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Abstract The merging of knowledge from genomics, cellular

signal transduction and molecular evolution is producing new

paradigms of cancer analysis. Protein kinases have long been

understood to initiate and promote malignant cell growth and

targeting kinases to fight cancer has been a major strategy with-

in the pharmaceutical industry for over two decades. Despite

the initial success of kinase inhibitors (KIs), the ability of can-

cer to evolve resistance and reprogram oncogenic signaling

networks has reduced the efficacy of kinase targeting. The mo-

lecular chaperone HSP90 physically supports global kinase

function while also acting as an evolutionary capacitor. The

Cancer Genome Atlas (TCGA) has compiled a trove of data

indicating that a large percentage of tumors overexpress or

possess mutant kinases that depend on the HSP90 molecular

chaperone complex. Moreover, the overexpression or mutation

of parallel activators of kinase activity (PAKA) increases the

number of components that promote malignancy and indirectly

associate with HSP90. Therefore, targeting HSP90 is predicted

to complement kinase inhibitors by inhibiting oncogenic

reprogramming and cancer evolution. Based on this hypothe-

sis, consideration should be given by both the research and

clinical communities towards combining kinase inhibitors and

HSP90 inhibitors (H90Ins) in combating cancer. The purpose

of this perspective is to reflect on the current understanding of

HSP90 and kinase biology as well as promote the exploration

of potential synergistic molecular therapy combinations

through the utilization of The Cancer Genome Atlas.
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Background

Cancer is a disease of deregulated cell growth. The presence of

continuous pro-growth signals and overriding of cell cycle

checkpoints allows for the initiation of neoplastic transforma-

tion and eventual cancer. Kinases, along with the

phosphoinositide 3-kinase and RAS signaling pathways often

perpetuate pro-growth signals that can lead to malignancy

(Blume-Jensen and Hunter 2001); (Yuan and Cantley 2008);

(Chang et al. 1982). The human genome encodes over 500

protein kinases, 90 of which are tyrosine kinases, and of these,

58 are receptor tyrosine kinases (Manning et al. 2002). Togeth-

er, these kinases form cascading networks that signal for normal

cell growth and differentiation. However, when overexpressed,

mutated, or otherwise deregulated, kinases can drive a mass of

cells toward malignancy (Levinson et al. 1978; Di Fiore et al.

1987); (Hudziak et al. 1987); (Davies et al. 2002); (Wong et al.

1987) (Fig. 1). Profiling these malignancy-driving alterations in

distinct cancers is now possible with the establishment of The

Cancer Genome Atlas (TCGA). Equally interesting is the un-

derstanding that the majority of kinases in a cancer cell associ-

ate with and depend on the HSP90 molecular chaperone com-

plex along with CDC37 and HSP70 to bind, hold, and fold

newly synthesized kinases into their proper three-dimensional

arrangement—maturing them into functional signaling compo-

nents (Pratt and Toft 2003); (Prince and Matts 2004); (Shao

et al. 2001). Moreover, when kinases become structurally
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destabilized as a result of over-activation, mutation and/or

proteotoxic stress, HSP90 and CDC37 reassociate, refold them,

and restore their kinase function (Fig. 2) (Gray et al. 2008); (Xu

et al. 2005); (Citri et al. 2006); (Miyajima et al. 2013).

Inhibiting HSP90 destabilizes the kinase, resulting in its subse-

quent degradation and in a reduction in overall pro-growth

signaling (Xu et al. 2002); (Trepel et al. 2010); (Citri et al.

2002); (Lerdrup et al. 2006). Based on the premise that struc-

ture dictates function, this relationship suggests that kinase ac-

tivity is at least partially dependent on HSP90. Due to this

relationship and the fact that a number of clinically relevant

HSP90 inhibitors (H90Ins) currently exist (Alarcon et al.

2012), the concept of targeting HSP90 as a way to broadly

inhibit kinase activity in cancer deserves continued consider-

ation (Whitesell and Lindquist 2005); (Trepel et al. 2010); (Lu

et al. 2012a); (Barrott and Haystead 2013).

While the success of the small molecule kinase inhibitor

(KI) imatinib, which targets the BCR-ABL fusion protein in

treating chronic myelogenous leukemia (CML), and that of

the ALK inhibitor crizotinib in treating certain forms of non-

small-cell lung cancer (NSCLC) is certainly promising

(Druker et al. 1996); (Ou et al. 2011); the clinical benefit tends

to be short lived, as most cancers evolve resistance to such

targeted KIs (Carroll 2006); (Vaidya et al. 2015). This evolved

resistance often is a consequence of a number of cellular

events that allow the reprogramming of oncogenic signals in

Fig. 1 Simplified model of

kinase driven signaling cascades

that promote pro-growth gene

expression and their dependency

on HSP90
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order to compensate for the loss of activity of the targeted

kinase (Garraway and Janne 2012). Some of these cellular

events include the following: increased rates of mutagenesis

resulting in alteration of the drug-binding site (Vaidya et al.

2015); (Ma et al. 2002); (Pao et al. 2005); (Yu et al. 2014),

chromosomal deletions or rearrangements creating chimeric

transcripts that provide deregulated growth signals

(Grammatikakis et al. 2002); (Duesberg et al. 2001); (Lee

et al. 2011); (Hingorani et al. 2005); (Hashida et al. 2015),

epigenetic rewiring of gene expression (Ricketts et al. 2014);

(Hill et al. 2011); (Abdel-Hafiz and Horwitz 2015), hyper-

activation of alternative but overlapping kinase signaling

cascades (Drake et al. 2014); (Shattuck et al. 2008); (Maroun

and Rowlands 2014); (Chen et al. 2012), relaxation of protein

translational control to favor increased production of onco-

genes (Pelletier et al. 2015); (Boussemart et al. 2014);

(Konicek et al. 2008), and additional mechanisms as yet not

fully appreciated such as altered non-coding RNA expression

and cellular metabolic reprogramming (Klinge 2015); (Ward

et al. 2014); (Ward and Thompson 2012); (DeBerardinis et al.

2008); (Linehan and Rouault 2013). The relationship of on-

cogenic reprogramming to evolved resistance is supported by

the clonal diversity and genetic heterogeneity of most tumors

along with the ability of most cancers to relapse after several

Fig. 2 Cartoon of molecular chaperone-dependent kinase folding, maturation, and maintenance along with the possible effect of H90Ins on distinct

kinase populations
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rounds of therapy (Hiley and Swanton 2014); (Calderwood

2013). Therefore, targeting this phenomenon is critical to

preventing resistance to KIs. HSP90 is associated with each

cellular event required for oncogenic reprogramming, consis-

tent with its ability to act as an evolutionary capacitor, and

suggesting that inhibition of HSP90 may represent a viable

strategy to combat resistance (Trepel et al. 2010); (Hanahan

and Weinberg 2011) (Taipale et al. 2010); (Rutherford and

Lindquist 1998); (Zhao et al. 2005); (Lu et al. 2012b); (Barrott

and Haystead 2013); (Methot et al. 2015); (Fig. 3).

KIs and H90Ins

Kinases and HSP90 both utilize ATP in their molecular func-

tion. Kinases employ ATP by adding the gamma phosphate

group onto substrates in order to transmit a signal (Burnett

and Kennedy 1954; Fischer et al. 1959), while HSP90 uses

ATP hydrolysis to fuel the conformational dynamics that drive

its chaperone activity (Grenert et al. 1997; Prodromou et al.

1997). Targeting the structural pocket that binds ATP in ki-

nases has been a major focus of the pharmaceutical industry

for over two decades and has yielded an arsenal of kinase

inhibitors. These KIs vary as the ATP-binding pocket varies

from kinase to kinase allowing for a degree of specificity and

the ability to target key signaling pathways that promote ma-

lignant growth (Knight and Shokat 2005). However, in re-

sponse to such inhibition, tumors often mutate the ATP-

binding pocket and other structural features of the kinase do-

main in order to greatly reduce the affinity of the KI, and thus

reinitiating pro-growth signaling (Pao et al. 2005; Miyajima

et al. 2013); (Katayama et al. 2011). Importantly, many of these

mutations make the kinase structurally unstable and more de-

pendent on HSP90 to maintain function (Miyajima et al.

2013); (Shimamura et al. 2008); (Barrott and Haystead

2013); (Shimamura et al. 2005; Sang et al. 2013; Lachowiec

et al. 2015). Conversely, a kinase may also evolve HSP90

independence through mutations that stabilize its structure as

observed throughout evolution (Nony et al. 2003; Taipale et al.

2012). However, combined administration of KIs and H90Ins

would place opposing pressures upon the kinase to alter the KI-

binding site in order to regain kinase activity, while at the same

time, altering its structure to attain HSP90 independence, thus

making the evolutionary walk of such a kinase improbable.

Indeed, in a random mutagenesis screen of BCR-ABL, while

numerous KI resistance mutants were identified, no H90Ins

resistance mutants were identified (Tauchi et al. 2011). Alter-

natively, a tumormay also compensate for the inhibition of one

growth promoting kinase by activating another kinase signal-

ing pathway (Chen et al. 2012); (Lee et al. 2013). Such phe-

nomena demonstrate the need to simultaneously inhibit multi-

ple kinases, which may be accomplished by targeting HSP90.

Clinically evaluated H90Ins target the ATP-binding pocket of

HSP90, which is distinct from kinase ATP-binding pockets

(Whitesell et al. 1994; Neckers and Trepel 2014). H90Ins op-

erate by locking HSP90 into a static structural conformation

that prevents it from chaperoning its client kinases. This leads

to destabilization of the kinases and their eventual degradation

by the proteasome (Trepel et al. 2010); (Barrott and Haystead

2013); (Miyata et al. 2013); (Fig. 4).

Fig. 3 Model of the oncogenic

reprogramming concept that

allows for evolved drug resistance

in cancer
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Despite their theoretical efficacy and initial promise (Kamal

et al. 2003); (Neckers and Workman 2012), treating cancer

patients with H90Ins alone has not proven to be particularly

effective (Barrott and Haystead 2013). As single agents,

H90Ins require higher effective dosages for inhibiting tumor

growth, often resulting in increased toxicity (Barrott and

Haystead 2013); (Johnson et al. 2015); (Jhaveri et al. 2012);

(Sequist et al. 2010); (Sessa et al. 2013). Some of these side

effects may be the result of off-target inhibition of the HSP90

homologues, which reside in the endoplasmic reticulum

(GRP94) and mitochondria (TRAP1), although this has not

been determined. Moreover, these side effects and the need

for increased dosing may be related in part to the phenomenon

that HSP90 inhibition leads to activation of a feedback loop

that involves HSF1, the master stress response transcription

factor (Bagatell et al. 2000); (Ciocca et al. 2013). HSF1 is

responsible for initiating an adaptive, pro-survival, and anti-

apoptotic gene expression program, which includes a number

of molecular chaperones. Consequently, HSF1 activation likely

reduces the effectiveness of HSP90 inhibition in cancer and

may even enhance transcription of certain cancer-promoting

genes that comprise a unique cancer-specific HSF1 transcrip-

tional signature (Dai et al. 2007); (Santagata et al. 2013);

(Mendillo et al. 2012). Thus, identifying approaches to uncou-

ple this feedback loop are a major focus in the HSP90 research

field. Combining H90Ins with specific KIs is one possible

strategy since HSF1 activity is regulated by kinase cascades

to some degree (Guettouche et al. 2005); (Holmberg et al.

2002); (Calderwood et al. 2010). For example, mTORC and

MEK1 have been shown to phosphorylate HSF1 on S326, a

post-translational modification important for inducing the heat

shock response. Moreover, inhibition of these kinases reduces

HSF1 overall transcriptional activity, suggesting a possible

combination of inhibitors that may prove effective in treating

specific tumor types (Chou et al. 2012); (Tang et al. 2015);

(Acquaviva et al. 2014a, b).

TCGA

The Cancer Genome Atlas is a national initiative to character-

ize over 80 forms of cancer at the molecular level. Its goal is to

sequence the entire genome and quantitatively characterize a

representative number of cases of a defined tumor type, pro-

viding information on gene copy number, promoter methyla-

tion patterns, RNA expression levels, global mutation analy-

sis, and eventually proteomic profiling (http://cancergenome.

nih.gov/). These data are made publicly available as they are

processed and published, allowing for further analysis by the

cancer research community. Several sites and institutes host

and distribute TCGA data including cBioPortal at Memorial

Sloan-Kettering Cancer Center, which was utilized here (Gao

et al. 2013); (Cerami et al. 2012).

In our analysis of the mRNA expression levels and open

reading frame mutations of 31 representative kinases that as-

sociate with HSP90, we found that a large percentage of sam-

ples from each of 23 tumor types either overexpress or possess

a mutated HSP90-dependent kinase or parallel activator of

kinase activity (PAKA) such as PIK3CA or KRAS (Table 1,

see Supplemental Tables 2 and 3 for sources). When the num-

ber of overexpressed (blue column)HSP90-dependent kinases

is combined, this percentage exceeds 50 % in all tumor types

compared to normal corresponding tissue. This frequency

reaches 80 % or greater in seven tumor types: cervical cancer

(CESC), chromophobe renal cell carcinoma (KICH), glioblas-

toma multiforme (GBM), head and neck squamous cell carci-

noma (HNSC), stomach adenocarcinoma (STAD), bladder

cancer (BLCA), and uterine carcinoma (UCS). Further, when

combined with PAKA overexpression, this frequency in-

creased by an additional 12 % in lung squamous cell carcino-

ma (LUSC) and by 15 % in ovarian cancer (OV). When the

sum total (orange row) of all overexpressed kinases and

PAKAs within the table is calculated, the value exceeds 100

and is often more than twice the actual grand total (red row)

provided by TCGA, indicating that more than one HSP90-

dependent kinase is overexpressed in a single tumor. Indeed,

this has been observed in other studies where one third of

stomach cancers were found to overexpress multiple HSP90-

dependent receptor tyrosine kinases (Nagatsuma et al. 2014);

(Sjoblom et al. 2006); (Greenman et al. 2007). In contrast, the

combined number of mutated (green column) HSP90 depen-

dent kinases and PAKAs does not exceed a frequency of 50 %

in most tumor types. However, in certain tumor types, includ-

ing colon and rectal adenocarcinoma (COAD), cutaneous

melanoma (SKCM), lung adenocarcinoma (LUAD), papillary

thyroid carcinoma (THCA), and uterine corpus endometrial

carcinoma (UCEC), mutation frequencies are above 70 %.

Based on these TCGA data, we suggest that individual KI

and H90In combinations should be explored in a variety of

tumor types. For example, in breast cancer (BRCA), the ki-

nase ERBB2 is overexpressed in 13 % of 526 tumor samples

while the signaling component PIK3CA is mutated in 35% of

507 tumor samples. Combining an H90In with either an

ERBB2 inhibitor or a number of PIK3CA inhibitors may

Fig. 4 Model of oncogenic growth signal output reduced by combined

treatment
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prove effective in treating certain populations of BRCA. In-

deed, combination of the monoclonal antibody herceptin and

H90In has shown clinical benefit (O’Connell et al. 2014). In

bladder cancer (BLCA), the most cost intensive cancer to treat

(Kaplan et al. 2014) RAF1 is overexpressed in 27 % while

EGFR is overexpressed in 19 % of the sampled tumors. In

specific cases, a combination of the RAF1 inhibitors sorafenib

or vemurafenib, or a number of EGFR inhibitors, along with

an H90In may prove to be effective (Acquaviva et al. 2014a,

b; Huang et al. 2015). Glioblastoma multiforme (GBM)

overexpresses one or more HSP90-dependent kinases in

86 % of tumors sampled. Consequently, a combination of at

least 11 different KIs with an H90In is a treatment option

worth exploring (Fu et al. 2013) (Wachsberger et al. 2014).

Lung adenocarcinoma (LUAD), which is responsible for the

largest number of cancer deaths, overexpresses EGFR in

13 %, ERBB2 in 15 %, and MET in 16 % of tumor samples.

Combining a number of kinase inhibitors with an H90In may

be beneficial in treating up to 77 % of patients with lung

adenocarcinoma (Chen et al. 2014); (Ohkubo et al. 2015). A

similar approach may be taken for uterine carcinosarcomas

(UCS), which overexpress HSP90-dependent kinases in

93 % of tumors sampled.

Conclusion

Cancer is resilient. Its only function is to proliferate, and to this

end, it utilizes every biological mechanism available to it to

gain a proliferative advantage (Wachsberger et al. 2014);

(Holmberg et al. 2002). Consequently, efforts must be focused

on anticipating the routes available to cancer cells for this

purpose and to implement therapies able to counter them.

Indeed, evidence from preclinical models suggests that early

simultaneous targeting of the HSP90 chaperone complex and

specific tumor-driving kinases prolongs efficacy while possi-

bly reducing toxicity by lowering effective drug dose (Fiskus

et al. 2011); (Lu et al. 2012a, b), (Barrott and Haystead 2013);

(Tonini 2015); (Miyajima et al. 2013); (Solarova et al. 2015);

(Xiao et al. 2007); (Fig. 5). As with all novel treatments,

determining the optimal dose combination and schedule for

each tumor type will require further study.

The synergy provided by combining H90Ins with KIs is

predicted to reduce the evolutionary space available to cancer

by simultaneously targeting cellular proteostasis and multiple

pro-growth and metastatic signaling pathways (Rutherford

and Lindquist 1998); (Workman et al. 2007a; Gerlinger et al.

2014); (Whitesell et al. 2014). This hypothesis is further sup-

ported by recent observations that HSP90 influences the func-

tion of a number of other signaling components that are

overexpressed, or otherwise deregulated in cancer, including

transcription factors, E3-ligases, metabolic enzymes, and pro-

tein translational machinery (Taipale et al. 2014); (Liu et al.

2015); (Solier et al. 2012); (Supplemental Table 2). While

development of specific inhibitors of these various signaling

components lags behind the development of KIs, preliminary

findings provide evidence of synergy (Brady et al. 2015).

Equally there is always the possibility that administration

of H90Ins along with KIs or any other molecular therapy may

result in unintended outcomes. H90Ins have the possibility of

being weapons that cut both ways, and therefore, their use will

require great forethought and care in wielding them. In both

mouse and drosophila model systems, HSP90 inhibition has

been shown to increase transposon activity in germ line cells

(Specchia et al. 2010); (Ichiyanagi et al. 2014). This is under-

stood to be related to the ability of HSP90 to maintain Piwi

protein function and piRNA loading (Gangaraju et al. 2011;

Izumi et al. 2013), which together function to repress transpo-

son mobility. Uncontrolled transposon activity has been

shown to result in sterility and alteration of the germ line (Fu

and Wang 2014; Hadziselimovic et al. 2015). Therefore, ad-

ministration of H90Ins to only the non-breeding population

may be warranted, as is careful monitoring of metabolized and

unmetabolized H90Ins in the water table and environment.

There is also the concern that H90Ins could impact the ef-

fectiveness of tumor suppressor pathways (Fierro-Monti et al.

2013); (Manjarrez et al. 2014). HSP90 interacts with a large

portion of the proteome and is involved in maintaining tumor

promoting as well as tumor suppressing cellular components

(Taipale et al. 2014); (Nony et al. 2003). The tumor suppressor

TP53 is mutated in a vast number of tumors, and HSP90 has

been shown to associate with both mutant and WT versions of

TP53 (Blagosklonny et al. 1996); (Nagata et al. 1999);

(Walerych et al. 2004). However, if TP53 mutants do not func-

tion as tumor suppressors, and may even serve as tumor pro-

moters (Walerych et al. 2012); (Shetzer et al. 2014), then

compromising their stabilization by HSP90 inhibition is likely

to promote anti-tumor activity (Powell et al. 2014).

HSP90 dependence of the tumor suppressor kinase STK11

(or LKB1)may bemore significant, as this kinase plays a major

role in regulating cellular metabolism (Nony et al. 2003);

(Taipale et al. 2012); (Zhao and Xu 2014). HSP90 also partic-

ipates in regulation of gene expression and genome

Fig. 5 Hypothesized timeline for cancer growth inhibition and overall

toxicity comparing single agent KI therapy vs. combined H90In therapy
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maintenance (Fang et al. 2014); (Sollars et al. 2003; Lu et al.

2012a, b). Despite these uncertainties, the observation that

H90Ins as a class concentrate in tumor cells to a greater degree

than in normal tissue is of importance and a point of hope

(Kamal et al. 2003); (Moulick et al. 2011); (Taldone et al.

2014); (Suzuki et al. 2015); (Moses et al. 2015). The notion

that rapidly proliferating malignant cells in a toxic microenvi-

ronment have a larger population of targetable molecular chap-

erones such as HSP90, and depend more on these proteostasis

components for survival, fits well with the concept of chaper-

one addiction put forth bymany others in the field (Miyata et al.

2013); (Prodromou 2009); (Workman et al. 2007a);

(Calderwood et al. 2006); (Xiao et al. 2007); (Barrott and

Haystead 2013).

The pioneers of combinational drug therapy, Emil

Freireich, James Holland, and Emil Frei, laid the groundwork

for synergistic drug combinations with their development of

successful treatments for children suffering from acute lym-

phoblastic leukemia (Frei et al. 1958). A more recent example

of this concept is the development of multi-drug cocktails for

controlling HIV (Fauci et al. 2013). Unfortunately, for indi-

viduals with cancer, development of KI resistance is all too

common. As a consequence, there are currently 69 clinical

trials focused on targeting HSP90 (Supplemental Table 4),

with 8 trials testing combinations of KIs and H90Ins

(NCT01613950, NCT02192541, NCT02008877,

NCT01712217, NCT02097225, NCT01657591, and

NCT01236144) (Clinicaltrials.gov 2015) (Supplemental Ta-

ble 5). Early reporting of the NCT01259089 phase I/II trial

that combined erlotinib with the HSP90In, AUY922, for

treating erlotinib-resistant non-small-cell lung cancer

(NSCLC), however demonstrated only partial efficacy with

an elevated toxicity profile (Johnson et al. 2015). These un-

fortunate findings indicate the need for improved understand-

ing of HSP90 biology and inhibitor development but should

not discourage further clinical evaluation of HS90Ins

(Ohkubo et al. 2015); (Besse et al. 2014); (Hubbard 2014).

Early, simultaneous administration of combined molecular

therapies based on insights gathered from TCGA data should

improve upon current outcomes that rely solely on single

agents. Indeed, this strategy aligns with the Precision Medi-

cine Initiative to provide quality healthcare based on individ-

ual variations in genes, environment, and lifestyle (Collins and

Varmus 2015); (Zhao et al. 2015).

Cancer and its evolving genome is a complex operation

given only the simple task to proliferate. An immense amount

of information remains to be discovered and understood

concerning the origins and driving forces of cancer. The re-

sults of ongoing clinical trials along with increased utilization

of TCGA data will help not only in testing the hypothesis put

forth here, but also in designing future clinical trials that in-

corporate HSP90 inhibition as a mechanism to combat cancer

robustness and prevent oncogenic reprogramming.
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