of endpoint (ep) position, since the hand location is

more functionally meaningful than the individual joint

angles. This was calculated as the RMS of the Euclidean

distance between the desired and actual endpoint position:

Reference
trajectory

dynamic 
inverse model

ANN

PID
steady-state

 inverse model 
ANN

2 DOF,
 6 muscle

arm  model

Output
trajectory

error

muscle
activations

feedforward

feedback

+

+

+

-

Fig. 2 The combined

feedforward and feedback

(FF ? FB) controller scheme,

shown controlling the 2 DOF

model from Fig. 1. The

‘‘reference trajectory’’ includes

the desired joint angles

(shoulder and elbow) and

desired joint angular velocities

(shoulder and elbow). The

output trajectories indicate the

same quantities as generated by

the overall system (controller

plus arm model)
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3 Results

Figure 3 shows the performance of the FF, FB, and

FF ? FB controller for a 20-s segment of one of the testing

movements. Panel (a) shows the shoulder angle, and panel (b)

shows the elbow angle. The RMS error for the three con-

trollers was 8.3, 4.6, and 3.3�, respectively, for the shoulder

angle, and 8.4, 4.0, and 2.7�, respectively, for the elbow

angle. The muscle activations corresponding to that

movement are shown in panels (c), (d) and (e) for the FF,

FB and FF ? FB controllers, respectively. Note that the

feedforward-only muscle activations were much smoother

and lower in maximum magnitude than the feedback-only

activations, with the overall feedforward–feedback activa-

tions showing a combination of smooth, moderate

amplitude activations when the desired angles changed

slowly and fast adjustments when the desired angles

changed rapidly.

The mean tracking performance of the three controllers

across all forty 60-s testing movements, calculated as the

mean RMS error (Eq. 2), is summarized in Fig. 4. The

combined feedforward–feedback controller had the best

performance, with an RMS error of less than 4� for both the

shoulder and the elbow. The feedback-only controller had

an RMS error of 5–6�, and the feedforward-only controller

had the worst tracking performance, with an RMS error of

15–20�. The three controllers were significantly different

from each other, for both the shoulder and the elbow

(paired t test, P \ 0.001).

Figure 5 shows an example of a cyclical movement that

was performed while the maximum forces of all six mus-

cles were continuously decreased according to our fatigue

model (Eq. 4). The movement is continued beyond the

160 s used to quantify the controller performance, to

illustrate the model operation in the presence of extreme

muscle fatigue: since the maximum muscle force was
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Fig. 3 An example of the

performance of the FF, FB and

FF ? FB controllers for a 20-s

segment of a goal-oriented

movement. Panel a illustrates

the shoulder angles for the

various controller configurations

and panel b illustrates the

corresponding elbow angles.

Panel c shows the activations

calculated by the FF-only

controller, panel d by the FB-

only controller, and panel e for

the FF ? FB controller

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
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decreased by 0.5% per second, by the end of the 190-s

movement the maximum force was 5% of the initial

maximum force. The maximum force, as a percentage of

the initial maximum force, is shown in panel (a). Panel (b)

presents the resulting shoulder motions and panel (c) pre-

sents the resulting elbow motions. Panels (d) and (e) are the

corresponding joint angle errors (absolute difference

between desired and output angles) for the shoulder and

elbow, respectively. Panel (f) shows the muscle activations

calculated by the FF ? FB controller. Note that the error

for both the shoulder and elbow does not exceed 5� until

after 160-s of movement, which corresponds to a maximum

muscle force of just 20% of the ‘‘pre-fatigue’’ levels. For

further decreases in maximum muscle forces, most muscle

activation levels saturate at their maximum value of 1

(panel f) and the desired arm trajectory can no longer be

accurately tracked.

Figure 6 shows the mean RMS errors across all fifty

160-s trials with fatigue as a function of time. The trials

were split into 40-s intervals, and the RMS error was cal-

culated for each one. The maximum force as a percentage

of the initial maximum force is also shown for each

interval. For both the shoulder and the elbow, the RMS

error increased as the fatigue level increased. Towards the

end of each trial, which corresponds to muscle forces that

have decreased to levels of 40–20%, the RMS error was

10–15�. However, the RMS error was less than 8� for the

first half of the trials, which corresponds to muscle force as

low as 50%.

Figure 7 shows an example of the controller perfor-

mance during an unperturbed movement (panels a, b, c),

and for the same movement in the presence of two sets of

random external disturbances at the wrist: small forces

(panels d, e, f) and large forces (panels g, h, i). The forces

are shown on the top panels: zero force for the unperturbed

movement (panel a), forces around 1 N in panel (d) and

forces around 15 N in panel (g). Panels (b), (e) and (h)

show the shoulder angles for the three cases, and (c), (f)

and (i) show the elbow angles. For the unperturbed

movement, the RMS errors were 2.7� (shoulder) and 2.5�
(elbow). In the case of small perturbations, the RMS errors

were 3.0� (shoulder) and 2.7� (elbow). Finally, in the case

of large perturbations, the RMS errors were 5.8� (shoulder)

and 3.4� (elbow).

The mean RMS error for the shoulder and elbow angles,

for ten 60-s trials performed under five different conditions

(unperturbed, external forces of about 1, 5, 10 and 15 N)

are shown in Fig. 8. The error increased with the force

amplitude, but in all cases it was below 10�.

Finally, Fig. 9 shows the mean RMS errors for the

endpoint position in four of the cases presented above,

using ten trials for each case: ideal conditions (no fatigue or

perturbations), large external forces of about 15 N, mod-

erate fatigue that has reduced the muscle forces to 60–80%

of their maximum output, and extreme fatigue that has

reduced the muscle forces to 20–40%. The mean RMS

errors for the four cases were 2.9, 4.8, 3.8 and 17.6 cm,

respectively.

4 Discussion

A feedforward–feedback controller has been developed

for a two-joint, six-muscle arm model. An inverse-

dynamic model of the arm was used to train the ANN-

based feedforward component so that it accounted for

the complex interactions between muscles and joints,

while solving the muscle redundancy problem by dis-

tributing the muscle forces according to a minimum

energy consumption criterion. The inverse-dynamic

model in the steady state was also used to train a sep-

arate static ANN that was used in conjunction with a

linear PID controller in the feedback loop to create a

neuro-PID feedback controller capable of handling the

highly nonlinear and dynamic nature of the musculo-

skeletal system. The controller showed excellent tracking

performance during goal-oriented movements, with less

than 4� joint error (3-cm endpoint error) in ideal con-

ditions and less than 10� (6 cm) even in the case of

considerable fatigue and large external disturbances.

Using the actual inverse-dynamic model for ANN

training solved the muscle redundancy problem caused by

the greater number of muscles (six) than joints (two) in the

model. In addition, the muscle activations calculated by

the controller were almost always at low levels (except for

the case of extreme fatigue), since the criterion used to

select the unique solution of the muscle force distribution

minimized energy consumption. As shown in Figs. 3 and 5,
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Fig. 4 The mean RMS errors for shoulder angles (filled bars) and

elbow angles (open bars) across all forty 60-s trials tested using the

three controllers: FF, FB, and FF ? FB. The paired t test showed

significant differences among the three controllers, for both the

shoulder and the elbow
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all muscle activations remained below 0.5 for almost all

conditions until fatigue increased above 40–50%.

In the comparison among FF, FB and FF ? FB con-

trollers, FF had the poorest performance, even for

conditions where there was no fatigue and no external

perturbations. This occurred for two reasons. First, the

inverse-dynamic model used to train the ANN was not the

exact inverse of the forward model used in the controller

evaluations because of numerical considerations. Specifi-

cally, the presence of numerical approximations and the

complexity of the model used for the individual muscles

prevent it from being perfectly inverted [11]. Also, prac-

tical solution of the redundancy problem by optimization

requires the use of discrete time steps in the inverse-

dynamic model, meaning the time-history dependence of

muscle force was not captured as it was in the forward-

dynamic model [26]. Second, even after training, the ANN

was still only an approximation of the inverse-dynamic

model. This single, rather simple ANN was nonetheless

capable of predicting the needed muscle activations with

decent accuracy for a wide range of movements. In prac-

tice, we anticipate that the feedforward control will not be

used without feedback for controlling arm movements,

since it is very difficult to measure all the parameters

needed for a perfect inverse-dynamic model of the real

human arm [24]. However, as shown in Figs. 3 and 4, even

this imperfect feedforward component substantially

improved the performance of the overall FF ? FB

controller.

The inclusion of the FF component was beneficial in one

more important way. The FB component had a tracking

performance almost as good as FF ? FB, but it produced

muscle activations that are much larger and rapidly varying

than the FF controller. For example, around the 4th second

of the movement shown in Fig. 3, the activation of the

anterior deltoid calculated by the FB-only controller
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Fig. 5 Example of controller

performance during progressive

simulated fatigue. The

maximum muscle force was

decreased by 0.5% per second,

so by the end of the 190-s

movement the maximum force

was only 5% of the initial

maximum force. This is shown

in panel a. Panel b illustrates

the desired and actual shoulder

angles and panel c illustrates the

corresponding elbow angles.

Panels d and e show the angular

errors (absolute difference

between desired and output

angles) for the shoulder and

elbow, respectively. Panel f
shows the muscle activations

calculated by the FF ? FB

controller
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rapidly approached the maximum. Addition of the FF

component smoothed the activation and its maximum did

not increase above 0.7.

The fatigue model used here was fairly simplistic, since

it did not include activation level and stimulation frequency

dependence, or a recovery with rest component [22].

However, our goal was to test the controller in the case of

reduced muscle force output, and the fatigue model we

chose created the right conditions for that. As shown in

Figs. 5 and 6, under moderate fatigue conditions the

tracking performance of the controller was as good as the

non-fatigued case. During normal functional use (i.e.,

occasional goal-directed movements), it is very unlikely

that all the muscles will fatigue below 50% without the

chance for recovery.

The perturbations added to the wrist simulated obstacles

or objects that are picked up and held during the move-

ment. They had a much smaller effect on the controller

performance than fatigue, with an average error of less than

10� for forces up to 15 N.

Figure 9 shows that the generally small joint angle

errors translate into small endpoint errors: in ideal condi-

tions the endpoint error is less than 3 cm, and even in the

presence of the largest perturbations tested, the error does

not exceed 6 cm. An error at that level is functionally

trivial, since it would certainly allow the FES user to eat, or
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reach for various objects. The endpoint error approaches

20 cm only during extreme fatigue, when there is insuffi-

cient muscle force for trajectory tracking.

The controller evaluated here was tested using a two-

joint, six-muscle system, but it could easily be extended for

use with a full arm model. If the inverse-dynamic model is

available, the ANN could be trained with more inputs and

outputs, although a larger number of neurons in the hidden

layer may be needed. One important practical benefit of

using PID in series with an ANN instead of a purely PID

feedback loop is that the number of gains that need to be

tuned is reduced to 6 in the case of our model (propor-

tional, integral and derivative for each angle) instead of 36

(the previous 6 PID gains for each of the 6 muscles). This

will become a major advantage when the number of mus-

cles increases.

For the controller to be implemented in the real FES

system, the first step will be customizing the arm model to

reflect the FES user’s arm as closely as possible, by

including information about possible voluntary muscle

forces, denervation, as well as which muscles are the tar-

gets for FES stimulation. A controller for this customized

arm model will be built, but because of the differences

between the model and the FES user’s arm, it is unlikely

that the model-based ANN parameters will result in opti-

mal performance. This controller will instead be used as a

starting point for adaptation, using data collected from the

FES-driven arm, as shown previously in [1]. While the FES

system is in use, the stimulation levels and resulting

movements will be recorded for either online or off-line

adaptation of the ANN parameters. As both the feedfor-

ward and feedback ANN are adapted to the arm dynamics

of the specific user, the controller performance will con-

tinue to improve, produce more accurate movements, and

provide more functional benefits to the user.

Acknowledgments The authors would like to thank Dr. Antonie

van den Bogert for his help with the muscle model implementation.

This study was funded by NIH/NINDS contract N01-NS-5-2365.

References

1. Abbas JJ, Chizeck HJ (1995) Neural network control of func-

tional neuromuscular stimulation systems: computer simulation

studies. IEEE Trans Biomed Eng 42(11):1117–1127. doi:10.1109/

10.469379

2. Abbas JJ, Triolo RJ (1997) Experimental evaluation of an

adaptive feedforward controller for use in functional neuromus-

cular stimulation systems. IEEE Trans Rehabil Eng 5(1):12–22.

doi:10.1109/86.559345

3. Adamczyk MM, Crago PE (2000) Simulated feedforward neural

network coordination of hand grasp and wrist angle in a neuro-

prosthesis. IEEE Trans Rehabil Eng 8(3):297–304. doi:10.1109/

86.867871
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