Combined lterative and Model-driven Optimization
In an Automatic Parallelization Framework

Louis-Nc2l Pouchet Uday Bondhugula
The Ohio State University IBM T.J. Watson Research Center
pouchet @se. ohi o-state. edu ubondhug@s. i bm com
Cédric Bastoul Albert Cohen J. Ramanujam P. Sadayappan
Paris-Sud 11 University INRIA Saclay —lle-de-France Louisiana State University The Ohio State University
cedri c. bast oul @- psud. fr al bert.cohen@nria.fr j xr@ce.|su.edu saday@se. ohi o- st at e. edu

Abstract—Today’s multi-core era places significant demands nately, a purely analytical approach is not sufficient silndg
on an optimizing compiler, which must parallelize programs, difficult to adequately account for several high-impactdas
exploit memory hierarchy, and leverage the ever-increasing g ch as cache conflicts, memory bandwidth and vectorization

SIMD capabilities of modern processors. Existing model-based Itis i tant to adaot th timizati trat t ta
heuristics for performance optimization used in compilers are 't IS Important {0 adapt the optimization strategy fo a targe

limited in their ability to identify profitable parallelism/locality ~ architecture; in addition, it is important to achieve pblta
trade-offs and usually lead to sub-optimal performance. performance, requiring understanding and management of
To address this problem, we distinguish optimizations for the interplay between scalability, locality and synchration
Whlch effectlve_ modgl-based heur!stlcs anq profitability estimates \arhead on different target machines.
exist, from optimizations that require empirical search to achieve
good performance in a portable fashion. We have developed a . .
completely automatic framework in which we focus the empirical To address these challenges, we have designed a combined
search on the set of valid possibilities to perform fusion/code iterative and model-driven scheme for optimization and par
motion, and rely on model-based mechanisms to perform tiling, allelization. It relies on an iterative, feedback-diretexplo-
vectorization and parallelization on the transformed program. ration of loop structure choices, i.e., loop fusion/dtsition

We demonstrate the effectiveness of this approach in terms of . . o . .
strong performance improvements on a single target as well as choices. In turn, each fusion/distribution choice drivesdeil-

performance portability across different target architectures. based algorithms for many other loop transformations hclu
ing loop tiling and vectorization. Portability of performee
|. INTRODUCTION is achieved thanks to iteratively testing different progra

Realizing the high levels of potential performance on cuwersions. In practice, our method found the best version on
rent machines is a very difficult task. One of several apll benchmarks we tested it on. We obtained improvements
proaches to addressing this challenge is to develop compilanging from X to 85x over version produced by ref-
transformations aimed in particular at loops. This requirerence parallelizing compilers using model-based hécsjst
a compiler to be able to apply complex sequences of loapd validated the portability of our approach considering
transformations and effectively model the effect of hamwatwo modern multi-core architectures (Intel Dunnington and
resources and the complex ways in which they interact. ModédiMD Shanghai) as well as a low-power embedded Intel
driven optimization heuristics used in current researc aktom processor. The memory hierarchies and interconnects
production compilers apply a restricted subset of the ptessi of these architectures are very different (e.g., fronedis
program transformations, thereby limiting their effeetiess. vs. point-to-point links). We chose these architectures in
The problem becomes further complicated when one aims fander to demonstrate the potential of our approach to aehiev
performance portability over a broad range of architecture performance portability and to gauge the sensitivity to the

The polyhedral representation of programs enables the exderlying memory hierarchy.
pression of arbitrarily complex sequences of loop tramséor
tions. But the downside to this expressiveness is the extrem The rest of this paper is organized as follows. Section I
difficulty in selecting a good optimization strategy combindescribes the motivation and presents the problem statemen
ing the most important loop transformations, includingdooSection Il recalls the fundamental concepts in polyhedral
tiling, fusion, distribution, interchange, skewing, penation models of compilation. Section IV addresses the constugti
and shifting [1], [2]. It is also hard to analytically captur pruning and traversal of the search space. Section V present
interacting effects of different hardware resources tgkito the model-based optimization algorithms used in our coetbin
account downstream optimization passes. strategy. Section VI evaluates this technique experintignta

The state-of-the-art in tiling and parallelization in thelyp Section VII discusses related work, before the conclusion i
hedral model [3] relies on an analytical approach. Unfortgection VIIl.

(©2010 IEEE Personal use of this material is permitted. Howepamission to reprint/republish this material for advenigsor promotional purposes or for
creating new collective works for resale or redistributionservers or lists, or to reuse any copyrighted componertisfvtork in other works must be
obtained from the IEEE.

SC10 November 2010, New Orleans, Louisiana, USA 978-1- 4588-2/10/$26.00

Il. PROBLEM STATEMENT be seen as resulting frompartitioning of the programwhere

Achieving a high level of performance for a computationd/® Statements in the same class of the partition all share
kernel on a modern multicore architecture requires effectiat 1€ast one common outer-loop. We now study the impact

mapping of the kernel onto the hardware resources that & Performance of different ways to partition the program,
ploits highlighting the need for target-specific tuning of the peog

partition. Let us consider the exam@am, a kernel involving

« thread-level parallelism; . S
b sequence of two matrix multiplicatios= A.B.C, as shown

« the memory hierarchy, including prefetch units, differe

cache levels, memory buses and interconnect; and In Figure 1.

- all available computational units, including SIMD units. for (IL=0 11<N +10)
Because of the very complex interplay among these, translat = foinéi[i11]=“°?1]ii NURAE
ing specific properties on the input code (e.g., the number of for (K1=0; k1< N +KI)
parallel loop iterations) into actual performance metikcs 8) tep[i A [§ 2] += AT A1 (k1] = Bk1][j1];
significant challenge. Considering several high-levelgpam for (12=0; i2<N +2)
transformations that expose the same amount of threatl-leve Cfor (j2=0; j2 <N +2) {

. - . . - T Oiz2[j2 =0

parallelism, determining which of these results in highest for (k2 = 0; k2 < N ++k2)
performance is beyond the reach of optimizing compilergs Th u: ! Di2(j2) += tmp[i2][k2] * qk2][j2]:
is due at least in part to the combined effectiveness of harelw
resources such as the memory hierarchy and the vector units, Fig. 1. Original codetmp—AB, D — tmpC

which can be significantly different on different targets.
To maximize performance, one must carefully explore the We now observe that there exist 12 different valid par-
trade-off between the different levels of parallelism ahd t titions for this program, i.e., all possible ways to combine
usage of the components of local memory. Maximizing dathe textual statement®, S T, U providedR is beforeT,
locality may be detrimental to inner-loop-parallelismdanay T is beforeU, and S is beforeU. Figure 2 presents the
counter the effects of an efficient, well-aligned vectadizeresult of a purely model-driven approach geared towards (a)
inner loop. On the other hand, focusing the optimizatiominimizing communication and maximizing the data locality
towards the most efficient vectorization may require exgessfor the full program, and (b) exposing thread-parallelisnd a
loop distribution, resulting in poor data reuse and thus mayeable loops [3]. This corresponds to partitioning thegram
adversely affect performance. such that all statements are in the same cla®gixfuse=
Key program transformations for a loop nest optimizer ar¢{R,S T,U}}. A complex sequence of loop transformations
. thread-level parallelism extraction, to expose coarsHiat includes skewing is needed to implement this pariitign
grain parallelism and benefit from the different hardwaré/e note that for this example and the following, to enhance
threads available: readability we omit the pragmas for OpenMP parallelization
« loop tiling, to improve the locality of computation andand vectorization as well as the tiling loops.
reduce the number of cache misses;

« SIMD-level parallelism extraction, by forming innermost P e e iy {{
loops which can be effectively vectorized,; 5. tD[WEE)]C?]CE]C% =0;

Most previous efforts have taken a multi-stage, decoupled " for (60 c6<N cbH
approach to choose the optimizations: they first identify a S ettt e poeel L deelters
transformation to expose thread-level parallelism, thgrtd u: DcO][c6] += tnp[cO][cl-c6] * C[cl-c6][c6]:
apply tiling on the resulting code, and finally try to vechari f}or (1= N cl<2N- L cl+)
the output [4], [5]. Recent work by Bondhugula et al. [3] parfor (c6 = cl-Ntl; €6 < N c6++)
integrated the extraction of parallelism and the identiiicaof Uﬁ} Dlco][c6] += tmp[cO][cl-c6] * (cl-c6][ch];
tileable loop nests, but did not take the memory hierarchy in
account when selecting which loops to fuse and to paradigliz Fig. 2. Minimal communication, maximal fusiomaxius)

and did not not consider the effect of these transformations
on SIMD parallelism. As a result of this approach, reuse is On a 4-socket Intel Xeon hexa-core 7450 server (24 cores,
maximized and parallel tiled code is generated, but this cBunnigton microarchitecture), this transformation leads
lead to sub-optimal performance since maximizing localitg 24x speedup over Intel's compiler ICC 11.1 with au-
can disable the vectorization of inner-loops and increasbe& tomatic parallelization enabled, with=1024 using double-
interference conflicts. precision arithmetic. However, using the partitionipgon=
This leads us to the key observation thatp fusion and dis- {{R},{S},{T},{U}}, shown in Figure 3, leads to a9«
tribution drive the success of subsequent optimizationsh s speedup over the original code, and is the best partitioning
as vectorization, tiling and array contractiofhe number of for this machine. This partitioning no longer minimizes com
vectorizable or tileable loops is related to the set of statets munication and synchronization, but on the other hand eegos
that are fused under a common loop. The loop structure caner parallel loops for all statements.

parfor (il =0; il <N ++i1) H H
barfor (11200 j1<N +1) that has the highest impact on performance.

R tnplil][j1] = 0 Our approach to program optimization decouples the search
pa;gf'((killzzof’;killjl\‘;’\'? ;;'1)1) of the program structure from the application of other
parfor (j1=0; j1 <N ++1) performance-enhancing transformations, for example |der
Sparfortmo[zi 1 gJ 1}) ﬁ['ﬂ.[g)l] i cality improvement and vectorization. The first step of our
parfor (j2 =0, j2 <N +42) optimization process is to compute all valid partitions of
T:parfg‘ﬂ 12 o Uh e n e 2 the program statements, such that a class of this partition
for (k2 = 0; k2 < N, ++k2) corresponds to a set dbisible statementshose statements

parfor (j2 =0; j2 <N +42)

U- 0212 = tmig (k) « qKk2lli2: that share at least one common loop in the target code.

In the second step, for each valid partitioning, we apply
Fig. 3. Best loop structure for Intel Xeon 7450 with 1CBxdor) model-driven optimizations individually on each class lo¢ t
partition in a systematic fashion. These optimizations may
lead to complex compositions of affine loop transformations
For a 4-socket AMD Opteron quad-core 8380 server (I6kewing, interchange, multi-level distribution, fusjopeel-
cores, Shanghai microarchitecture), the best partitgpri;mn ing and shifting). Part of the sequence is computed in the

Popteron= {{R},{T,S},{U}}, and is shown in Figure 4. polyhedral abstraction to create outer loop(s) paralled an
permutable when possible, optimizing for data localitytaile
parfor (cl = 0; ¢l <N cl++) are provided in Section V-A. Then, it is further modified in
& paggrﬂ%gglio;&cz <Nz order to expose parallel inner-loops with a minimal reuse
parfor (¢l =0; ¢l <N cl+) distance to enable efficient vectorization; this is coveired
S e Secton VB,
parfor (c2 = 0; c2 < N, c2++) It is very hard to predict the profitability of a program
s) Qeilfez] += Aciffes] * Be3][e2]; partitioning, due to the combinatorial nature of the prable
parfor (cl = 0; cl < N, cl++) and due to the very complex and apparently chaotic intenacti
o o (%2 Zor b O caen) among transformations resulting from the selection of @rgiv
u: Elcl][c2] += Ccl][c3] * D{c3][c2]; partition. This interplay is machine-specific, and to find a
profitable partition for a program we will thus resort to
Fig. 4. Best loop structure for AMD Opteron with IC@cdpteron) an iterative, feedback-directed search. On the other hand,

) o profitability of optimizations such as tiling or vectorizat are
Using the partitioningPopteron 0N the Intel Xeon performs gagjer to assess, typically because they are generallfitiahe

20% slower than the partitioning inOFigure 3, while us@on if they do not destroy some other properties of the code, such
on the AMD Opteron performs 25% slower th@gperon T0 a5 thread-level parallelism or data locality. We will thayr

further study the impact of the partitioning on performance, performance models to drive these choices.
we performed a similar analysis on a low-power Intel Atom

230 processor (single-core, 2 hardware threads, Diambadvi [1l. PROGRAM OPTIMIZATION

microarchitecture). For this case, the best found pamii9 \1ost internal representations used in compilers match the
IS Patom = {{RT},{SU}}, for a 10% improvement over j,qctive semantics of imperative programs (syntax tred, c
Popteron@nd Pxeon and a 35 improvement ovepPmaxiuse Data ree control-flow graph, SSA etc.). In such reduced repre-
locality and vectorization dominates on the Atom, leadiag entations of the dynamic execution trace, a statement of a
a completely different optimal partitioning. high-level program occurs only once, even if it is executed
We summarize these results in Flgu_re.5 where we report W\%ny times (e.g., when enclosed within a loop). This is not
performance improvement over the original cottepfov.) for - onyenient for optimizations that need a granularity ofreep
these three architectures, and the performance improvemgthation reflecting dynamatatement instanceBor example,
over the partitioning with the best average on the thregynsformations like loop interchange, fusion or tilingeaate

machines Variability). on the execution order of statement instances [6]. In aufgiti
a rich algebraic structure is required when building comple

Xeon Opteron Atom et . . .

improv. 36x | 83x | 313x compositions of such transformations [1], enabling effitie

Variabilty | 20% | 11% | 14% heuristics for search space construction and traversal [2]

Fig. 5. Performance improvement and variability
A. Polyhedral Model

The main performance difference between these progranirhe polyhedral modelis a flexible and expressive repre-
versions is not due to the exploitation of any single har@wasentation for loop nests with statically predictable cohtr
resource; rather, it is because of the complex interactmn Hlow. Loop nests amenable to this algebraic representation a
tween parallelization, vectorization and data cachezatiibn. called static control parts(SCoP) [7], [1], roughly defined
From the point of view of high-level program transformason as a set of consecutive statements such that loop bounds and
it is the loop nest structure derived from program partitign conditionals involved are affine functions of the enclodimap

iterators and global variables (constants that are unkrawnwhere ©° is a matrix of non-negative integer constanis
compile-time). Relaxation of these constraints based fineaf schedule is a function which associates a logical execution
over-approximations have been proposed recently [8]. Whiliate (a timestamp) to each instances of a given statement.
our optimization scheme is compatible with the recent prén the case of multidimensional schedulem ¥ 1 in the
posal [8], we limit the presentation in this paper to desngb above), this timestamp is a vector. In the target program,
the representation and optimization of standard SCoPs. statement instances will be executed according to theasere
1) Step 1: Representing programBrogram optimization in ing lexicographic order of their timestamp. To construct a
a polyhedral model is a three stage process. First, the gmogrfull program optimization, we build a collection of scheésil
is analyzed to extract its polyhedral representationuiicly © = {©%,...,©5" such that for all dependent instances
dependence information and access pattern. For all texttls producer instance is scheduled before the consumer one.
statements in the program, for examgtein Figure 1, the Note that every static control program has a multidimeradion
set of its dynamic instances is captured with a set of affirdfine schedule [9], and that any loop transformation can be
inequalities. When the statement is enclosed by loop(s), edbresented in the polyhedral representation [6].
iterations of the loop(s) are captured in the iteration doma We limit the coefficients o® to be non-negative, which is a
of the statement. Considering thenm kernel in Figure 1, the somewhat narrower definition @ used in general polyhedral
iteration domain ofR is: theory. The motivation for this comes from the algorithm we
- . : use to select schedules for tiling: usifg; € Z (the set of
or={(.]) € z? [0<i<NAO<j<N} all integers) breaks the convexity of tfgjscheduling pnoble
The iteration domainpr contains only integer vectors (or,and requires a combinatorial search [10]. On the other hand,
integer points if only one loop encloses the statem@nt forcing 6;j € N, we significantly increase the scalability of
The iteration vectorXg is the vector of the surrounding loopthe scheduling computation process. The drawback is losing
iterators; forR it is (i,j) and takes values inpr. Each loop reversal and some combinations of loop skewing from
vector in DR corresponds a specific set of values taken Bfie search space, however extensive experiments indluate t
the surrounding loop iterators (starting from the outernios is is not an issue for most programs.
the innermost enclosing loop iterator) whBris executed. Multidimensional polyhedral tiling is applied by modifygn
The sets of statement instances between which there igha iteration domain of the statements to be tiled, in canjun
producer-consumer relationship are modeled as equaditids tion with further modifications o® [1], [3].
inequalities in adependence polyhedrofThis is defined at 3) Step 3: Applying optimizationsfhe last step is to gen-
the granularity of the array cell. If two instancgg andXs €rate a transformed program according to the optimizatien w
refer to the same array cell and one of these references iBaye previously computed. Syntactically correct trarmsfet
write, then they are said to be in dependence. Hence, toaesg@de is generated back from the polyhedral representation o
the program semantics, the transformed program must exedihich the optimization has been applied. We use the@OG,
Xr beforeXs. Given two statement® and S, a dependence a state-of-the-art code generator [11] to perform this.task
'Filoslty;necder;;’ \;vr;tten a®rs contains all pairs of dependentB_ Combined lIterative and Model-Driven Optimization
I R, XS)- . . .
Multiple dependence polyhedra may be required to capture!™ this work, we have organized the task of optimization
all dependent instances, at least one for each pair of ar@f}f automatic parallelization of a loop nest as an iterative
references accessing the same array cell (scalars bein{fefPack-directed search. Each iteration of the searchttselr
particular case of array). Hence it is possible to have sévefl€COmMposed into two stages:
dependence polyhedra per pair of textual statements, as somL) choosing a partition of the program statements, such that
may contain multiple array references. statements inside a given class can share at least one
2) Step 2: Representing optimizatioriEhe second step in common loop in the generated code;
polyhedral program optimization is to compute a transferma 2) on each class of this partition, applying a series of
tion for the program. Such a transformation captures in a model-driven affine loop transformations: (a) a tiling-
single step what may typically correspond to a sequence of based optimization and parallelization algorithm; (b) a
several tens of textbook loop transformations [1]. It taktes vectorization-based algorithm.
form of a carefully crafted affine multidimensional schegul Our approach differs significantly from previous work using
together with (optional) iteration domain or array subsiri iterative compilation to search for an affine multidimemsib
transformations. In this work, a given loop nest optimiaati schedule [2] in that we do not require an empirical search
is defined by a multidimensional affine schedule. Given &f the entire set of sequences of transformations. Instead,
statementS, we use an affine form on thé enclosing loop we limit the search only to the part for which no robust
iteratorsXs and p program parameters. It is written performance models have been derived, but rely on well-
understood cost models for the other transformations. Ve ai
s for a substantial reduction of the search space size while st
0°(Xs) = : : A n preserving the ability to explore the most important set of
Bm1 .- Omdiprt 1 candidate transformations.

011 ... Ordypi1 Xs

IV. CONSTRUCTINGVALID PARTITIONS enumerate all possible valid schedules and check this ggope

Grouping statements such that those in a given class shirgfach case. We define the added affine constraints the
at least one common enclosing loop is a way to abstr&ghedules must respect in order to implement fusion using
the essence of loop fusion; this general idea also enabi@§ following fusibility criterion.
the modeling of loop distribution and code motion. If some Definition 1 (Fusibility of statements)Consider two state-
statements in a given class were not fusible, then thistiarti MentsR Ssuch thaR is surrounded bylR loops andS by d®
ing would be equivalent to the one where the statements #€pPs. They can shane common outer loops itk € {1...p},
distributed: this is a case of duplication in the search spadhere exist two semantics-preserving sched@gsand ©F
Our approach to guarantee that we find the most effectigdch that:

partitioning is to exhaustively evaluate all of them. It is (i) ‘95(6)_95(6” <c

important to remove duplicates in the search space to nzeimi R IS

the time for empirical search. (ii) R >0 85 >0
On the other hand, retaining expressiveness is a major i; ol == i; ki

objective, as we aim to build a search spacealbfalid (that Condition (i that th b f iterati that
is, semantics-preserving) partitions of the program. Tiee onl |d|0fn (i) tehnSLl"eS a f numt ertr?' |_ter_a |o|_ns thatare
this goal, we leverage the expressiveness of the polyhe({?hSPe rom the loops IS not greater thanit IMplies tha

representation and its ability to compute arbitrary emapli e remallnmp? ggratmnsh oc? Iand Sﬁ‘_’v'_” tt)e fused tu_n;:iedr tab
transformations (e.g., permutation, skewing, etc.) faidno. common foop.. since schedule coetticients are restricted 1o be

We first provide a practical definition for fusion of statertgen "ON-N€gativec is simply the difference between the constant

in the polyhedral model in Section IV-A, before discussin@"‘ltr_"]‘rn?t”c]c ?r;drts Of;he ?chefduleds._ T?chnlcailya_ohnly an th
the construction of the search space of all valid partitions stimaté of the number of unfused instances, which serees

Section IV-B purpose of this paper. Determining the exact number of fused
’ instances requires one to resort to complex techniquesaaich
A. Loop fusion and fusibility of statements counting the number of points in parametric polyhedra [13].

The commonly used (syntactical) approach to loop fusidrondition (ii) ensures that the schedule rdwhas non-null
requires matching bounds for the loops to be fused; otherwiglues for the coefficients attached to the loop iteratdrat t
prolog and epilog code need to be explicitly generated fé (i) ensures thatBE and@f are not constant schedules. This
the remaining loop iterations. This problem becomes difficucondition is required to guarantee thaf and ©F represent
when considering imperfectly nested loops with parametr@ interleaving of statement instances in the target cault, a
bounds. However, using a polyhedral abstraction, the gmcot simply a case of statement interleaving.
of generating prolog/epilog code for arbitrary affine loogps The only restriction on th® coefficients isf; j € N. Thus
handled seamlessly by the code generation step. The okly ti¥s definition takes into account any composition of loop
is to provide a schedule for the program that correspondsifgéerchange, skewing, multidimensional shifting, pegland
fusing some statement instances inside a common loop.digtribution that is required to fuse the statements under a
this representation, loop fusion can be seen as the negztiogommon outer loop, possibly with prolog and epilog.
loop distribution. Two statemenandS are distributed if all To ensure that two statements are fusible, we can build
instances oR are scheduled to execute before the first (or aftar Parametric Integer Program [7] with sufficient constsaint
the last) instance o®. For any other case, there is an overlafor the existence of a semantics-preserving multidimeraio
and some instances & and S are interleaved. Given a loopschedule [14], [12], in conjunction with the constraints-im
level, we distinguish thestatement interleavinthat describes posed by Definition 1. If this PIP has a solution, then the two
R being executed fully before or aft& (no common loop), statements are fusible.
from thefine-grain interleavingof statement instances where
R and S share a common loop. B. Modeling program partitioning

In this paper, we use a stricter definition of fusion in Our objective is to model the search space that contains

Fhe polyhedral representation. The cases whe_re only a fg]1V possible partitions of a program, such that statememts i
instances are fused and most of the loop iterations end up,n

. o . he same class can be fused under a common outer loop.
the prolog/epilog parts offer little interest in our franmmnk. . : . o
. .. In addition, we also require the class identifier to refleet th
In such cases, the core of the computation remains in the

. . : : ._.order in which classes are executed, to model code motion.
distributed loops, and since we aim at exploring all digtin eneral framework for this purpose has been develoned
fusion/distribution choices, it is likely that this variawould ** 9 burp P

offer little difference with the case where statements atiy f by Eouchet [12] n the cc_m_text of muIt|—Ie\{eI partitions ngi
o L ; arbitrary scheduling coefficients. However in the contéithe
distributed. Also, our objective is to directly prune the eé

semantics-preserving transformations from the transdtions present work we limit ourselves to the modeling of fusible

(or, schedules) that do not implement the fusion of statésnen | _ , _
To ensure that this statement holds true in all cases, fuchestraints to

Note that CheCki_ng if_ givgn E SchedUI? (_:OrrijpondS to fUSiBQaprocess the iteration domains are needed [12] They areednfiere for
the statements is higly impractical: it implies the need tibe sake of clarity and do not impact the applicability of tdéinition.

statements at the outer loop level only, a restriction of the To remove all non-valid partitions, we prune the space of
general case. all partitions that do not verify Definition 1 for the state-
Returning to themm example of Figure 3. The partitioningments belonging to the same class. Technically, we use an

iS Popteron= {{R},{T,S},{U }}. We represent this partitioning algorithm which iterates on possible partitions and elés
using a vector representing tisgatement interleavingit the all invalid candidates based on a graph representationeof th
outer-most loop level. To reason about it, one may associgi@blem [12]. To improve the speed of this algorithm, we also
an identifieridS to each statemers such that their ordering leverage some critical properties of fusibility. The algfun
encodes exactly the ordering and fusion information for theerates on possible partitions starting from the smaléizt
outer loop level. Using this notation, one gets fpteronthat for the classes of the partition, leveraging that a supesbet
{idR=0, idS=1, idT =1, idY = 2}. This is notedf = an infusible set is not fusible. We also leverage a redudation

01 1 2. the problem of the transitivity of fusibility to the comptitan
We explicitly makef exhibit important structural propertiesof the existence of pairwise compatible loop permutations,
of the transformed loop nest: as defined in [12]. In practice this algorithm proved to be
1) if fi = f; then the statemenisand j share (at least) 1 Very fast, and for instance computing all semantics-preésgr
common loop: interleavings at the first dimension takes less th&ns&cond
2) if fi < fj then the statemenisand j do not share any for the benchmarkudcmp, pruning the set from about 19
common loop, and is executed beforg. possible partitions to the remaining 8 valid ones.

However, intuitively, several choices fof represent the
same statement interleaving: for example, the transformed
code is invariant to translation of all coefficients, or by Given a partitioning of the program statements, the second
multiplication of all coefficients by a non-negative comsta Step is to perform aggressive, model-driven optimizatitbrats
Consider the fo”owing examp|e, for three statemdit$ and reSpeCt this partitioning. We first discuss the Computation
T: of a sequence of loop transformations that implements the

f— (0) 2) partitioning, and produce tiled parallel code when possibl

) . . Section V-A. We then present in Section V-B our approach for
This ordering defines the® and T are fused together, andygdel-driven vectorization in the polyhedral model.

that R is not and is executed befoand T. An equivalent
description is: A. Tiling hyperplanes

V. MODEL-DRIVEN OPTIMIZATIONS

fr= (0 1 1) The first model-driven optimization we consider applies,

We observe that the number of duplicates using suchinglividually on each class of the partition, a polyhedrahs-
representation grows exponentially with the size fof As formation which implements the interleaving of statemeifis
a major concern is to prevent duplicates in the space, @ePOSSibly complex composition of multi-dimensional @in
use an internal encoding for this problem such that tdSion. skewing, interchange, shifting, and peeling. knswn
resulting space contains one and exactly one point pendisti@S the Tiling Hyperplanes method [10], [3], and vestrict it
partitioning [12]. to operqt_e locally on each class of the partition

The search space is modeled as a convex set of candidatEne tiling hyperplane method has proved to be very ef-
partitions, defined with affine inequalities. There are salve féctive in integrating loop tiling into polyhedral transfoa-
motivating factors. The set of possible partitions of a pang tion sequences [17], [18], [10]. Bondhugula et al. proposed
is extremely large (on the order of #possibilities for 14 ele- an integrated optimization scheme that seeks to maximally
ments [15], with a super-exponential growth), while thecspafuse a group of statements, while making the outer loops
complexity of our convex set hardly depends on the cardjnaliP€rmutable [10], [3]. A schedule is computed such that fedral
of the set. Also, removing a subset of unwanted partitio#@0PS are brought to the outer levels, if possible. This tech
is made tractable as it involves adding affine constraint(8due is applied locally on each class, thereby maximizing
to the space, in contrast to other representations thatdwvo@prallelism at the level of that class, without disturbig t
require enumerating all elements for elimination. Finalhe Outer level partitioning.
issue of efficiently scanning a search space represented as B Legality of tiling: Tiling a loop nest is legal if the loops

well-formed polytope has been addressed [16], [2], andethe® be tiled can be permuted [17]. If the loops are indeed
techniques apply directly. permutable, then there would be no dependence path going in

. .) and then out of a given tile. This is also known as the Forward
C. Pruning for semantics preservation Communication Only [19] property, and can be encoded as an
Previous research on building a convex search spaceaffine scheduling constraint [17], [10].
legal affine schedules highlighted the benefits of integgati Definition 2 (Legality of Tiling):Given two statement®R
the legality criterion directly into the search space, iegd and S Tiling is legal if, for all dimensionsl to be tiled and
to orders of magnitude smaller search spaces [16], [2]. THis all dependence®rs:
is critical to allow any iterative search method to focus on s R
relevant candidates only. OF (%) —Og (%®) > 0, (Xr,Xs) € Drs 1)

Definition 2 ensures thahone of the dependences pointof loop fusion and the impact on subsequent vectorizatiam. O

backward along any of the dimensions to be tiled. This technique has removed the profitability estimate of oudepl

a stricter condition than simple semantics-preservation. fusion/distribution, since we empirically evaluate allspible
Schedules are selected such that each dimension is dhoices. In addition, we rely on a second stage dedicated to

dependent with respect to all others: this leads to a orgxpose inner loops which are good vectorization candidates

to-one mapping. Rectangular or nearly rectangular block® the problem of the profitability of the Tiling Hyperplane

are achieved when possible, avoiding complex loop bounigsreduced to the effectiveness of maximizing data locafity

required for arbitrarily shaped tiles. a given class, while outer-parallelism and vectorizablgp®
The algorithm proceeds by computing the schedule level Bye made independent to the problem. Technically, one ghoul

level, from the outermost to the innermost. At each levekta sconsider the profitability of multi-level statement intsai/ing

of legal hyperplanes is computed for the statements, airgprdto guarantee that each possible loop structure is evaluated

to the cost model defined in Section V-A2. Dependenc@éder to find the best one, trading parallelism and locality

satisfied by these hyperplanes are marked, and anotherafegach loop level. However, focusing only on the outer

is computed for the next level such that the new set level carries the most important changes in parallelism and

independent with respect to all previously computed sets, acommunication possibilities. In our optimization algbrit, we

so on until all dependences have been marked satisfied. Ath@se to systematically apply the tiling hyperplane methiod

given loop level, if it is not possible to find legal hyperpéan €ach class of the partition.

for all statements, the statements are split [10], resitina 4) Applying tiling on a transformed loop nesfiling a

loop distribution at the level. We note that from the apptoad®ermutable loop nest is profitable in particular when there i
to construction of valid partitions, this cannot occur a¢ threuse of data elements within the execution of a tile. Anothe

outermost loop level. criterion to take into account is to preserve enough itenati

2) Static cost modelinfinitely many schedules satisfy the@t the inner-most loop level to allow for a profitable steady-
criterion (1) for legality of tiling. As a second objective,State for vector operations within the execution of a tilewr O
to achieve good temporal locality we seek a schedule trxtremely simple algorithm to determine the tiling of a loop
minimizes the hyperplane distance between dependent i@¢St proceeds as follows:
ations [10]. For code with affine dependences, the distancel) compute the order of magnitude of data reuse in the loop
between dependent iterations can always be bounded by an nest,

affine function of the global parametefis 2) compute the depth of the loop nest;
s R 3) if there isO(N) reuse within a loop, and the loop nest
u.f+w=> 0 (Xs) —Og (XR) (XR,Xs) € Drs 2 depth is greater than 1 then tile the loop nest.
ue NPweN To achieve maximal performance it is expected that tuning

. . the tile sizes can provide improvement, however the problem
The formu.fi-+wis an upper bound on the distance betweg computing the best tile sizes for a loop nest is beyond the

all dependent iterations, and thus directly impacts shtiglead cope of this paper. In our experiments tile sizes are casoput

Iocallty.as 'weII as commun'|cat|on volume in the context ozuch that data accessed by each tile roughly fits in the L1
parallelization. It is thus desirable to seek transfororatithat cache

minimize it. The legality and bounding function constraint

from (1) and (2) are formulated as a single Integer Line&. Vectorization

Program. The coefficients @y and those of the bounding On modern, SIMD-capable architectures, vectorization is a
function, i.e.,u, w, are the only unknowns left. A solution iskey for performance. The acceleration factor is a conjamncti
found to minimize the value af andw to obtain the unknown of several elements including, but not limited to, the nundfe
coefficients of®q. elements packed in a vector and the throughput of the vector
units. Making the most of SIMD units requires to operate with
the two following categories of optimizations:

For each class of the partition (i.e., each group of fusedl) high-level transformations, to expose parallel inner
statements), several goals are achieved through this cost loops with maximally-aligned, minimally-strided ac-
model: maximizing coarse-grained parallelism, minimigin cesses, which are good candidates for vectorization;
communication and frequency of synchronization, and max-2) low-level transformations, to deal with hardware con-
imizing locality [10]. Since outer permutable bands are ex- straints such as realignment, vector packing or vector
posed, multidimensional tiling can be applied on them.sTile instruction selection.
can be executed in parallel or with a pipeline-parallel scite In our framework we rely on the back-end compiler to
In the generated programs, parallelization is obtained Pyoducevectorizedcode. A major challenge for production
marking transformed parallel loops with OpenMP pragmas.compilers is to detect and possibly transform the code to

3) Profitability of the transformation:The profitability of expose good vectorizable loops. They are geared towards
the Tiling Hyperplane method is complex to assess in itke common case, and must provide extremely fast compi-
general formulation, as it is characterized by the profiitgbi lation time. They lack the precision and expressiveness of

minimizex (u,w,...,8q;,...) 3)

description #loops #stmts #refs #deps #part. #valid Variability Pb. Size
2mm Linear algebra (BLAS3) 6 4 8 12 75 12 v 1024x1024
3mm Linear algebra (BLAS3) 9 6 12 19 4683 128 v 1024x1024
adi Stencil (2D) 11 8 36 188 545835 1 1024x1024
atax Linear algebra (BLAS2) 4 4 10 12 75 16 NV 8000x8000
bicg Linear algebra (BLAS2) 3 4 10 10 75 26 v 8000x8000
correl Correlation (PCA: StatLib) 5 6 12 14 4683 176 v 500x500
covar Covariance (PCA: StatLib) 7 7 13 26 47293 96 v 500x500
doitgen Linear algebra 5 3 7 8 13 4 128x128x128
gemm Linear algebra (BLAS3) 3 2 6 6 3 2 1024x1024
gemver Linear algebra (BLAS2) 7 4 19 13 75 8 v 8000x8000
gesummv Linear algebra (BLAS2) 2 5 15 17 541 44 v 8000x8000
gramschmidt | Matrix normalization 6 7 17 34 47293 1 512x512
jacobi-2d Stencil (2D) 5 2 8 14 3 1 20x1024x1024
lu Matrix decomposition 4 2 7 10 3 1 1024x1024
ludemp Solver 9 15 40 188 102 20 v 1024x1024
seidel Stencil (2D) 3 1 10 27 1 1 20x1024x1024

Fig. 6. Summary of the optimization process

the polyhedral framework, implementing instead approxémato standard transformation frameworks.
techniques. A consequence is that such compilers often fail2) Profitability: Combining the approach of Trifunovic et
to compute a restructuring loop transformation to expose thl. with the tiling hyperplane method leads to a very robust
best candidate for the inner-most loops; or may even fail sdgorithm: it identifies the most profitable vectorizatidtes
detect vectorizable loops because of the complexity of timative in most cases. Because we do not alter the general code
surrounding tile loop bounds. Moreover, their generalppse structure (no subsequent distribution or parallelism neafjo
heuristics may produce unvectorized code when dealing withe profitability is only connected to sinking inwards a pleta
complex parametric loop bounds or array access alignmentsop that accesses data in a more contiguous fashion. When
Our approach to vectorization leverages recent analyticr algorithm fails at exposing the most profitable inner-
modeling results by Trifunovic et al. [20]. We take advamtagnost loop, the chosen loop is extremely likely to be a better
of the polyhedral representation to aggressively restract candidate for vectorization than the one it replaces.
the code to expose vectorizable inner loops. Cost analysis
and loop transformations are performed in a very expressive
framework, while deferring to the back-end compiler thektas The automatic optimization and parallelization framework
of performing low-level transformations. In addition we-byhas been implemented inoC, the Polyhedral Compiler
pass the compiler's high-level vectorization analysigiestay ~Collection? a complete source-to-source polyhedral compiler
marking loops with#pr agma vector al ways and #pr agma inFegr_ating well established free software for polyhednati-
i vdep, when applicable. mization.

1) The Algorithm: Our algorithm proceeds level-by-level, A, Experimental setup
from the outer-most loop level to the inner-most. For each

loop at that level, candidates for vectoriza'tion are Corﬂa(m.n.machines: a 4-socket Intel hex-core Xeon E7450 (Dunnington
such that: (1) the loop can be moved to the inner-most posm?unning at 24GHz with 64GB of memory (24 cores, 24

— via a sequence of loop interchanges — while preserv'%%rdware threads) and a 4-socket AMD quad-core Opteron

o ot oo pucEEED Shangha) rmning G 1 cores 16 e
posItl v vel p ISm. ﬁ%rgads) with 6B of memory. We also experimented on a

VI. EXPERIMENTAL RESULTS

We performed our experiments on two modern multi-core

lc?r??hg rtr:]aexisrﬁglogiz?gr?éiaziens r\rgveer:grm)pll;teefw\?egﬁségsaetgliz r?]aei resentative of low-cost computing platforms, an Ator 23
y cessor running atBGHz with 1GB of memory (1 core, 2

accessed by two consecutive iterations of this loop [zcﬁardware threads). All systems ran Linux 2.6.x. We used ICC

considering all statements enclosed in this loop. The #lgar 11.1 for the Xeon and Opteron machines, and GCC 4.3.3 for

then moves to the next loop level, until all candidate Ioo%e Atom. The compilation flags used for the original code

for vectorization have been annotated with the cost metr{;‘:’.ere the same as for the different tested versions; they are
Loops with the best metric are then sunk inwards to the inn%-ported in Figure 7 '

most position, with a sequence of permutations captureamwit
the polyhedral representation. The tiling hyperplane wethB. Summary of experiments

guarantees that this sinking operation is always legas thi gigyre 6 presents the main characteristics of our benchmark
seamless coordination of the two methods is a key benefffie \We considered 16 benchmarks from the PolyBench test
of a polyheQraI compllqtlon frameworlf. Note that becaus{?euite [21]. For most programs, the execution time of the
of parametric and possibly non-matching loop bounds, thigiginal code using the specified problem sizes is below 3

transformation may result in additional prolog/epilog €0dgeconds. In Figure 6, we report for each benchmark some
surrounding the loops. This is handled seamlessly in thg-pol

hedral representation but would have posed a major chaleng?PoCC is available at http://pocc.sourceforge.net

Performance Improvement - Intel Xeon 7450 (24 threads) Performance Improvement - AMD Opteron 8380 (16 threads) Performance Improvement - Intel Atom 230 (2 threads)

pluto-smartfuse pluto-smartf ~
7 pocc-maxfuse [7 pocc-maxfli 30 pluto-smartfuse =
pocc-smartfus pocc-smartf
T 6 iterative m—m—‘ T 6 iteraf o 25
© © :
= = <
g 5 g 5 0
(w) L‘) o 20
o 4 o 4r 2
= = g 157 i
Q Q |-
g3 g3 : :
: : 5 10 (it
5 2 - % 27 -
o o
L ; 11 - 1t | ’ _ 51
0 i B T O O L G i Ml Al o L1 IE] i Bl i Bl Bl A 1 LE 0 TR |1 Iy i g e S S
< D U, % G . O %, 9% O, G OB b 4y, S, S0 O %, % G . O %O, . O 9. o0 % 4, S S D %, % G B B %%, . G o0 b %, S,
o %, %, 0., 0, %, %, %, %, % S, o %, %, 0, 0, 0, %, %, %0 P S, o %, %, 0, 0, %0,%, CRR S,
2 2% % G %, o B, 2 2 Uy g, Oé\,);’o&/ 2 27 Y % % e, 2 2 % X Oc'\,);%/ NN A 7, o, 7y 20 %, RN Oc'\,)i’o@/
27 8 ks, B N TR % 2 8 S ks
L % S 2 %, o 2 %y o
% % %
% % %

Fig. 7. Performance improvement of (a) state-of-the-art snoafoh without dedicated vectorization stagéut o- snart f use); (b) two specific partitionings
of our search space: maximal fusion and smart fusion, both wétlicdted vectorization stag@o¢c- maxfuse and pocc-snartfuse); and (c) the best
found partitioning after empirical searchtgrative). Baseline isl CC -fast -parallel -opennp for Xeon and Opteron3CC - 33 -fopennp - nsse3
-mar ch=prescott -ntune=pentium-funroll-Ioops for Atom.

information on the considered SCoPHopps the number of We obtain significant performance improvements over the
loops, #stmts the number of statementsrefs the number of native compiler, above 2 better on average for the Xeon
array referencestdeps the number of dependence polyhedrajand 25x better for the Opteron. For most programs, ICC was
We report also the number of possible (including invalidble to automatically parallelize the original code. Stile ex-
partitions as#part., and the number of semantics-preservingibit strong improvements, particularly on compute-irsiga
partitions #valid to highlight the pruning factor enabled bykernels such asmm or correl, up to 85x improvement.
our algorithm. We also check the columvariability each For gramschmidt with ICC (for both Xeon and Opteron), our
time we observed a 5% or more difference between the beslyhedral framework results in decreased performance. Th
versions found for a platform and its execution on the othapplication of tiling increased the complexity of loops and
platforms, this to emphasize the requirement for a tuning pfevented ICC from performing the same scalar optimization
the partitioning selection. Finally, we also report theadat done on the original code.

size used for the benchmarkBsi(Size). For the case of Atom, we observed that GCC fails in
C. Detailed performance evaluation many situations to utilize both coarse-grain and fine-grain
Harallelism in the input code. This leads to very large impro

compute a full transformation is negligible with respecthe ments by our framework: up to 30for marix multiplications.

compilation and execution time of the tested versions. In Obltowevet:. for thetmos; meTory-bdound begctr;]marksf such as
experiments, the full optimization process for the 16 pnesg 22 or bicg, our fransiormations decreased the periormance

benchmarks took less than one hour on the Atom, the slowggta small factor. There was no benefit in introducing more

machine. This time is totally dominated by the executionatimComplex control to expose parallelism, as the tested Atos ha

of each candidate; had we used a smaller/larger datasst s&%ly a single physical core.
the optimization time would have decreased/increased. For most benchmarks, smart fusion performs better than
1) Performance improvemente report in Figure 7 the maximal fusion, showing the importance of controlling the
performance improvement of our technique when comparedaache pressure and exposing enough inner-parallel loops.
the native production compiler with aggressive optimimati A model-driven approach such asaxfusewhich looks for
flags enabled used as the baseline (performance improt#® minimization of synchronizations and maximization of
ment = 1). To study in a fair fashion the benefit of oudocality is still likely to provide a performance improvente
methods, we particularly look at two specific partitionings Over general-purpose heuristics implemented in a proofucti
« maxfusewhich corresponds to applying the tiling hyper€ompiler, as shown in Figure 7. Such examples are shown
plane method on the full program instead of locally téor the benchmarks with only one possible partitioning,sthu
each class of the partition; equivalent to applying maxfuse to the full program. However
. smartfuse which corresponds to a partitioning Wher@mp?rical search is needed for 9 out of_16 benchmarks to
statements that do not share any data reuse are PRfain the best performance, for a benefit of up to @ver
in different classes. This is considered the state-of-thgMart fusion.
art [3]. 2) Performance portability: The optimal partitioning de-
To further emphasize the benefits of our approach, we m@ends on the program, but is also influenced by the target
port the performance improvement of smart fusion whemachine. This is shown by theariability column of Table 6.
used without our complementary step for vectorizatioRor 9 of the 11 benchmarks with more than one legal partition-
(pl ut o-smart fuse), and with it pocc- smart f use). The best ing, there exists no partitioning such that when it is exedut
performance improvement found by our combined approachas all three machines, it performs within 5% of the optimal
reported initerative. one found for each machine. Increasing the threshold to 10%,

The time to compute the space, pick a candidate a

this is still the case for 7 of the 11 benchmarks. Powerful semi-automatic polyhedral frameworks have been

The trade-off between coarse-grain parallelization, ligca designed as building blocks for compiler construction otga
and vectorization is very difficult to capture. Using oumfre= tuned) library generation systems [37], [38], [1], [39]0]4
work, tuning the trade-off between fusion and distributiofhey capture partitioning, but neither do they define autama
drives the effectiveness of subsequent well-defined codefso iteration schemes nor do they integrate a model-baseddtieuri
used to transform the code to expose different choices of lo-construct profitable parallelization and tiling stragsg The
cality and parallelization. Our iterative technique ausbically polyhedral model creates many more opportunities for time co
discovers the partitioning with optimal performance, vevat struction of loop nest optimizers and parallelizing corersl It
the specifics of the program, compiler and architecture. is currently being integrated in production compilers)uiiing

GCC 4.5 and the IBM XL compiler.
VII. RELATED WORK

Iterative optimization has proved its effectiveness in-pro

viding performance improvements over a broad range of

architectures and compilation scenarios [22].’ [23], [42%], This paper addressed the problem of optimizing and par-
[26], [27], [2], [28]. However, none of the previous apprbas allelizing programs automatically, focusing on static ttoh
attempt to_construct program transformation sequences, p nests. Our approach departs from the traditional best-
complex and as extensive as the ones presented in this 5rt compiler optimizations, aiming for performance taor

per while pruning the search space to semantics-preservmﬁ;[y across a variety of shared-memory multiprocessavs.

candidates _only. - I . .. proposed a combined iterative and model-driven approach,
Loop fusion heuristics were initially designed as IocalltyIeveraging a state-of-the-art parallelization methodebasn

enhancing optimizations, in isolation from other loop ne%o et L .
) p tiling, and combining it with a novel feedback-dirette
transformations [4], [29], [30], [31]. These non-polyhaldr scheme for loop fusion and distribution.

approach are restricted in their ability to find complex par- Our technique builds an expressive search space of loop

titions, or model the interplay of loop fusion with equa”ytransformation sequences, expressed in the polyhedratimod

important optimizations such as loop tiling. The lack of @s a set of affine scheduling functions. The search space
powerful representation for dependences and composifion 0 9) P

transformations also restricted the study of enabling lo ghcompasses complex compositions of loop transformations

: U . ?Rcluding loop fusion and distribution, loop tiling for pas
transformations to enhance the applicability of loop fasio lelism and locality (caches, re isters), loon interch |
Several heuristics for loop fusion combined with tiling kav y » €9 X P a

been proposed [32], [26], but do not capture the interplay blgop shifting (pipelining). We proposed a convex encodifig o

tween loop transformations, back-end optimizations perél all legal transformed program versions as the space tolsearc

by the compiler, and components of the target architecture W& Pperformed experiments on three different platforms:

Megiddo and Sarkar [30] proposed a way to perform fusion & 24-core Xeon, a 16-core Opteron, and a single-core low-

an existing parallel program by grouping components in a Wgst;wer Atom processor. Our experiments conflr_m that no single
that parallelism is not disturbed. Decoupling paralidia Program version performs equally well on different targets

and fusion can miss interesting solutions that would haembe/VIth penalties reaching:2 when running the best version for a

identified if the set of legal fusion choices were directiytca 91V€N target on a different target. We also consistently afem
into the framework. strate strong performance improvements over the statleof-
Darte et al. [33], [34], [35] studied fusion for data-2't model-based compilers, Wit_h performance improvement
parallelization, but only in combination with shifting. &be factors up to & over Intel's compller. In_the future_, we plan to
important complexity results have been influential in oﬁtUdythe_ app"_ca_b"'t}’ of machine Iearnllng techniquesnmg
successful selection of a hybrid optimization scheme, gy OUr Nybrid optimization space or predict the performance of
the iterative search on the most combinatorially explosi\}feanSformed program Versions. We will also cqntlnue to look
optimization — loop fusion — while designing a heuristié(Or ways of building an Eveén more Expressive space, and
and an analytical profitability model for the other affind'®"oWINg down the gap with respect to pegk performance
transformations enabling loop tiling and data paralléima on a wide set of benchmarks and target architectures.
Recent research on integrating fusion and tiling in a single
heuristic based on the polyhedral model led to the Pluto ACKNOWLEDGMENT
framework by Bondhugula et al. [10], [3]. It inherits the
flexibility of the tiling hyperplane method [17], [36] to This work was supported in part by the Defense Advanced
build complex sequences of enabling and communicatioResearch Projects Agency through AFRL Contract FA8650-
minimizing transformations, subsuming most compositiohs 09-C-7915, the U.S. National Science Foundation through
loop transformations into a single optimization step. leslo awards 0926687/0926688, and by the U.S. Army through
identify excellent parallelism-locality trade-offs ugia target- contract W911NF-10-1-0004. It was also partly supported by
independent cost model. However as shown in this paptre European Commission through the FP6 project SARC id.
better solutions can be found via empirical search. 027648.

VIII. CONCLUSION

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

REFERENCES

S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parelb. Sigler,
and O. Temam, “Semi-automatic composition of loop transformatio
for deep parallelism and memory hierarchieg;tl. J. of Parallel
Programming vol. 34, no. 3, 2006.

L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazosréttee opti-
mization in the polyhedral model: Part Il, multidimensional tjinie
ACM SIGPLAN Conf. on Programming Language Design and Impl
mentation (PLDI'08) ACM Press, 2008, pp. 90-100.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan
practical automatic polyhedral program optimization systém,ACM [
SIGPLAN Conference on Programming Language Design andekmpl
mentation Jun. 2008.

K. Kennedy and K. McKinley, “Maximizing loop parallelismand
improving data locality via loop fusion and distributionti Languages
and Compilers for Parallel Computind 993, pp. 301-320.

R. Allen and K. KennedyQptimizing Compilers for Modern Architec-
tures Morgan and Kaufman, 2002.

M. Wolfe, High performance compilers for parallel computing
Addison-Wesley Publishing Company, 1995.

r{24

]

2

26]

(27]

(28]

P. Feautrier, “Parametric integer programmind?AIRO Recherche [29]

Opérationnelle vol. 22, no. 3, pp. 243-268, 1988.

M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and Gstd&a,
“The polyhedral model is more widely applicable than you tHink
Proceedings of the International Conference on Compilensdaiction
(ETAPS CC’10)ser. LNCS, Paphos, Cyprus, Mar. 2010, pp. 283-303.

(30]

P. Feautrier, “Some efficient solutions to the affine sctied problem, [31]
part Il: multidimensional time,Intl. J. of Parallel Programmingvol. 21,

no. 6, pp. 389-420, Dec. 1992.

U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Rarjanu (32]

A. Rountev, and P. Sadayappan, “Automatic transformations fo
communication-minimized parallelization and locality optiation in
the polyhedral model,” innternational conference on Compiler Con-
struction (ETAPS CC)Apr. 2008.

C. Bastoul, “Code generation in the polyhedral modelasier than you
think,” in IEEE Intl. Conf. on Parallel Architectures and Compilation
Technigues (PACT'04)Juan-les-Pins, France, Sep. 2004, pp. 7-16.
L.-N. Pouchet, “Iterative optimization in the polyhatirmodel,” Ph.D.
dissertation, INRIA Saclay and University of Paris-Sud J4n. 2010.

P. Clauss, “Counting solutions to linear and nonlinearstraints through [
Ehrhart polynomials: applications to analyze and transfeaientific
programs,” inintl. Conf. on Supercomputind’hiladelphia, May 1996,
pp. 278-285. [
P. Feautrier, “Some efficient solutions to the affine sitiieg problem.
Part Il. Multidimensional time,Int. J. Parallel Program. vol. 21, no. 5,
pp. 389-420, 1992.

N. J. A. Sloane, “Sequence a000670,” The
On-Line Encyclopedia of Integer Sequences,
http://ww. research. att.com ~nj as/ sequences/ AO00670.

L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilachierative
optimization in the polyhedral model: Part I, one-dimensiofie,”

in Proc. of the IEEE/ACM Fifth Intl. Symp. on Code Generatiom an

(33]

[34]
[35]
36]

37]

[38]

(39]

Optimization (CGO’07) IEEE Comp. Soc. press, 2007, pp. 144-156{40]

F. Irigoin and R. Triolet, “Supernode partitioningfi ACM SIGPLAN
Principles of Programming Language$988, pp. 319-329.

J. Ramanujam and P. Sadayappan, “Tiling multidimensidteahtion
spaces for multicomputersJournal of Parallel and Distributed Com-
puting vol. 16, no. 2, pp. 108-230, 1992.

M. Griebl, “Automatic parallelization of loop programsrf distributed
memory architectures. Habilitation thesis. Fa&auftir mathematik und
informatik, universiat Passau,” 2004.

K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and |. Rosen,
“Polyhedral-model guided loop-nest auto-vectorizatian,”PACT '09:
Proceedings of the 2009 18th International Conference orallRd
Architectures and Compilation Techniques Washington, DC, USA:
IEEE Computer Society, 2009, pp. 327-337.

“PolyBenchs 1.0,” available at

http://wwrocq.inria.fr/ pouchet/software/pol ybenchs.

F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O'Bog) and
E. Rohou, “Iterative compilation in a non-linear optimisatispace,”
in W. on Profile and Feedback Directed Compilati¢taris, Oct. 1998.

[23] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. QliRe'Meta

optimization: improving compiler heuristics with machine lgag,”
SIGPLAN Not.vol. 38, no. 5, pp. 77-90, 2003.

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Furdifh, F. P.
O'Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Ugin
machine learning to focus iterative optimization,” Rroc. of the Intl.
Symposium on Code Generation and Optimization (CGQ0&shing-
ton, 2006, pp. 295-305.

S. Long and G. Fursin, “A heuristic search algorithmédzh®n unified
transformation framework,” ifProc. of the 2005 Intl. Conf. on Parallel
Processing Workshops (ICPPW’05) Washington, DC, USA: IEEE
Comp. Soc., 2005, pp. 137-144.

A. Qasem and K. Kennedy, “Profitable loop fusion andngliusing
model-driven empirical search,” ifProc. of the 20th Intl. Conf. on
Supercomputing (ICS'06) ACM press, 2006, pp. 249-258.

F. Franchetti, Y. Voronenko, and M.uBchel, “Formal loop merging
for signal transforms,” inProc. of the 2005 ACM SIGPLAN Conf. on
Programming language design and implementation (PLDI'0OS)CM,
2005, pp. 315-326.

Y. Voronenko, F. de Mesmay, and Misthel, “Computer generation
of general size linear transform libraries,” imtl. Symp. on Code
Generation and Optimization (CGO’09Mar. 2009.

K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving ddtzality
with loop transformations,ACM Trans. Program. Lang. Systol. 18,
no. 4, pp. 424-453, 1996.

N. Megiddo and V. Sarkar, “Optimal weighted loop fusiamr parallel
programs,” in symposium on Parallel Algorithms and Architectyres
1997, pp. 282-291.

S. Singhai and K. McKinley, “A Parameterized Loop Fusiligorithm
for Improving Parallelism and Cache LocalityThe Computer Journal
vol. 40, no. 6, pp. 340-355, 1997.

M. Wolf, D. Maydan, and D.-K. Chen, “Combining loop trdoemations
considering caches and scheduling,"NHCRO 29: Proceedings of the
29th annual ACM/IEEE international symposium on Microatetture
1996, pp. 274-286.

A. Darte, G.-A. Silber, and F. Vivien, “Combining retingrand schedul-
ing techniques for loop parallelization and loop tilindgParallel Proc.
Letters vol. 7, no. 4, pp. 379-392, 1997.

A. Darte, “On the complexity of loop fusionpParallel Computing pp.
149-157, 1999.

A. Darte and G. Huard, “Loop shifting for loop paralledition,” ENS
Lyon, Tech. Rep. RR2000-22, May 2000.

M. Griebl, P. Faber, and C. Lengauer, “Space-time mappimg tiling
— a helpful combination,Concurrency and Computation: Practice and
Experiencevol. 16, no. 3, pp. 221-246, Mar. 2004.

W. Kelly, “Optimization within a unified transformationrdmework,”
Department of Computer Science, University of Maryland atlegel
Park, Tech. Rep. CS-TR-3725, 1996.

A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and/Bsilache,
“Facilitating the search for compositions of program transfations,”
in ACM International conference on Supercomputidgn. 2005, pp.
151-160.

C. Chen, J. Chame, and M. Hall, “CHiLL: A framework for congiog
high-level loop transformations,” U. of Southern Calif@nirech. Rep.
08-897, 2008.

A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingswg “A scal-
able autotuning framework for computer optimization,” lIRDPS’'09
Rome, May 2009.

