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Abstract— In this paper, a multi-level approach to intention,
activity, and motion recognition for a humanoid robot is
proposed. Our system processes images from a monocular
camera and combines this information with domain knowledge.
The recognition works on-line and in real-time, it is independent
of the test person, but limited to predefined view-points.
Main contributions of this paper are the extensible, multi-level
modeling of the robot’s vision system, the efficient activity and
motion recognition, and the asynchronous information fusion
based on generic processing of mid-level recognition results. The
complementarity of the activity and motion recognition renders
the approach robust against misclassifications. Experimental
results on a real-world data set of complex kitchen tasks,
e.g., Prepare Cereals or Lay Table, prove the performance and
robustness of the multi-level recognition approach.

I. INTRODUCTION

Humanoid robots are specifically aimed at supporting

humans in every-day life tasks. In order to support the

humans at their best, humanoid robots need to behave

interactively like humans. This paper addresses video-based

human behavior recognition. The recognition needs to be

performed on-line and in real-time in order to allow the robot

to react quickly to human behavior, i.e. intentions, activities,

and motions. As the estimates are input to the control loop

of the humanoid, the estimation quality and robustness needs

to be high, as it directly impacts the robot’s usability.

Modelling the behavior of the human in terms of intentions

causing manipulations of the world, which may be modeled

coarsely as activities and more fine-grained as sequences

of motions, cf. Fig. 1, corresponds to modelling the causal

dependencies of the human’s rationale. For example, the task

Prepare Cereals may be coarsely described as movements

and manipulations in a specific area of a kitchen. We term

this an activity. In contrast, the motion sequences of the task

can be modeled in detail as a sequence of clearly defined

motion primitives, such as Place Object on Table, Pour,

or Stir. An intention combines these models with domain
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Fig. 1. Control loop of a robot: The combined intention, activity, and
motion recognition is used for estimating the state of the human. This state
estimate together with domain knowledge is input to a higher level control
system governing the robot’s actuators, i.e., his manipulations of the world.

knowledge, e.g., object presence or time of the day. The

intention as obtained from higher-level dynamics, domain

knowledge, and various lower-level estimates is modeled by

a Hybrid Dynamic Bayesian Network (HDBN) [1]. The data-

driven discriminative modeling of the activities is performed

by Support Vector Machines (SVM) [2]. For the detailed

modeling of motion sequences, a set of motion primitives

is used. Motion primitives are modeled as Hidden Markov

Models (HMM) [3] and serve as an alphabet for a context-

free grammar describing motion sequences. Our multi-level

approach integrates the different levels of modeling the

human behavior.

II. RELATED WORK

The relevant literature is grouped according to the individ-

ual parts of the multi-level approach. Intention recognition

is the inference of the force driving a human’s behavior

[4] based on observation of his manipulations. The existing

approaches may be categorized according to the consider-

ation of uncertainty induced by sensor noise and temporal

unobservability. Symbolic approaches, often generalizing to



plan recognition, have been successfully employed, e.g., in

software agents [5]. Probabilistic intention recognition with

probabilistic graphical models has been developed in the

field of security and surveillance [6]. In robotics, proba-

bilistic intention recognition has been employed amongst

other applications for wheel-chair steering support [7]. The

work resembling this paper most in terms of models and

inference methods is [4]. Our work presented here extends

this approach to achieve higher robustness and incorporate

asynchronous mid-level measurements.

Activities denote complex motion sequences, which get

their meaning from the overall situation context. A detailed

overview of the current state-of-the-art in activity recognition

can be found in, e.g., [8], [9]. Typical approaches model

dependencies between simple actions with graphical mod-

els [10], grammars [11], or knowledge bases [12]. Since

activities in a household scenario usually consist of a quasi-

periodic repetition of short action sequences, we follow a

different strategy and infer the activity within a temporal

window directly from video features. Our approach is mo-

tivated by works in the field of space-time interest points

based recognition of basic actions [13]. However, in contrast

to other works, it can be and has already been successfully

applied to complex real-world scenarios.

Motion recognition is the recognition of fine-grained mo-

tion primitives, which are part of more complex human

motion sequences. Modeling motion sequences with prim-

itives has for example been used in imitation learning and

programming by demonstration [14]. A well-known statis-

tical approach to primitive modeling are HMMs [3], which

are suitable for modeling the sequential nature of motion

primitives [15]. For the combination of motion primitives to

longer motion sequences, context-free grammars have been

proposed [11]. We extended the motion recognition system

in [16] to an on-line recognition system and by learning our

grammar automatically. The system returns the recognized

motion primitives during the performed motions in real-time.

III. MULTI-LEVEL APPROACH

The multi-level approach presented in this paper corre-

sponds to the estimator for the state of the human in the

overall robot control loop shown in Fig. 1. The estimator

consists of the combined intention, activity, and motion

recognition, i.e., the intention recognition integrates the

activity and motion estimates as well as uncertain domain

knowledge. Two key ideas govern this approach: modularity

and consistent uncertainty treatment. The proposed system

consists of modular representations, which are trained sepa-

rately. Inferring the current state integrates information from

all components. The consistent processing of uncertain infor-

mation corresponds to a propagation of uncertainties about

estimates from all components through the overall system.

This consistent processing is required to allow for robust

stochastic control, e.g., robustness against light-dependent

image noise. Information passing at the systems’ interfaces

thus corresponds to exchanging posterior probability distri-

butions. The modularity and consistent uncertainty treatment

allow for an easy extension of the approach to include

more classifiers. Every stand-alone classifier module which

outputs posterior probability densities can easily be added as

a subsystem. In the rest of this section, all parts of the entire

system are described - from the used low-level features to

the intention recognition.

A. Low-level visual features

The features used by the vision-based modules encode

motion and appearance. Treating both feature types indepen-

dently is, according to recent studies in neuro-science [17],

in line with the way humans perceive movement in their

environment.

a) Histogram of Sparse Flow: The motion features are

based on histograms of global sparse optical flow obtained

from feature tracking, representing every frame of the image

sequence by a global histogram of its overall motion direc-

tions without any further local information. The weighted

histogram1 H
f
t =: v̂′t for frame t is calculated from the

motion vector of the feature points of images I at time index

t and t+1 (It, It+1). The motion vector (u(δt), v(δt)) of the

feature is used to calculate the resulting motion direction θ

(an angle value from [−π, π]) and γ defining the motion

intensity. The elements for one bin of the histogram are

calculated based on the motion angle θ. The bin entries are

weighted with the respective motion intensity γ. The k-th bin

of the weighted histogram is calculated from the intensity of

all elements with the related motion direction.

b) Histogram of Oriented Gradients: Analogous to the

motion features, the appearance of a scene is encoded using

weighted histograms of dense image gradients. At time t,

each pixel of a gradient map contributes to the bin of a

histogram H
g
t which corresponds to the pixel’s discretized

orientation angle. Each histogram contribution is weighted

by the gradient’s magnitude in order to lower the effect of

noise. In our experiments, we set the histogram size to 30

bins for both feature types.

B. Motion Recognition

The motion recognition uses the low-level motion features

v̂′t to recognize the motions of an observed person. The

motions are modeled as a concatenation of motion primitives

such as Place Object on Table. This allows a very flexible

and robust modeling of a large variety of motion sequences.

Each motion primitive is represented by an HMM, which

models the sequential nature of the motion primitive and can

be optimized incrementally. The possible concatenations of

the motion primitives are modeled using an automatically

learned context-free grammar. The following paragraphs

describe the components of our motion recognition system,

i.e., the input features, the model topology, the model initial-

ization, training, and optimization, as well as the decoding

strategy. The system applies the one pass IBIS decoder [18],

which is part of the Janus Recognition Toolkit JRTk [19].

1The time is indexed by t, sequences are denoted by t : 0 and observed
values by ŷ. Random variables are printed bold and vectors are underlined.



Fig. 2. Sequence of HMMs modeling flexible human motion sequences.

Features: As visual features for motion recognition, the

global sparse optical flow histograms v̂′t presented in Sec. III-

A are used. The histograms are sampled over time, resulting

in 30-dimensional input vectors for the HMMs. For a good

recognition rate the input vectors are normalized over time.

Representation: Each motion primitive is modeled with

a linear left-to-right HMM. Each state of the left-to-right

HMM has two equally likely transitions, one to the current

state and one to the next state. The emission probabilities

of the HMM states are modeled by Gaussian mixtures. The

number of states and the number of Gaussians per mixture

were optimized in the cross-validation experiments described

below. A motion sequence is modeled as a sequential con-

catenation of these motion primitive models (see Fig. 2)

using an automatically learned context-free grammar. We

extended the Sequitur algorithm [20] to work on a set of

motion sequences instead of only one sequence.

Learning: To initialize the HMM models of the motion

primitives, we manually segmented the histogram sequences

into the motion primitives. The manually segmented data

are then equally divided into N sections for each motion

primitive, where N is the number of states in the HMM. A

Neural Gas algorithm [21] is applied to initialize the HMM-

state emission probabilities for each state. We then perform

ML-training on the unsegmented motion sequences using the

Viterbi algorithm.

Recognition: Decoding of the system is carried out by a

time-synchronous beam search. The most likely motion se-

quences m∗
t:0 (sequences of motion primitives) are calculated

based on the feature sequence v̂′t:0. Large beams are applied

to avoid pruning errors. To guide the recognition process,

we use the automatically generated context-free grammar.

Our automatically created grammar performs slightly better

than a manually created one and is built a lot faster. The

grammar allows a flexible and reliable recognition of the

possible motion sequences. The input features are processed

once every second and those motion sequences are calculated

that match the data best up to the current time step. The log-

likelihoods of the latest motion primitives (one per sequence)

are normalized and passed to the intention recognition system

as an approximation of the posterior probability distribution.

C. Activity Recognition

The activity recognition gives a coarse (in the sense

of temporal resolution), but accurate estimation about the

situation inside a room with a high update rate. Our approach

is based on the bag-of-words method that already has been

successfully applied to the problems of classifying objects

[22] and basic actions [23].

Feature representation: It has been shown in [24], that

only a few frames suffice to discriminate unambiguous basic

actions. Our feature representation extends this principle

to the recognition of activities by exploiting the nature of

common household tasks, which mainly consist of a quasi-

periodical repetition of short motion sequences. For instance,

the activity Lay Table may consist of a repeated execution

of the motion Pick up Object followed by Place Object on

Table. Since such motion sequences define an activity, we

reason that it is sufficient to base the recognition on activity

snippets that last at least as long as one motion sequence

period. Thus, we apply a sliding window to the input image

sequence in order to obtain successive activity estimates.

Within each temporal window, we identify spatio-temporal

regions of interest (ROI) in which the low-level motion and

appearance histogram features H
f
t and H

g
t are calculated

for each frame. The location and spatial size of the gradient

ROI is determined by employing a fast 2D interest point

detector [25] to every fourth frame. Since our optical flow

field is very sparse, we calculate only one optical flow ROI

per frame based on the difference of successive images.

The temporal extension of the ROI for both feature types is

fixed to a duration of 10 frames. All frame-based low-level

histogram features within a ROI are further accumulated

and normalized to form a spatio-temporal cuboid histogram

feature. Regarding spatial and temporal dimension in such

an independent way makes feature calculation very fast and

combines the advantages of space-time interest points and

dense feature sampling.

Finally, we combine all cuboid features within a temporal

window with two bag-of-words models [22], one for each

cuboid feature type. In order to reduce quantization errors

when calculating the bag-of-words histograms, we employ

a soft-voting scheme as described in [26]. The resulting

histograms are then concatenated to one vector v̂t, which

is used to infer the activity.

Learning and Recognition: We map the features v̂t to one

of the activity classes using an SVM with an RBF-kernel

and follow a one-vs-all strategy [27] to discriminate between

multiple classes. To estimate the classification confidences,

we learn a probabilistic model based on the feature vectors

distance to the hyperplane for each binary SVM [28]. Finally,

we combine the binary confidence estimates using a pairwise

coupling scheme [29] in order to calculate the posterior

probability density over all classes which forms the input

for the intention recognition module.

D. Intention Recognition

Intention recognition integrates the activity and motion

recognition as well as domain knowledge, e.g., time or object

presence. The recognition of intentions, as e.g., the aim to

Lay Table, is phrased as a problem of modeling, learning, and

inference in Hybrid Dynamic Bayesian Networks (HDBN)

[30], [1] as these allow for causal modeling, consistent

uncertainty processing, the use of continuous- and discrete-

valued variables and nonlinear dependencies [1]. The use of

HDBN facilitates an extension of our approach, as inference



for any HDBN may be performed generically–as long as the

subsystems provide a posterior probability distribution.

Representation: The human’s rationale is modeled in a

discrete time HDBN. For continuous- and discrete-valued

random variables, the probability densities are uniformly

represented as continuous density functions f(x), cf. [1]. The

causal model used by the intention recognition is shown in

Fig. 3. The intentions it drive the human’s behavior, which is

modeled two-fold: as coarse activities at and as fine-grained

motions mt. The activities and motions are based on distinct

features vt and v
′

t as these are post-processed differently.

The parts of the model in Fig. 3 corresponding to the activity

and motion recognition will not be formed explicitly but sub-

stituted by the respective subsystems’ measurement updates.

Extending the model in Fig. 3 with more recognizers may be

easily performed by just appending random variables to the

HDBN. For example, domain knowledge was introduced in

the experiments by appending a binary random variable for

each object class in the scenario. The binary values encode

the presence or absence of objects of the respective class.

Inference in the extended model is performed by standard

methods described in the following.

Recognition: Inference in the HDBN of Fig. 3 requires the

processing of asynchronous batch measurements from the

different smoothing methods used in the activity and motion

recognition. Representative for all components we consider

only the motions mt. We assume measurements v̂a:0, a < t

to be given. When a new estimate f(v̂b:a|mb) for a batch of

measurements v̂b:a, a < b < t is produced by the subsystem,

the intention estimate is calculated as

f(it|v̂b:0) ≈

ˆ

Ωt:a

ˆ

Mb

c ·

prediction
︷ ︸︸ ︷

f(it:b+1|ib)

· [f(v̂b:a|mb)f(mb|ib:a)]
︸ ︷︷ ︸

measurement update

·f(ia|v̂a:0)
︸ ︷︷ ︸

previous filtering

dmb dit:a , (1)

with f(it:b+1|ib) =
∏t

l=b+1
f(il|il−1), f(mb|ib:a) =

f(mb|ib)
∏b

l=a+1
f(il|il−1) and c = f(v̂b:a|v̂a:0). The

estimate is approximate, as temporal dependencies between

the subsystems in the HDBN, i.e., the relations between

the activity and motion estimates, are neglected. If no mea-

surements are made, quasi-stationarity is assumed, i.e. only

prediction is used.

Learning: The parameters of the measurement systems,

i.e., f(at|it) and f(mt|it), are learned from training data.

Because it, at, and mt are discrete-valued variables, the

labeled video sequences were used as completely observable

data to obtain the maximum log-likelihood estimates for

these conditional density functions from the sample statistics.

These statistics are averages of the probability distributions

over the different activities and motions as produced by the

activity and motion recognition over all video frames for a

given intention over all persons. The remaining conditional

density functions were obtained from expert knowledge.

In order to smooth the estimate sequence it:0, f(it|it−1)
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Fig. 3. An HDBN modeling the hidden intentions it, motions mt, and

activities at as well as the observed image features v
(,)
t for each time

step t. The dependencies of vt+5:t and v
′

t+5:t show the asynchronous
measurements from the smoothing sub-systems. For simplicity, the domain
knowledge was omitted, but may be trivially added to the HDBN.

corresponds to a damping matrix. Thus it converges toward

a uniform distribution in the absence of measurements.

IV. EXPERIMENTS

Our experiments demonstrate the recognizers’ perfor-

mance at motion, activity, and intention level, the quality

of the complementary recognition results and therefore, the

robustness of the overall system against singular classifier

failure. To show the full capabilities of our systems, we

needed a data set challenging to each level of recognition.

This corresponds to a lot of variation in all levels of recog-

nition, e.g., we need various motions and activities as well

as varying times of day and objects, to estimate the human’s

intentions. To the best of our knowledge there is no such data

set. The data set2 we collected is described in the following.

A. Hardware Setup

For the acquisition of our data set, we used a single

video camera in a setup that resembles the application of our

system on a humanoid robot. We imagine the robot to act

as a “butler” observing the scene from a position that does

not obstruct the human and offering his service whenever

he assesses that it might be appreciated. For this reason, the

camera view-point was fixed during the recordings to a place

in front of a kitchen table, i.e., opposite to the human, cf.

Fig. 4. A Point Grey Dragon-Fly Camera with a resolution

of 640×480 pixels and a frame rate of 30 fps was used. In

the experiments, a mix of artificial and day light (9 AM to

8 PM) as well as textured and plain background was used.

B. Scenario

The data set was collected in a kitchen setting, where ten

different persons performed seven kitchen tasks. For each

task, the person entered the scene, performed manipulations

at the table, and left the scene afterwards, as shown in Fig. 4.

The seven recorded tasks were: Lay Table, Prepare Cereals,

2Available at http://www.sfb588.uni-karlsruhe.de/minta/



(a) Eat with Spoon (b) Lay Table (c) Prepare Cereals

Fig. 4. Snapshots of three exemplary image sequences out of the set of seven used tasks Prepare Cereals, Prepare Pudding, Lay Table, Eat with Spoon,
Eat with Fork, Clear Table, and Wipe Table. The snapshots show (a) a raw image (b) a raw image overlaid with sparse optical flow and (c) an image solely
with gradient features.

Prepare Pudding, Eat with Spoon, Eat with Fork, Clear

Table, and Wipe Table. The intentions combine the activities

with motions and domain knowledge. In this scenario, nine

intentions were used: Lay Table, Prepare Cereals, Prepare

Pudding, Spoon Breakfast, Spoon Lunch, Cut Breakfast, Cut

Lunch, Clear Table, Wipe Table, which differentiate the

tasks by object and time knowledge. We denote activities

as tasks, that can be discerned without the need of explicit

object knowledge. Hence, the tasks Prepare Cereals and

Prepare Pudding are considered one activity, i.e., Prepare

Meal, resulting in a total of six activity classes. For a

fine-grained recognition of the performed tasks a set of 60

motion primitives, e.g., Place Object on Table, Pour, or

Stir, was defined as an alphabet for the motion recognition

system. The data set was then manually annotated with the

motion primitives for training and as ground truth for the

recognition experiments. Although the motion recognition

system does not recognize objects directly, the used objects

can be recognized implicitly through the performed motion

and its context. Every person performed each task ten times

resulting in a total of 700 image sequences.

C. Assessment Criteria

For the evaluation of our systems, we optimized all

recognizers on 560 image sequences of eight persons using

8-fold leave-one-out cross validation (LOO-CV). The 140

sequences of the two remaining persons were used as an

evaluation set. Recognition results are given as the average

recognition rates for the cross validation and the recognition

rate on the evaluation set (EVAL set). For our experiments,

the motion and activity recognition systems have been trained

and optimized to give good recognition results on the motion

and activity level. These results are assumed to be close to

the optimal input for the intention recognition.

D. Validation of the Motion Recognition

The recognition rate of the motion recognition system is

measured in terms of motion primitive accuracy (ACC):

ACC = (1−
#ins + #del + #sub

#primitives in reference
)× 100% . (2)

We compared the recognizer output (sequence of the most

likely motion primitives, which are passed to the intention

recognition) with the manually annotated sequences. Motion

recognition results of the LOO-CV and on the EVAL set

for off-line and on-line recognition are reported in Tab. I.

For the off-line recognition the recognition process uses all

images of a motion sequence at a time, which allows a better

normalization of the features. For the on-line recognition, the

images are processed directly and are never considered again.

For the evaluation of the intention recognition, we used

the on-line results. Due to the worse feature normalization,

the on-line recognition results with an accuracy of 58.6 %

are worse than the off-line results, but the system outputs

the recognized motions with a lot shorter response time.

The recognition rates on the 60 motion primitives for the

2 configurations are given in Tab. I. Note that the chance

of randomly guessing the result correctly is 1

60
here. Fig. I

shows the results of the motion recognition system for the

different tasks. The primitive recognition rate is high for most

of the tasks.

E. Validation of the Activity Recognition

We measure the performance of the activity recognition

as the per-window classification rate. The parameter with

the highest impact on the accuracy is the temporal size

of the sliding window. On the one hand it should be as

short as possible to minimize response time, but on the

other it should also capture enough information to allow

an accurate recognition. From experiments using the LOO-

CV, we concluded that a window duration of 60 frames,

corresponding to 2 seconds, yields a good trade-off between

both. We regard each window to be independent from past

observations with the reasoning that the robot may enter the

kitchen while an activity has already started and should still

be able to assess the situation.

An accumulated confusion matrix of the activity recog-

nition results for the EVAL set is shown in Fig. 5. It can

be seen that our approach is generally quite robust, but has

problems to discriminate between the activities Lay Table and

Clear Table with average recognition rates on the EVAL set

of 44.3 % and 30.5 % (see Tab. II) respectively. This is not

surprising though, as the motion patterns of both activities

are very similar and thus, can be easily confused.



TABLE I

AVERAGE MOTION PRIMITIVE ACCURACY GIVEN PER TASK FOR THE LOO-CV AND EVAL SETS.

Task Lay Prepare Prepare Eat Eat Clear Wipe Avg. Chance

Table Cereals Pudding with Spoon with Fork Table Table Rate

Accuracy LOO-CV 76.9 % 78.9 % 76.1 % 73.1 % 58.0 % 86.5 % 47.3 % 70.6 % 1.7 %
(off-line) EVAL 83.1 % 87.5 % 80.4 % 42.5 % 72.8 % 89.7 % 67.0 % 74.4 % 1.7 %

Accuracy LOO-CV 62.4 % 61.2 % 59.5 % 66.1 % 44.8 % 59.8 % 42.4 % 56.3 % 1.7 %
(on-line) EVAL 66.3 % 65.3 % 57.0 % 44.7 % 63.1 % 61.3 % 55.5 % 58.6 % 1.7 %

F. Validation of the Intention Recognition

The performance measure for the intention recognition

is the consistency of the ML estimate with the ground

truth. The performance was evaluated for the recorded image

sequences for every intention, where the intention was esti-

mated every 2nd frame and then compared with the ground

truth. In order to test the robustness against missing and

delayed measurements, the results of the activity (motion)

recognition were integrated every 4th (30th) frame, respec-

tively. These rates are arbitrary and may be increased to an

integration of all measurements in each frame. A uniform

prior distribution was used and the domain knowledge was

set according to the ground truth. Therefore, the intention

estimate is a uniform distribution until the first measure-

ment arrives. The uniform distribution is considered as a

misclassification. The uncertainty of the object knowledge

was set to a 75% combination of perfect information and a

uniform distribution. Fig. 7 gives the recognition rates for

the intention recognition w.r.t. the EVAL set in terms of

correct ML estimate with varying component setup, i.e., only

the domain knowledge and the activity recognition, only the

domain knowledge and the motion recognition as well as

domain knowledge, activity, and motion recognition were

used. The results in Fig. 7 demonstrate that the complemen-

tarity of the activity and motion recognition improves the

estimates for almost all intentions. The average classification

rate for the ML intention estimate using only the domain

knowledge and motion recognition is 80.3%, using only

the domain knowledge and activity recognition is 80.4%,

and using all sources of information is 83.5%. Fig. 6 shows

the probability of the ML estimate over time and how the

performance improves with the advent of either recognition

results and especially, when both estimates become available

regularly (around frame 150). In Fig. 7, the effect of the

domain knowledge can be seen in the high recognition rates

for the different breakfast and lunch types. Without uncertain

information about the time of day and object presence, these

would not be distinguishable by mere activity and motion.

G. Results

The results presented in Sec. IV-D-IV-F for each recog-

nition level, the results in Fig. 7, and the recognition prob-

abilities over time, as shown in Fig. 6, clearly demonstrate

the quality and advantage of the multi-level approach. Es-

pecially Fig. 6 and 7 visualize the different measurement

frequencies and complementary contributions of both mid-

level recognition results. The fusion of the mid-level results

in the intention recognition not only increases the recognition
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Fig. 5. Accumulated confusion matrix of the activity recognition for the
EVAL set, corresponding to an average recognition rate of 67.2%. The gray
values correspond to normalized frequencies.

100 300 500
50%

60%

70%

80%

90%

100%

Motion Recognition

Activity Recognition

P
( 

T
ru

e
 I

n
te

n
ti

o
n

 )

Frames→

Fig. 6. Probability of the intention estimate for Spoon Breakfast over the
first 500 frames. The frame of each first recognized activity and motion is
marked with a dashed line.

rate, but allows for further distinction of intentions by adding

object and time knowledge. Due to the modularity of the

approach, it is hard to give exact run-times for the entire

system. Each of the recognition systems consumes less

than 30 ms per frame, rendering an on-line and real-time

application of the system tractable even for much larger

scenarios.

V. CONCLUSIONS AND FUTURE WORKS

A multi-level approach to intention, activity, and mo-

tion recognition was proposed. Based on monocular video

input, the recognition is performed on-line and in real-

time. The system is limited to fixed view-points, but is

independent of the test person. The main contributions are

the extensible, multi-level modeling, the efficient activity

and motion recognition, and the information fusion based



TABLE II

AVERAGE RECOGNITION RATES GIVEN PER ACTIVITY FOR THE LOO-CV AND EVAL SETS.

Activity Lay Prepare Eat Eat Clear Wipe Avg. Chance

Table Meal with Spoon with Fork Table Table Rate

Recognition LOO-CV 46.9 % 86.8 % 81.6 % 80.6 % 48.3 % 73.9 % 69.7 % 16.7 %
Rate EVAL 44.3 % 94.5 % 82.1 % 88.5 % 30.5 % 63.0 % 67.2 % 16.7 %
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Fig. 7. Recognition rates for the intention based on the ML estimate of
the intentions and differing components setup: given domain knowledge and
activity recognition only, given domain knowledge and motion recognition
only, and given domain knowledge, activity as well as motion recognition.

on generic processing of asynchronous recognition results.

We performed experiments on a corpus of complex kitchen

tasks containing a mix of artificial and day light as well as

textured and plain background. The results are promising and

show the robustness of the entire recognition system against

singular classifier failure. As future work, a larger set of

view-points and the incorporation of a vision-based object

recognition is considered in order to obtain a fully integrated

and stand-alone system. The performance of long-term and

non-stop usage needs to be evaluated. The system will be

integrated with a larger multi-modal dialog system and will

become part of the humanoid robot ARMAR [31].
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