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Abstract This paper focusses on topology optimiza-
tion for additive manufacturing. In order to ensure that
the optimized design is immediately manufacturable, it

is essential to take into account the appropriate geomet-
ric constraints during the optimization. Two important
constraints are minimum length scale and maximum
overhang angle. A minimum length scale is needed to

ensure that the condition on minimal printable feature
sizes is satisfied, while an imposed overhang angle elim-
inates the need for a temporary support structure. This

paper first shows that both constraints cannot simulta-
neously be met by a straightforward coupling of exist-
ing methods for length scale and overhang angle con-
trol. Next, a new filtering scheme is introduced, based

on a specific combination of spatial filters, which al-

lows direct control over these constraints in a mini-
mum compliance topology optimization problem. A 2D
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benchmark problem and a complex 3D case study are
presented to demonstrate that the proposed filtering
scheme successfully imposes a target length scale in

both the solid and the void phase of the design domain,
while simultaneously allowing control over the overhang
angle.

Keywords Topology optimization · Additive man-
ufacturing · Length scale control · Overhang angle

control · Manufacturing constraints

1 Introduction

Topology optimization is a numerical, iterative method

for finding the optimal distribution of material inside

a specified design domain [1–3]. In the density based
approach, the design domain is represented using a

density field which takes value 1 at elements where
material is present, and 0 in the void regions. Inter-
mediate densities are also allowed to facilitate the use
of a gradient-based optimization scheme, but they are

penalized in order to obtain a black-and-white solution.

The design’s geometry is usually controlled with the
help of filters. Their function is to avoid checkerboard

patterns [4] and ensure mesh independent solutions [5].
Most filters consist of a spatial averaging operation
where the density of an element is replaced by the

weighted average of its neighboring elements [6, 7].
Such an operation imposes a minimum length scale
on the solid and void phases in the design domain.
These solutions, by definition, possess a significant

part of intermediate densities which have no direct
physical counterpart. A Heaviside projection [8, 9]
is used to guide the design to a black-and-white

solution and to ensure manufacturability. However,
direct length scale control on both phases is lost in
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this process. An alternative filtering strategy proposed
in [10] combines morphological operators originally
developed for image processing [11] and imposes a
target minimum length scale in one of the phases while

ensuring black-and-white solutions. Wang et al. [12]
suggest to use the so-called robust formulation to
ensure control over the length scale in both the solid

and void phase simultaneously. The robust formulation
is computationally expensive as the problem has
to be solved for multiple geometries. For minimum

compliance problems, Lazarov et al. [13] showed that
only a single geometry must be considered, so reducing
the computational cost to the cost of the original
(non-robust) problem. A recent study by Wadbro and

Hägg [14] uses morphological operators to form an
alternative filtering scheme resulting in direct control
over the length scale in both solid and void phase.

Strategies for imposing a minimum length scale using
the level set approach and the moving morphable
components approach are proposed by Allaire et
al. [15] and Zhang et al. [16], respectively.

Topology optimization usually results in very struc-

turally efficient, but complicated shapes that are hard
and expensive to produce using traditional techniques.
Additive manufacturing (AM), a relatively new and

rapidly evolving production technique, eliminates many
of these limitations by building components in a layer-
by-layer fashion using computer guided machines. The

technique allows for a high degree of design freedom

and is capable of producing sophisticated geometries
at only a fraction of the costs for traditional manu-
facturing [17]. Although AM techniques were initially

only viable for rapid prototyping with polymers, recent
improvements, especially in metal-based techniques,
extend their application to end-usable parts [18].

Up to now AM has often been used for the

production of elements designed for traditional manu-
facturing. This is far from cost-effective, and a better
efficiency can be obtained by redesigning these ele-

ments to exploit all advantages of AM [19,20]. Additive
manufacturing is still subjected to a couple of critical
technological constraints, however. The minimum
printable feature size has to be taken into account

and an element often needs a temporary support
structure to remain stable during the production.
Printing and removing support structures is a time

and material consuming process, which decreases
the overall efficiency. Thus, recent research heavily
focuses on eliminating the need for temporary support
structures [21–25] by imposing a maximum overhang

angle. This angle is defined as the maximum allowable

angle between a downward facing element and the

building direction (direction in which the layers are
deposited) for which the element is self-supporting,
and is typically between 40◦ and 50◦ [26, 27].

Gaynor and Guest [23] proposed a method for over-
hang angle control by filtering using a wedge-shaped
support. A different approach is described by Qian et
al. [24], where the level curves of the design are used to
identify the violation of the required overhang angles.
Both methods are based on an additional constraint

which is formulated in terms of a smoothened approxi-
mation of a min/max operator. The error introduced by
this approximation is exploited by the optimization al-

gorithm, resulting in sawtooth patterns with gradually
decreasing densities underneath overhanging surfaces.
To avoid the problems occurring in these strict support

elimination methods, Mirzendehdel and Suresh [28] de-
veloped an optimization framework based on the level
set approach in which a design’s performance is opti-
mized within a maximum support structure constraint.

A recent study by Langelaar [25, 29] proposed a
different approach to the overhang angle constraint

problem. The method uses a spatial filtering technique
to transform a blueprint design to a printable design
in which every element is sufficiently supported. In a
discrete case, where all elements are black or white,

this filter checks the element densities row by row,

starting at the baseplate, and gradually deletes all
elements which are not supported by elements in

the previous row. This technique results in fast and
stable convergence to a printable design and avoids
the aforementioned sawtooth problem by using a filter
instead of adding a constraint function.

Alternative strategies aim at simulating the layer-

by-layer printing process in the formulation of the
optimization problem. Allaire et al. [30, 31] employs
this technique in shape optimization problems, while
Amir and Mass [32] propose a method for incorporat-

ing the construction process in topology optimization
problems. Although the same sawtooth patterns ap-
pear in some shape optimization cases, general results

of both strategies show an important decrease in the
amount of support structure needed.

In this paper, the strategies for length scale control
by Wadbro and Hägg [14] and overhang angle control
by Langelaar [25] are combined to form a new filtering

scheme guaranteeing direct control over both con-
straints simultaneously in the final design. Intuitively,
a simple sequential coupling of both strategies is

expected to provide the required length scale and over-
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hang angle control. However, the effect introduced by
the first filter, length scale or overhang angle control,
will be neutralized by the second filter, which results in
designs with no length scale or overhang angle control.

Based on these results, a new, more complex filtering
scheme is presented which proves capable of correctly
imposing both constraints simultaneously. The new

filtering scheme is composed of several Heaviside
filters combined with the overhang angle control filter
proposed by Langelaar [25]. As a side benefit, the

filtering scheme introduces a controllable fillet radius
for the interior corners of the final design.

This paper starts with a brief recapitulation of the

minimum compliance topology optimization strategy
(section 2). Next, the manufacturability filters used to
control the length scale on both phases of the design and

the maximum overhang angle are described (section 3).
Next, two straightforward combination strategies are
presented and tested and a new filtering scheme is in-
troduced and validated (section 4). Following the 2D

validation of the method, a 3D case study is described
(section 5). Finally, conclusions are provided. The sen-
sitivity analyses of the described filtering strategies are

added as an appendix to this paper.

2 Minimum compliance topology optimization

2.1 Formulation of the optimization problem

In topology optimization, the design domain is divided

in a finite number of elements. Each finite element e is
given a density ρe (zero density for void, unit density
for solid elements) to determine the amount of mate-

rial. The minimum compliance optimization problem
considered in this study is formulated as:

min
ρ

c(ρ) = f
T
u(ρ)

s.t. K(ρ)u(ρ) = f

V (ρ) ≤ V ∗

0 ≤ ρ ≤ 1,

(1)

where u and f are the displacement and force vectors,
respectively. They are related by the equilibrium equa-

tion Ku = f , where K is the stiffness matrix obtained
by the finite element method. The set of constraints in-
cludes box constraints on the design variables, stating
that ρe can only take a value between 0 and 1, and a

volume constraint, stating that the total volume V of
the design must be smaller than the maximum allowed
volume V ∗. The volume V is calculated as:

V (ρ) =

∑N
e=1

ρeve
∑N

e=1
ve

, (2)

where ve represents the volume of element e and N the
total number of elements in the design domain.

This study uses the widely accepted Solid Isotropic

Material with Penalization (SIMP) approach to topol-
ogy optimization [33]. In order to obtain a continuous
optimization problem, all densities ranging from zero

to one are allowed, but intermediate densities are pe-
nalized as they are not desirable in the final design. A
nonlinear relation between an element’s density ρe and

its corresponding stiffness Ee is used for the penaliza-
tion:

Ee(ρe) = Emin + ρpe(E0 − Emin), (3)

where E0 and Emin represent the stiffness of the solid
phase and the void phase of the design, respectively,
and p > 1 is the penalization factor used to ensure
black-and-white solutions, typically p = 3. By using

the element densities ρe as design variables, the opti-
mization process will lead to mesh dependent solutions
and checkerboard patterns [4, 34]. These problems can

be avoided by applying a density filter to the design
variables [6,7]. This spatial filter replaces the density of
an element ρe by the weighted average ρ̃e of its neigh-
boring elements, and is defined as:

ρ̃e =

∑

j∈Ne
hR
ejρj

∑

j∈Ne
hR
ej

, (4)

where hR
ej is the filter kernel with radius R defined as:

hR
ej = max(R− ‖xe − xj‖, 0). (5)

where ‖xe − xj‖ is the center-to-center distance from
element e to j. In equation (4) Ne is the neighborhood
set, or the set of all elements j for which the distance
‖xe − xj‖ is smaller than or equal to the filter radius

R.
The density filter leads to a design with a signifi-

cant number of intermediate densities which have no

direct physical counterpart. To avoid this, a Heaviside
projection is applied to the filtered design allowing for
a strict black-and-white solution [8, 9]. This projection
technique transforms the filtered densities ρ̃e to physi-

cal densities ρ̄e using a Heaviside step function, mean-
ing that all values smaller than a specific threshold η
are projected to 0 and all densities larger than η to

1. Here, the smooth approximation proposed in [12] is
adopted to ensure differentiability:

ρ̄e =
tanh (βη) + tanh (β (ρ̃e − η))

tanh (βη) + tanh (β (1− η))
(6)

The Heaviside parameter β is used to control the
smoothness of the approximation: for β approaching
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zero, the filter tends to a linear projection, while for
β approaching infinity, it corresponds to the exact
Heaviside step function. A continuation scheme is
followed for the Heaviside parameter β in order to

ensure smooth convergence of the optimization: in the
first iteration, a low value for β is used, and in every
subsequent iteration, the value β is multiplied with a

factor slightly greater than 1, until it becomes larger
than or equal to βmax. In this paper, the combination
of a density filter and a Heaviside projection is referred

to as the Heaviside filter.

As every method described in this paper uses a dif-
ferent filtering strategy, a schematic representation of
each strategy used is included in order to retain an

overview. The filtering strategy used in this section pro-
ceeds as follows:

c(ρ̄)

ρ ρ̄

V (ρ̄)

(7)

The design variables ρ in this optimization process
are transformed to element densities ρ̄ by using the

previously described Heaviside filter with a threshold
η equal to 0.5. Both the compliance and volume are
calculated using these filtered element densities.

2.2 Test example

In this subsection, the previously described filtering

method is demonstrated using a 2D benchmark
problem. This problem is used through the rest of the
paper and is therefore only described in this subsection.

The 2D benchmark case, presented in fig. 1,

is a minimum compliance problem with a volume
constraint and consists of the design of a cantilever
beam with length L and height L

2
. The left side of the

domain is clamped and a unit load is applied to the
center of the right side of the beam. The design domain
is discretized using n = 200 × 100 = 20000 square

Q1 finite elements with unit dimensions. A Young’s
modulus E0 = 1 for the solid phase and Emin = 10−9

for the void phase is used, and Poisson’s ratio ν is

set to 0.3. The volume fraction is set to 45% of the
total volume of the design domain. A filter radius R
of 0.015L is used. SIMP interpolation is adopted with
penalization power p = 1 going to pmax = 3 using a

continuation scheme, where p increases with a factor
1.01 in every iteration. A similar continuation scheme

is applied to the Heaviside parameter β, starting
at β0 = 1 and increasing by a factor 1.01 in every
iteration until β ≥ 30. The optimization is performed
using the Method of Moving Asymptotes (MMA) [35].

Convergence is assumed if the maximum change in
element densities between iterations is less than 0.008.
All computations are performed on a MacBook Pro

2015 with a 2.7 GHz Intel Core i5 processor.

Fig. 1: Design domain and boundary conditions for the
cantilever beam.

The design obtained as the solution of optimization

problem (1) is shown in figure 2. The compliance is
equal to c = 1627.

In order to assess the degree to which a black-
and-white design is obtained, the measure of non-

discreteness Mnd is calculated [10]:

Mnd =

∑N
e=1

4ρ̄e (1− ρ̄e)

N
× 100% (8)

For Mnd = 0% the design is perfectly discrete, while

Mnd = 100% corresponds to a solution where all
elements have intermediate densities [10]. For this ex-
ample, the measure of non-discreteness is Mnd = 2.50%.

Fig. 2: Design optimized without length scale or over-

hang angle control, c = 1627, Mnd = 2.50%. The circle
indicates the filter radius R.



Title Suppressed Due to Excessive Length 5

3 Manufacturability filters

3.1 Length scale filter

This subsection describes a strategy based on the ap-
proach by Wadbro and Hägg [14] to provide length scale

control in the solid and the void phase of the design. It
is based on the sequential application of the Heaviside
formulation [37] of the dilate, erode, open and close fil-

ters described by Sigmund [10]. If the threshold η is set
to 0 in the Heaviside projection, all densities ρe larger
than 0 are projected to the solid phase, resulting in a
dilated design ρ̂e. The dilate filter is therefore given by:

ρ̂e =

tanh (βηd) + tanh

(

β

(∑
j∈Ne

hR
ejρj

∑
j∈Ne

hR
ej

− ηd

))

tanh (βηd) + tanh (β (1− ηd))
, (9)

where ηd = 0. If the threshold η is set to 1, all densities
ρe smaller than 1 are projected to the void phase, result-
ing in an eroded design ρ̌e. The erode filter is therefore
given by:

ρ̌e =

tanh (βηe) + tanh

(

β

(∑
j∈Ne

hR
ejρj

∑
j∈Ne

hR
ej

− ηe

))

tanh (βηe) + tanh (β (1− ηe))
, (10)

where ηe = 1. Applying an erode filter after a dilate
filter performs a close operation on the design. This
operation closes all gaps smaller than a specified
radius, thus guaranteeing a minimum length scale in

the void domain. The resulting closed design is denoted
as ˇ̂ρ (note that a piling up of superscripts represents a
composition of filters). The inverse of this operation,

a dilate filter after an erode filter, results in an open
operator. This removes all solid elements smaller than
a specified radius, thus guaranteeing a minimum length
scale in the solid domain. The resulting opened design

is denoted as ˆ̌ρ. Combining both strategies to obtain
open-close/close-open filters has been suggested as a
way to achieve a length scale for both solid and void

phases of the design [10], but this has been proven
false as the second filter neutralizes the effect of the
first filter [37].

Wadbro and Hägg [14] proposed an alternative
strategy based on the same principles. An open and
close filter is applied to the design variables ρ, result-

ing in an opened design ˆ̌ρ and a closed design ˇ̂ρ. The
opened and closed designs are used to calculate the

compliance and volume constraint, respectively:

ˆ̌ρ c(ˆ̌ρ)

ρ

ˇ̂ρ V (ˇ̂ρ)

(11)

An open filter results in a design with a higher compli-
ance value, as it will never add material, while a close
filter results in a design with a higher volume, as it
will never remove material. Using the compliance of the

opened design and the volume of the closed design, a

self penalizing problem is obtained: features that do not
satisfy the target length scale contribute to the volume,

but not to the compliance, and are therefore avoided by
the optimizer.

This approach is applied to the example problem

introduced in subsection 2.2. The optimized design is
shown in figure 3. The compliance is equal to c = 1644
and the measure of non-discreteness is Mnd = 4.50%.

Fig. 3: Design optimized with length scale control; with-

out overhang angle control, c = 1644, Mnd = 4.50%.

3.2 Overhang angle filter

This subsection describes a spatial filtering technique

proposed by Langelaar [25, 29] for controlling the
maximum overhang angle in the topology optimization
process. The basic principles of the method are briefly

reviewed in this paper, for more details the reader is
referred to the original paper [25].

The overhang angle filter proposed by Langelaar
converts a blueprint design ρ̄ to a print-ready design
“̄ρ. In the discrete case, where all elements are black or

white, this filter starts at the baseplate and goes up one
layer at the time, while deleting all elements that are
not supported by the previous layer, i.e. all elements for
which the entire neighborhood Se (figure 4) is void. In

the continuous case, where intermediate densities are
allowed, this is implemented as a layer-by-layer filter
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which changes the density of an element e to the mini-
mum of the density of the considered element e and the
highest density of the elements in its neighborhood Se.

Fig. 4: Definition of the support region Se for an ele-
ment e in the domain.

A maximum operator is used to determine the high-
est density of the supporting elements, while a mini-
mum operator determines the modified density for the

considered element e:

“̄ρe = min
(

ρ̄e, “̄ρSe
)

, (12)

where

“̄ρSe = max
i∈Se

“̄ρi, (13)

and “̄ρi is the density of element i in the support
neighborhood Se.

Smooth approximations of the min and max oper-
ators are introduced to allow for gradient based opti-
mization:

“̄ρe =
1

2

(

ρ̄e + “̄ρSe −
(

(

ρ̄e − “̄ρSe
)2

+ ǫ
)

1
2

+
√
ǫ

)

, (14)

and

“̄ρSe =

(

∑

i∈Se

“̄ρi
q

)1/q

, (15)

The parameters q and ǫ control the accuracy and
smoothness of the approximations; for ǫ → 0 and
q → ∞ the exact min/max operators are obtained.

For the examples in this paper the values q = 40 and
ǫ = 10−4 are used.

It can be noted that, due to the definition of the
overhang filter, the maximum overhang angle is fixed
to 45◦ in all the examples. According to Langelaar [25],
different values for the overhang angle can however be

obtained by changing the aspect ratio of the elements.

The overhang angle filtering scheme can be summa-
rized as follows:

c(“̄ρ)

ρ ρ̄ “̄ρ

V (“̄ρ)

(16)

The design variables ρ are projected to discrete densi-
ties ρ̄, using the Heaviside filter described in section 2.1.
The overhang angle filter is applied to these discrete

densities, resulting in the physical densities “̄ρ. These
physical densities “̄ρ are used to calculate the compli-
ance and volume.

The overhang angle filter is applied to the example
problem assuming a left-to-right building direction with
a maximum allowable overhang angle of 45◦. The op-

timized design with a left-to-right building direction is
shown in figure 5. The compliance is equal to c = 1629
and the measure of non-discreteness is Mnd = 1.40%.

Fig. 5: Design optimized with overhang angle control;
without length scale control, c = 1629, Mnd = 1.40%.

3.3 Verification of manufacturability filters

In order to determine whether the length scale and

overhang angle control are effective and to check the

manufacturability of the optimized design, various
filters are applied to a fully discrete design ρ̄∗. This
design ρ̄∗ is obtained by projecting the optimized

design ρ̄ to a strict black-and-white solution, using a
projection threshold of 0.5.

First, an open filter is used to remove solid features
that do not satisfy the target length scale, resulting in
a design ˆ̄̌ρ∗ with a minimum length scale in the solid

phase. The difference between the optimized design and
the opened design is quantified as follows:

δLS =
1

N

N
∑

e=1

|ρ̄∗e − ˆ̄̌ρ∗e| (17)
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This difference ratio δLS is a measure for the degree
to which the optimized design violates the length scale
constraint for the solid phase. It represents the number
of elements violating the length scale constraint divided

by the total number of elements in the design domain.

Second, a close filter is used in a similar way to

remove features in the void phase that do not satisfy
the target length scale. The resulting design is denoted
as ˇ̄̂ρ∗, and the degree δLV to which the length scale
constraint in the void phase is violated is determined

as follows:

δLV =
1

N

N
∑

e=1

|ρ̄∗e − ˇ̄̂ρ∗e| (18)

Third, the overhang angle is considered. It should
be noted that it is geometrically impossible to simulta-

neously provide length scale control in the void phase

and overhang angle control: as illustrated in figure 6a,
the former will lead to rounded interior corners with a
radius R. At these locations, the overhang angle con-

straint is violated, as a strict enforcement of the con-
straint would lead to crisp corners. However, due to the
viscosity of the printed material used in additive man-

ufacturing, a 3D printer is capable of manufacturing
small bridges as the one shown in figure 6a. In addi-
tion, rounded corners are preferred over crisp corners

to avoid stress concentration problems [36]. Rounding
of interior corners is therefore desirable and should not
affect the measure δOA which is used to quantify the
degree to which the overhang angle constraint is vio-

lated. This measure δOA is therefore determined as fol-
lows. First, a dilate filter with radius Rvoid is applied
to the discretized design ρ̄∗, as illustrated in figure 6b.

This filter does not change the overhang angle, except
at the interior corners, where it converts rounded cor-
ners to crisp corners. Next, the overhang angle filter
proposed by Langelaar [25,29] is used to remove all ele-

ments that would need a temporary support structure,
as illustrated in figure 6c. Finally, an erode filter is ap-
plied to undo the effect of the dilate filter, as illustrated

in figure 6d. The resulting design, illustrated in figure

6d, is denoted as “̂̌ρ̄∗, and the difference with the original

design is quantified as follows:

δOA =
1

N

N
∑

e=1

|ρ̄∗e − “̂̌ρ̄∗e| (19)

In order to visualize the extent to which an opti-
mized design satisfies the length scale and overhang

angle requirements, the fully discrete design ρ̂∗ is
plotted and the elements that violate the requirements

(a) Original design (b) Dilated design

(c) Printable design (d) Eroded design

Fig. 6: Schematic representation of the overhang angle
check.

(and contribute to the difference ratios δLS, δLV, and
δOA) are shown in red. If a requirement is satisfied, the
difference ratio is zero, and no red elements are present.

Figure 7 presents the results of the checks for

the design obtained by using the filtering strategy
described in subsection 2.1. Figures 7b, 7c and 7d
illustrate the calculation of the difference ratios for the

optimized design (fig. 7a). The following values are
obtained: δLV = 1.00%, δLS = 2.05% and δOA = 0.91%
(assuming a left-to-right building direction). These val-

ues are non-zero, which means that this strategy does

not allow obtaining the target minimum length scale
in the solid and void phase of the design. This is due
to the Heaviside projection with a threshold η = 0.5,

which changes the length scale after it is imposed
by the density filter. Although it is possible with the
Heaviside filter to impose the correct length scale in

the solid phase for η = 0 or in the void phase for η = 1,
simultaneous length scale control in both phases is
impossible [10]. The value for the difference ratio δOA

proves that the design is not self-supporting; which is
also illustrated by figure 7d. Since the overhang angle
was not considered in the optimization process, it is
not surprising that a non-zero value is obtained for δOA.

Figure 8 presents the results of the checks for

the design obtained by using the filtering strategy
described in subsection 3.1. The difference ratios
δLS = 0.00%, δLV = 0.00% and δOA = 0.72% of the

design are calculated as illustrated in figures 8b, 8c
and 8d. It can be concluded that this strategy correctly
imposes the target minimum length scale on the solid

and void phase of the design. The non-zero value for
the difference ratio δOA proves that the design is not
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self supporting.

Figure 9 presents the results of the checks for the de-
sign obtained by using the filtering strategy described
in subsection 3.2. The difference ratios δLV = 1.05%,

δLS = 3.40% and δOA = 0.00% of the design are calcu-
lated as illustrated in figures 9b, 9c and 9d. It can be
concluded that the target length scale is not achieved.

4 Combined length scale and overhang angle

control

To achieve a filtering scheme providing both length
scale and overhang angle control, the strategies de-
scribed in sections 3.1 and 3.2 should be combined. Two

straightforward combinations are tested: applying the

overhang angle filter after the length scale filter and
applying the length scale filter after the overhang angle

filter. Both approaches are described and validated in
the following subsection.

4.1 Strategy 1

The first filtering strategy used in this section proceeds
as follows:

ˆ̌ρ “̂
ρ̌ c(“̂

ρ̌)

ρ

ˇ̂ρ “̌
ρ̂ V (“̌

ρ̂)

(20)

The design variables ρ are transformed to discrete
densities ˆ̌ρ and ˇ̂ρ by applying an open and close
filter to the design, respectively. Next, the overhang

angle filter is applied to both designs, resulting in the

physical densities “̂
ρ̌ and “̌

ρ̂. The physical densities “̂
ρ̌

acquired by the open filter are used to calculate the

compliance, while the physical densities “̌
ρ̂ acquired by

the close filter are used to calculate the volume.

The optimized design obtained by this strategy
is shown in figure 10a. The compliance is equal to

c = 1677 and the measure of non-discreteness is
Mnd = 5.50%. The difference ratios δLV = 0.27%,
δLS = 0.57% and δOA = 0.00% of the design are
calculated as illustrated in figures 10b, 10c and 10d. It

can be concluded that the target length scale is not
achieved in the solid and void phase of the design. This
can be explained by the fact that the overhang angle

control filter eliminates the effect of the length scale
control filter. The zero value for the difference ratio

δOA for a left-to-right building direction proves that

the overhang angle control is effective.

4.2 Strategy 2

The second filtering strategy used in this section pro-

ceeds as follows:

ˆ̌
“ρ c(ˆ̌“ρ)

ρ “ρ

ˇ̂
“ρ V (

ˇ̂
“ρ)

(21)

The overhang angle filter is applied to the design

variables ρ to form the supported densities “ρ. An open
and close filter is applied to the supported densities

“ρ, to respectively form the physical densities ˆ̌
“ρ and

ˇ̂
“ρ.

The physical densities ˆ̌
“ρ acquired by the open filter are

used to calculate the compliance, while the physical

densities
ˇ̂
“ρ acquired by the close filter are used to

calculate the volume.

The resulting optimized design with a left-to-right
building direction is shown in figure 11a. The compli-
ance is equal to c = 1664 and the measure of non-

discreteness is Mnd = 6.00%. The difference ratios
δLV = 0.00%, δLS = 0.00% and δOA = 0.00% of the
design are calculated as illustrated in figures 11b, 11c
and 11d. It can be concluded that this strategy cor-

rectly imposes the target minimum length scale on the

solid and void phase of the design. The value for the
difference ratio δOA for a left-to-right building direc-

tion suggests that the overhang angle control is effec-
tive. However, if the same problem is optimized using
a bottom-to-top building direction, very thin and non-

manufacturable support elements emerge, as shown in
figure 12a. The difference ratios δLV = 0.31%, δLS =
0.56% and δOA = 9.44%, presented in figures 12b, 12c
and 12d, demonstrate that the design is not buildable.

These thin support elements are not removed by the
self-penalizing length scale filter, as their presence has
practically no impact on compliance.

The previous examples demonstrate that simultane-
ous length scale and overhang angle control cannot be
achieved by simply combining the existing filters. For

this reason, this paper proposes a third, more complex
strategy.
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(a) Optimized design;
c = 1627, Mnd = 2.50%

(b) Void length scale
check; δLV = 1.00%.

(c) Solid length scale
check; δLS = 2.05%.

(d) Overhang angle
check; δOA = 0.91%.

Fig. 7: Design optimized without length scale or overhang angle control. The circle indicates the filter radius R.

(a) Optimized design;
c = 1644, Mnd = 4.50%

(b) Void length scale
check; δLV = 0.00%.

(c) Solid length scale
check; δLS = 0.00%.

(d) Overhang angle
check; δOA = 0.72%.

Fig. 8: Design optimized with length scale control; without overhang angle control.

(a) Optimized design;
c = 1629, Mnd = 1.40%

(b) Void length scale
check; δLV = 1.05%.

(c) Solid length scale
check; δLS = 3.40%.

(d) Overhang angle
check; δOA = 0.00%.

Fig. 9: Design optimized with overhang angle control; without length scale control.

4.3 Strategy 3

The filtering strategy for combined length scale and

overhang angle control proposed proceeds as follows:

ˆ̂̌
“̌ρ c(

ˆ̂̌
“̌ρ)

ρ ρ̌ “̌ρ “̌̂ρ

ˇ̂
“̌̂ρ V (

ˇ̂
“̌̂ρ)

(22)

This strategy is based on the strategy proposed in sec-
tion 4.2, with two additional filters to avoid the emer-
gence of very thin supporting elements. The main idea

is to insert a dilate filter immediately after the overhang
angle filter to ensure that all support elements become
sufficiently thick. However, the addition of a dilate fil-

ter causes the entire filtering sequence to become non-
volume-preserving, leading to non-smooth convergence

of the optimization process when the Heaviside parame-
ter β is increased. As a solution, an additional erode fil-

ter is introduced immediately before the overhang angle
filter. This leads to the filtering scheme shown above:
first, an erode filter (10) is applied to the design vari-
ables ρ. Next, the overhang angle filter (12) is applied

to the eroded design ρ̌, resulting in a printable design
“̌ρ. To avoid small supporting features, a dilate filter (9)
is applied to the design “̌ρ, resulting in a dilated design

“̌̂ρ. Finally, an open/close filter is applied, resulting in

an opened design
ˆ̂̌
“̌ρ, which is used for the compliance

calculation, and a closed design
ˇ̂
“̌̂ρ, which is used for the

volume calculation.

The resulting optimized design for a left-to-right
building direction is shown in figure 13a. The com-

pliance is equal to c = 1673 and the measure of
non-discreteness is Mnd = 5.50%. The difference ratios
δLV = 0.00%, δLS = 0.00% and δOA = 0.00% of the
design are calculated as illustrated in figures 13b,

13c and 13d. It can be concluded that this strategy
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correctly imposes the target minimum length scale
on the solid and void phase of the design. The value
for the difference ratio δOA for a left-to-right building
direction proves that the overhang angle control is

effective as well.

In order to demonstrate that the issues with the
formation of small support features from section 4.2
are avoided, a bottom-to-top building direction is

considered next. This previously led to small features
which did not satisfy the minimum length scale, as
shown in figure 12a. The resulting optimized design for
an imposed bottom-to-top building direction is shown

in figure 14a. The compliance is equal to c = 2005 and
the measure of non-discreteness is Mnd = 6.50%. This
large increase in compliance is due to the fact that a

large amount of material is needed to build a support
structure that does not contribute to the stiffness
of the design. The difference ratios δLV = 0.00%,
δLS = 0.00% and δOA = 0.00% of the design are

calculated as illustrated in figures 14b, 14c and 14d.
It can be concluded that the target minimum length
scale is satisfied in both the solid and void phase of

the design. The zero value for the difference ratio δOA

proves that the overhang angle control is effective.

To demonstrate the robustness of the proposed
filtering scheme, an extended set of examples has
been studied. The optimized designs are shown in

figure 15, where the length scale Rs (used as the
filter radius for the open filter) in the solid phase
increases from left to right and the length scale Rv

(used as the filter radius for the close filter and the
additional dilate and erode filters) in the void phase
from top to bottom. All tests show near perfect

length scale and overhang angle control with values
of the difference ratios δLV, δLS and δOA around 0.001%.

The examples considered in this section show that
the proposed strategy correctly imposes the target
length scale and overhang angle. The values for the

difference ratios of the previously described filtering
strategies are summarized in table 1. The difference ra-
tios of the strategy 2 and strategy 3 filtering schemes
(described in section 4) represent the examples in which

a bottom-to-top building direction is imposed. As pre-
viously demonstrated, it is noted that only the pro-
posed filtering scheme is capable of controlling both the

length scale and overhang angle simultaneously. Figure
16 shows the convergence history of the optimization
problem for the 4 previously described filtering meth-

ods. The original minimum compliance problem has a
computational cost of t = 0.90 s per iteration and has

Filtering scheme Section δLV[%] δLS[%] δOA[%]

original 2.1 1.00 2.05 0.91
length scale 3.1 0.00 0.00 0.72
overhang angle 3.2 1.05 3.40 0.00
combination 1 4.1 0.27 0.57 0.00
combination 2 4.2 0.31 0.56 9.44
proposed scheme 4.3 0.00 0.00 0.00

Table 1: Summary of difference ratios for all filtering

schemes. Only strategy 3 is capable of controlling both

the length scale and overhang angle simultaneously.

the lowest compliance value of c = 1627. The opti-
mization with an imposed left-to-right building direc-
tion has a computational cost of t = 1.03 s per iter-

ation and a compliance close to the one of the origi-
nal problem, since the final design shows no significant
changes in the topology. The design satisfying the min-

imum length scale has a higher compliance value due to
the added length scale control and a computational cost
of t = 0.985 s per iteration. Adding the length scale and
overhang angle control leads to a design with a slightly

higher compliance value of c = 1673, and a computa-
tional cost of t = 1.15 s per iteration. The initial dip
in the convergence curves is due to the continuation

scheme on the penalization power p, which reaches its
maximum at around 110 iterations. The relatively small
differences in convergence behavior demonstrate that a

large set of sequential filters does not lead to any conver-
gence issues or a significant increase in computational
cost when using MMA as the optimizer.
Langelaar [25] stated that when applying the over-

hang angle filter, approximation errors may lead to the
formation of gradually decreasing densities for added
support features. To avoid these problems, it was pro-

posed to penalize the output of the max operator by
increasing the exponent 1/p in equation 15. This prob-
lem does not occur in the case of the proposed filtering

scheme. The intermediate densities are removed by the
self-penalizing length scale filter, which guides the op-
timization to a black-and-white solution.

5 3D case study

5.1 Problem description

The practical use of the proposed filtering scheme is

demonstrated in this section by considering the design
of a single joint of a large tensegrity structure. This
problem has previously been studied by the engineering
office ARUP, and is documented in [38, 39]. Figure 17

shows the original joint, produced in galvanized steel by
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(a) Optimized design;
c = 1677, Mnd = 5.50%

(b) Void length scale
check; δLV = 0.27%.

(c) Solid length scale
check; δLS = 0.57%.

(d) Overhang angle
check; δOA = 0.00%.

Fig. 10: Design optimized with a strategy 1 filtering scheme.

(a) Optimized design;
c = 1664, Mnd = 6.00%

(b) Void length scale
check; δLV = 0.00%.

(c) Solid length scale
check; δLS = 0.00%.

(d) Overhang angle
check; δOA = 0.00%.

Fig. 11: Design optimized with the strategy 2 filtering scheme and a left-to-right building direction.

(a) Optimized design;
c = 1794, Mnd = 7.90%

(b) Void length scale
check; δLV = 0.31%.

(c) Solid length scale
check; δLS = 0.56%.

(d) Overhang angle check;
δOA = 9.44%.

Fig. 12: Design optimized with the strategy 2 filtering scheme and a bottom-to-top building direction.

welding, compared to the optimized designs, produced

in stainless steel by additive manufacturing.

A tensegrity structure is a special type of structure

where struts and cables balance each other without the
struts ever touching [40]. In this case, the structure con-
sists of around 1200 unique joints where one strut and
a set of cables come together. This justifies the use of

topology optimization and additive manufacturing to
design and produce the joints. The design domain of all
1200 joints is implemented as a parametric design space,

presented in figure 18, where the cable orientations can
vary. After specifying the design domain, topology op-
timization is used to design these joints. When all joints

are designed, they can be manufactured by metal print-
ing.

Technological constraints of additive manufactur-

ing were not accounted for in the optimized joint from
ARUP. A consequence is that all joints need to be post-
processed before manufacturing, which is very time con-

suming and reduces the effectiveness of additive man-
ufacturing. In this paper, the same joint is optimized

taking into account relevant manufacturing constraints,

i.e. overhang angle and minimum length scale.

5.2 Implementation

The joint is optimized using an adapted version of the
C++ framework developed by Aage et al. [41] incorpo-
rating the PETSc libraries for parallel computing [42].

This algorithm has been implemented on the thin node
section of the High Performance Cluster (HPC) of
KU Leuven. This section is equipped with 208 nodes
containing two 10-core "Ivy Bridge" Xeon E5-2680v2

CPUs (2.8 GHz, 25 MB level 3 cache). The nodes are
linked to a QDR Infiniband network, the total memory
capacity of this thin node section is 30 TB and the

total peak performance is about 232 Tflops in double
precision arithmetic.

The design domain of the tensegrity joint is
presented in figure 19. It is a cylinder with a height
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(a) Optimized design;
c = 1673, Mnd = 5.50%

(b) Void length scale
check; δLV = 0.00%.

(c) Solid length scale
check; δLS = 0.00%.

(d) Overhang angle
check; δOA = 0.00%.

Fig. 13: Design optimized with strategy 3 filtering scheme and a left-to-right building direction.

(a) Optimized design;
c = 2005, Mnd = 6.50%

(b) Void length scale
check; δLV = 0.00%.

(c) Solid length scale
check; δLS = 0.00%.

(d) Overhang angle check;
δOA = 0.00%.

Fig. 14: Design optimized with strategy 3 filtering scheme and a bottom-to-top building direction.

of h = 255mm and a diameter of d = 191.25mm.

The boundary conditions consist of a bottom ring for
connection with the strut and six rings to connect the
cables. The bottom ring is clamped. It has a height of

hring = 10mm and a radius rring = 60mm. The tension
force of the cables is divided over the domain of the
six rings with an outer radius router = 25mm and an
inner radius rinner = 11mm. The node is modelled in

a Cartesian coordinate system, with the origin at the
center of the cylinder’s base and the z-axis pointing
upwards. The forces of the cables intersect in a single

point on the centerline of the cylinder at a height
z = 216 mm, so avoiding bending moments in the strut.
The directional components of each force vector are

summarized in table 2. Around every cable centerline,

a cylindrical passive void domain is introduced to save
space for tool access. The rings are modeled using
passive solid elements.

Ring Fx [kN] Fy [kN] Fz [kN]

1 -3.47 81.50 30.35
2 5.85 -44.10 -24.30
3 -15.71 -26.18 -3.69
4 -35.10 -7.56 -39.96
5 -63.29 -17.20 19.26
6 -27.36 8.89 18.12

Table 2: Summary of directional components of forces
acting on each cable ring.

The optimization is performed on a finite element

grid of 256×192×192 = 9437184 cubic Q1 elements us-
ing passive void elements outside the cylindrical design
domain. A Young’s modulus E0 = 180 GPa for the solid

phase and Emin = 10−9 GPa for the void phase is used,
the Poisson’s coefficient is set to 0.3. The compliance of
the joint is minimized for a given amount of material.
The maximum volume fraction is set to 12% of the total

volume. A target filter radius of R = 3mm is used. The
modified SIMP interpolation scheme is adopted with
penalization power p = 1 going to pmax = 3 using a con-

tinuation scheme, where p increases with a factor 1.01
in every iteration. A similar continuation scheme is ap-
plied to the Heaviside parameter β, starting at β0 = 1

and increasing with a factor 1.01 in every iteration until
β ≥ 30. The optimization is performed using the par-
allel implementation of the Method of Moving Asymp-
totes (MMA) provided by Aage et al. [43]. Convergence

is assumed if the maximum change in element densities
between iterations is less than 0.008.

5.3 Results

The results obtained for the 3D optimization problem
of the tensegrity joint are presented in this section.
First, the joint is optimized using the filtering scheme

described in subsection 3.1. Next, overhang angle con-
trol is included assuming a bottom-to-top building di-
rection, according to the filtering scheme described in

subsection 4.3. The section ends with a brief discussion
on the obtained results. The results shown in this sec-
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(a) Rs = 0.01L
Rv = 0.01L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(b) Rs = 0.015L
Rv = 0.01L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(c) Rs = 0.02L
Rv = 0.01L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(d) Rs = 0.01L
Rv = 0.015L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(e) Rs = 0.015L
Rv = 0.015L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(f) Rs = 0.02L
Rv = 0.015L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(g) Rs = 0.01L
Rv = 0.02L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(h) Rs = 0.015L
Rv = 0.02L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

(i) Rs = 0.02L
Rv = 0.02L
δLS = 0.00%
δLV = 0.00%
δOA = 0.00%

Fig. 15: Designs optimized with a strategy 3 filtering
scheme and a left-to-right building direction with dif-

ferent values for Rs and Rv.

tion are rendered, smoothed versions of the final design.
This smoothing operation is performed in Paraview by
interpolating the element densities at the nodes.

Without overhang angle control

The optimized design with length scale control, but
without overhang angle control is shown in figure 20.

The compliance is equal to c = 7.87 × 104 Nm and
the measure of non-discreteness is Mnd = 2.50%. The
difference ratios δLV = 0.00% and δLS = 0.00% demon-

strate that the target length scale is correctly imposed
on both solid and void phase of the design. These ra-
tios are computed considering the active elements only.

The connection elements, bottom ring and cable rings
do not satisfy the required length scale, as they are im-
plemented as passive elements and therefore their den-
sities can not be altered by the optimizer. The non-zero

value for the difference ratio δOA = 8.50% proves that
the design is not self supporting. Since the overhang an-
gle was not imposed during the optimization process, it

is not surprising that such a high value is obtained for
δOA.

Fig. 16: Convergence plots of the solution of the
minimum compliance problem with different filter-
ing strategies; blue: standard minimum compliance
problem. c = 1627 and t = 1.15 s per iteration;
red: imposed minimum length scale. c = 1644
and t = 1.032 s per iteration; yellow: imposed left-

to-right building direction. c = 1629 and t =
0.985 s per iteration; purple: proposed filtering scheme.
c = 1673 and t = 1.15 s per iteration.

Fig. 17: Resulting topology of the tensegrity joint in
three stages of the optimization; (a) traditional joint,
(b) optimized joint with standard cable connections,

and (c) optimized joint with adapted cable connections;
source: [39].

With overhang angle control

The optimized design with length scale control and a
bottom-to-top building direction is shown in figure 21.
The compliance is equal to c = 10.7 × 104 Nm, which
is slightly higher than the previous case due to the ad-

ditional overhang angle control. The measure of non-
discreteness is equal to Mnd = 4.50%. The difference
ratios δLS = 0.00%, δLV = 0.00% and δOA = 0.00%

suggest a correctly imposed length scale and overhang
angle.
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Fig. 18: Parametric design space of the joint to allow

for different configurations; source: [39].

(a) (b)

Fig. 19: Domain and boundary conditions of the tenseg-
rity joint; (a) bottom view; (b) topview.

Fig. 20: Different views of the optimized tensegrity joint
design without overhang angle control control with:
Rsolid = 3mm, Rvoid = 3mm, c = 7.87 × 104 Nm,
Mnd = 2.50%, δLS = 0.00%, δLV = 0.00%, δOA =

8.50%.

5.4 Discussion

The optimized designs show that the proposed strategy
successfully imposes a target length scale and overhang

angle, even for complex 3D designs. The convergence
plots of both optimization processes, presented in figure

Fig. 21: Different views of the optimized tensegrity joint
design with a bottom-to-top building direction with:

Rsolid = 3mm, Rvoid = 3mm, c = 10.7 × 104, Mnd =
4.50%, δLS = 0.00%, δLV = 0.00%, δOA = 0.00%.

22, demonstrate that the added filtering scheme does
not have a significant impact on the convergence speed
and stability of the optimization process. The initial in-

crease of the compliance in the curves is due to the con-
tinuation scheme on the penalization power p, this value
reaches its maximum of p = 3 at around 110 iterations.
After the peak, the convergence plot shows some insta-

bilities in the optimization with overhang angle control.
This can be explained by the continuously increasing
Heaviside parameter; when the design is evolving to

a black-and-white solution, some features that previ-
ously satisfied the minimum length scale will become
too small. Removal of these features by the length scale
control filters results in a compliance jump.

It is noted that the imposed length scale and
overhang angle are not satisfied in the bottom ring

and cable rings, as they are implemented as passive
elements and can not be changed during optimization.
As a consequence, the temporary support structure

can not be completely eliminated in this case, but it
can be reduced to a minimum.

To validate the proposed filtering scheme, the 3D ex-
amples have been checked using an open source printing

software package and a professional software package. If
only geometric limitations of the 3D printer are consid-
ered, the support structure is indeed eliminated (except
underneath the passive elements). This is demonstrated

in figure 23 using a Fused Deposition Modeling test
print in PLA. However, when assuming all limitations
of a 3D metal printer, the amount of support struc-

ture is not reduced as much. This is due to thermal
stresses that are induced during the printing process.
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Fig. 22: Convergence plot of the tensegrity joint; the

blue curve represents the problem without overhang an-
gle control with a final compliance of c = 7, 87 × 104

Nm; the red curve represents the problem with an
imposed building direction with a final compliance of

c = 10, 7× 104 Nm.

These stresses can result in deformations which can de-

stroy the printed element if they are not inhibited by a
sufficient amount of support structure. This means that
only optimizing for geometric constraints, such as over-

hang angles, is just a first step to reduce the amount of
support structure.

Fig. 23: Different views of the printed tensegrity joint

with a bottom-to-top building direction; no additional
support structure has been used.

6 Conclusion

This paper addresses minimum length scale and max-
imum overhang angle control in minimum compliance

topology optimization for additive manufacturing. Sim-
ply combining existing solutions for both individual

problems is not sufficient to control both length scale
and overhang angle simultaneously. Two straightfor-
ward combinations are tested in this paper to demon-
strate this. The first is a minimum length scale filter

followed by a maximum overhang angle filter; the sec-
ond is a maximum overhang angle filter followed by a
minimum length scale filter. In both cases, the second

filter neutralizes the effect of the first, leading to a vio-
lation of one of the requirements. In order to correctly
obtain the desired control, this paper presented a new,

more complex filtering scheme for minimum compliance

problems. The proposed filtering strategy is based on a
maximum overhang angle filter followed by a minimum
length scale filter, where additional erode and dilate fil-

ters are applied before and after the former in order to
avoid that its effect is neutralized by the latter. In addi-
tion, imposing a minimum length scale in the void phase

of the design proved to provide the added advantage
of a controllable maximum fillet radius of the design’s
interior corners. Validation on a 2D benchmark prob-
lem and a complex real life 3D design problem demon-

strated that the filtering strategy successfully provides
length scale and overhang angle control to the opti-
mization process, even if more complex geometries and

non-trivial build directions are considered.
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A Sensitivity analysis

The sensitivity analysis of the different filtering schemes con-
sidered in this paper are elaborated in the following subsec-
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tions, where the derivative of a vector y with respect to a
vector x is denoted as ∂y

∂x
, which represents a matrix where

the (i, j)th elements equals:

[

∂y

∂x

]

ij

=
∂yi

∂xj
(23)

A.1 Minimum compliance topology optimization

The relation between the design variables ρ and the compli-
ance c is given by the filtering scheme in equation (7), the sen-
sitivity ∂c

∂ρ
of the objective function c(ρ) with respect design

variables ρ for minimum compliance topology optimization is
computed by applying the chain rule 2 times:

∂c

∂ρ
=

∂c

∂ρ̄

∂ρ̄

∂ρ̃

∂ρ̃

∂ρ
, (24)

The sensitivity ∂c
∂ρ̄

is computed using the adjoint variable

method:

∂c

∂ρ̄e
= −λT ∂K

∂ρ̄e
u, (25)

where the adjoint variable λ is obtained by by solving
Kλ = f , this results in λ = u for the minimum compliance
problem.

The sensitivity ∂ρ̄

∂ρ̃
of the Heaviside projection, equation

(6), is given by:

∂ρ̄

∂ρ̃
= diag

(

β (sech (β (ρ̃− η)))

tanh (βη) + tanh (β (1− η))

)

(26)

The density filter in equation (4) is a linear operator that can
be expressed as:

ρ̃ = HRρ, (27)

where the coefficient matrix HR consists of elements HR
ij =

hR
ij∑

j∈Ne
hR

ik

, resulting in a sensitivity ∂ρ̃

∂ρ
of:

∂ρ̃

∂ρ
= HR (28)

The sensitivity ∂V
∂ρ

of the constraint function with respect

to the design variables ρ is obtained in a similar way as the
sensitivities of the complaince.

A.2 Length scale control

Following the filtering scheme presented in equation (11), the
sensitivity ∂c

∂ρ
of the objective function c(ρ) with respect to

the design variables ρ for minimum compliance topology op-
timization with length scale control is computed by applying
the chain rule 2 times:

∂c

∂ρ
=

∂c

∂ ˆ̌ρ

∂ ˆ̌ρ

∂ρ̌

∂ρ̌

∂ρ
, (29)

where the sensitivity ∂c

∂ ˆ̌ρ
of the objective function with re-

spect to the design variables ˆ̌ρ is computed using the adjoint
variable method described in equation 25, and

∂ ˆ̌ρ

∂ρ̌
= diag

(

β (sech (β (ρ̌− ηd)))

tanh (βηd) + tanh (β (1− ηd))

)

HR, (30)

∂ρ̌

∂ρ
= diag

(

β (sech (β (ρ− ηe)))

tanh (βηe) + tanh (β (1− ηe))

)

HR (31)

A.3 Overhang angle control

Following the filtering scheme presented in equation (16), the
sensitivity ∂c

∂ρ
of the objective function c(ρ) with respect to

the design variables ρ for minimum compliance topology op-
timization with overhang angle control can be obtained via
direct differentiation by applying the chain rule 2 times:

∂c

∂ρ
=

∂c

∂ “̄ρ

∂ “̄ρ

∂ρ̄

∂ρ̄

∂ρ
, (32)

where ∂ρ̄

∂ρ
is calculated along the same lines as equation (30)

and (31) with a threshold η = 0.5. However, ∂ “̄ρ

∂ρ̄
is a densely

populated matrix, as the design variables “̄ρ in a specific layer
depend on the blueprint densities ρ̄ of all underlying elements.
Alternatively, the sensitivity ∂c

∂ρ
is obtained as:

∂c

∂ρ
=

∂c

∂ρ̄

∂ρ̄

∂ρ
, (33)

where ∂c
∂ρ̄

is efficiently obtained using an adjoint formulation

proposed by Langelaar [25]. Collecting the blueprint densi-
ties of all elements of layer k in a vector ρ̄k and the printed
densities in a vector “̄ρk, the latter can be expressed as:

“̄ρk = s̆k(ρ̄k, “̄ρk−1), (34)

where, for k > 1, the definition of the operator s̆k immediately
follows from equation (14) and (15):

s̆k =
1

2

(

ρ̄k + “̄ρS
k −

(

(

ρ̄k − “̄ρS
k

)2
+ ǫ
) 1

2 +
√
ǫ

)

(35)

For k = 1, s̆k simply returns ρ̄k, so that ∂s̆1

∂ρ̄1
= I and

∂s̆1

∂ “̄ρ0

= 0.

The compliance can now be expressed as:

c̃ = c(“̄ρ(ρ̄)) +

nk
∑

k=1

λT
k (s̆k(ρ̄k, “̄ρk−1)− “̄ρk), (36)

where λk is a vector with Lagrange multipliers. Differenti-
ation of (36) with respect to the design variables ρ̄l results
in:

∂c̃

∂ρ̄l

=

nk
∑

k=1

(

∂c

∂ “̄ρk

∂ “̄ρk

∂ρ̄l

+ . . .

λT
k

(

∂s̆k

∂ρ̄l

+
∂s̆k

∂ “̄ρk−1

∂ “̄ρk−1

∂ρ̄l

−
∂ “̄ρk

∂ρ̄l

)

)

,

(37)

where nk is the number of layers. As printed densities only

depend on blueprint densities in underlying layers, ∂ “̄ρk

∂ρ̄l
= 0
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for k < l, thus, terms in the summations with k < l will dis-
appear. Taking terms with k = l outside of the summations,

and using ∂ “̄ρl

∂ρ̄l
= ∂s̆l

∂ρ̄l
, gives:

∂c̃

∂ρ̄l

=
∂c

∂ “̄ρl

∂ “̄ρl

∂ρ̄l

+ . . .

nk
∑

k=l+1

((

∂c

∂ “̄ρk

− λT
k

)

∂ “̄ρk

∂ρ̄l

+ λT
k

∂s̆k

∂ “̄ρk−1

∂ “̄ρk−1

∂ρ̄l

)

.

(38)

Next, the last term in the summation is written as a separate
sum and the first term (k = l + 1) is taken out:

∂c̃

∂ρ̄l

=
∂c

∂ “̄ρl

∂ “̄ρl

∂ρ̄l

+

nk
∑

k=l+1

((

∂c

∂ “̄ρk

− λT
k

)

∂ “̄ρk

∂ρ̄l

)

+ . . .

λT
l+1

∂s̆l+1

∂ “̄ρl

∂ “̄ρl

∂ρ̄l

+

nk
∑

k=l+2

λT
k

∂s̆k

∂ “̄ρk−1

∂ “̄ρk−1

∂ρ̄l

.

(39)

By reindexing, the last sum can be changed into a summation
from k = l + 1 → nk − 1. Both sums get the same limits by
taking the last term k = nk out of the summation. Using
∂ “̄ρl

∂ρ̄l
= ∂s̆l

∂ρ̄l
and recombining summations gives:

∂c̃

∂ρ̄l

=

(

∂c

∂ “̄ρl

+ λT
l+1

∂s̆l+1

∂ “̄ρl

)

∂s̆l

∂ρ̄l

+

(

∂c

∂ “̄ρnk

− λT
nk

)

∂ “̄ρnk

∂ρ̄l

+ . . .

nk−1
∑

k=l+1

(

∂c

∂ “̄ρk

− λT
k + λT

k+1

∂s̆k+1

∂ “̄ρk

)

∂ “̄ρk

∂ρ̄l

.

(40)

The computation of the densely populated matrix ∂ “̄ρk

∂ρ̄l
can

be avoided if the Langrange multipliers are choses as:

λT
l =

∂c

∂ “̄ρl

+ λT
l+1

∂s̆l+1

∂ “̄ρl

for 1 ≤ l ≤ nk,

λT
nk

=
∂c

∂ “̄ρnk

(41)

Each multiplier depends on the one associated with the layer
above. This means that the evaluation starts at the top layer
and proceeds downwards. With Lagrange multipliers defined
by (41), the sensitivities of the response c follow from (40) as:

∂c

∂ρ̄l

=
∂c̃

∂ρ̄l

=

(

∂c

∂ “̄ρl

+ λT
l+1

∂s̆l+1

∂ “̄ρl

)

∂s̆l

∂ρ̄l

= λT
l

∂s̆l

∂ρ̄l

(42)

The sensitivity ∂c

∂ “̄ρ
of the objective function c with respect

to the printed densities “̄ρ is calculated using the adjoint
approach described by equation (25), and the sensitivity ∂s̆

∂ρ̄

follows immediately from the differentiation of equations
(14) and (15).

Finally, the sensitivity ∂c
∂ρ̄

needed in equation (33) is ob-

tained by concatenating the derivatives ∂c
∂ρ̄l

for all individual

layers.

A.4 Combined length scale and overhang angle control

Following the filtering scheme presented in equation (22), the
sensitivity ∂c

∂ρ
of the objective function c with respect to the

design variables ρ for minimum compliance topology opti-
mization with length scale and overhang angle control (strat-
egy 3) can be obtained via direct differentiation by applying
the chain rule 6 times:

∂c

∂ρ
=

∂c

∂
ˆ̂̌
“̌ρ

∂
ˆ̂̌
“̌ρ

∂
ˇ̂
“̌ρ

∂
ˇ̂
“̌ρ

∂ “̌̂ρ

∂ “̌̂ρ

∂ “̌ρ

∂ “̌ρ

∂ρ̌

∂ρ̌

∂ρ
, (43)

where ∂ρ̌

∂ρ
is calculated following the same principle as equa-

tion (31). In this case, the term ∂ “̌ρ

∂ρ̌
is a densely populated

matrix, as the design variables “̌ρ in a specific layer depend on
the blueprint densities ρ̌ of all underlying elements. In order
to avoid the calculation of this densely populated matrix, the
sensitivity ∂c

∂ρ
is determined as:

∂c

∂ρ
=

∂c

∂ρ̌

∂ρ̌

∂ρ
, (44)

To calculate ∂c
∂ρ̌

, the adjoint approach described in the pre-

vious section is used:

∂c

∂ρ̌l

=
∂c̃

∂ρ̌l

=

(

∂c

∂ “̌ρl

+ λT
l+1

∂s̆l+1

∂ “̌ρl

)

∂s̆l

∂ρ̌l

= λT
l

∂s̆l

∂ρ̌l

, (45)

where

λT
l =

∂c

∂ “̌ρl

+ λT
l+1

∂s̆l+1

∂ “̌ρl

for 1 ≤ l ≤ nk,

λT
nk

=
∂c

∂ “̌ρnk

(46)

and ∂c

∂ “̌ρ
is calculated via direct differentiation using equation

(30) and (31):

∂c

∂ “̌ρ
=

∂c

∂
ˆ̂̌
“̌ρ

∂
ˆ̂̌
“̌ρ

∂
ˇ̂
“̌ρ

∂
ˇ̂
“̌ρ

∂ “̌̂ρ

∂ “̌̂ρ

∂ “̌ρ
, (47)

where ∂c

∂
ˆ̌
“̌̂ρ

is calculated using the adjoint approach described

in equation (25).

The sensitivity ∂c
∂ρ̌

needed in equation (44) is obtained by

concatenating the derivatives ∂c
∂ρ̌l

for all individual layers.


