
Combined Iterative and Model-driven Optimization
in an Automatic Parallelization Framework

Louis-Nöel Pouchet
The Ohio State University

pouchet@cse.ohio-state.edu

Uday Bondhugula
IBM T.J. Watson Research Center

ubondhug@us.ibm.com

Cédric Bastoul
Paris-Sud 11 University

cedric.bastoul@u-psud.fr

Albert Cohen
INRIA Saclay –Île-de-France
albert.cohen@inria.fr

J. Ramanujam
Louisiana State University

jxr@ece.lsu.edu

P. Sadayappan
The Ohio State University

saday@cse.ohio-state.edu

Abstract—Today’s multi-core era places significant demands
on an optimizing compiler, which must parallelize programs,
exploit memory hierarchy, and leverage the ever-increasing
SIMD capabilities of modern processors. Existing model-based
heuristics for performance optimization used in compilers are
limited in their ability to identify profitable parallelism/locality
trade-offs and usually lead to sub-optimal performance.

To address this problem, we distinguish optimizations for
which effective model-based heuristics and profitability estimates
exist, from optimizations that require empirical search to achieve
good performance in a portable fashion. We have developed a
completely automatic framework in which we focus the empirical
search on the set of valid possibilities to perform fusion/code
motion, and rely on model-based mechanisms to perform tiling,
vectorization and parallelization on the transformed program.
We demonstrate the effectiveness of this approach in terms of
strong performance improvements on a single target as well as
performance portability across different target architectures.

I. I NTRODUCTION

Realizing the high levels of potential performance on cur-
rent machines is a very difficult task. One of several ap-
proaches to addressing this challenge is to develop compiler
transformations aimed in particular at loops. This requires
a compiler to be able to apply complex sequences of loop
transformations and effectively model the effect of hardware
resources and the complex ways in which they interact. Model-
driven optimization heuristics used in current research and
production compilers apply a restricted subset of the possible
program transformations, thereby limiting their effectiveness.
The problem becomes further complicated when one aims for
performance portability over a broad range of architectures.

The polyhedral representation of programs enables the ex-
pression of arbitrarily complex sequences of loop transforma-
tions. But the downside to this expressiveness is the extreme
difficulty in selecting a good optimization strategy combin-
ing the most important loop transformations, including loop
tiling, fusion, distribution, interchange, skewing, permutation
and shifting [1], [2]. It is also hard to analytically capture
interacting effects of different hardware resources taking into
account downstream optimization passes.

The state-of-the-art in tiling and parallelization in the poly-
hedral model [3] relies on an analytical approach. Unfortu-

nately, a purely analytical approach is not sufficient sinceit is
difficult to adequately account for several high-impact factors
such as cache conflicts, memory bandwidth and vectorization.
It is important to adapt the optimization strategy to a target
architecture; in addition, it is important to achieve portable
performance, requiring understanding and management of
the interplay between scalability, locality and synchronization
overhead on different target machines.

To address these challenges, we have designed a combined
iterative and model-driven scheme for optimization and par-
allelization. It relies on an iterative, feedback-directed explo-
ration of loop structure choices, i.e., loop fusion/distribution
choices. In turn, each fusion/distribution choice drives model-
based algorithms for many other loop transformations includ-
ing loop tiling and vectorization. Portability of performance
is achieved thanks to iteratively testing different program
versions. In practice, our method found the best version on
all benchmarks we tested it on. We obtained improvements
ranging from 1× to 8.5× over version produced by ref-
erence parallelizing compilers using model-based heuristics,
and validated the portability of our approach considering
two modern multi-core architectures (Intel Dunnington and
AMD Shanghai) as well as a low-power embedded Intel
Atom processor. The memory hierarchies and interconnects
of these architectures are very different (e.g., front-side bus
vs. point-to-point links). We chose these architectures in
order to demonstrate the potential of our approach to achieve
performance portability and to gauge the sensitivity to the
underlying memory hierarchy.

The rest of this paper is organized as follows. Section II
describes the motivation and presents the problem statement.
Section III recalls the fundamental concepts in polyhedral
models of compilation. Section IV addresses the construction,
pruning and traversal of the search space. Section V presents
the model-based optimization algorithms used in our combined
strategy. Section VI evaluates this technique experimentally.
Section VII discusses related work, before the conclusion in
Section VIII.

c©2010 IEEE Personal use of this material is permitted. However,permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistributionto servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1- 4244-7558-2/10/$26.00

II. PROBLEM STATEMENT

Achieving a high level of performance for a computational
kernel on a modern multicore architecture requires effective
mapping of the kernel onto the hardware resources that ex-
ploits

• thread-level parallelism;
• the memory hierarchy, including prefetch units, different

cache levels, memory buses and interconnect; and
• all available computational units, including SIMD units.

Because of the very complex interplay among these, translat-
ing specific properties on the input code (e.g., the number of
parallel loop iterations) into actual performance metricsis a
significant challenge. Considering several high-level program
transformations that expose the same amount of thread-level
parallelism, determining which of these results in highest
performance is beyond the reach of optimizing compilers. This
is due at least in part to the combined effectiveness of hardware
resources such as the memory hierarchy and the vector units,
which can be significantly different on different targets.

To maximize performance, one must carefully explore the
trade-off between the different levels of parallelism and the
usage of the components of local memory. Maximizing data
locality may be detrimental to inner-loop-parallelism, and may
counter the effects of an efficient, well-aligned vectorized
inner loop. On the other hand, focusing the optimization
towards the most efficient vectorization may require excessive
loop distribution, resulting in poor data reuse and thus may
adversely affect performance.

Key program transformations for a loop nest optimizer are:

• thread-level parallelism extraction, to expose coarse-
grain parallelism and benefit from the different hardware
threads available;

• loop tiling, to improve the locality of computation and
reduce the number of cache misses;

• SIMD-level parallelism extraction, by forming innermost
loops which can be effectively vectorized;

Most previous efforts have taken a multi-stage, decoupled
approach to choose the optimizations: they first identify a
transformation to expose thread-level parallelism, then try to
apply tiling on the resulting code, and finally try to vectorize
the output [4], [5]. Recent work by Bondhugula et al. [3]
integrated the extraction of parallelism and the identification of
tileable loop nests, but did not take the memory hierarchy into
account when selecting which loops to fuse and to parallelize,
and did not not consider the effect of these transformations
on SIMD parallelism. As a result of this approach, reuse is
maximized and parallel tiled code is generated, but this can
lead to sub-optimal performance since maximizing locality
can disable the vectorization of inner-loops and increase cache
interference conflicts.

This leads us to the key observation thatloop fusion and dis-
tribution drive the success of subsequent optimizations, such
as vectorization, tiling and array contraction. The number of
vectorizable or tileable loops is related to the set of statements
that are fused under a common loop. The loop structure can

be seen as resulting from apartitioning of the program, where
the statements in the same class of the partition all share
at least one common outer-loop. We now study the impact
on performance of different ways to partition the program,
highlighting the need for target-specific tuning of the program
partition. Let us consider the example2mm, a kernel involving
a sequence of two matrix multiplicationsD=A.B.C, as shown
in Figure 1.

for (i1 = 0; i1 < N; ++i1)
for (j1 = 0; j1 < N; ++j1) {

R: tmp[i1][j1] = 0;
for (k1 = 0; k1 < N; ++k1)

S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
}

for (i2 = 0; i2 < N; ++i2)
for (j2 = 0; j2 < N; ++j2) {

T: D[i2][j2] = 0;
for (k2 = 0; k2 < N; ++k2)

U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];
}

Fig. 1. Original code:tmp= A.B, D = tmp.C

We now observe that there exist 12 different valid par-
titions for this program, i.e., all possible ways to combine
the textual statementsR, S, T, U provided R is before T,
T is before U , and S is before U . Figure 2 presents the
result of a purely model-driven approach geared towards (a)
minimizing communication and maximizing the data locality
for the full program, and (b) exposing thread-parallelism and
tileable loops [3]. This corresponds to partitioning the program
such that all statements are in the same class:pmaxfuse=
{{R,S,T,U}}. A complex sequence of loop transformations
that includes skewing is needed to implement this partitioning.
We note that for this example and the following, to enhance
readability we omit the pragmas for OpenMP parallelization
and vectorization as well as the tiling loops.

parfor (c0 = 0; c0 < N; c0++) {
for (c1 = 0; c1 < N; c1++) {

R: tmp[c0][c1]=0;
T: D[c0][c1]=0;

for (c6 = 0; c6 < N; c6++)
S: tmp[c0][c1] += A[c0][c6] * B[c6][c1];

parfor (c6 = 0;c6 <= c1; c6++)
U: D[c0][c6] += tmp[c0][c1-c6] * C[c1-c6][c6];

}
for (c1 = N; c1 < 2*N - 1; c1++)
parfor (c6 = c1-N+1; c6 < N; c6++)

U: D[c0][c6] += tmp[c0][c1-c6] * C[c1-c6][c6];
}

Fig. 2. Minimal communication, maximal fusion (pmaxfuse)

On a 4-socket Intel Xeon hexa-core 7450 server (24 cores,
Dunnigton microarchitecture), this transformation leadsto
a 2.4× speedup over Intel’s compiler ICC 11.1 with au-
tomatic parallelization enabled, withN=1024 using double-
precision arithmetic. However, using the partitioningpxeon=
{{R},{S},{T},{U}}, shown in Figure 3, leads to a 3.9×
speedup over the original code, and is the best partitioning
for this machine. This partitioning no longer minimizes com-
munication and synchronization, but on the other hand exposes
inner parallel loops for all statements.

parfor (i1 = 0; i1 < N; ++i1)
parfor (j1 = 0; j1 < N; ++j1)

R: tmp[i1][j1] = 0;
parfor (i1 = 0; i1 < N; ++i1)

for (k1 = 0; k1 < N; ++k1)
parfor (j1 = 0; j1 < N; ++j1)

S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
parfor (i2 = 0; i2 < N; ++i2)

parfor (j2 = 0; j2 < N; ++j2)
T: D[i2][j2] = 0;
parfor (i2 = 0; i2 < N; ++i2)

for (k2 = 0; k2 < N; ++k2)
parfor (j2 = 0; j2 < N; ++j2)

U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];

Fig. 3. Best loop structure for Intel Xeon 7450 with ICC (pxeon)

For a 4-socket AMD Opteron quad-core 8380 server (16
cores, Shanghai microarchitecture), the best partitioning is
popteron= {{R},{T,S},{U}}, and is shown in Figure 4.

parfor (c1 = 0; c1 < N; c1++)
parfor (c2 = 0; c2 < N; c2++)

R: C[c1][c2] = 0;
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N;c3++) {
T: E[c1][c3] = 0;

parfor (c2 = 0; c2 < N;c2++)
S: C[c1][c2] += A[c1][c3] * B[c3][c2];

}
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)

U: E[c1][c2] += C[c1][c3] * D[c3][c2];

Fig. 4. Best loop structure for AMD Opteron with ICC (popteron)

Using the partitioningpopteron on the Intel Xeon performs
20% slower than the partitioning in Figure 3, while usingpxeon

on the AMD Opteron performs 25% slower thanpopteron. To
further study the impact of the partitioning on performance,
we performed a similar analysis on a low-power Intel Atom
230 processor (single-core, 2 hardware threads, Diamondville
microarchitecture). For this case, the best found partitioning
is patom = {{R,T},{S,U}}, for a 10% improvement over
popteronandpxeon, and a 3.5× improvement overpmaxfuse. Data
locality and vectorization dominates on the Atom, leading to
a completely different optimal partitioning.

We summarize these results in Figure 5 where we report the
performance improvement over the original code (Improv.) for
these three architectures, and the performance improvement
over the partitioning with the best average on the three
machines (Variability).

Xeon Opteron Atom
Improv. 3.6× 8.3× 31.3×
Variability 20% 11% 14%

Fig. 5. Performance improvement and variability

The main performance difference between these program
versions is not due to the exploitation of any single hardware
resource; rather, it is because of the complex interaction be-
tween parallelization, vectorization and data cache utilization.
From the point of view of high-level program transformations,
it is the loop nest structure derived from program partitioning

that has the highest impact on performance.
Our approach to program optimization decouples the search

of the program structure from the application of other
performance-enhancing transformations, for example, forlo-
cality improvement and vectorization. The first step of our
optimization process is to compute all valid partitions of
the program statements, such that a class of this partition
corresponds to a set offusible statements: those statements
that share at least one common loop in the target code.
In the second step, for each valid partitioning, we apply
model-driven optimizations individually on each class of the
partition in a systematic fashion. These optimizations may
lead to complex compositions of affine loop transformations
(skewing, interchange, multi-level distribution, fusion, peel-
ing and shifting). Part of the sequence is computed in the
polyhedral abstraction to create outer loop(s) parallel and
permutable when possible, optimizing for data locality; details
are provided in Section V-A. Then, it is further modified in
order to expose parallel inner-loops with a minimal reuse
distance to enable efficient vectorization; this is coveredin
Section V-B.

It is very hard to predict the profitability of a program
partitioning, due to the combinatorial nature of the problem
and due to the very complex and apparently chaotic interaction
among transformations resulting from the selection of a given
partition. This interplay is machine-specific, and to find a
profitable partition for a program we will thus resort to
an iterative, feedback-directed search. On the other hand,
profitability of optimizations such as tiling or vectorization are
easier to assess, typically because they are generally beneficial
if they do not destroy some other properties of the code, such
as thread-level parallelism or data locality. We will thus rely
on performance models to drive these choices.

III. PROGRAM OPTIMIZATION

Most internal representations used in compilers match the
inductive semantics of imperative programs (syntax tree, call
tree, control-flow graph, SSA etc.). In such reduced repre-
sentations of the dynamic execution trace, a statement of a
high-level program occurs only once, even if it is executed
many times (e.g., when enclosed within a loop). This is not
convenient for optimizations that need a granularity of repre-
sentation reflecting dynamicstatement instances. For example,
transformations like loop interchange, fusion or tiling operate
on the execution order of statement instances [6]. In addition,
a rich algebraic structure is required when building complex
compositions of such transformations [1], enabling efficient
heuristics for search space construction and traversal [2].

A. Polyhedral Model

The polyhedral modelis a flexible and expressive repre-
sentation for loop nests with statically predictable control
flow. Loop nests amenable to this algebraic representation are
called static control parts(SCoP) [7], [1], roughly defined
as a set of consecutive statements such that loop bounds and
conditionals involved are affine functions of the enclosingloop

iterators and global variables (constants that are unknownat
compile-time). Relaxation of these constraints based on affine
over-approximations have been proposed recently [8]. While
our optimization scheme is compatible with the recent pro-
posal [8], we limit the presentation in this paper to describing
the representation and optimization of standard SCoPs.

1) Step 1: Representing programs:Program optimization in
a polyhedral model is a three stage process. First, the program
is analyzed to extract its polyhedral representation, including
dependence information and access pattern. For all textual
statements in the program, for exampleR in Figure 1, the
set of its dynamic instances is captured with a set of affine
inequalities. When the statement is enclosed by loop(s), all
iterations of the loop(s) are captured in the iteration domain
of the statement. Considering the2mm kernel in Figure 1, the
iteration domain ofR is:

DR = {(i, j) ∈ Z
2 | 0≤ i < N∧0≤ j < N}.

The iteration domainDR contains only integer vectors (or,
integer points if only one loop encloses the statementR).
The iteration vector~xR is the vector of the surrounding loop
iterators; for R it is (i, j) and takes values inDR. Each
vector in DR corresponds a specific set of values taken by
the surrounding loop iterators (starting from the outermost to
the innermost enclosing loop iterator) whenR is executed.

The sets of statement instances between which there is a
producer-consumer relationship are modeled as equalitiesand
inequalities in adependence polyhedron. This is defined at
the granularity of the array cell. If two instances~xR and~xS

refer to the same array cell and one of these references is a
write, then they are said to be in dependence. Hence, to respect
the program semantics, the transformed program must execute
~xR before~xS. Given two statementsR and S, a dependence
polyhedron, written asDR,S contains all pairs of dependent
instances〈~xR,~xS〉.

Multiple dependence polyhedra may be required to capture
all dependent instances, at least one for each pair of array
references accessing the same array cell (scalars being a
particular case of array). Hence it is possible to have several
dependence polyhedra per pair of textual statements, as some
may contain multiple array references.

2) Step 2: Representing optimizations:The second step in
polyhedral program optimization is to compute a transforma-
tion for the program. Such a transformation captures in a
single step what may typically correspond to a sequence of
several tens of textbook loop transformations [1]. It takesthe
form of a carefully crafted affine multidimensional schedule,
together with (optional) iteration domain or array subscript
transformations. In this work, a given loop nest optimization
is defined by a multidimensional affine schedule. Given a
statementS, we use an affine form on thed enclosing loop
iterators~xS and p program parameters~n. It is written

ΘS(~xS) =







θ1,1 . . . θ1,d+p+1
...

...
θm,1 . . . θm,d+p+1






.





~xS

~n
1





where ΘS is a matrix of non-negative integer constants. A
schedule is a function which associates a logical execution
date (a timestamp) to each instances of a given statement.
In the case of multidimensional schedules (m > 1 in the
above), this timestamp is a vector. In the target program,
statement instances will be executed according to the increas-
ing lexicographic order of their timestamp. To construct a
full program optimization, we build a collection of schedules
Θ = {ΘS1, . . . ,ΘSn} such that for all dependent instances
the producer instance is scheduled before the consumer one.
Note that every static control program has a multidimensional
affine schedule [9], and that any loop transformation can be
represented in the polyhedral representation [6].

We limit the coefficients ofΘ to be non-negative, which is a
somewhat narrower definition ofΘ used in general polyhedral
theory. The motivation for this comes from the algorithm we
use to select schedules for tiling: usingθi, j ∈ Z (the set of
all integers) breaks the convexity of the scheduling problem
and requires a combinatorial search [10]. On the other hand,
forcing θi, j ∈ N, we significantly increase the scalability of
the scheduling computation process. The drawback is losing
loop reversal and some combinations of loop skewing from
the search space, however extensive experiments indicate that
is is not an issue for most programs.

Multidimensional polyhedral tiling is applied by modifying
the iteration domain of the statements to be tiled, in conjunc-
tion with further modifications ofΘ [1], [3].

3) Step 3: Applying optimizations:The last step is to gen-
erate a transformed program according to the optimization we
have previously computed. Syntactically correct transformed
code is generated back from the polyhedral representation on
which the optimization has been applied. We use the CLOOG,
a state-of-the-art code generator [11] to perform this task.

B. Combined Iterative and Model-Driven Optimization

In this work, we have organized the task of optimization
and automatic parallelization of a loop nest as an iterative,
feedback-directed search. Each iteration of the search is further
decomposed into two stages:

1) choosing a partition of the program statements, such that
statements inside a given class can share at least one
common loop in the generated code;

2) on each class of this partition, applying a series of
model-driven affine loop transformations: (a) a tiling-
based optimization and parallelization algorithm; (b) a
vectorization-based algorithm.

Our approach differs significantly from previous work using
iterative compilation to search for an affine multidimensional
schedule [2] in that we do not require an empirical search
of the entire set of sequences of transformations. Instead,
we limit the search only to the part for which no robust
performance models have been derived, but rely on well-
understood cost models for the other transformations. We aim
for a substantial reduction of the search space size while still
preserving the ability to explore the most important set of
candidate transformations.

IV. CONSTRUCTINGVALID PARTITIONS

Grouping statements such that those in a given class share
at least one common enclosing loop is a way to abstract
the essence of loop fusion; this general idea also enables
the modeling of loop distribution and code motion. If some
statements in a given class were not fusible, then this partition-
ing would be equivalent to the one where the statements are
distributed: this is a case of duplication in the search space.
Our approach to guarantee that we find the most effective
partitioning is to exhaustively evaluate all of them. It is
important to remove duplicates in the search space to minimize
the time for empirical search.

On the other hand, retaining expressiveness is a major
objective, as we aim to build a search space ofall valid (that
is, semantics-preserving) partitions of the program. To achieve
this goal, we leverage the expressiveness of the polyhedral
representation and its ability to compute arbitrary enabling
transformations (e.g., permutation, skewing, etc.) for fusion.
We first provide a practical definition for fusion of statements
in the polyhedral model in Section IV-A, before discussing
the construction of the search space of all valid partitionsin
Section IV-B.

A. Loop fusion and fusibility of statements

The commonly used (syntactical) approach to loop fusion
requires matching bounds for the loops to be fused; otherwise
prolog and epilog code need to be explicitly generated for
the remaining loop iterations. This problem becomes difficult
when considering imperfectly nested loops with parametric
bounds. However, using a polyhedral abstraction, the process
of generating prolog/epilog code for arbitrary affine loopsis
handled seamlessly by the code generation step. The only task
is to provide a schedule for the program that corresponds to
fusing some statement instances inside a common loop. In
this representation, loop fusion can be seen as the negationof
loop distribution. Two statementsR andSare distributed if all
instances ofRare scheduled to execute before the first (or after
the last) instance ofS. For any other case, there is an overlap
and some instances ofR and S are interleaved. Given a loop
level, we distinguish thestatement interleavingthat describes
R being executed fully before or afterS (no common loop),
from thefine-grain interleavingof statement instances where
R andS share a common loop.

In this paper, we use a stricter definition of fusion in
the polyhedral representation. The cases where only a few
instances are fused and most of the loop iterations end up in
the prolog/epilog parts offer little interest in our framework.
In such cases, the core of the computation remains in the
distributed loops, and since we aim at exploring all distinct
fusion/distribution choices, it is likely that this variant would
offer little difference with the case where statements are fully
distributed. Also, our objective is to directly prune the set of
semantics-preserving transformations from the transformations
(or, schedules) that do not implement the fusion of statements.
Note that checking if given a schedule corresponds to fusing
the statements is higly impractical: it implies the need to

enumerate all possible valid schedules and check this property
in each case. We define the added affine constraints the
schedules must respect in order to implement fusion using
the following fusibility criterion.

Definition 1 (Fusibility of statements):Consider two state-
mentsR,S such thatR is surrounded bydR loops andS by dS

loops. They can sharep common outer loops if∀k∈ {1. . . p},
there exist two semantics-preserving schedulesΘR

k and ΘS
k

such that:

(i) |ΘR
k (~0)−ΘS

k(~0)|< c

(ii)
dR

∑
i=1

θR
k,i > 0,

dS

∑
i=1

θS
k,i > 0

Condition (i) ensures that the number of iterations that are
peeled from the loops is not greater thanc; it implies that
the remaining iterations ofR and S will be fused under a
common loop.1. Since schedule coefficients are restricted to be
non-negative,c is simply the difference between the constant
parametric parts of the schedules. Technically,c is only an
estimate of the number of unfused instances, which serves the
purpose of this paper. Determining the exact number of fused
instances requires one to resort to complex techniques suchas
counting the number of points in parametric polyhedra [13].
Condition (ii) ensures that the schedule rowk has non-null
values for the coefficients attached to the loop iterators, that
is, (ii) ensures thatΘR

k andΘS
k are not constant schedules. This

condition is required to guarantee thatΘR
k and ΘS

k represent
an interleaving of statement instances in the target code, and
not simply a case of statement interleaving.

The only restriction on theΘ coefficients isθi, j ∈ N. Thus
this definition takes into account any composition of loop
interchange, skewing, multidimensional shifting, peeling and
distribution that is required to fuse the statements under a
common outer loop, possibly with prolog and epilog.

To ensure that two statements are fusible, we can build
a Parametric Integer Program [7] with sufficient constraints
for the existence of a semantics-preserving multidimensional
schedule [14], [12], in conjunction with the constraints im-
posed by Definition 1. If this PIP has a solution, then the two
statements are fusible.

B. Modeling program partitioning

Our objective is to model the search space that contains
all possible partitions of a program, such that statements in
the same class can be fused under a common outer loop.
In addition, we also require the class identifier to reflect the
order in which classes are executed, to model code motion.
A general framework for this purpose has been developed
by Pouchet [12] in the context of multi-level partitions using
arbitrary scheduling coefficients. However in the context of the
present work we limit ourselves to the modeling of fusible

1To ensure that this statement holds true in all cases, furtherconstraints to
preprocess the iteration domains are needed [12] They are omitted here for
the sake of clarity and do not impact the applicability of thisdefinition.

statements at the outer loop level only, a restriction of the
general case.

Returning to the2mm example of Figure 3. The partitioning
is popteron= {{R},{T,S},{U}}. We represent this partitioning
using a vector representing thestatement interleavingat the
outer-most loop level. To reason about it, one may associate
an identifieridS to each statementS such that their ordering
encodes exactly the ordering and fusion information for the
outer loop level. Using this notation, one gets forpopteron that
{idR = 0, idS = 1, idT = 1, idU = 2}. This is noted~f =
(

0 1 1 2
)

.
We explicitly make~f exhibit important structural properties

of the transformed loop nest:
1) if fi = f j then the statementsi and j share (at least) 1

common loop;
2) if fi < f j then the statementsi and j do not share any

common loop, andi is executed beforej.
However, intuitively, several choices for~f represent the

same statement interleaving: for example, the transformed
code is invariant to translation of all coefficients, or by
multiplication of all coefficients by a non-negative constant.
Consider the following example, for three statementsR, Sand
T:

~f =
(

0 2 2
)

This ordering defines thatS and T are fused together, and
that R is not and is executed beforeS and T. An equivalent
description is:

~f ′=
(

0 1 1
)

We observe that the number of duplicates using such a
representation grows exponentially with the size of~f . As
a major concern is to prevent duplicates in the space, we
use an internal encoding for this problem such that the
resulting space contains one and exactly one point per distinct
partitioning [12].

The search space is modeled as a convex set of candidate
partitions, defined with affine inequalities. There are several
motivating factors. The set of possible partitions of a program
is extremely large (on the order of 1012 possibilities for 14 ele-
ments [15], with a super-exponential growth), while the space
complexity of our convex set hardly depends on the cardinality
of the set. Also, removing a subset of unwanted partitions
is made tractable as it involves adding affine constraint(s)
to the space, in contrast to other representations that would
require enumerating all elements for elimination. Finally, the
issue of efficiently scanning a search space represented as a
well-formed polytope has been addressed [16], [2], and these
techniques apply directly.

C. Pruning for semantics preservation

Previous research on building a convex search space of
legal affine schedules highlighted the benefits of integrating
the legality criterion directly into the search space, leading
to orders of magnitude smaller search spaces [16], [2]. This
is critical to allow any iterative search method to focus on
relevant candidates only.

To remove all non-valid partitions, we prune the space of
all partitions that do not verify Definition 1 for the state-
ments belonging to the same class. Technically, we use an
algorithm which iterates on possible partitions and eliminates
all invalid candidates based on a graph representation of the
problem [12]. To improve the speed of this algorithm, we also
leverage some critical properties of fusibility. The algorithm
iterates on possible partitions starting from the smallestsize
for the classes of the partition, leveraging that a supersetof
an infusible set is not fusible. We also leverage a reductionof
the problem of the transitivity of fusibility to the computation
of the existence of pairwise compatible loop permutations,
as defined in [12]. In practice this algorithm proved to be
very fast, and for instance computing all semantics-preserving
interleavings at the first dimension takes less than 0.5 second
for the benchmarkludcmp, pruning the set from about 1012

possible partitions to the remaining 8 valid ones.

V. M ODEL-DRIVEN OPTIMIZATIONS

Given a partitioning of the program statements, the second
step is to perform aggressive, model-driven optimizationsthat
respect this partitioning. We first discuss the computation
of a sequence of loop transformations that implements the
partitioning, and produce tiled parallel code when possible in
Section V-A. We then present in Section V-B our approach for
model-driven vectorization in the polyhedral model.

A. Tiling hyperplanes

The first model-driven optimization we consider applies,
individually on each class of the partition, a polyhedral trans-
formation which implements the interleaving of statementsvia
a possibly complex composition of multi-dimensional tiling,
fusion, skewing, interchange, shifting, and peeling. It isknown
as the Tiling Hyperplanes method [10], [3], and werestrict it
to operate locally on each class of the partition.

The tiling hyperplane method has proved to be very ef-
fective in integrating loop tiling into polyhedral transforma-
tion sequences [17], [18], [10]. Bondhugula et al. proposed
an integrated optimization scheme that seeks to maximally
fuse a group of statements, while making the outer loops
permutable [10], [3]. A schedule is computed such that parallel
loops are brought to the outer levels, if possible. This tech-
nique is applied locally on each class, thereby maximizing
parallelism at the level of that class, without disturbing the
outer level partitioning.

1) Legality of tiling: Tiling a loop nest is legal if the loops
to be tiled can be permuted [17]. If the loops are indeed
permutable, then there would be no dependence path going in
and then out of a given tile. This is also known as the Forward
Communication Only [19] property, and can be encoded as an
affine scheduling constraint [17], [10].

Definition 2 (Legality of Tiling):Given two statementsR
and S. Tiling is legal if, for all dimensionsd to be tiled and
for all dependencesDR,S:

ΘS
d (~xS)−ΘR

d (~xR) ≥ 0, 〈xR,xS〉 ∈ DR,S (1)

Definition 2 ensures thatnone of the dependences point
backward along any of the dimensions to be tiled. This is
a stricter condition than simple semantics-preservation.

Schedules are selected such that each dimension is in-
dependent with respect to all others: this leads to a one-
to-one mapping. Rectangular or nearly rectangular blocks
are achieved when possible, avoiding complex loop bounds
required for arbitrarily shaped tiles.

The algorithm proceeds by computing the schedule level by
level, from the outermost to the innermost. At each level, a set
of legal hyperplanes is computed for the statements, according
to the cost model defined in Section V-A2. Dependences
satisfied by these hyperplanes are marked, and another set
is computed for the next level such that the new set is
independent with respect to all previously computed sets, and
so on until all dependences have been marked satisfied. At a
given loop level, if it is not possible to find legal hyperplanes
for all statements, the statements are split [10], resulting in a
loop distribution at the level. We note that from the approach
to construction of valid partitions, this cannot occur at the
outermost loop level.

2) Static cost model:Infinitely many schedules satisfy the
criterion (1) for legality of tiling. As a second objective,
to achieve good temporal locality we seek a schedule that
minimizes the hyperplane distance between dependent iter-
ations [10]. For code with affine dependences, the distance
between dependent iterations can always be bounded by an
affine function of the global parameters~n.

u.~n+w≥ ΘS
d (~xS)−ΘR

d (~xR) 〈~xR,~xS〉 ∈ DR,S (2)

u ∈ N
p,w∈ N

The formu.~n+w is an upper bound on the distance between
all dependent iterations, and thus directly impacts single-thread
locality as well as communication volume in the context of
parallelization. It is thus desirable to seek transformations that
minimize it. The legality and bounding function constraints
from (1) and (2) are formulated as a single Integer Linear
Program. The coefficients ofΘd and those of the bounding
function, i.e.,u, w, are the only unknowns left. A solution is
found to minimize the value ofu andw to obtain the unknown
coefficients ofΘd.

minimize≺ (u,w, . . . ,θd,i , . . .) (3)

For each class of the partition (i.e., each group of fused
statements), several goals are achieved through this cost
model: maximizing coarse-grained parallelism, minimizing
communication and frequency of synchronization, and max-
imizing locality [10]. Since outer permutable bands are ex-
posed, multidimensional tiling can be applied on them. Tiles
can be executed in parallel or with a pipeline-parallel schedule.
In the generated programs, parallelization is obtained by
marking transformed parallel loops with OpenMP pragmas.

3) Profitability of the transformation:The profitability of
the Tiling Hyperplane method is complex to assess in its
general formulation, as it is characterized by the profitability

of loop fusion and the impact on subsequent vectorization. Our
technique has removed the profitability estimate of outer-loop
fusion/distribution, since we empirically evaluate all possible
choices. In addition, we rely on a second stage dedicated to
expose inner loops which are good vectorization candidates.
So the problem of the profitability of the Tiling Hyperplane
is reduced to the effectiveness of maximizing data localityin
a given class, while outer-parallelism and vectorizable loops
are made independent to the problem. Technically, one should
consider the profitability of multi-level statement interleaving
to guarantee that each possible loop structure is evaluatedin
order to find the best one, trading parallelism and locality
at each loop level. However, focusing only on the outer
level carries the most important changes in parallelism and
communication possibilities. In our optimization algorithm,we
chose to systematically apply the tiling hyperplane methodon
each class of the partition.

4) Applying tiling on a transformed loop nest:Tiling a
permutable loop nest is profitable in particular when there is
reuse of data elements within the execution of a tile. Another
criterion to take into account is to preserve enough iterations
at the inner-most loop level to allow for a profitable steady-
state for vector operations within the execution of a tile. Our
extremely simple algorithm to determine the tiling of a loop
nest proceeds as follows:

1) compute the order of magnitude of data reuse in the loop
nest;

2) compute the depth of the loop nest;
3) if there isO(N) reuse within a loop, and the loop nest

depth is greater than 1 then tile the loop nest.
To achieve maximal performance it is expected that tuning

the tile sizes can provide improvement, however the problem
of computing the best tile sizes for a loop nest is beyond the
scope of this paper. In our experiments tile sizes are computed
such that data accessed by each tile roughly fits in the L1
cache.

B. Vectorization

On modern, SIMD-capable architectures, vectorization is a
key for performance. The acceleration factor is a conjunction
of several elements including, but not limited to, the number of
elements packed in a vector and the throughput of the vector
units. Making the most of SIMD units requires to operate with
the two following categories of optimizations:

1) high-level transformations, to expose parallel inner
loops with maximally-aligned, minimally-strided ac-
cesses, which are good candidates for vectorization;

2) low-level transformations, to deal with hardware con-
straints such as realignment, vector packing or vector
instruction selection.

In our framework we rely on the back-end compiler to
producevectorizedcode. A major challenge for production
compilers is to detect and possibly transform the code to
expose good vectorizable loops. They are geared towards
the common case, and must provide extremely fast compi-
lation time. They lack the precision and expressiveness of

description #loops #stmts #refs #deps #part. #valid Variability Pb. Size
2mm Linear algebra (BLAS3) 6 4 8 12 75 12 X 1024x1024
3mm Linear algebra (BLAS3) 9 6 12 19 4683 128 X 1024x1024
adi Stencil (2D) 11 8 36 188 545835 1 1024x1024
atax Linear algebra (BLAS2) 4 4 10 12 75 16 X 8000x8000
bicg Linear algebra (BLAS2) 3 4 10 10 75 26 X 8000x8000
correl Correlation (PCA: StatLib) 5 6 12 14 4683 176 X 500x500
covar Covariance (PCA: StatLib) 7 7 13 26 47293 96 X 500x500
doitgen Linear algebra 5 3 7 8 13 4 128x128x128
gemm Linear algebra (BLAS3) 3 2 6 6 3 2 1024x1024
gemver Linear algebra (BLAS2) 7 4 19 13 75 8 X 8000x8000
gesummv Linear algebra (BLAS2) 2 5 15 17 541 44 X 8000x8000
gramschmidt Matrix normalization 6 7 17 34 47293 1 512x512
jacobi-2d Stencil (2D) 5 2 8 14 3 1 20x1024x1024
lu Matrix decomposition 4 2 7 10 3 1 1024x1024
ludcmp Solver 9 15 40 188 1012 20 X 1024x1024
seidel Stencil (2D) 3 1 10 27 1 1 20x1024x1024

Fig. 6. Summary of the optimization process

the polyhedral framework, implementing instead approximate
techniques. A consequence is that such compilers often fail
to compute a restructuring loop transformation to expose the
best candidate for the inner-most loops; or may even fail to
detect vectorizable loops because of the complexity of the
surrounding tile loop bounds. Moreover, their general-purpose
heuristics may produce unvectorized code when dealing with
complex parametric loop bounds or array access alignments.

Our approach to vectorization leverages recent analytical
modeling results by Trifunovic et al. [20]. We take advantage
of the polyhedral representation to aggressively restructure
the code to expose vectorizable inner loops. Cost analysis
and loop transformations are performed in a very expressive
framework, while deferring to the back-end compiler the task
of performing low-level transformations. In addition we by-
pass the compiler’s high-level vectorization analysis stage by
marking loops with#pragma vector always and #pragma
ivdep, when applicable.

1) The Algorithm: Our algorithm proceeds level-by-level,
from the outer-most loop level to the inner-most. For each
loop at that level, candidates for vectorization are computed
such that: (1) the loop can be moved to the inner-most position
— via a sequence of loop interchanges — while preserving
the semantics; and (2) moving this loop to the inner-most
position does not remove thread-level parallelism. For each
loop in the set of candidates we compute a cost metric based
on the maximal distance (in memory) between data elements
accessed by two consecutive iterations of this loop [20],
considering all statements enclosed in this loop. The algorithm
then moves to the next loop level, until all candidate loops
for vectorization have been annotated with the cost metric.
Loops with the best metric are then sunk inwards to the inner-
most position, with a sequence of permutations captured within
the polyhedral representation. The tiling hyperplane method
guarantees that this sinking operation is always legal: this
seamless coordination of the two methods is a key benefit
of a polyhedral compilation framework. Note that because
of parametric and possibly non-matching loop bounds, this
transformation may result in additional prolog/epilog code
surrounding the loops. This is handled seamlessly in the poly-
hedral representation but would have posed a major challenge

to standard transformation frameworks.
2) Profitability: Combining the approach of Trifunovic et

al. with the tiling hyperplane method leads to a very robust
algorithm: it identifies the most profitable vectorization alter-
native in most cases. Because we do not alter the general code
structure (no subsequent distribution or parallelism removal),
the profitability is only connected to sinking inwards a parallel
loop that accesses data in a more contiguous fashion. When
our algorithm fails at exposing the most profitable inner-
most loop, the chosen loop is extremely likely to be a better
candidate for vectorization than the one it replaces.

VI. EXPERIMENTAL RESULTS

The automatic optimization and parallelization framework
has been implemented in POCC, the Polyhedral Compiler
Collection,2 a complete source-to-source polyhedral compiler
integrating well established free software for polyhedralopti-
mization.

A. Experimental setup

We performed our experiments on two modern multi-core
machines: a 4-socket Intel hex-core Xeon E7450 (Dunnington)
running at 2.4GHz with 64GB of memory (24 cores, 24
hardware threads) and a 4-socket AMD quad-core Opteron
8380 (Shanghai) running at 2.50GHz (16 cores, 16 hardware
threads) with 64GB of memory. We also experimented on a
representative of low-cost computing platforms, an Atom 230
processor running at 1.6GHz with 1GB of memory (1 core, 2
hardware threads). All systems ran Linux 2.6.x. We used ICC
11.1 for the Xeon and Opteron machines, and GCC 4.3.3 for
the Atom. The compilation flags used for the original code
were the same as for the different tested versions; they are
reported in Figure 7.

B. Summary of experiments

Figure 6 presents the main characteristics of our benchmark
suite. We considered 16 benchmarks from the PolyBench test
suite [21]. For most programs, the execution time of the
original code using the specified problem sizes is below 3
seconds. In Figure 6, we report for each benchmark some

2PoCC is available at http://pocc.sourceforge.net

 0

 1

 2

 3

 4

 5

 6

 7

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ I

C
C

 -
pa

ra
lle

l
Performance Improvement - Intel Xeon 7450 (24 threads)

pluto-smartfuse
pocc-maxfuse

pocc-smartfuse
iterative

 0

 1

 2

 3

 4

 5

 6

 7

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ I

C
C

 -
pa

ra
lle

l

Performance Improvement - AMD Opteron 8380 (16 threads)

pluto-smartfuse
pocc-maxfuse

pocc-smartfuse
iterative

 0

 5

 10

 15

 20

 25

 30

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ G

C
C

 4
.3

Performance Improvement - Intel Atom 230 (2 threads)

pluto-smartfuse
pocc-maxfuse

pocc-smartfuse
iterative

Fig. 7. Performance improvement of (a) state-of-the-art smart fusion without dedicated vectorization stage (pluto-smartfuse); (b) two specific partitionings
of our search space: maximal fusion and smart fusion, both with dedicated vectorization stage (pocc-maxfuse and pocc-smartfuse); and (c) the best
found partitioning after empirical search (iterative). Baseline isICC -fast -parallel -openmp for Xeon and Opteron,GCC -O3 -fopenmp -msse3
-march=prescott -mtune=pentium -funroll-loops for Atom.

information on the considered SCoP: (#loops the number of
loops,#stmts the number of statements,#refs the number of
array references,#deps the number of dependence polyhedra).
We report also the number of possible (including invalid)
partitions as#part., and the number of semantics-preserving
partitions #valid to highlight the pruning factor enabled by
our algorithm. We also check the columnVariability each
time we observed a 5% or more difference between the best
versions found for a platform and its execution on the other
platforms, this to emphasize the requirement for a tuning of
the partitioning selection. Finally, we also report the dataset
size used for the benchmarks (Pb. Size).

C. Detailed performance evaluation

The time to compute the space, pick a candidate and
compute a full transformation is negligible with respect tothe
compilation and execution time of the tested versions. In our
experiments, the full optimization process for the 16 presented
benchmarks took less than one hour on the Atom, the slowest
machine. This time is totally dominated by the execution time
of each candidate; had we used a smaller/larger dataset sizes
the optimization time would have decreased/increased.

1) Performance improvement:We report in Figure 7 the
performance improvement of our technique when compared to
the native production compiler with aggressive optimization
flags enabled used as the baseline (performance improve-
ment = 1). To study in a fair fashion the benefit of our
methods, we particularly look at two specific partitionings:

• maxfuse, which corresponds to applying the tiling hyper-
plane method on the full program instead of locally to
each class of the partition;

• smartfuse, which corresponds to a partitioning where
statements that do not share any data reuse are put
in different classes. This is considered the state-of-the-
art [3].

To further emphasize the benefits of our approach, we re-
port the performance improvement of smart fusion when
used without our complementary step for vectorization
(pluto-smartfuse), and with it (pocc-smartfuse). The best
performance improvement found by our combined approach is
reported initerative.

We obtain significant performance improvements over the
native compiler, above 2× better on average for the Xeon
and 2.5× better for the Opteron. For most programs, ICC was
able to automatically parallelize the original code. Still, we ex-
hibit strong improvements, particularly on compute-intensive
kernels such as3mm or correl, up to 8.5× improvement.
For gramschmidt with ICC (for both Xeon and Opteron), our
polyhedral framework results in decreased performance. The
application of tiling increased the complexity of loops and
prevented ICC from performing the same scalar optimizations
done on the original code.

For the case of Atom, we observed that GCC fails in
many situations to utilize both coarse-grain and fine-grain
parallelism in the input code. This leads to very large improve-
ments by our framework: up to 30× for matrix multiplications.
However for the most memory-bound benchmarks such as
atax or bicg, our transformations decreased the performance
by a small factor. There was no benefit in introducing more
complex control to expose parallelism, as the tested Atom has
only a single physical core.

For most benchmarks, smart fusion performs better than
maximal fusion, showing the importance of controlling the
cache pressure and exposing enough inner-parallel loops.
A model-driven approach such asmaxfusewhich looks for
the minimization of synchronizations and maximization of
locality is still likely to provide a performance improvement
over general-purpose heuristics implemented in a production
compiler, as shown in Figure 7. Such examples are shown
for the benchmarks with only one possible partitioning, thus
equivalent to applying maxfuse to the full program. However,
empirical search is needed for 9 out of 16 benchmarks to
obtain the best performance, for a benefit of up to 2× over
smart fusion.

2) Performance portability:The optimal partitioning de-
pends on the program, but is also influenced by the target
machine. This is shown by theVariability column of Table 6.
For 9 of the 11 benchmarks with more than one legal partition-
ing, there exists no partitioning such that when it is executed
on all three machines, it performs within 5% of the optimal
one found for each machine. Increasing the threshold to 10%,

this is still the case for 7 of the 11 benchmarks.
The trade-off between coarse-grain parallelization, locality

and vectorization is very difficult to capture. Using our frame-
work, tuning the trade-off between fusion and distribution
drives the effectiveness of subsequent well-defined cost models
used to transform the code to expose different choices of lo-
cality and parallelization. Our iterative technique automatically
discovers the partitioning with optimal performance, whatever
the specifics of the program, compiler and architecture.

VII. R ELATED WORK

Iterative optimization has proved its effectiveness in pro-
viding performance improvements over a broad range of
architectures and compilation scenarios [22], [23], [24],[25],
[26], [27], [2], [28]. However, none of the previous approaches
attempt to construct program transformation sequences as
complex and as extensive as the ones presented in this pa-
per while pruning the search space to semantics-preserving
candidates only.

Loop fusion heuristics were initially designed as locality-
enhancing optimizations, in isolation from other loop nest
transformations [4], [29], [30], [31]. These non-polyhedral
approach are restricted in their ability to find complex par-
titions, or model the interplay of loop fusion with equally
important optimizations such as loop tiling. The lack of a
powerful representation for dependences and composition of
transformations also restricted the study of enabling loop
transformations to enhance the applicability of loop fusion.

Several heuristics for loop fusion combined with tiling have
been proposed [32], [26], but do not capture the interplay be-
tween loop transformations, back-end optimizations performed
by the compiler, and components of the target architecture.
Megiddo and Sarkar [30] proposed a way to perform fusion for
an existing parallel program by grouping components in a way
that parallelism is not disturbed. Decoupling parallelization
and fusion can miss interesting solutions that would have been
identified if the set of legal fusion choices were directly cast
into the framework.

Darte et al. [33], [34], [35] studied fusion for data-
parallelization, but only in combination with shifting. These
important complexity results have been influential in our
successful selection of a hybrid optimization scheme, focusing
the iterative search on the most combinatorially explosive
optimization — loop fusion — while designing a heuristic
and an analytical profitability model for the other affine
transformations enabling loop tiling and data parallelization.

Recent research on integrating fusion and tiling in a single
heuristic based on the polyhedral model led to the Pluto
framework by Bondhugula et al. [10], [3]. It inherits the
flexibility of the tiling hyperplane method [17], [36] to
build complex sequences of enabling and communication-
minimizing transformations, subsuming most compositionsof
loop transformations into a single optimization step. It does
identify excellent parallelism-locality trade-offs using a target-
independent cost model. However as shown in this paper,
better solutions can be found via empirical search.

Powerful semi-automatic polyhedral frameworks have been
designed as building blocks for compiler construction or (auto-
tuned) library generation systems [37], [38], [1], [39], [40].
They capture partitioning, but neither do they define automatic
iteration schemes nor do they integrate a model-based heuristic
to construct profitable parallelization and tiling strategies. The
polyhedral model creates many more opportunities for the con-
struction of loop nest optimizers and parallelizing compilers. It
is currently being integrated in production compilers, including
GCC 4.5 and the IBM XL compiler.

VIII. C ONCLUSION

This paper addressed the problem of optimizing and par-
allelizing programs automatically, focusing on static control
loop nests. Our approach departs from the traditional best-
effort compiler optimizations, aiming for performance porta-
bility across a variety of shared-memory multiprocessors.We
proposed a combined iterative and model-driven approach,
leveraging a state-of-the-art parallelization method based on
loop tiling, and combining it with a novel feedback-directed
scheme for loop fusion and distribution.

Our technique builds an expressive search space of loop
transformation sequences, expressed in the polyhedral model
as a set of affine scheduling functions. The search space
encompasses complex compositions of loop transformations,
including loop fusion and distribution, loop tiling for paral-
lelism and locality (caches, registers), loop interchange, and
loop shifting (pipelining). We proposed a convex encoding of
all legal transformed program versions as the space to search.

We performed experiments on three different platforms:
a 24-core Xeon, a 16-core Opteron, and a single-core low-
power Atom processor. Our experiments confirm that no single
program version performs equally well on different targets,
with penalties reaching 2× when running the best version for a
given target on a different target. We also consistently demon-
strate strong performance improvements over the state-of-the-
art model-based compilers, with performance improvement
factors up to 8× over Intel’s compiler. In the future, we plan to
study the applicability of machine learning techniques to prune
our hybrid optimization space or predict the performance of
transformed program versions. We will also continue to look
for ways of building an even more expressive space, and
narrowing down the gap with respect to peak performance
on a wide set of benchmarks and target architectures.

ACKNOWLEDGMENT

This work was supported in part by the Defense Advanced
Research Projects Agency through AFRL Contract FA8650-
09-C-7915, the U.S. National Science Foundation through
awards 0926687/0926688, and by the U.S. Army through
contract W911NF-10-1-0004. It was also partly supported by
the European Commission through the FP6 project SARC id.
027648.

REFERENCES

[1] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam, “Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies,”Intl. J. of Parallel
Programming, vol. 34, no. 3, 2006.

[2] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos, “Iterative opti-
mization in the polyhedral model: Part II, multidimensional time,” in
ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI’08). ACM Press, 2008, pp. 90–100.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral program optimization system,” in ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, Jun. 2008.

[4] K. Kennedy and K. McKinley, “Maximizing loop parallelismand
improving data locality via loop fusion and distribution,” in Languages
and Compilers for Parallel Computing, 1993, pp. 301–320.

[5] R. Allen and K. Kennedy,Optimizing Compilers for Modern Architec-
tures. Morgan and Kaufman, 2002.

[6] M. Wolfe, High performance compilers for parallel computing.
Addison-Wesley Publishing Company, 1995.

[7] P. Feautrier, “Parametric integer programming,”RAIRO Recherche
Opérationnelle, vol. 22, no. 3, pp. 243–268, 1988.

[8] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul,
“The polyhedral model is more widely applicable than you think,” in
Proceedings of the International Conference on Compiler Construction
(ETAPS CC’10), ser. LNCS, Paphos, Cyprus, Mar. 2010, pp. 283–303.

[9] P. Feautrier, “Some efficient solutions to the affine scheduling problem,
part II: multidimensional time,”Intl. J. of Parallel Programming, vol. 21,
no. 6, pp. 389–420, Dec. 1992.

[10] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic transformations for
communication-minimized parallelization and locality optimization in
the polyhedral model,” inInternational conference on Compiler Con-
struction (ETAPS CC), Apr. 2008.

[11] C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in IEEE Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT’04), Juan-les-Pins, France, Sep. 2004, pp. 7–16.

[12] L.-N. Pouchet, “Iterative optimization in the polyhedral model,” Ph.D.
dissertation, INRIA Saclay and University of Paris-Sud 11,Jan. 2010.

[13] P. Clauss, “Counting solutions to linear and nonlinearconstraints through
Ehrhart polynomials: applications to analyze and transformscientific
programs,” inIntl. Conf. on Supercomputing, Philadelphia, May 1996,
pp. 278–285.

[14] P. Feautrier, “Some efficient solutions to the affine scheduling problem.
Part II. Multidimensional time,”Int. J. Parallel Program., vol. 21, no. 5,
pp. 389–420, 1992.

[15] N. J. A. Sloane, “Sequence a000670,” The
On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/∼njas/sequences/A000670.

[16] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache, “Iterative
optimization in the polyhedral model: Part I, one-dimensionaltime,”
in Proc. of the IEEE/ACM Fifth Intl. Symp. on Code Generation and
Optimization (CGO’07). IEEE Comp. Soc. press, 2007, pp. 144–156.

[17] F. Irigoin and R. Triolet, “Supernode partitioning,” in ACM SIGPLAN
Principles of Programming Languages, 1988, pp. 319–329.

[18] J. Ramanujam and P. Sadayappan, “Tiling multidimensionaliteration
spaces for multicomputers,”Journal of Parallel and Distributed Com-
puting, vol. 16, no. 2, pp. 108–230, 1992.

[19] M. Griebl, “Automatic parallelization of loop programs for distributed
memory architectures. Habilitation thesis. Facultät für mathematik und
informatik, universiẗat Passau,” 2004.

[20] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen,
“Polyhedral-model guided loop-nest auto-vectorization,”in PACT ’09:
Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 327–337.

[21] “PolyBenchs 1.0,” available at
http://www-rocq.inria.fr/ pouchet/software/polybenchs.

[22] F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, and
E. Rohou, “Iterative compilation in a non-linear optimisation space,”
in W. on Profile and Feedback Directed Compilation, Paris, Oct. 1998.

[23] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly, “Meta
optimization: improving compiler heuristics with machine learning,”
SIGPLAN Not., vol. 38, no. 5, pp. 77–90, 2003.

[24] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” inProc. of the Intl.
Symposium on Code Generation and Optimization (CGO’06), Washing-
ton, 2006, pp. 295–305.

[25] S. Long and G. Fursin, “A heuristic search algorithm based on unified
transformation framework,” inProc. of the 2005 Intl. Conf. on Parallel
Processing Workshops (ICPPW’05). Washington, DC, USA: IEEE
Comp. Soc., 2005, pp. 137–144.

[26] A. Qasem and K. Kennedy, “Profitable loop fusion and tiling using
model-driven empirical search,” inProc. of the 20th Intl. Conf. on
Supercomputing (ICS’06). ACM press, 2006, pp. 249–258.

[27] F. Franchetti, Y. Voronenko, and M. Püschel, “Formal loop merging
for signal transforms,” inProc. of the 2005 ACM SIGPLAN Conf. on
Programming language design and implementation (PLDI’05). ACM,
2005, pp. 315–326.

[28] Y. Voronenko, F. de Mesmay, and M. Püschel, “Computer generation
of general size linear transform libraries,” inIntl. Symp. on Code
Generation and Optimization (CGO’09), Mar. 2009.

[29] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving datalocality
with loop transformations,”ACM Trans. Program. Lang. Syst., vol. 18,
no. 4, pp. 424–453, 1996.

[30] N. Megiddo and V. Sarkar, “Optimal weighted loop fusion for parallel
programs,” in symposium on Parallel Algorithms and Architectures,
1997, pp. 282–291.

[31] S. Singhai and K. McKinley, “A Parameterized Loop FusionAlgorithm
for Improving Parallelism and Cache Locality,”The Computer Journal,
vol. 40, no. 6, pp. 340–355, 1997.

[32] M. Wolf, D. Maydan, and D.-K. Chen, “Combining loop transformations
considering caches and scheduling,” inMICRO 29: Proceedings of the
29th annual ACM/IEEE international symposium on Microarchitecture,
1996, pp. 274–286.

[33] A. Darte, G.-A. Silber, and F. Vivien, “Combining retiming and schedul-
ing techniques for loop parallelization and loop tiling,”Parallel Proc.
Letters, vol. 7, no. 4, pp. 379–392, 1997.

[34] A. Darte, “On the complexity of loop fusion,”Parallel Computing, pp.
149–157, 1999.

[35] A. Darte and G. Huard, “Loop shifting for loop parallelization,” ENS
Lyon, Tech. Rep. RR2000-22, May 2000.

[36] M. Griebl, P. Faber, and C. Lengauer, “Space-time mappingand tiling
– a helpful combination,”Concurrency and Computation: Practice and
Experience, vol. 16, no. 3, pp. 221–246, Mar. 2004.

[37] W. Kelly, “Optimization within a unified transformation framework,”
Department of Computer Science, University of Maryland at College
Park, Tech. Rep. CS-TR-3725, 1996.

[38] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N.Vasilache,
“Facilitating the search for compositions of program transformations,”
in ACM International conference on Supercomputing, Jun. 2005, pp.
151–160.

[39] C. Chen, J. Chame, and M. Hall, “CHiLL: A framework for composing
high-level loop transformations,” U. of Southern California, Tech. Rep.
08-897, 2008.

[40] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A scal-
able autotuning framework for computer optimization,” inIPDPS’09,
Rome, May 2009.

