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ABSTRACT This research work proposes a synergistic hybrid metaheuristic algorithm a merger of

Nondominated Sorting Genetic Algorithm II and Multiobjective Particle Swarm Optimization algorithm for

solving the highly complicated combined heat and power economic emission dispatch problem to operate the

power system economically and to reduce the impact of environmental pollution. During the iteration, based

on ranking, the population is divided into two halves. The exploration is carried out byNondominated Sorting

Genetic Algorithm II using the upper half of the population. The modification of Multiobjective Particle

Swarm Optimization to effectively exploit the lower half of the population is done by increasing the personal

learning coefficient, decreasing the global learning coefficient and by using an adaptive mutation operator.

To satisfy the linear, nonlinear constraints, and to ensure the populations always lie in the Feasible Operating

Region of the cogeneration plant, an effective constraint handling mechanism is developed. The proposed

hybrid algorithm with an effective constraint handling mechanism enhances the searching capability by

effective information interchange. The algorithm is applied to standard test functions and test systems while

considering the valve point effects of the thermal plants, transmission power losses, bounds of the units

and feasible operating region of the cogeneration units. The hybrid algorithm can obtain a well spread and

diverse Pareto optimal solution and also can converge to the actual Pareto optimal front faster than some

of the existing algorithms. The statistical analysis reveals that the proposed hybrid algorithm is a viable

alternative to solve this complicated and vital problem.

INDEX TERMS Air pollution, genetic algorithms, heuristic algorithms, particle swarm optimization, power

generation economics, statistical analysis.

I. INTRODUCTION

Utmost energy is wasted in the form of heat when fossil fuel

is burned to produce electricity in thermal power stations [1].

The efficiency of the thermal power stations can be vastly

improved by integrating Cogeneration or Combined Heat and

Power (CHP) plants to the existing power system. The CHP

plants can produce power using a variety of fuels and also

have the ability to recover and reuse the heat, which would

have been generally wasted during power generation. The

overall efficiency of the energy conversion process can be

increased from 60% to as great as 80% by utilizing a CHP
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plant to produce power and heat simultaneously [2], [3].

The increased focus on sustainability has led many coun-

tries to integrate CHP units into their existing power sys-

tem. This process will result in saving precious resources

and also will lead to the economic operation of the power

system [4].

Electricity production by fossil fuels results in the emission

of Sulphur dioxide (SO2), Nitrogen oxides (NOx) and other

greenhouse gases [5]. These gases pollute the air, produce

acid rain, and are also the major contributors to global warm-

ing. Also, they cause various health-related issues in human

beings, harmful effects on biodiversity, and ecosystem. All

electric companies are forced to minimize their emissions to

reduce air pollution and their harmful effects [6].
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In the next section, the literature survey and the solu-

tion techniques available to solve the multi objective Com-

bined Economic Emission Dispatch (CEED), single objective

Combined Heat and Power Economic Dispatch (CHPED),

and multiobjective Combined Heat and Power Economic

Emission Dispatch (CHPEED) are carried out. Out of these

four formulations, the most challenging problem to solve is

the multiobjective CHPEED problem due to the conflicting

objectives, consideration of the power-heat dependency con-

straint of the CHP units and due to the presence of linear,

nonlinear equality and inequality operational constraints. The

focus of this research is to find the trade-off solutions of

a highly complex and challenging multiobjective CHPEED

problem to reduce the fuel costs and emission levels of the

power system.

A. LITERATURE REVIEW

The economic dispatch problem aims to find the optimal

schedule of the generators to minimize the fuel cost of power

generation subject to power balance constraint and other

operational constraints. The formulation of ED to econom-

ically operate the power system is available in [7]. To simul-

taneously minimize the fuel cost and the emissions from the

power plants, a biobjective CEED problem is formulated.

These objectives not only provide considerable economic

benefits and but also reduce the harmful effects of the pollu-

tant gases [5]. There are twoways to tackle this highly nonlin-

ear CEED problem with nonconvex cost functions. One way

is to convert the biobjective, multidimensional, and highly

constrained problem into a single objective problem and then

solve using a potent stochastic algorithm. Another way to

tackle the problem is to use multiobjective algorithms and to

obtain Pareto Optimal (PO) solutions or trade-off solutions

since it is not possible to obtain one unique optimal solution

satisfying the conflicting objectives.

This biobjective CEED optimization problem is converted

to a single objective problem using penalty factors and

then solved using various potent metaheuristic algorithms

and their variants such as improved artificial bee colony

algorithm (ABC) in [8], global particle swarm optimization

(GPSO) in [9], the chaotic improved harmony search algo-

rithm in [10], flower pollination algorithm in [11], biogeog-

raphy based optimization in [12], the gravitational search

algorithm in (GSA) [13], the stochastic fractal search algo-

rithm in [14], the symbiotic organism search algorithm for

multi area power system in [15], fluid mechanism inspired

algorithm in [16], and the lightning flash algorithm in [17].

Each of the metaheuristic algorithms used for optimization

has its own merits and demerits. To overcome the demerits

and to enhance the merits of the individual algorithm, hybrid

single objective algorithms are available in the literature to

solve this complicated CEED problem. These hybrid algo-

rithms combine either two different metaheuristic algorithms

or combine a metaheuristic algorithm with a local search

technique to find the trade-off solutions of the CEED prob-

lem. The artificial bee colony (ABC) algorithm is combined

with simulated annealing (SA) in [18], two different meta-

heuristic algorithms PSO and firefly algorithm is combined

in [19], hybrid firefly and bat algorithm in [20], hybrid

PSO-GSA in [21] and other nonconventional methods such

as artificial neural network in [22] have been employed in

the literature to solve the CEED problem. These algorithms

provide only one compromise solution in a single run. These

algorithms have to be run multiple times to obtain compro-

mise solutions. One way to overcome this drawback is to

use the highly efficient multiobjective algorithms to produce

trade-off solutions in a single run.

The Pareto optimal curve for the combined economic

emission dispatch problems is obtained using multiobjective

algorithms such as fuzzy dominance based bacterial forag-

ing algorithm in [23], multiobjective scatter search approach

in [24], multiobjective quasi-oppositional teaching-learning

based optimization in [25], the multiobjective backtracking

search algorithm in [26], a robust multiobjective opposi-

tion based greedy heuristic search with adaptive parame-

ters in [27], Nondominated Sorting Genetic Algorithm II

(NSGA II) andmodifiedNSGA II in [28], multiobjective par-

ticle swarm optimization (MOPSO) in [29], multiobjective

differential evolutionMODE in [30], multiobjective harmony

search in [31], and multiobjective bat algorithm in [32]. The

holistic review on solution strategies for CEED problem is

available in [33]. The integration of CHP units into the power

system is not considered in all these literature reviewed so far.

The integration of cogeneration units into ED problem con-

verts the ED problem into a CHPED problem. This CHPED

problem is a highly nonlinear and complex problem to solve

since in addition to the linear and nonlinear constraints of ED

problem, the feasible operating region (FOR) constraint of

the CHP units must also be satisfied. To obtain the solution

of the CHPED problem is challenging due to the interdepen-

dence of heat and power generation of the CHP unit, and

it requires highly efficient algorithms to obtain the optimal

solution. The metaheuristic algorithms such as gravitational

search algorithm in [34], grey wolf optimization in [35],

improved genetic algorithm (GA) in [36], [37], modified PSO

in [38], Cuckoo optimization in [39], [40], civilized swarm

optimization in [41], exchange market algorithm in [42],

the differential algorithm in [43], bee colony optimization

in [44], [45], artificial immune system algorithm in [46],

oppositional teaching learning based optimization in [47],

the harmony search algorithm in [48], [49] and its variants

in [50], the squirrel search algorithm in [51], group search

optimization in [52] and other methods such as Lagrangian

relaxation in [53], benders decomposition approach in [54]

are used in literature to obtain the optimal solution of the

CHPED problem. The hybrid methods that have been suc-

cessfully employed to solve the CHPED problem are the

hybrid bat and ABC algorithm in [55], hybrid harmony

search and PSO algorithm in [56], hybrid harmony search

algorithm and Nelder-Mead numerical method in [57]. The

survey of the metaheuristic optimization algorithms to solve

CHPED problem along with the quality of the solution and
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computational performance of each algorithm is available

in [58].

The multiobjective, multidimensional CHPEED problem

is very challenging to solve because of the consideration

of nonsmooth, nonconvex, nonlinear, nondifferential fuel

cost function. Solving conflicting objectives in a multiob-

jective problem generates trade-off solutions called as PO

solutions [59]. The PO solution obtained from CHPEED

problem has to lie in the Feasible Operating Region (FOR) of

the CHP unit. The ParetoOptimal Front (POF) of themultiob-

jective CHPEED problem by considering reserve constraints

is obtained using probabilistic mutation enhanced firefly

algorithm in [60]. The computationally efficient NSGAII to

solve multiobjective problems is proposed in [61]. The main

features of this algorithm are the fast nondominated sorting,

efficient elite preserving strategy, preserving diversity, and

spread among PO solutions. The author in [62] has success-

fully employed NSGA II to obtain the PO solutions of the

CHPEED problem, but the discussion of the constraint han-

dling mechanism applied to maintain the optimal solution in

the FOR of the CHP units is not available. The authors in [63]

propose a deterministic model for CHPEED, and this model

is solved using time-varying acceleration multiobjective par-

ticle swarm optimization to obtain the trade-off solutions

by simultaneously minimizing the conflicting economic and

emission objectives. The authors in [64] have employed a

θ -dominance-based evolutionary algorithm to find multiple

trade-off solutions and then using fuzzy c-means clustering

to identify the best compromise solution.

Since computational models have their unique features and

characteristics, it is common to conceive of incorporating

unique computational multiobjective models into a hybrid

model to solve challenging real world problems. The pro-

cesses of hybridization of two different multiobjective algo-

rithms are complex, needs skill and creativity. The authors

in [65] propose a hybrid framework to combine the evolu-

tionary multiobjective optimization algorithm. These hybrid

algorithms can improve the shortcomings of the multiobjec-

tive heuristics that solve many practical problems [65].

The exploitation phase of the hybrid multiobjective

framework in [65] is carried out by a gradient based

sequential quadratic programming method by converting the

multiobjective problem into a single objective problem using

Achievement Scalarizing Function (ASF). This method can

be applied only to continuously differential functions. The

hybrid framework has employed a local search algorithm

based on the characteristic of the problem to be solved. The

CHPEED problem solved in this paper is highly nonlinear,

nondifferential, and nonconvex. It is challenging to convert

this CHPEED problem into a single objective problem. The

conversion of the multiobjective problem into a single objec-

tive problem increases the complexity and computational

burden of the hybrid algorithm. The consideration of the

prohibited zones constraint makes the CHPEED problem

discontinuous. So the method proposed in [65] cannot be

applied to this challenging CHPEED problem.

By incorporating Pareto dominance into PSO the authors

in [66], have proposed an efficient Multi Objective Particle

Swarm Optimization (MOPSO) algorithm to solve multiob-

jective optimization problems (MOOP). The performance of

the MOPSO algorithm is tested using typical test functions.

In [67], hybrid multiobjective GA-PSO is applied to solve the

associate rule mining problem. In [68] and [69] the CEED

problem is solved using a hybrid NSGAII-MOPSO algorithm

and hybrid MOPSO-Differential Evolution (DE) algorithm,

respectively. The results obtained by these hybrid models

which are available in literature imply that the hybrid multi-

objective frameworks are potent, can interchange information

inside the model, can do parallel processing, can enhance the

searching capabilities and can also produce more favourable

performance than any single computational multiobjective

model. The detailed literature survey carried out indicates

there is no hybrid multiobjective metaheuristic still avail-

able to solve the highly complicated CHPEED problem. The

development of the hybrid multiobjective metaheuristic to

solve the CHPEED problem is the primary motivation for this

research work. In this paper, a hybrid algorithm which is the

synergistic combination of NSGA II [61] andMOPSO [70] is

employed to solve the highly challenging CHPEED problem.

The process of exploitation and exploration are different

in NSGAII and MOPSO algorithms. In addition to using

crossover and mutation operators, NSGA II also uses the

principle of elitism, fast nondominated sorting, and crowding

distance calculations to enhance the spread of the solutions

and to preserve the diversity of the PO solutions. The crowded

comparisons can restrict the convergence of the NSGA II

algorithm. The particles of the MOPSO do not utilize genetic

operators, and their information sharing mechanism is differ-

ent compared to NSGAII algorithm. The particles search the

space by updating their velocity and inertia weight. To guide

the flight of the particles, MOPSO selects a leader from the

PO solutions stored in an external memory called repository.

For complicated problems, the MOPSO tends to get trapped

in local optima, and this can be avoided by adaptively updat-

ing the parameters of MOPSO.

A hybrid multiobjective algorithm requires a compromise

between exploitation and exploration tasks to avoid trap-

ping of global solutions in local optima. The rationale of

the proposed hybrid model is to improve the overall search

mechanism of the hybrid algorithm by combining NSGA II

and MOPSO, which use different ways to explore/exploit the

search space. Exploration phase in this algorithm is carried

out by NSGA II using the best upper half population. The

NSGAII searches every part of the solution space to have a

proper assessment of the global solution. In this algorithm,

the exploitation is carried out by theMOPSO using lower half

population. By using enhanced mutation operator, increasing

the personal learning coefficient c1 and decreasing the global

learning coefficient c2 of MOPSO algorithm makes it an

efficient local search algorithm. In the hybrid algorithm, the

MOPSO carries a local search to improve the available solu-

tion by examining for better solutions in their neighbourhood.
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By using an effective method for exploring the search space,

this hybrid algorithm can improve the compromise among the

exploitation and exploration tasks to find the best promis-

ing solutions. These compromise solution must satisfy the

FOR constraint of CHP units and other linear, nonlinear con-

straints only if an effective constraint handling mechanism is

employed.

The constraint handling mechanisms often used in litera-

ture due to their simplicity are the static, dynamic, adaptive,

and stochastic penalty functions [71]. Extraction of informa-

tion is not possible in the strategy which rejects individuals

who do not satisfy the constraints, but this strategy is not

suitable for a discontinuous search space. For multiobjec-

tive optimization problems distance measures and adaptive

penalty functions are used in the [71].

The development of the constraint handling mechanism

is vital for the hybrid algorithm. During the generation of a

new population or modifying the existing population during

crossover and mutation, the constraint handling mechanism

must ensure the solutions satisfy the bounds. In addition to

satisfying the constraints and bounds, the constraint handling

mechanism developed for the hybrid algorithm to solve the

CHPEED problem must ensure the solutions also lie in the

FOR of the CHP units. An efficient constraint handlingmech-

anism is proposed in this research work to ensure the optimal

solutions always lie within the feasible operating region of

the CHP units, to satisfy constraints and bounds.

B. CONTRIBUTION OF THE PAPER

The main contributions of the paper are the following:

1) The No Free Lunch theorem [72] states there is always

a possibility of proposing new algorithms for solving

optimization problems and the fact that there is scope

for developing a new hybrid multiobjective framework

to solve the CHPEED problem made the author pro-

pose a hybrid NSGAII-MOPSO algorithm to solve the

highly complex and very challenging CHPEED prob-

lem for energy conservation and reduction of pollutant

gases.

2) The novelty of the work lies in the synergistic com-

bination of the NSGAII and MOPSO algorithm to

solve CHPEED problem, population evolution in the

algorithm, search mechanism of the algorithm, and the

archive updating mechanism. During the implemen-

tation of the hybrid algorithm, the exploration of the

algorithm is carried out by NSGA II using the best

upper half population and the exploitation is carried out

by an enhanced MOPSO using lower half population.

3) The development of an efficient constraint handling

mechanism to make sure the solutions at any stage

of the algorithm remain in the FOR of cogeneration

units and to satisfy the bounds. The proposed con-

straint handling mechanisms get rid of using ASF or

penalty factors typically used in literature to regulate

the solutions.

4) The consideration of transmission losses in power bal-

ance equality constraint makes the generation andmod-

ification of the population for a CHPEED problem

difficult. The proposed constraint handling mechanism

ensures the power balance equality is always satisfied

by considering the transmission losses in the system.

C. ORGANIZATION OF THE PAPER

The organization of the paper is as follows. The subsequent

section describes the mathematical model of the CHPEED.

The discussion of the proposed efficient constraint handling

mechanism is in section III. Elucidation of the hybrid algo-

rithm is in section IV. In section V, the discussions on the

results obtained by this algorithm are carried out. Finally,

section VI concludes the paper.

II. COMBINED HEAT AND POWER ECONOMIC EMISSION

DISPATCH

The CHPEED problem has two conflicting objectives.

Obtaining the optimal heat generation and power generation

schedule from a list of available power generating unit, CHP

units, and heat only units is the foremost objective. The

secondary objective is to minimize air pollution from these

units. The optimal schedule obtained should reduce the total

production cost and must also satisfy the heat demand, the

power demand of the system, several operational and physical

constraints.

Operating the system with minimum fuel cost results in

increased emission, and it is not feasible to only minimize

the emission from the plants since it increases fuel cost.

These two conflicting objectives must be simultaneously

minimized, taking into account the FOR of the cogeneration

units. This section describes the mathematical formulation

of the CHPEED problem. The objective of this paper is to

find the diverse set of PO solutions of the CHPEED problem,

which minimize the two conflicting objectives and also to

satisfy the constraints.

A. OBJECTIVE FUNCTIONS AND CONSTRAINTS OF

CHPEED PROBLEM

AMultiobjective Optimization Problem (MOOP) simultane-

ously minimizes them objective of the vector x in the feasible

regionD, and the general mathematical model is represented

below [59]:

Minimize f (x) = {f1 (x) , f2 (x) , · · · fm (x)} , x ∈ D (1)

where f (x) is the vector of the objective functions and

the mapping of the decision variable x into objective space

fi = ℜn → ℜ is given. The scalar decision variables are rep-

resented by fi (x) , i = 1, 2, · · · ,m. The j inequality con-

straints and the k equality constraints make the n-dimensional

decision variable x to lie in a feasible region D i.e.

D=
{

x : gj (x) ≤ 0, hk (x) = 0, j=1, 2, · · · J ;

k = 1, 2, · · · ,K
}

(2)
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The variable x can be represented as

x = [x1, x2, x3, · · · , xn]
T (3)

where T denotes the transposition vector. The decision vari-

able x is limited to take a value within the upper bound

xmaxi and the lower bound xmini . These bounds are called

the decision space [59]. In the CHPEED problem, there are

two objective functions i.e. m = 2. The formulation of the

CHPEED is given below:

Minimize f (x) = {f1 (x) , f2 (x)} , x ∈ D (4)

to satisfy heat and power balance equality constraints,

inequality constraints to represent the FOR of CHP units, and

the limits of the variable x. The function f1 (x) minimizes the

total fuel cost function, and the function f2 (x) minimizes the

emissions from the power plants, cogeneration units and heat

only units. In a CHPEED problem, the decision variable x is

given by

x=
[

P1, · · · ,PNp,O1, · · ·ONc,H1, · · ·HNc,T1, · · · TNh
]T

(5)

where Np is the number of units producing only power, Nc is

the number of cogeneration units andNh is the number of heat

only units. Pi is the power generation of the i
th unit producing

only power, Oi is the power produced by the i
th cogeneration

unit, Hi is the heat generated by the i
th cogeneration unit and

Ti is the heat generated by the ith heat only unit.

1) OBJECTIVES

a: FUEL COST

The function f1 (x) represents the total fuel cost of the system

integrated with CHP plants.

f1 (x) =

Np
∑

i=1

Cpi (Pi) +

Nc
∑

i=1

Cci (Oi,Hi) +

Nh
∑

i=1

Chi (Ti)

=

Np
∑

i=1

[

aiP
2
i + biPi + ci +

∣

∣

∣
disin

{

ei

(

Pmini − Pi

)}∣

∣

∣

]

+

Nc
∑

i=1

[

αiO
2
i + βiOi + γi + δiH

2
i + εiHi + ζiOiHi

]

+

Nh
∑

i=1

[

ηiT
2
i + θiTi + λi

]

(6)

The fuel cost of the ith power only unit with valve point

effect, ith cogeneration unit, and ith heat only unit are given by

Cpi,Cci, and Chi respectively in (6). The coefficients ai, bi, ci
represent the fuel cost coefficients of the ith generator. Open-

ing of steam valves in a thermal power plant creates a sud-

den increase in the observed losses, and this phenomenon is

called valve point loading. This loading is modeled as ripples

in the cost function using sine terms [73]. The coefficients

di and ei are the coefficients used to incorporate the valve

point effect of the generator i. This valve point effect makes

the fuel cost function highly nonlinear and discontinuous.

αi, βi, γi, δi, εi, ζi are the coefficients of the ith CHP unit.

ηi, θi, λi are the cost coefficients of the i
th heat only unit.

b: EMISSIONS

The function f2 (x) in (7) represents the total emission levels

of the system integrated with CHP.

f2 (x) =

Np
∑

i=1

Epi (Pi) +

Nc
∑

i=1

Eci (Oi,Hi) +

Nh
∑

i=1

Ehi (Ti)

=

Np
∑

i=1

[

kiP
2
i + liPi + mi + niexp

(qiPi)
]

+

Nc
∑

i=1

µiOi +

Nh
∑

i=1

ξiTi (7)

The emission levels of the ith power only unit, ith cogen-

eration unit, and ith heat only unit are given by Epi,Eci
and Ehi respectively in (7). ki, li,mi, ni, qi are the emission

coefficients of the generator i. µi is the emission coefficient

of the ith CHP unit. ξi is the emission coefficients of the ith

heat only unit.

The fuel cost function has quadratic terms, which make it

nonlinear. In addition to this term, there is also sine terms used

in fuel cost equation and exponential terms used in emission

level equation, which makes the fuel cost function highly

nonlinear. Since the fuel cost function has discontinuous

gradients, it is nonsmooth, and since it is discontinuous, it is

also nondifferential. These objectives are subject to the equal-

ity constraints of power and heat production, the inequality

constraints of the CHP units, and the bounds of the decision

variables.

2) CONSTRAINTS

a: POWER BALANCE EQUALITY CONSTRAINT

The power balance equality constraint given by (8), balances

the power produced by Np power only units and Nc CHP

units with the sum of the total power demand Pd in the

system and the total transmission power loss Pl in the system.

Pl is the transmission power loss represented by the B-loss

coefficients, as shown in (9).

h1 (x) =

Np
∑

i=1

Pi +

Nc
∑

i=1

Oi − Pd − Pl = 0 (8)

The calculation of active power loss Pl for the power network

integrated with CHP plants is by using B-loss coefficients

given by (9)

Pl =

Np
∑

i=1

Np
∑

j=1

PiBijPj +

Np
∑

i=1

Nc
∑

j=1

PiBijOj+

Nc
∑

i=1

Nc
∑

j=1

OiBijOj

+

Np
∑

i=1

B0iPi +

Nc
∑

i=1

B0iOi + B00 (9)

Bij is the transmission loss coefficients of the transmission

lines connecting the buses i and j.
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b: HEAT BALANCE EQUALITY CONSTRAINT

The heat balance equality constraint given by (10) balances

the heat produced by Nc CHP units and Nh heat only units

with the total heat demand Hd of the system.

h2 (x) =

Nc
∑

i=1

Hi +

Nh
∑

i=1

Ti − Hd = 0 (10)

c: INEQUALITY CONSTRAINT OF CHP UNITS

Themodelling of the interdependency between the power and

heat produced by the cogeneration units as inequality con-

straints is given by (11) to (14). These inequality constraints

are satisfied by the constraint handling mechanism proposed

in section III.

g1 (x) = Pi − Pmaxi (Hi) ≤ 0; iǫ1, 2, · · · ,Nc (11)

g2 (x) = Pmini (Hi) − Pi ≤ 0; iǫ1, 2, · · · ,Nc (12)

g3 (x) = Hi − Hmax
i (Pi) ≤ 0; iǫ1, 2, · · · ,Nc (13)

g4 (x) = Hmin
i (Pi) − Hi ≤ 0; iǫ1, 2, · · · ,Nc (14)

d: BOUNDS OF VARIABLES P AND H

Pmini ≤ Pi ≤ Pmaxi ; iǫ1, 2, · · · ,Np (15)

Hmin
i ≤ Hi ≤ Hmax

i ; iǫ1, 2, · · · ,Nh (16)

The power generated by each unit i should lie within limits

given by the minimum limit Pmini and maximum limit Pmaxi ,

as shown in (15). The heat output of the ith heat only unit

should lie within its limits given by the minimum limit Hmin
i

and maximum limitHmax
i , as shown in (16). The next section

describes how to fix the bounds for CHP units.

3) FEASIBLE OPERATING REGIONS (FOR) OF THE

COGENERATION UNITS

The heat production capacity of a CHP unit depends on the

power production capacity and vice versa. The Fig.1 shows

the FOR of a general CHP unit. For example, the coordinates

of the red point shown in Fig.1 is (h4, o3). The inequality

constraints are formed by finding the coordinates of each line

from Fig.1. The formulation of inequality constraints to alle-

viate the complexity arising due to this mutual dependency

of power and heat of the cogeneration units is carried out in

this section. The constraint handling mechanism described

in section III uses these inequality constraints. If the power

produced by the CHP unit i isOi, then based on the value ofOi
the heat generation of the unitHi can be calculated using (17).

Hi=hmini −rand ∗

(

hmini −hmaxi

)

; i=1, 2, · · · ,Nc (17)

In (17) rand is a random number between 0 and 1. Referring

to Fig.1 and also based on the value of Oi, the procedure to

calculate hmini and hmaxi used in (17) is shown below

• If Oi = o4 then h
min
i = 0; hmaxi = h2

• If o3 < Oi < o4
then hmini = 0; hmaxi =

h4−h2
o3−o4

(Oi − o4) + h2

• If Oi = o3 then h
min
i = h4; h

max
i = h4

FIGURE 1. Heat power feasible operation region of a CHP.

• If o2 < Oi < o3
then hmini = 0; hmaxi =

h3−h4
o1−o3

(Oi − o3) + h4

• If Oi = o2 then h
min
i = 0; hmaxi = h1

• If o1 < Oi < o2
then

hmini =
h3 − h1

o1 − o2
(Oi − o2) + h1

hmaxi =
h3 − h4

o1 − o3
(Oi − o3) + h4

• If Oi = o1 then h
min
i = h3; h

max
i = h3

B. FORMULATION

The biobjective CHPEED problem can be formulated as

Minimize f = [f1 (x) , f2 (x)] (18)

The objective of the CHPEED problem is to obtain the PO

solution vector x∗ that simultaneouslyminimizes the conflict-

ing objectives given by (6) and (7) while satisfying the real

power balance equality constraint given by (8), heat balance

constraint given by (10), inequality constraints given by (11)

to (14) and the bounds given by (15) and (16).

The essential goals of the CHPEED problem are

1. Find a diverse set of nondominated solutions which lie

on the POF.

2. Find a diverse set of PO solutions to represent the entire

range of the POF.

III. CONSTRAINT HANDLING MECHANISM

It is imperative to use an effective constraint handling mech-

anism to improve the quality of solutions in a metaheuristic

algorithm. While generating a new solution or while modify-

ing an existing solution, the constraint handling mechanism

must ensure the population lies within the bounds and FOR

of the CHP units. The consideration of transmission losses
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makes this even more challenging. However, the constraint

handling mechanism proposed in this paper deftly handles

this challenging task. Instead of using slack variables, random

numbers are generated and used in the proposed algorithm to

enhance the quality and diversity of the multiobjective algo-

rithm. The three phases of the proposed constraint handling

mechanism are:

Phase 1: The first seven steps of the constraint han-

dling mechanism make sure the power balance constraint is

satisfied.

Phase 2: The next two steps of the constraint handling

mechanismmake sure the heat generation of the cogeneration

units lie within the FOR of the unit.

Phase 3: The next two steps of the constraint handling

mechanism make sure the heat balance constraint given by

(10) is satisfied.

The algorithm of the constraint handling mechanism is

given below:

Step 1: Generate a random number k in the range of

[1,Np + Nc]. If the value of k ≤ Np, then generate Pi; i =

1, 2, · · · ,Np and Oi; i = 1, 2, · · · ,Nc using (19) and (20).

If the value of k > Np, then generate Pi; i = 1, 2, · · · ,Np

and Oi; i = 1, 2, · · · ,Nc using (21) and (22).

Pi =Pmini −rand ∗

(

Pmini −Pmaxi

)

; i ∈ αn (19)

Oi =Omini −rand ∗

(

Omini −Omaxi

)

; i = 1, 2, · · · ,Nc

(20)

Pi =Pmini −rand ∗

(

Pmini −Pmaxi

)

; i = 1, 2, · · · ,Np

(21)

Oi =Omini −rand ∗

(

Omini −Omaxi

)

; i ∈ αn (22)

Here rand is a uniformly distributed number randomly

generated in the range of [0, 1]. If the value of k ≤ Np, then

the set αn comprises integers in the range [1,Np] excluding k .

If the value of k > Np, then generate a number m = k − Np

and the set αn includes the integers in the range [1,Nc]

excluding m.

Step 2: If the value of k ≤ Np, the value of the k th variable

of the candidate solution Pk is obtained by subtracting the

total system demand Pd from the total power generation from

the power only and CHP units given by
∑

i∈αn
Pi +

∑Nc
i=1Oi.

If the value of k > Np, the value of the k th variable of

the candidate solution Ok is obtained by subtracting the total

system demand Pd from the total power generation from the

power only and CHP units given by
∑

j∈αn
Oj +

∑Np
i=1 Pi.

If the value of Pk or Ok lie outside its bounds, then they are

set equal to the respective bounds.

Step 3: Calculate the residue PRd by subtracting the total

system demand Pd from the total power generation from the

power only and CHP units
∑Np

i=1 Pi +
∑Nc

i=1Oi. If |PRd | <

tol, then go to step 5; otherwise go to step 4. Here, tol is

the tolerance for demand set as 0.001 p.u. This step ensures

the balance of power generation and demands without power

transmission loss.

Step 4: Generate a random number k which lies between

[1,Np+Nc]. If the value of k ≤ Np, then the set αn comprises

integers in the range [1,Np] excluding k , If the value of

k > Np, then generate a number m = k − Np and the set

αn comprises integers in the range [1,Nc] excludingm. Go to

step 2.

Step 5: If the value of k ≤ Np, then the value of the k th

variable of the candidate solution Pk is obtained by finding

the roots of the quadratic equation (23) else if the value of

k > Np, the value of the k th variableOk is obtained by finding

the roots of the quadratic equation (24).

BkkP
2
k +

(

2
∑

i∈αn
BkiPi + 2

∑Nc

j=1
BkjOj+B0k − 1

)

Pk

+

(

Pd+
∑

i∈αn

∑

j∈αn
PiBijPj+

∑

i∈αn

∑Nc

j=1
PiBijOj

+
∑

i∈αn
B0iPi+

∑Nc

j=1
B0jOj−

∑

i∈αn
Pi

−
∑Nc

j=1
Oj+B00

)

= 0 (23)

BkkO
2
k +

(

2
∑Np

i=1
BkiPi + 2

∑

j∈αn
BkjOj + B0k − 1

)

Ok

+

(

Pd +
∑Np

i=1

∑Nc

j=1
PiBijPj +

∑Np

i=1

∑

j∈αn
PiBijOj

+
∑

j∈αn
B0jPj +

∑Np

i=1
B0iPi −

∑

j∈αn
Oj

−
∑Np

i=1
Pi + B00

)

= 0 (24)

Solving (23) or (24) results in two roots, out of which only one

root is selected as the value of the candidate solutionPk orOk .

If roots of the equation (23) or (24) lie inside the bounds, then

the root that has the least value is chosen. If only one root lies

inside the bound, select this root as the value of the candidate

solution and also discard the other root. If both the roots lie

outside the bounds the value of Pk or Ok is set equal to P
min
k

or Omink respectively.

Step 6: Calculate the residue PRd by subtracting the total

system demand Pd and the transmission loss Pl from the

total power generation from the power only and CHP units
∑Np

i=1 Pi +
∑Nc

i=1Oi. If |PRd | < tol, then go to step 8; else

go to step 7. Here, tol is the tolerance for demand set as

0.001 p.u. This step ensures the power balance equation (8)

is satisfied.

Step 7: Generate a random number k which lies between

[1,Np+Nc]. If the value of k ≤ Np, then the set αn comprises

of integers in the range [1,Np] excluding k , if the value of

k > Np, then generate a number m = k − Np and the set αn
comprises of integers in the range [1,Nc] excluding m. Go to

step 5.

Step 8: The variable Hi, i = 1, 2, · · ·Nc is generated based

on the value of Oi, i = 1, 2, · · ·Nc using (17). The hmini and

hmaxi used in (17) is found out corresponding to the value Oi
based on the procedure discussed in section II.A.3.

Step 9: Generate a random number k which lies between

[1,Nc + Nh]. If the value of k ≤ Nc, then generate
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Hi; i = 1, 2, · · · ,Nc and Ti; i = 1, 2, · · · ,Nh using the

equations (25) and (26). If the value of k > Nc, then generate

Hi; i = 1, 2, · · · ,Nc and Ti; i = 1, 2, · · · ,Nh using the

equations (27) and (28).

Hi = hmini − rand ∗

(

hmini − hmaxi

)

; i ∈ βn (25)

Ti = Tmini − rand ∗

(

Tmini − Tmaxi

)

; i = 1, 2, · · · ,Nh

(26)

Hi = hmini − rand ∗

(

hmini − hmaxi

)

; i = 1, 2, · · · ,Nc

(27)

Ti = Tmini − rand ∗

(

Tmini − Tmaxi

)

; i ∈ βn (28)

Here rand is a uniformly distributed number generated ran-

domly in the range of [0, 1]. If the value of k ≤ Nc, then the

set βn comprises of integers that lie within [1,Nc] excluding

k . If the value of k > Nc, then generate a numberm = k−Nc

and the set βn comprises of integers in the range [1,Nh]

excluding m.

Step 10: If the value of k ≤ Nc, then obtain the value of

the k th variable of the candidate solution Hk by subtracting

the total heat demandHd from the total heat generation of the

cogeneration units and heat only units given by
∑

i∈βn
Hi +

∑Nh
i=1 Ti. If the value of k > Nc, obtain the value of the k th

variable of the candidate solution Tk by subtracting the total

heat demandHd from the total heat generation from the CHP

units and heat only units given by
∑

j∈βn
Tj +

∑Nc
i=1Hi. If the

value of Hk lie outside the bounds given by the variables h
min
k

and hmaxk determined in step 8, then they are set equal to the

respective bounds. If the value of Tk lie outside its bounds,

then they are set equal to its bounds.

Step 11: Calculate the residueHRd by subtracting the total

heat demand Hd from the total heat generation from the

cogeneration units and heat only units
∑Nc

i=1Hi +
∑Nh

i=1 Ti.

If |HRd | < tol, then go to step 12; else go to step 9. Here,

tol is the tolerance for heat demand set as 0.001 p.u. This step

ensures that the heat balance equation given by (9) is satisfied.

Step 12: Stop the constraint handling procedure.

The flowchart of the constraint handling mechanism is

illustrated in Fig.2.

IV. HYBRID NSGA II - MOPSO ALGORITHM FOR

SOLVING CHPEED PROBLEM

The computationally efficient NSGAII algorithm to solve

multiobjective optimization problems is proposed in [61].

This algorithm is widely used in literature to solve multiob-

jective optimization problems due to its features of elitism,

fast nondominated sorting, and the crowding distance oper-

ator which enhances the diversity and the spread of the PO

solutions.

The well-known and highly efficient PSO algorithm which

was widely used in literature to solve single objective opti-

mization problems was extended to solve multiobjective opti-

mization problems in [70]. This extended version of PSO

called MOPSO incorporates Pareto dominance into PSO,

uses a leader (a swarm particle that guides other particles),

stores a historical record of the dominated solution in an

external repository and also employs an optional mutation

operator.

Hybrid single objective optimization methods to solve

complex problems integrate the desirable features of the dif-

ferent algorithm to find an optimal solution in a challenging

search space. Even though many multiobjective heuristics

have been used to solve many practical problems, they have

their shortcomings, and hybrid multiobjective algorithms can

reduce the shortcomings [65]. Hybrid multiobjective opti-

mization methods are now becoming popular, and the gen-

eral framework to combine the evolutionary multiobjective

optimization algorithm is proposed in [65]. This framework

uses an achievement scalarizing function to convert the mul-

tiobjective problem to a single objective problem during the

iteration. This existing technique cannot be used to solve the

multiobjective CHPEED problem.

In this research work, the two stochastic multiobjec-

tive optimization algorithms NSGA II and MOPSO is cre-

atively combined to solve the highly nonlinear and complex

CHPEED problem. The search processes in these two algo-

rithms are different. TheNSGAII uses the principle of elitism,

sorting, and crowding distance calculations to enhance the

spread of the solutions and to preserve the diversity of

the PO Solutions. The crowded comparisons can restrict

the convergence of the NSGA II algorithm. The particles

of the MOPSO do not utilize genetic operators, and their

information-sharing mechanism is different when compared

to NSGA II. In MOPSO, a non-dominant solution called

leader is used to guide the other particles. The particles search

the space by updating their velocity and inertia weight. For

complicated problems, the MOPSO tends to get trapped in

local optima, and this can be avoided by continuously updat-

ing the parameters of MOPSO.

The rationale of the proposed hybrid model is to improve

the overall searchmechanism of the hybrid algorithm by com-

bining NSGA II and MOPSO, which use different ways to

explore/exploit the search space. The trapping of solutions in

local optima can be avoided by having a compromise between

exploitation and exploration done by the hybrid algorithm.

To avoid premature convergence and to obtain well spread

POF, the whole population is split into two half, based on the

ranking generated by the non-domination fronts, the best half

of the population are improved by NSGA II algorithm while

the other half of the population are considered as swarm par-

ticles and are optimized by MOPSO to make them converge

around the best possible solutions.

Exploration phase in this algorithm is carried out by fast

and elitist NSGA II algorithm using the best upper half popu-

lation. This exploration provides the hybrid algorithm with a

reasonable assessment of global solutions. In this algorithm,

the exploitation is carried out by the MOPSO using the lower

half of the population. The MOPSO examines for better solu-

tions in their neighborhood by improving the orientation of

the lower-ranked particles towards a global solution. MOPSO
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FIGURE 2. The flowchart of the proposed constraint handling mechanism.

algorithm is used as an efficient local search procedure by

using enhanced mutation operator [66], by increasing the per-

sonal learning coefficient c1 and by decreasing global learn-

ing coefficient c2 ofMOPSO algorithm. By using an effective

method for exploring the search space, this hybrid algorithm

can improve the compromise among the exploitation and
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exploration tasks to find the best promising solutions. The

novelty of the work lies in the overall search mechanism of

the hybrid algorithm, the evolution of the population, and the

archive updating mechanism, as shown in Fig. 3.

This proposed hybrid framework maintains a balance

between exploration done by NSGA II and exploitation car-

ried out by enhanced MOPSO algorithm. The purpose of

the mutation rate is to improve the searching capability

of MOPSO [66]. In the MOPSO algorithm, the adaptive

parameter acts on the entire population to examine the better

solutions in the search space and on the full range of decision

variables, but in the proposed hybrid algorithm the mutation

ratemu acts only on the lower half of the population. It exam-

ines better solutions in the entire lower half of the population.

NSGA II uses an external archive F1, and MOPSO uses

a repository. At the end of each iteration, the nondominated

solution in F1 and the repository are combined and then

sorted to be stored in F1. The external archive is filled by

solutions of different nondominated fronts, one at a time until

the list is full. The filling starts with the first nondominated

front of class one and then continues with the solutions of

the second nondominated front, and so on [59]. When the list

F1 is full, the algorithm deletes the remaining nondominated

fronts. When the last front is being considered the points

with the highest diversity are chosen by using the crowding

distance valves. The hybrid NSGA II-MOPSO algorithm for

solving the CHPEED problem is shown in Fig.3.

V. CASE STUDY

The effectiveness and validity of the proposed hybrid algo-

rithm are tested using two standard test functions and

two typical test systems widely used in literature. Test

function I and II are obtained from the literature [74] and

[75], respectively. In [66] these two test functions are used

to compare the performance of MOPSO with other multi-

objective algorithms such as the Micro genetic algorithm

(microGA), the NSGA II, and Pareto Archived Evolution

Strategy (PAES). Reference [66] shows the full POF obtained

for each of this test function. In section A and section B,

the two test functions are solved using the proposed hybrid

NSGAII-MOPSO algorithm and the Pareto front obtained

with the proposed hybrid algorithm is comparedwith the POF

obtained in [66]. The main idea here is to check if the hybrid

algorithm can find the actual Pareto optimal front for these

test functions and also to explain the working of the algo-

rithm. Then this hybrid algorithm is applied to CHPEED test

system I [63] and test system II [62] to find its ability to solve

the CHPEED problem. Table 1 shows the parameters for the

algorithms. Unless specified in the case study, the values of

the parameters are set, as shown in Table 1. The selection

of the values for the parameter was based on guidelines

available in [66], and in some test cases, these parameters

were empirically determined based on the complexity of the

test system adopted. The hybrid algorithm is implemented

using MATLAB 8 on an H.P Pavilion Laptop, 1.80GHZ ,

Intel i7 processor, 16GB RAM with WINDOWS 10

TABLE 1. The parameters of the NSGAII, MOPSO and NSGAII-MOPSO
algorithm.

operating system. The NSGA II algorithm, MOPSO algo-

rithm, and Hybrid NSGA II-MOPSO algorithm are applied

to each of the two typical test systems. The optimal dispatch

obtained from the proposed hybrid algorithm is then com-

pared among themselves and with the results reported in the

literature.

A. TEST FUNCTION I

This test function was proposed in [74] and used in

[66] to compare the performance of MOPSO with other

multiobjective algorithms such as the Micro genetic algo-

rithm (microGA), the NSGA II, and Pareto Archived Evo-

lution Strategy (PAES). The multiobjective function used

in [66] is a maximization function. It has two objectives

f1 (x, y) , f2 (x, y) , which are functions of x, y and three

inequality constraints. Since CHPEED is a multiobjective

minimization problem and in this section, we are testing the

proposed hybrid algorithm to solve CHPEED, the objective

function of the test function I is modified to a minimization

function by adding a minus sign as shown below:

Minimize F =
(

−f 1 (x, y) , −f2 (x, y)
)

, where

f1 (x, y) = −x2 + y, f2 (x, y) = 0.5x + y+ 1 (29)

subject to

0 ≥
1

6
x + y−

13

2
, 0 ≥

1

2
x + y−

15

2
,

0 ≥ 5x + y− 30 and x, y ≥ 0 (30)

The limits for the variables are 0 ≤ x ≤ 1020; −1020 ≤

y ≤ 7. The total number of function evaluation is set to 120.

Fig. 4 shows the POF and the extreme points produced by the

hybrid algorithm. By looking at POF, it is easy to notice that

this hybrid algorithm can produce the actual POF for this test

function and this can also be verified with results available in

[66] after adding a negative sign to the PO solutions.

Fig.5 shows the number of population affected due to the

choice of the mutation rate used in the MOPSO stage of the

hybrid algorithm. From the figure, we can see that the entire

lower half of the population is affected at the start of the
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FIGURE 3. Hybrid NSGA II-MOPSO algorithm for solving CHPEED problem.
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FIGURE 4. Pareto front produced by the proposed hybrid algorithm for
test function I.

FIGURE 5. Behaviour of the mutation operator for various values of mu.

iteration and narrows down over time using a nonlinear char-

acteristic. When mu = 0.05 the mutation operation does not

affect the population after 30 iterations but when mu = 0.4 it

affects up to 110 iterations. This adaptive mutation operator

FIGURE 6. The non-dominated solution stored in external repository and
in list F1at the end of each iteration of the hybrid NSGA II-MOPSO
algorithm for test system I. The size of list F1is 100 and repository size
is 50.

is utilized in the hybrid algorithm to enhance the searching

capability of the MOPSO in the hybrid algorithm.

Fig. 6 shows the number of nondominated particles in

the list F1 of the hybrid algorithm and also it shows the

nondominated particles stored in the external repository of the

MOPSO stage of the hybrid algorithm. In this test function,

the search space is too vast, and for the list to be full, it nearly

takes 90 iterations.

The size of the external repository was set to 50 and as seen

from the graph shown in Fig. 6 the external repository used

by MOPSO was never full, and the maximum non dominated

particles found from the lower half of the population was

only 13 at iteration number 52 and 118. At iteration number

52, the one nondominated solution found by NSGA II from

the upper half of the population dominates the 13 nondomi-

nated solutions found by MOPSO from the lower half of the

population, and so the list F1 has only one non-dominated

solution. The maximum number of non-dominated particle

stored in list F1 fluctuates until it reaches 100. Once it exceeds

100, these nondominated particles are ranked, and only 100

non-dominated solutions are retained. The Fig. 7 is same as

Fig. 6 the only difference is the size of the external repository

was set to 5 instead of 50. As seen from the graph, the

repository was full from the beginning to the end of the

iteration, but the particles stored were truncated when they

exceed 5.

B. TEST FUNCTION II

This function was proposed in [75] and used in [66] to com-

pare the performance of MOPSO with other multiobjective

algorithms. This test function has two objectives f1 and f2
which are functions of the variables x1, x2. The mathematical

model of the test function II is given below:

Minimize f1 (x1) = x1 (31)

Minimize f2 (x1, x2) = g (x2) .h (x1, x2) (32)
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FIGURE 7. The non-dominated solution stored in external repository and
in list F1 at end of each iteration of the hybrid NSGA II-MOPSO algorithm
for test system I. The size of list F1is 100 and repository size is 5.

FIGURE 8. Pareto Front produced by the hybrid NSGAII-MOPSO algorithm
for test function II.

where

g (x2) = 11 + x22 − 10.cos (2πx2) (33)

h (x1, x2) =











1 −

√

f1 (x1)

g (x2)
, if f1 (x1) ≤ g (x2)

0, otherwise

(34)

The range of the decision variables are 0 ≤ x1 ≤ 1, −30 ≤

x2 ≤ 30. Fig. 8 shows the Pareto optimal front and the

extreme points produced by the hybrid algorithm. By looking

at the Pareto optimal front, it is easy to notice that this

hybrid algorithm can produce the actual Pareto optimal front

FIGURE 9. The non-dominated solution stored in external repository and
in list F1of the hybrid NSGA II -MOPSO algorithm for test system II. The
size of list F1is 100 and repository size is 50.

FIGURE 10. Initial solution plotted in FOR of the CHP units.

for this test function, as shown in [66]. Fig. 9 shows the

number of nondominated particles in the list F1 of the hybrid

algorithm and also it shows the nondominated particles stored

in the external repository of the MOPSO stage of the hybrid

algorithm. In this test function, the search space is not vast,

and the list is full by the 15th iteration.

C. TEST SYSTEM 1

The test system I has 4 power only units, 2 CHP Units,

and 1 heat only unit. The system data for the test system I

is given in appendix A. The data contains the quadratic fuel

cost equations with valve point effect and emission equations.

The B matrix transmission loss coefficients is available in

[63]. Fig 16. and Fig. 17 in the appendix depicts the FOR of

the two CHP units. The heat demand and power demand of

this test system are 150MWth and 600MW respectively. The

initial solution generated using the steps given in section 3

for the two CHP units are shown in Fig. 10. It is evident

from Fig. 10 that the initial solution covers the entire FOR

of the CHP units. Fig. 11 shows the POF obtained using the

NSGA II algorithm. Table 2 shows the extreme points of the

POF obtained for the best fuel cost in 50 trials and the time

of execution of the NSGA II algorithm.

Fig. 12 shows the POF found using theMOPSO algorithm.

Table 2 provides the extreme points of the POF obtained

for the best fuel cost in 50 trials and the execution time

of the MOPSO algorithm. Table 1 provides the parameters of

the hybrid algorithm. Table 2 provides the extreme points of
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FIGURE 11. Pareto optimal curve obtained using NSGA II.

FIGURE 12. Pareto optimal curve obtained using MOPSO.

the POF obtained for best fuel cost and execution time of the

proposed hybrid algorithm.

Only 49 solutions filled the repository of the MOPSO

algorithm and Fig. 13 shows the POF found using hybrid

NSGAII-MOPSO algorithm. Table 2 shows the extreme

points of the POF and the execution time of the

NSGAII-MOPSO algorithm. Table 2 also provides the best

fuel cost and emission obtained using each algorithm.

Table 2 provides the extreme points of the POF, the mini-

mum fuel cost andminimum emission found by the NSGA II,

MOPSO, and the proposed hybrid algorithm. The proposed

hybrid algorithm with the efficient constraint handling mech-

anism produces better results when compared to results

directly quoted from [63]. The improvement level in the

percentage of the extreme points of the PO is obtained

using (35) [76]. The performance improvement in the hybrid

method in saving the fuel costs compared to NSGAII,

FIGURE 13. Pareto optimal curve obtained using Hybrid NSGA II-MOPSO
for test system I.

MOPSO, and TVAC-PSO is 0.168%, 0.237%, and 0.746%

respectively. The performance improvement in the hybrid

method in the reduction of emission levels compared to

NSGAII, MOPSO, and TVAC-PSO is 0.149%, 0.062%, and

2.38% respectively. The proposed method has obtained less

fuel cost compared to NSGAII, MOPSO, and TVAC-PSO by

17$/h, 24$/h, and 76$/h respectively. The proposed method

has obtained fewer emission levels compared to NSGAII,

MOPSO, and TVAC-PSO by 0.072 t/h, 0.03 t/h, and 1.176 t/h

respectively.

Improvement Percentage

=
result of compared method− result of hybrid method

result of compared method
×100

(35)

The NSGA II algorithm is the fastest in terms of convergence,

but it is not able to produce a well spread and diverse optimal

solution, as shown in Fig. 11 when compared to the POF pro-

duced by the hybrid algorithm shown in Fig. 13. TheMOPSO

algorithm is the slowest but can produce better extreme points

than NSGA II but the POF produced by MOPSO shown

in Fig. 12 is not well spread when compared to NSGA II or

hybrid algorithm. The NSGA II algorithm is faster than the

hybrid algorithm, but the hybrid algorithm can produce well

spread and diverse PO solution, produce the minimum fuel

cost and minimum emission when compared to NSGA II and

other algorithms. The reason for the better performance of the

hybrid algorithm is mainly because of the local search carried

out by the MOPSO in the hybrid algorithm and the effective

constraint handling mechanism.

1) STATISTICAL ANALYSIS

The criteria’s that are used to evaluate the performance of

multiobjective optimization in general and the usage of these

criteria’s concerning CHPEED problems are found in liter-

ature [35], [69], [77]–[82]. Due to the stochastic nature of
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TABLE 2. Comparison of optimal solution of the extreme points of the POF and convergence time using NSGA II, MOPSO, TVAC-PSO [63] and hybrid NSGA
II-MOPSO for test system I.

FIGURE 14. Box-Whisker plot for the results obtained by each algorithm
in 50 trials for test system I.

the evolutionary algorithm, it is very important to provide the

statistical significance of the results and in this section the

quality of the obtained solutions is analyzed using various

criteria’s.

a: BOX-WHISKER PLOT

By the repetition of each algorithm for 50 trials and during

each trial, the best fuel cost and emission objectives are

observed to plot the box-whisker plot. The Fig.14 portrays

the comparison of the median, extreme values, the spread of

the best solutions, and the unusual observations of the data

set, the distribution outlines for each algorithm by box and

whisker plot. Table 3 provides the quantitate analysis of the

results. From Fig. 14, it’s evident that the hybrid approach

can produce solutions which always remain closer to the

best-obtained value in each trial; the median is smallest for

the proposed hybrid method. Table 3 indicates the proposed

hybrid algorithm obtains the minimum fuel cost (shown in

bold) and minimum emissions (shown in bold).

b: HYPER-VOLUME (HV)

Hyper-volume for two objectives is a very well-known indi-

cator whichmeasures the area dominated by the PO solutions.

TABLE 3. Quantitative analysis of the results obtained by each algorithm
in 50 trials.

The coordinates of the reference point chosen to measure

the HV is (10600, 52). Table 4 provides the normalized HV

measure for the POF obtained for each algorithm using the

program developed in [82]. Table 4 shows that the highest HV

is obtained by the proposed method, which indicates the POF

produced by the proposed method is better than the NSGA II

or the MOPSO algorithms.

c: SPACING

The spacing indicator measures the spread of the solutions

throughout the nondominated front. A value of zero indicates

that the solutions are equally spaced. Table 5 indicates that

the proposed hybrid NSGA II-MOPSO algorithm can obtain

the least value of the spacing measure compared to the other

algorithms. The minimal value of the spacing measure indi-

cates the equal spacing of the solutions in the POF for the

proposed algorithm.
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TABLE 4. Results of Hyper Volume Metric for NSGAII,MOPSO, and
proposed hybrid NSGAII-MOPSO algorithms.

TABLE 5. Results of spacing Metric for NSGAII,MOPSO, and proposed
hybrid NSGAII-MOPSO algorithms.

TABLE 6. MHD for the extreme solutions obtained from each algorithm.

d: MODIFIED HAUSDORFF DISTANCE (MHD)

Hausdorff Distance (HD) is a mutual proximity measure

which measures the maximum distance of a set to the near-

est point in the other set. Among nearly 20 distance mea-

sures based on Hausdorff distance, the MHD is the best and

robust for measuring distances of two objects based on their

edge points (in CHPEED problem the distance between the

extreme solution obtained from two algorithms) is proved in

[80]. Table 6 shows the comparison of the MHD for the best

economic and best emission solution obtained by the differ-

ent algorithm. The significant distance between the extreme

solutions obtained by the proposed method with the other

algorithms is inferred from Table 6.

e: SOLUTION QUALITY

In every trial, the proposed hybrid algorithm can produce

Pareto solutions very close to the best-attained solution, and

the Box-Whisker plot indicates this. The Box-Whisker plot

also indicates that the hybrid algorithm can produce better

extreme solutions than other algorithms. The normalized

hyper volume indicator proves the Pareto front obtained from

the hybrid algorithm is the best when compared to other

algorithms. The spacing metric provides the distribution of

the solution in the Pareto optimal front. The least value for the

hybrid algorithm, when compared to other algorithms, indi-

cates the smooth and uniform distribution of the solutions in

the Pareto optimal front. TheMHDmeasure also indicates the

FIGURE 15. Pareto optimal curve obtained using hybrid NSGA II-MOPSO
for test system II.

significant distance between the extreme solutions obtained

by the hybrid algorithm compared to other algorithms. The

statistical analysis carried out in this section proves the effec-

tiveness of the proposed hybrid algorithm with efficient con-

straint handling mechanism is a viable alternative to solve

the highly complex CHPEED problem. Further it also able to

produce Pareto-optimal front which is well-distributed over

the trade-off curve and outperforms the existing algorithms.

D. TEST SYSTEM 2

The previous section establishes the effectiveness of the

hybrid algorithm to solve CHPEED problem. In this section,

the hybrid NSGA II-MOPSO algorithm is applied to solve

a test system which consists of 1 power only unit, 3 CHP

units, and 1 heat only unit. Appendix B provides the fuel

cost equations and emission equations. In this test system,

the transmission losses are not considered. The power and

heat demand of this test system is 300MW and 150MWth

respectively. Fig. 17, Fig. 18, and Fig. 19 in the appendix

shows the FOR of the three CHP units. Fig. 15 shows the

Pareto front obtained using the hybrid algorithm. Fig.15 also

shows that the hybrid algorithm can produce well spread and

diverse solutions.

Table 7 shows the best comprise solution obtained using

the proposed algorithm and the execution time of the hybrid

algorithm. The results obtained in [62] are also available

in Table 7 for comparison. The proposed method can reduce

fuel cost of the compromise solution by 99$/h compared to

NSGA II and by 55$/h compared to SPEA2. The improve-

ment percentage of the proposed method in reducing the

fuel cost compared to NSGA II and SPEA2 is 0.6596%
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TABLE 7. Comparison of best comprise solution and time taken for
convergence using hybrid NSGA II-MOPSO for test system II with NSGA II
and SPEA 2 in [62].

TABLE 8. Comparison of optimal solution of the extreme points of the
Pareto front using hybrid NSGA II-MOPSO for test system II and RCGA
in [62].

and 0.3675% respectively. The proposed method can reduce

emission levels of the compromise solution by 0.1769 t/h and

0.4873 t/h, respectively. The improvement percentage of the

proposed method in reducing the emission levels compared

to NSGA II and SPEA2 is 2.92% and 7.653%, respectively.

From the analysis of the results in Table 7, it is clear that the

proposed hybridmethod outperforms the existingmethod and

also has the least convergence time.

Table 8 shows the best fuel cost and best emission obtained

from the proposed method and the comparison of the results

obtained in [62]. From the results shown in bold in Table 8, it

is evident that the proposed hybrid method can produce better

solutions than the existing method. The proposed method can

reduce the fuel cost of the extreme solution and emission

levels compared to RCGA by 103 $/h and 0.2577 t/h, respec-

tively. The improvement percentage of the proposed method

in reducing the fuel cost and emission levels compared to

RCGA is 0.75% and 17.82%, respectively. The proposed

hybrid method shows a significant reduction in fuel cost

and emission levels compared to existing RCGA method.

There are strong indications such as better compromise

solutions, better extreme solutions, and faster searchability,

which lead to a conclusion of the superiority of the hybrid

NSGAII-MOPSO over existing methods. Even though most

of the improvement percentage is less than 3%; however, fuel

cost saving and emission level reduction for 24h a day, 8760h

in a year is highly considerable.

VI. CONCLUSION AND FUTURE WORK

The hybrid NSGA II-MOPSO algorithm with effective con-

straint handling mechanism is developed and tested with

standard test functions and widely used test systems to assess

the overall efficiency of the hybrid algorithm. PO solutions

obtained by the hybrid algorithm are compared with the

results available in the literature. For the test system I, the per-

formance improvement in the hybrid method in saving the

fuel costs and reducing the emission levels compared to

existing methods is as high as 0.746% and 2.38%, respec-

tively. For the test system II, the performance improvement

in the compromise solution is in saving the fuel costs and

reducing the emission levels compared to existing meth-

ods is as high as 99$/h and 0.4873 t/h, respectively. The

result improvements compared to existing methods are sig-

nificant and it is observed that the proposed hybrid algo-

rithm can converge to produce well diverse and widespread

solutions along with better extreme solutions due to its

effective searching capability. The statistical analysis indi-

cates the quality of the solutions obtained by the proposed

method is better than the existing methods. As a result,

the hybrid NSGAII-MOPSO can be a viable alternative for

solving the CHPEED problem and can considerably save

fuel cost and reduce emission levels. As future work, the

complexity analysis using big O notation will be carried out

and also effective tuning of parameters, sensitivity analysis

of the parameters, and its impact on the solution will be

analysed.

APPENDIXES

APPENDIX A

Cost and Emission function of each unit of test system 1

Power-Only Units

Cp1 (P1) = 0.008P21 + 2P1 + 25

+

∣

∣

∣
100sin

{

0.042
(

Pmin1 − P1

)}∣

∣

∣
$;

10 ≤ P1 ≤ 75MW (A.1)

Ep1 (P1) = 10−4 ×

(

6.490P21 − 2.777P1 + 4.091
)

+ 2 × 10−4 × exp (0.02857P1)Kg (A.2)

Cp2 (P2) = 0.003P22 + 1.8P2 + 60

+

∣

∣

∣
140sin

{

0.04
(

Pmin2 − P2

)}∣

∣

∣
$

20 ≤ P2 ≤ 125MW (A.3)

Ep2 (P2) = 10−4 ×

(

5.638P22 − 3.0235P2 + 2.534
)

+ 5 × 10−4 × exp (0.03333P2)Kg (A.4)

Cp3 (P3) = 0.0012P23 + 2.1P2 + 100

+

∣

∣

∣
160sin

{

0.038
(

Pmin3 − P3

)}
∣

∣

∣
$;

0 ≤ P2 ≤ 175MW (A.5)
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FIGURE 16. Heat-Power feasible operating region for the CHP unit 1 of
test system I.

FIGURE 17. Heat-power feasible operating region for the CHP unit 2 of
test system I.

Ep3 (P3) = 10−4 ×

(

4.586P23 − 2.547P3 + 4.258
)

+ 1 × 10−6 × exp (0.08P3)Kg (A.6)

Cp4 (P4) = 0.001P24 + 2P4 + 120

+

∣

∣

∣
180sin

{

0.037
(

Pmin4 − P4

)}∣

∣

∣
$;

40 ≤ P2 ≤ 250MW (A.7)

Ep4 (P4) = 10−4 ×

(

3.38P24 − 1.775P3 + 5.326
)

+ 2 × 10−3 × exp (0.02P4)Kg (A.8)

CHP Unit

Cc1 (O1,H1) = 0.0345O2
1 + 14.5O1 + 2650 + 0.03H2

1

+ 4.2H1 + 0.031O1H1$ (A.9)

Ec1 (O1,H1) = 16.5 × 10−6O1Kg (A.10)

Cc2 (O2,H2) = 0.0435O2
2 + 36O2 + 1250 + 0.027H2

2

+ 0.6H2 + 0.011O2H2$ (A.11)

Ec2 (O2,H2) = 16.5 × 10−6O2Kg (A.12)

Feasible Operation Region of the CHP Units

The FOR of the CHP units 1 and 2 are illustrated

in Fig.16 and Fig.17 respectively. The inequality constraint

associated with the FOR of unit 1 is given by (A.13) and for

unit 2 is provided by (A.14) and (A.15).

32

180
H1 + O1 − 247 ≤ 0;

134

75.2
H1 − O1 −

7952

75.2
≤ 0; −

17.8

104.8
H1 − O1+98.8≤

(A.13)

O2 = 125.8 ⇒ 0 ≤ H2 ≤ 32.4;

O2 = 44 ⇒ 0 ≤ H2 ≤ 15.9 (A.14)
15.6

103.2
H2 + O2−

13488

103.2
≤0;

70.2

60.6
H2 − O2−

2841

60.6
≤0;

−
4

59.1
H2 − O2 +

2664

59.1
≤ 0 (A.15)

Heat Only Units

Ch1 (T1) = 0.038T 2
1 + 2.0109T1 + 950$;

0 ≤ T1 ≤ 2695.2MWth (A.16)

Eh1 (T1) = 1.8 × 10−5T1Kg (A.17)

APPENDIX B

Cost and Emission function of each unit of test system 2

Power-Only Units

Cp1 (P1) = 0.000115P31 + 0.00172P21 + 7.699P1

+ 254.8863$; 35 ≤ P1 ≤ 135MW (B.1)

Ep1 (P1) = 10−4 ×

(

6.490P21 − 5.554P1 + 4.091
)

+ 2 × 10−4 × exp (0.02857P1)Kg (B.2)

CHP Units

Cc1 (O1,H1) = 0.0435O2
1 + 36O1 + 1250

+ 0.027H2
1 + 0.6H1 + 0.011O1H1$

(B.3)

Ec1 (O1,H1) = 0.00165O1Kg (B.4)

Cc2 (O2,H2) = 0.1035O2
2 + 34.5O2 + 2650

+ 0.025H2
2 + 2.203H2 + 0.051O2H2$

(B.5)

Ec2 (O2,H2) = 0.0022O2Kg (B.6)

Cc3 (O3,H3) = 0.072O2
3 + 20O3 + 1565

+ 0.02H2
3 + 2.3H3 + 0.04O3H3$ (B.7)

Ec3 (O3,H3) = 0.0011O3Kg (B.8)

Feasible Operation Region of the CHP Units

Fig 17 shows the FOR of the CHP unit 1. The inequality

constraint for this unit is the same as (A.14) and (A.15)

after H2 and O2 in the equation is replaced by H1 and O1

respectively. The FOR of the CHP unit 2 of the test system2 is

provided in Fig.18 and the inequality constraints for this unit

is provided by (B.9).

15

55
H2 + O2 − 60 ≤ 0;

35

15
H2 − O2 −

1250

15
≤ 0;

−
10

40
H2 − O2 + 20 ≤ 0 (B.9)
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FIGURE 18. Heat-power feasible operating region for the CHP unit 2 of
test system 2.

FIGURE 19. Heat-power feasible operating region for the CHP unit 3 of
test system 2.

The FOR of the CHP unit 3 of the test system 2 is shown

in Fig.19 and the inequality constraints for this unit is given

by (B.10) and (B.11).

O3 = 90 ⇒ 25 ≤ H3 ≤ 45;

O3 = 35 ⇒ 0 ≤ H3 ≤ 20(B.10)
15

25
H3 + O3 − 105 ≤ 0;

55

25
H3 − O3 − 9 ≤ 0

(B.10)

Heat Only Units

Ch1 (T1) = 0.038T 2
1 + 2.0109T1 + 950$;

0 ≤ T1 ≤ 60MWth (B.11)

Eh1 (T1) = 0.0017T1Kg (B.12)
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