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Combined Linkage and Association Tests in Mx

D. Posthuma,1,3 E. J. C. de Geus,1 D. I. Boomsma,1 and M. C. Neale2

Statistical methods aimed at the detection of genes for quantitative traits suffer from two prob-

lems: (i) when a linkage approach is employed, relatively large sample sizes are usually required;

and (ii) when an association approach is employed, effects of population stratification may blur

genuine locus–trait associations. The variance components method proposed by Fulker et al.

(1999) addressed both these problems; it is statistically powerful because it involves a combined

analysis of linkage and association and can include information from multiplex families, which

reduces the overall amount of necessary individual genotypes. In addition, it includes an explicit

test for the presence of spurious association. After a brief illustration of the various ways in

which population stratification may affect locus–trait associations, the implementation in Mx

(Neale, 1997) of the method as proposed by Fulker et al. (1999) is discussed and illustrated. In

addition, an extension to this method is proposed that allows the use of (variable) sibship sizes

greater than two, the estimation of additive and dominance association effects, and the use of

multiple alleles. These extensions can be implemented when parental genotypes are available

or unavailable.

KEY WORDS: QTL; population stratification; structural equation modeling; variance components
modeling; quantitative trait.

INTRODUCTION

Statistical methods aimed at the detection of quantita-

tive trait loci (QTLs) have primarily focused on detect-

ing linkage between a QTL (or a marker in linkage

disequilibrium with the QTL) and a trait (e.g., Almasy

and Blangero, 1998; Amos, 1994; Boomsma and Dolan,

1998; Eaves et al., 1996; Fulker and Cardon, 1994;

Fulker and Cherny, 1996; Goldgar, 1990; Haseman and

Elston, 1972; Schork, 1993). Recently, however, atten-

tion has shifted toward methods designed to detect

associations between QTLs and traits (e.g., Abecasis

et al., 2000; Fulker et al., 1999; Lesch et al., 1996;

Plomin et al., 2001). Under certain conditions, testing

for association can be more powerful than testing for

linkage (Risch, 2000; Risch and Merikangas, 1996;

Sham et al., 2000), even without assuming that one of

the typed markers is the actual trait locus (Long and

Langley, 1999).

A widely used design to test for an association be-

tween a locus and a trait is the case-control design. This

design, however, is sensitive to the effects of popula-

tion stratification that may confound genuine locus—

trait associations (Hamer and Sirota, 2000). Spurious

associations may arise in a population that is a mix of

two or more genetically distinct subpopulations. Any

trait that is more frequent in one of the subpopulations

compared to the other subpopulation(s) (e.g., because

of cultural differences or assortative mating) will show

a statistical association with any allele that has a dif-

ferent frequency across those two populations (e.g., as

a result of different ancestors or genetic drift). This as-

sociation is called spurious because within each popu-

lation the allele is unrelated to variation in the trait. In

practice, more than two populations may have com-

bined and it will not be obvious from the combined

populations whether or not the sample is stratified and

in what way.
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Population stratification is often considered the

culprit for nonreplication of previously found associa-

tions (Cardon and Bell, 2001; Ioannidis et al., 2001;

Plomin and Caspi, 1999; Risch, 2000; Sullivan et al.,

2001). However, what is frequently overlooked is that

population stratification is as likely to obscure genuine

associations as it is to falsely introduce them. The first

aim of this paper is to illustrate these opposing impacts

of population stratification on association under vari-

ous admixtures of subpopulations with different trait

means and different allele frequencies.

To control for the confounding effects of popula-

tion stratification, family-based tests have been devel-

oped in which locus–trait associations are compared

across genetically related individuals. Because these in-

dividuals stem from the same stratum, locus–trait asso-

ciations observed within genetically related individuals

are genuine. Most available family-based tests for as-

sociation have been developed for binary traits, such

as the Haplotype Relative Risk test (HRR, Falk and

Rubinstein, 1987; Terwilliger and Ott, 1992) and the

Transmission Disequilibrium Test (TDT, Spielman

et al., 1993). Under the assumption of random ascer-

tainment, a clinical binary diagnosis such as “depressed”

or “not depressed” or “hypertensive” vs. “normoten-

sive,” however, is less powerful for gene finding than a

continuous trait such as the score on a depression scale

or blood pressure (Boomsma et al., 2000; Van den Oord,

1999). For this reason the TDT has recently been ex-

tended to the analysis of quantitative traits (q-TDT;

Allison, 1997; Rabinowitz, 1997). The TDT is based on

the comparison of transmitted alleles from the parents

to affected offspring with nontransmitted alleles. In its

original form the TDT has some drawbacks: (i) it re-

quires parental genotypes that complicates its applica-

tion to late-onset diseases; (ii) two homozygous parents

are noninformative, resulting in a decrease of the avail-

able sample size; and (iii) no more than one affected

child per family can be included because siblings are

not genetically independent. Recently, extensions of the

TDT have been developed that deal with some of its

original drawbacks (reviewed in Zhao, 2000).

Fulker et al. (1999) proposed a variance compo-

nents sib-pair analysis for mapping QTL. This method

is based on the modeling of allelic effects on the trait

values as a test for association and simultaneous mod-

eling of the sibship covariance structure as a test for

linkage (Fulker et al., 1999). By partitioning the asso-

ciation effects into a between family component and a

within family component, spurious associations can

be separated from genuine associations. The between

family effects reflect both the genuine and the possible

spurious association between locus alleles and a trait

(or allelic association between locus alleles and trait

locus alleles). The within family effects reflect only the

genuine association.

When simultaneously modeling linkage (using

identity by descent (IBD) information at positions

across the genome) and association (using the alleles

from candidate genes/markers) lying within the region

that shows linkage), evidence for linkage in a genomic

region is expected to decrease; by modeling the allelic

effects on the trait values, the residual variance will

show less evidence for linkage. If the evidence for link-

age does not completely decrease in the presence of a

significant genuine association effect of a marker

within the linkage region, this could imply that the link-

age derives from some other gene within that genomic

region, that not all relevant alleles of that locus have

been genotyped, or that (part of) the observed linkage

may have been artefactual (i.e., because of marker

genotype errors) (Abecasis et al., 2000, 2001; Cardon

and Abecasis, 2000; McKenzie et al., 2001).

The second aim of this paper is to present an im-

plementation of the combined linkage and association

test, including the test for the presence of spurious as-

sociations. Although we will present this implementa-

tion in the context of using Mx software (Neale, 1997),

the general algebraic formulas can also be implemented

in other genetic software, such as MERLIN (Abecasis

et al., 2002) or SOLAR (Almasy and Blangero, 1998).

Mx (Neale, 1997) is a matrix algebra interpreter that

uses numerical optimization to obtain parameter esti-

mates by maximum likelihood. Its flexibility allows the

relative simple implementation of extensions to multi-

ple (marker) alleles, dominance as well as additive as-

sociation effects, and variable sibship sizes. In addition,

either parental genotypes or sibling genotypes can be

used to derive the coefficients used for the decompo-

sition of the association into spurious and genuine

effects. These extensions will also be discussed in

algebraic terms and implemented in an example Mx

script.

Effects of Population Stratification 

on Statistical Association

We start with a brief definition of some terms used

in this paper and will mostly adhere to the definitions

given by Terwilliger and Göring (2000). Linkage

between a marker and a trait locus refers to the non-

independent segregation of the marker and the trait

locus, implying that the recombination fraction between

them is less than 0.5. Linkage between a locus and a
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trait is related to this and denotes that pairs of geneti-

cally related individuals that share two locus alleles

IBD are phenotypically more alike than pairs of ge-

netically related individuals that share none of their al-

leles on the locus IBD. The locus may either be the trait

locus itself or be a marker linked to the trait locus (i.e.,

a recombination fraction between the marker and the

trait locus of less than 0.5); it is in linkage disequilib-

rium (LD), but not necessarily in disequilibrium with

the trait locus, LD or allelic association refers to the

situation in which certain alleles of a marker are pref-

erentially cosegregated with certain alleles of a trait

locus. LD may occur because two loci are in tight link-

age but can also occur as a result of population strati-

fication or when certain allele combinations at different

loci confer enhanced reproductive fitness. In the latter

two cases we speak of disequilibrium. Association be-

tween a locus and a trait refers to the apparent allelic

effects of a locus on trait values. This locus may either

be the trait locus itself (i.e., the actual gene) or be a

marker in LD with the trait locus.

When several populations have combined, spuri-

ous association between a locus and a trait may arise.

The size and direction of this association depend on the

combination of allele frequencies and trait means in

the subpopulations. Different trait means for the same

genotypic category across subpopulations will gener-

ally result in a difference of the overall means across

subpopulations, which is why a difference in overall

trait means across subpopulations is generally given as

a prerequisite for spurious association to occur. Yet, it

should be kept in mind that the crucial events leading

to spurious associations between alleles at a locus and

a trait are a difference in allele frequencies at that locus

and a difference in the trait means for a given genotype

across subpopulations.

Consider two subpopulations A and B that combine

to form the mixed population M. Let subpopulation A

have a trait mean �A of 105 and subpopulation B

a trait mean �B of 100. Consider a diallelic locus with

alleles E and e and frequencies p and q, respectively,

where q = 1 − p. Let p in subpopulation A (pA) be 0.9

and p in subpopulation B (pB) be 0.5. This locus con-

tributes neither to �A nor to �B; in other words, within

each subpopulation there is no association between the

locus and the trait. Let �m and pm denote the trait mean

and the frequency of allele E, respectively, in the mixed

population (M). Let P, H, and Q denote the genotypic

frequencies of the three possible genotypes EE, Ee, and

ee, respectively. As subpopulations A and B are in

Hardy-Weinberg equilibrium (HWE), P, H, and Q

may be calculated from the allele frequencies of each

subpopulation

PA = p2
A, HA = 2pAqA, Q A = q2

A

and

PB = p2
B , HB = 2pBqB , and QB = q2

B

(see also Table I).

As the locus is not related to the phenotypic trait

values, the three genotypic categories have equal means

within subpopulations. Across subpopulations, how-

ever, the trait means are different for individuals that

have similar genotypes. Assuming equal population

sizes for subpopulations A and B, mixing the subpop-

ulations creates population M, where the genotypic

frequencies PM, HM, and QM are derived from the geno-

typic frequencies of the two subpopulations A and B

Table I. Formulas and Hypothetical Situation Illustrating the Effects of Population Stratification in the Absence of a Genuine Association

Population Allele Genotypic Trait means (�g ) for given

mean frequencies frequencies genotype

� p(E) q(e) P(EE) H(Ee) Q(ee) EE Ee ee

A 105.00 0.9 0.1 0.81 0.18 0.01 105.00 105.00 105.00

B 100.00 0.5 0.5 0.25 0.50 0.25 100.00 100.00 100.00

M 102.50 0.7 0.3 0.53 0.34 0.13 103.82 101.32 100.19

Note: Following Falconer and Mackay (1996) p denotes the frequency of allele E, q = 1 − p and denotes the frequency of allele e. P, H, and

Q denote the genotypic frequencies of genotypes EE, Ee, and ee, respectively. P, H, Q, p, and q in the mixed population are derived from the

genotypic frequencies in the subpopulations. PM is derived as 
T
∑

t=1

Pt × nt/
T
∑

t=1

nt , where n is the total sample size of subpopulation t, and 

t = 1, . . . , T . Analogously, HM is derived as 
T
∑

t=1

Ht × nt/
T
∑

t=1

nt , and QM is derived as 
T
∑

t=1

Qt × nt/
T
∑

t=1

nt . The allele frequencies p and q in the 

combined population M are derived as pM = PM + 1
2

HM and qM = QM + 1
2

HM respectively.

Two subpopulations A and B of equal size, differ both in trait means (per genotype) and in allele frequencies of a diallelic locus. Within

each population no locus-trait association exists, whereas in the mixed population M a spurious locus-trait association is clearly evident.
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Fig. 1. Graphical representation of the effects of population strati-

fication. Two populations A and B differ both in overall trait means

(and trait means per genotype) and in allele frequencies of a diallelic

locus. Within each population no locus–trait association exists,

whereas in the mixed population a spurious locus–trait association

is clearly evident. Specifics concerning this situation are given in

Table I. Genotypes and their frequencies are given on the x-axis,

whereas the trait means per genotype are scaled on the y-axis.

Fig. 2. Biometric model for a diallelic trait with alleles E and e. Let

a be the effect of genotype EE on the trait mean, −a the effect of ee,

and d the dominance deviation of the heterozygous genotype Ee.

last three cells from Table I, however, the estimated a

and d in the mixed population M would be obtained as

(103.82 − 100.19)/2 = 1.82 and 101.32 − (103.82 +

100.19)/2 = −0.69, respectively.

For the example given in Table I and represented

in Figure 1 we used extreme allele frequency differ-

ences (�p = pA − pB = 0.4) between the two sub-

populations and a mean difference of 5 scale points.

Figure 3a plots the effects of varying allele frequency

differences between populations A and B for four ��s

(�A − �B = 10, 5, −5, or −10) on the estimated value

of a in the mixed population, in the absence of a gen-

uine association (i.e., a = 0 in subpopulations A and

B). In Figure 3b the effect on the calculated value of d

in the mixed population is plotted for the same situa-

tions and a d of 0 in subpopulations A and B. The al-

lele frequency pB is constant at 0.5, whereas the allele

frequency pA is varied in steps of 0.01 from 0.99 to

0.01. The mean �B is constant at 100, whereas �A is

110, 105, 95, or 90.

As becomes evident from Figures 3a and b, pop-

ulation stratification will result in spurious associations

between a locus and a trait. As the genuine a and d

values were 0, the estimated a and d values in the mixed

population are always biased (except when �p = 0),

and may result both in positive effects of a and d, as

well as in negative values of a and d. The bias in esti-

mation of d becomes relatively small when the differ-

ence in allele frequency between subpopulations A and

B is small to moderate (between −0.3 and 0.3).

Using the same situations as described above, yet

assuming a value of +2 for a in subpopulations A and

B, shows that in the presence of a genuine association

the estimated value of a in the mixed population may

be overestimated, underestimated, or of reversed sign.

As the genuine dominance deviation was fixed at

0, the calculated dominance deviation from the mixed

population is always biased (except when �p = 0 or

when the genotypic means are equal across popula-

tions) and is similar to the effects seen in Figure 3b.

Our purpose is to clarify the different ways in which

(Table I). As is shown in Table I, PM, HM, and QM

are 0.53, 0.34, and 0.13, respectively. The allele fre-

quencies are calculated following the rules of the

biometrical model (Falconer and Mackay, 1996):

pM = PM + 1
2

HM and qM = QM + 1
2

HM . Note that

population M is no longer in HWE.

The trait means for each genotype in population

M are a function of the trait means and frequencies of

each genotype in subpopulations A and B. Assuming

equal population sizes, the trait mean of individuals

with genotype g in population M is calculated as

follows (�g, M ):

�g, M =
Gg, A × �g, A + Gg, B × �g, B

Gg, A + Gg, B

(1)

where Gg, A refers to the frequency of genotype g in

population A, Gg, B refers to the frequency of genotype

g in population B, �g, A refers to the trait mean for geno-

type g in population A, and �g, B refers to the trait mean

for genotype g in population B.

For the example given in Table I, this results in

different trait means for each of the three genotypic

categories in population M, reflecting a spurious sta-

tistical association between the locus and the trait.

Figure 1 presents this effect graphically.

In the biometrical model, which is drawn in Fig-

ure 2, a denotes the (additive) effect of genotype EE

on the trait, −a denotes the (additive) effect of geno-

type ee on the trait, and d denotes the dominance de-

viation for the heterozygous genotype Ee. In association

analysis we aim to quantify a and d. In the situation de-

scribed in Table I and Figure 1, both a and d are 0 for

subpopulations A and B. From the values given in the
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Fig. 3. a, Effect of population stratification on the calculated value

of a in the absence of a genuine locus–trait association (a = 0; d = 0)

for varying levels of allele frequency differences. The mixed popu-

lation exists of populations A and B with constant �B (100) whereas

�A is varied from 110, 105, 95, and 90. Allele frequency pB is con-

stant at 0.5. Allele frequency pA is varied with steps of 0.01 from

0.99 to 0.01. b, Effect of population stratification on the calculated

value of d in the absence of a genuine locus–trait association (a = 0;

d = 0) for varying levels of allele frequency differences. The mixed

population exists of populations A and B with constant �B (100),

whereas �A is varied from 110, 105, 95, and 90. Allele frequency

pB is constant at 0.5. Allele frequency pA is varied with steps of

0.01 from 0.99 to 0.01.

population stratification may affect genetic effects in

general; thus we chose not to discuss situations in

which a genuine dominance deviation is present.

Implementing the Test for Combined 

Linkage and Association in Mx

Modeling Spurious and Genuine Association

When allelic effects are estimated from genetically

related subjects, effects of population stratification

can be controlled for. The method proposed by Fulker

et al., 1999 uses the within family genetic effects on the

trait value as an estimate of the genuine association. The

between family genetic effects on the trait value include

both the genuine and the possible spurious association.

When the between family genetic effects and the within

family genetic effects are unequal, a spurious association

is said to exist, which may either be in the same direc-

tion (between genetic effects > within genetic effects) or

in the opposite direction (between genetic effects <

within genetic effects) compared to the genuine associ-

ation. Thus, equating the between effects and the within

effects serves as a test of the presence (and direction) of

spurious associations between a locus and a trait in the

data set. This test can be conducted on DNA markers as

well as candidate genes.

Estimation of the between genetic effects is based

on defining the contribution of each family or sibship

to the population mean in terms of genetic effects. Thus,

for each sibship the genetic mean needs to be calcu-

lated. Estimation of the within genetic effects is based

on defining each individual’s genetic deviation from the

genetic mean of his sibship. The genetic family/sibship

mean can be calculated using the sibling genotypes (if

parental genotypes are unavailable) or using the parental

genotypes (if available). In this section the implemen-

tation in Mx (Neale, 1997) of the combined linkage and

association method for these two situations (parental

genotypes unavailable and parental genotypes avail-

able) as can be applied to real data, is discussed.

Parental Genotypes Unavailable

In Table II the coefficients for the within (genuine)

and between (possibly spurious and genuine) additive

and dominance effects are derived for a diallelic locus

using sibpairs. The general expression for the means,

following Fulker et al. (1999) yet including both addi-

tive effects and dominance, for the observed score in

sib j from the ith family (yij) is:

yij = � + ab Abi + aw Awij + db Dbi + dw Dwij + eij (2)

where � denotes the overall trait mean (equal for all in-

dividuals), Abi is the derived coefficient (e.g., 1
2
, or − 1

2
,

1, etc.) for the between families additive genetic effect

for the ith family, as calculated in the fifth column of

Table II. Awij denotes the coefficient by which the

within families additive genetic effects need to be mul-

tiplied for sib j from the ith family as derived in the last

two columns of Table II. Dbi is the coefficient by which

the between families dominant genetic effect needs to

be multiplied for the ith family, as calculated in the fifth

column of Table II. Dwij denotes the coefficient as de-

rived for the within families dominant genetic effects

for sib j from the ith family (see last two columns

of Table II). Parameters ab and aw are the estimated

(a)

(b)
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additive between and within effects; parameters db and dw are the estimated dominance between and within effects,

and eij denotes that part of the grand mean that is not explained by the genotypic effects.

For a diallelic locus, derivation of the additive between and within coefficients and the dominance between

and within coefficients is straightforward and can be taken from Table II (e.g., 1
2
, or − 1

2
, 1, etc.). For a locus with

more than two alleles, however, this becomes a daunting task. We therefore chose to have the necessary coefficients

calculated by the program instead of specifying them in a matrix (e.g., Neale, 2000; Neale et al., 1999).

Let matrices A and C be vectors of dimensions 1 × n , where n = 2, . . . , n for the number of alleles at the locus.

Let matrices D and F be subdiagonal matrices of dimensions n × n . Matrix A contains the estimated combined spu-

rious and genuine (i.e., between) additive allelic effects. Matrix C contains the estimated genuine additive (i.e.,

within) allelic effects. Matrix D contains the estimated spurious and genuine (i.e., between) dominance deviations

for the heterozygous genotypes, and matrix F contains the estimated genuine (i.e., within) dominance deviations.

Let matrix I be a vector containing one’s of dimension 1 × n . In the Mx script language this is written (see also

Appendices I and II for full Mx script example; anything after ! on the same line is not read by the Mx program

and can be used for additional remarks):

#define n 5 !number of alleles = 5 ; the letter n will be substituted

!by the number 5, except when n occurs as part of a word

Begin matrices; !start declaration of matrices

A Full 1 n  free !will contain additive allelic effects WITHIN

C Full 1 n  free !will contain additive allelic effects BETWEEN

D Sdiag n n free !will contain dominance deviations within

F Sdiag n n free !will contain dominance deviations between

I Unit 1 n !unit vector to multiply allelic effects [1 1 1 1 1]

End matrices; !end declaration of matrices

With these matrices, two symmetric matrices of dimensions n × n , one for the between (i.e., the sum of the

spurious and genuine effects) and one for the within (i.e., the genuine effects) estimates, are calculated that con-

tain the genotypic effects of the homozygous genotypes on the diagonal and the genotypic effects of the hetero-

zygous genotypes on the off-diagonals.

Begin algebra;

K = (A'@I) + (A@I') ; !calculates linear combinations of the allelic effects

L = D + D' ; !dominance deviations below and above diagonal

W = K + L ; !creates one full n x n matrix containing the WITHIN

!genotypic effects

M = (C'@I) + (C@I') ; !calculates linear combinations of the allelic effects

N = F + F' ; !dominance deviations below and above diagonal

B = M + N ; !creates one full n x n matrix containing the BETWEEN

!genotypic effects

End algebra;

The symbol @ denotes the Kronecker product (⊗) in Mx and results in the multiplication of each element of

the first matrix by the second matrix. For a locus with five alleles, matrix W is a symmetric matrix of dimension

n × n containing the following estimated effects for a locus with five alleles (n = 5):

W



















aw,1 + aw,1

aw,1 + aw,2 + dw,12 aw,2 + aw,2

aw,1 + aw,3 + dw,13 aw,2 + aw,3 + dw,23 aw,3 + aw,3

aw,1 + aw,4 + dw,14 aw,2 + aw,4 + dw,24 aw,3 + aw,4 + dw,34 aw,4 + aw,4

aw,1 + aw,5 + dw,15 aw,2 + aw,5 + dw,25 aw,3 + aw,5 + dw,35 aw,4 + aw,5 + dw,45 aw,5 + aw,5

where aw,1...n refers to the genuine additive allelic effects of the alleles labeled 1 . . . n , and dw,12...nn refers to the

genuine dominance deviation of the heterozygous genotypes labeled 12 . . . nn . Note that with this notation aw,1...aw,n

refers to allelic effects, whereas aw refers to genotypic effects. Similarly, matrix B will be symmetric, of dimen-

sion n × n and will contain the analogous estimated genuine and spurious additive and dominance genotypic effects

(subscripted b).
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We now proceed to the calculation of the sibship genetic means and each individual’s deviation from the sib-

ship’s genetic mean. For sibships of size two, each individual’s deviation from the sibship genetic mean can eas-

ily be deducted by precalculating half the difference between the genetic effects of each sib (as is done in Table II).

For sibship sizes larger than two, the within component is no longer simply “half the difference,” but instead is

mathematically represented by the deviation of sib j from the i th sibship mean. The individual genotypes should

be in the datafile (which is the “raw” datafile and not a variance/covariance matrix). These are selected from the

list of input variables to be used and will be specified in a matrix. They need to be treated differently from vari-

ables that are to be analyzed (the phenotype). The definition variable function in Mx can be used to sep-

arate variables that are used as covariates (such as sex, age, and allelic effects) from the dependent variables.

G2: datagroup

Select pheno1 pheno2 pheno3 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 !Select all variables to

!be used or analysed

..

Definition_variables a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 !define which variables

!need to be treated as a

!covariate

Begin matrices ; !begin declaration of matrices for group 2

..

K Full 1 4 Fixed !Will contain first and second allele of sib1

L Full 1 4 Fixed !Will contain first and second allele of sib2

M Full 1 4 Fixed !Will contain first and second allele of sib3

..

End matrices ; !end declaration of matrices for group 2

Specify K a1s1 a2s1 a1s1 a2s1 !put alleles of sib 1 into vector

Specify L a1s2 a2s2 a1s2 a2s2 !put alleles of sib 2 into vector

Specify M a1s3 a2s3 a1s3 a2s3 !put alleles of sib 3 into vector

For each individual, two alleles need to be present in the data file. The alleles should be coded as 1, 2, 3, . . . , n .

For each sibship, different elements need to be taken from matrices B and W to calculate the family genetic mean

and each individual’s deviation from that mean. The definition variables that have now been put into matrices (K, L,

and M) that contain numbers that correspond to the specific alleles from the respective individual. For example, if

the first sib has genotype 11, the second sib has genotype 34, and the third sib has genotype 13 at a marker locus,

matrix K contains [1 1 1 1], matrix L contains [3 4 3 4], and matrix M contains [1 3 1 3].

Matrices K, L, and M can now be used to select the relevant cells from matrices B and W:

!For sibships of size 3 for a univariate trait

Begin matrices

B Computed n n  = B1 !spurious and genuine genotypic effects,

!precalculated in previous Mx group

W Computed n n  = W1 !genuine genotypic effects

S Full 1 1 Fixed !to contain sibshipsize (3)

G Full 1 1 Free !grand mean, to be estimated

!dimensions 1 x number of variables

End matrices

Matrix S 3 !sibship size = 3

Begin Algebra;

V = (\part(B,K) + \part(B,L) + \part(B,M) ) % S ;

!sib genetic mean: between effects (spurious and genuine)

D = (\part(W,K) + \part(W,L) + \part(W,M) ) % S ;

!used for individual’s deviation from sib mean: within effects (genuine)

End Algebra;

Means G + V + (\part(W,K)-D) | G + V + (\part(W,L)-D) | G + V + (\part(W,M)-D) ;

!means model: grand mean + sib genetic mean effects + individual’s deviation

!from sib genetic mean, for three sibs

The \part statement in Mx allows one to select a rectangular submatrix from a larger matrix. For exam-

ple, \part(B,K) tells Mx to select from matrix B the part specified in matrix K. Matrix K should always be of

dimension 1 × 4 (start row, start column, end row, end column) and specifies the elements of matrix B where the
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relevant submatrix (which can also be a single element)

starts and ends. Because matrix K contains the alleles

of an individual, the submatrix is selected conditional

on that individual’s genotype.

In our example, in which the first sib is of geno-

type 11, the second sib has genotype 34, and the third

sib has genotype 13, the mean of the estimates in cells

(denoted by row and column) 11, 34, and 13 from ma-

trix B is calculated as the sibship genetic mean (repre-

senting the between family effects of that sibship, in

matrix V). Similarly, for the first sib the within family

effect is calculated by subtracting the estimate in cell

11 from matrix W from the mean of the parameters in

cells 11, 34, and 13 from matrix W (i.e., (\part

(W,K)-D)).

Because of linear dependency between the allelic

effects, two constraint groups (one for the within ef-

fects and one for the between effects) are needed in

which the sum of all the allelic effects is constrained

to be 0 (see Appendices I and II).

Abecasis et al. (2000) showed that calculation of

the sibship genetic mean based on both parental geno-

types is less error prone than calculation of the sibship

genetic mean based on available sibling genotypes. For

sibship sizes of four and above the two methods are

equally powerful and error rates are closer to nominal

significance rates. The above method can be used when

genotype information from both parents is unavailable.

Parental Genotypes Available

When both parental genotypes are available, the

expected mean additive genotypic value of the off-

spring (abi ) equals the midparental genotypic value

abi =
Gi F + Gi M

2
, (3)

where Gi, F is the additive genotypic value of the father

in family i, and Gi, M is the additive genotypic value of

the mother in family i.

When dominance effects are also considered, the

midparental genotypic value is no longer an estimate

of the expected offspring mean, because parents and

offspring are uncorrelated in terms of dominance ef-

fects. The genotypes of the parents, however, do pro-

vide information on the expected dominance effects in

the offspring. For example, when one parent is of geno-

type EE, with a corresponding genotypic value of a,

and the other parent is of genotype ee, with a corre-

sponding value of −a , the midparental genetic value

will be 0. However, all of their offspring will be of

genotype Ee, with a corresponding genetic value of d.
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For each type of parental mating we therefore need

to calculate all possible genotypes in the offspring

and their probability, given the parental mating type.

The mean value in terms of a and d of the possible

genotypes in the offspring weighted by their probabil-

ity gives the expected offspring (i.e., sibling) genetic

mean. In Table III the coefficients for additive and

dominance between and within effects are derived, con-

ditional on the parental genotypes.

Extending this to a multiallele locus quickly be-

comes a large undertaking, and it is more convenient to

use a program such as Mx that can calculate the neces-

sary coefficients (Abi , Awijk, Dbi , and Dwijk) by which the

effects (ab, aw, db, and dw) need to be multiplied condi-

tional on the parental genotypes. For a given parental

mating type, the possible genotypes of offspring and their

probabilities may be calculated in Mx by using the

parental alleles to select elements from the matrices that

contain the between and within effects (matrices B and

W). Whereas in the previous section both alleles that

were used to select from matrices B and W were from

the same person (i.e., one sib), we now pair paternal and

maternal alleles to obtain all possible genotypes of the

offspring. The maximum number of genotypic categories

in the offspring from one mating type is four (i.e., when

both parents are heterozygous and have four different

alleles). We thus specify in Mx the following matrices:

resulting from the QTL, or a marker in LD with the

QTL (�2
d ). The variance-covariance matrix for the i th

family, �ijk is then given by

�ijk =

{

�
2
f + �

2
a + �

2
d + �

2
e if j = k

�
2
f + �̂ijk�

2
a + ẑijk�

2
d if j �= k

(4)

where �̂ijk is the estimated proportion of alleles shared

IBD between sibs j and k for the i th family, and ẑijk is

the probability of complete IBD sharing between sibs

j and k for the i th family. The estimated proportion of

alleles shared IBD between sibs j and k (�̂ijk) is based

on the probabilities that sibs j and k share 0, one, or

two alleles IBD ( p(IBD=0) , p(IBD=1) , p(IBD=2) , respec-

tively) that can be obtained from genetic software such

as Genehunter (Kruglyak et al., 1996). The formula to

obtain �̂ijk for the i th family is given by

�̂ijk = 0 × p(IBD=0)ijk
+ 0.5 × p(IBD=1)ijk

+ 1 × p(IBD=2)ijk

(5)

The probability of complete IBD sharing between

sibs j and k for the i th family simply equals pIBD2ikj:

ẑijk = p(IBD=2)ijk
(6))

Tests

The test for spurious association consists of the

joint test that matrix A equals matrix C (from the first

Specify N a1p1 a1p2 a1p1 a1p2 !first allele parent one first allele parent two

Specify O a1p1 a2p2 a1p1 a2p2 !first allele parent one second allele parent two

Specify X a2p1 a1p2 a2p1 a1p2 !second allele parent one first allele parent two

Specify Y a2p1 a2p2 a2p1 a2p2 !second allele parent one second allele parent two

These are used to select relevant submatrices from

matrix B and W to calculate the genetic offspring (i.e.,

sibship) mean and each offspring’s individual devia-

tion from that mean (see Appendix II for the full Mx

script). The additive and dominance coefficients can be

calculated in Mx in this manner for an arbitrary num-

ber of alleles and an arbitrary number of offspring.

Modeling Linkage

Implementation of the linkage component in the

variance components model is straightforward and can

be done by using the “pi-hat” (�̂) approach, in which

the covariance resulting from the marker or trait locus

for a sibpair is modeled as a function of the IBD status

of that sibpair. Generally, for sibships, the phenotypic

variance is decomposed in familial variance (�2
f ), vari-

ance resulting from nonshared environmental influ-

ences (�2
e ), additive variance from the QTL or marker

in LD with the QTL (�2
a ), and dominance variance

group in our example script), and that matrix D equals

matrix F (from the first group in our example script).

If the parameters in these matrices cannot be con-

strained to be equal, there is evidence of spurious as-

sociation. The conservative test for the presence of a

genuine association is to test whether matrices A and

D are significantly different from 0.

The test for the presence of dominance effects can

be conducted by comparing the minus two loglikeli-

hoods (−2LL’s) from the full model and a model with-

out the subdiagonal matrices D and F from the first

group in the example Mx script that contain the devia-

tions of the heterozygous genotypes from the mid value

of the two corresponding homozygous genotypes. This

can be done conservatively only for the presence of

the genuine dominance effects (i.e., dropping matrix D)

or for the presence of both the genuine and spurious

dominance effects (dropping matrices D and F).

Three models may be evaluated to test whether

linkage is present and whether the linkage component
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can be partly or completely explained by the associa-

tion: (i) a model with a linkage component only; (ii) a

model with both linkage and association; (iii) a model

with the association component only. If the linkage

component is reduced in model (ii) as compared to

model (i), but still significant, this may indicate that

within the linkage region another gene, besides the gene

used for the association component, is also influencing

the trait, that not all relevant alleles of that locus have

been genotyped, or that LD between the marker and the

trait locus is incomplete. If the linkage component

disappears when modeled simultaneously with associ-

ation, it indicates that the linkage is completely ex-

plained by the association effects of the tested locus or

by the effects of another locus that is in complete LD

with the tested locus.

Practical Considerations

The implementation in Mx of the analysis as pro-

posed by Fulker et al. (1999) is flexible in terms of the

number of alleles it can incorporate, variable sibship

sizes, the inclusion of both additive and dominance ef-

fects and can be used both when parental genotypes are

available or unavailable. Theoretically, it may include

loci with an unlimited number of alleles. With an in-

creasing number of alleles, however, the chance in-

creases that not all possible genotypes are present in

the sample. This should be explored beforehand, and

the corresponding elements in matrices A, C, D, and F

containing the allelic effects and dominance deviations

should be fixed to prevent nonidentification. For ex-

ample when alleles labelled 3 and 4 do not exist in a

heterozygous genotype, the dominance deviation for

genotype “3,4” cannot be estimated. Element 3,4 from

matrices D and F needs to be constrained at 0. If, on

the other hand, two alleles only occur in a heterozy-

gote, the additive effects cannot be distinguished from

the dominance deviation and either one cannot be es-

timated. Related to this, it is also possible to group cer-

tain alleles as if they were one allele (or different alleles

with the same effect) and to contrast the effect of one

allele against the effects of all other alleles. This can

be implemented in Mx by using constraints on the

corresponding matrix elements containing the allelic

effects. If alleles that differ in size are used (e.g., vari-

able number tandem repeats [VNTRs], a linear regres-

sion of allele size may be incorporated into the model

(see for example Zhu et al., 1999).

Sibship size may vary across families. In this case

one may use the variable length datafile option

in Mx and use sibship size (specified in Matrix S from
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Fig. 4. Effect of population stratification on the calculated value of

a in the presence of a genuine locus–trait association (a = +2; d = 0)

for varying levels of allele frequency differences. The mixed popu-

lation exists of populations A and B with constant �B (100), whereas

�A is varied from 110, 105, 95, and 90. Allele frequency pB is

constant at 0.5. Allele frequency pA is varied with steps of 0.01 from

0.99 to 0.01.

neglecting the stratified nature of the complete sample

will lead to an overestimation of genetic effects.

In the presence of a genuine association, underes-

timation of the additive genetic effects will occur when,

within subpopulations, relatively higher trait values

tend to go together with a lower frequency of the in-

creaser allele, or vice versa (either a positive �p and

a negative ��, or a negative �p and a positive ��).

In this case we may speak of discordant pairing of al-

lele frequency and trait value. This situation may be

understood by considering that the overall mean of a

subpopulation may also influenced by other (non-)

genetic factors. For example, it is well known from

mouse model systems, that the same allele at the same

locus may cause a major disease in one mouse strain,

but no phenotype in a strain with a different genetic

background (e.g., Linder, 2001; Liu et al., 2001;

Montagutelli et al., 2000). The same has been reported

for effects on gene expression in different environ-

mental backgrounds (Cabib et al., 2000; Crabbe et al.,

1999). Put differently, in one strain the presence of the

particular allele leads to crossing a certain threshold

value above which a disease will evolve, whereas in

the other strain, because of a different genetic or envi-

ronmental background, this threshold is not reached.

The frequency of the disease-predisposing allele may

therefore rise in the population with the genetic or en-

vironmental background that prevents the individuals

within that population from reaching a threshold. In

humans, the presence of different genetic (or environ-

mental) backgrounds that derive from mixed ethnicity

may cause the allele frequency of the increaser allele

the second Mx group in the example script) as a

definition variable, which is read from the

datafile and varies across families. The simultaneous

implementation of an arbitrary number of alleles, for

an arbitrary sibship size, using parental genotypes or

sibling genotypes, and decomposing both the additive

effect and the dominance deviations into genuine and

spurious effects is unique to Mx.

CONCLUSION

We have illustrated the effects of population strat-

ification on quantitative traits and have shown that in the

absence of a genuine association, population stratifica-

tion may result in a spurious association between any

trait that differs in mean between subpopulations and any

locus that differs in allele frequency between subpopu-

lations. This situation is illustrated by the well-known

“chopsticks gene” example as described by Hamer and

Sirota (2000). As was also mentioned by Witte et al.

(1999; for binary traits), population stratification may

not only result in overestimation of allele effects on

quantitative traits, but also in an underestimation. More

specifically, in the presence of a genuine association

population, stratification may result in: (i) an overesti-

mation of the genuine association effects, (ii) an under-

estimation of the genuine association effects, or (iii) a

reversal or incorrect direction of allelic effects.

Genuine association effects will be overestimated

because of the effects of population stratification when

within the subpopulations’ higher trait values are asso-

ciated with a higher frequency of the increaser allele

and lower trait values are associated with a lower in-

creaser allele frequency. Or, in other words, a positive

�p( pA − pB) is related to a positive ��(�A − �B), and

a negative �p to a negative �� (see also Figure 4). In

this case we may speak of concordant pairing of allele

frequency and trait value. In practice, such a situation

may exist, for example, as a result of assortative mat-

ing within subpopulations that differ in trait means and

allele frequencies. Differences in trait means and allele

frequencies may exist as a result of historical or cultural

differences or as a result of natural selection. For ex-

ample, when in one population high trait values increase

reproductive fitness, the frequency of the increaser al-

lele for that trait and the overall trait mean may increase

in that population. In the other population, in which high

trait values are irrelevant for reproductive fitness, the

increaser allele frequency and the overall trait mean

remain the same. Assortative mating within subpopu-

lations ensures that eventually concordant pairing be-

tween increaser allele and trait value will exist, and
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of a subpopulation with a relatively low trait mean to

be higher than the allele frequency of the increaser al-

lele in a population with a higher overall trait mean.

Non-Mendelian traits are likely to be influenced

by multiple (risk) factors of which the presence differs

across subpopulations; thus discordant pairing may

realistically hide genuine allele–trait associations when

the effects of population stratification are neglected.

When the difference in trait means between subpopu-

lations and the difference in increaser allele frequen-

cies becomes extreme in the presence of discordant

pairing, the genuine allelic effects will appear reversed

in sign as a result of population stratification. This sug-

gests that in the mixed population individuals who are

homozygous for the increaser alleles (EE) have a lower

trait value than individuals who are homozygous for

the decreaser allele (ee), whereas in the subpopulations

the opposite is true. This statistical effect is known as

Simpson’s paradox (Simpson, 1951; Yule, 1900) and

refers to the reversal of the direction of an association

when data from several groups are combined to form a

single group. Its importance to gene hunting studies

may well have been illustrated by the numerous asso-

ciation studies for schizophrenia, in which the same al-

lele of the same locus has both been associated with

increased and decreased risk for schizophrenia (Baron,

2001; Bray and Owen, 2001).

Family-based tests of association explicitly model

the consequences of population stratification, by look-

ing at allelic effects within genetically related subjects.

In the method proposed by Fulker et al. (1999) spuri-

ous association is defined as the difference between the

allelic effects as estimated from the comparison of un-

related subjects (between effects) and the allelic effects

as estimated from the comparison of genetically related

subjects (within effects). This method, which was orig-

inally proposed to include sibpairs, diallelic markers,

and additive effects, has now explicitly been extended

to include variable sibship sizes, multiallele markers,

and dominance deviations, using the parental genotypes

(if available) or the sibling genotypes.

It is known that the use of multivariate phenotypes

may provide more statistical power than univariate

phenotypes (e.g., Allison et al., 1998; Boomsma and

Dolan, 1998). The method as implemented in Mx can

easily be extended to multivariate phenotypes. One can

then model the association as an effect on the factor

mean of multivariate measurements. In this case it may

be assumed that the allelic association effects on the

multivariate measurements are all proportionally re-

lated. Covariance among the traits resulting from the as-

sociation will lead to a decrease in the estimated amount

of covariance because of the linkage component.

With the rapidly increasing availability of large

amounts of genomic data, the detection of linkage and/or

association between a marker (and all the linked loci

surrounding the marker that are in LD with it) and a trait

becomes a realistic tool in the hunt for genes for com-

plex traits. Combining linkage analysis and association

analysis has already proved to be a powerful tool in gene

finding (e.g., Neale et al., 1999; Trembath et al., 1997;

Zhu et al., 1999; see Beekman et al., 2003 for a practi-

cal implementation of the method described in the

present paper). Particularly when fine mapping is a goal

of interest this method is invaluable, because the effect

of linkage will be reduced when estimated in the pres-

ence of association, thereby providing information

on the specific region where the QTL is expected to

reside (Cardon and Abecasis, 2000). An explicit test for

population stratification is crucial to rule out spurious

associations. The Fulker et al. (1999) method has

all these advantages and, as was shown in the present

paper, can easily be conducted in a statistical package

such as Mx.

APPENDIX I: PARENTAL GENOTYPES UNAVAILABLE

Mx scripts can also be downloaded from the Mx homepage or from the Mx Scripts' Library:

http://www.vcu.edu/mx

http://www.psy.vu.nl/mxbib

!Mx script for the conduction of the combined linkage and association method

!testing for spurious association

!extended to sibships>2, additive and dominance association, multiple alleles

!using sibling genotypes to calculate the mean genotypic value within a sibship

#define n 5 !number of alleles is 5

#define nvar 1 !univariate

#define nsibs 3 !sibshipsize = 3

#ngroups 4 !one precalculation group, one data group, two constraint groups

G1: calculation group between and within effects
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Data Calc

Begin matrices; !start declaration of matrices

A  Full  1  n  free !will contain additive allelic effects within

C  Full  1  n  free !will contain additive allelic effects between

D  Sdiag  n  n free !will contain dominance deviations within

F  Sdiag  n  n free !will contain dominance deviations between

I  Unit 1 n !unit vector to multiply allelic effects [1 1 1 1 1]

End matrices; !end declaration of matrices

Begin algebra;

K = (A'@I) + (A@I') ;

L = D + D' ;

W = K + L ;

M = (C'@I) + (C@I') ;

N = D + D' ;

B = M + N ;

End algebra ;

st .2 all

end

G2: datagroup: sibship size three

Data NInput=12

Missing =-99.00

Rectangular File=myfile.dat

Labels ph1 ph2 ph3 als1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23

Select ph1 ph2 ph3 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23;

!selects 3 phenotypes; one for each sib

!selects 6 allele variables, a1s1 is allel #1 from sib #1

!selects pi's and z's

Definition_variables

a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23;

!declare the allele variables and the pIBD=2 as definition variables

Begin Matrices;

F Lower nvar nvar Free ! familial variance

Q Lower nvar nvar Free ! QTL additive variance

R Lower nvar nvar Free ! QTL dominance variance

E Lower nvar nvar Free ! non-shared environmental variance

B Computed n n = B1 ! spurious and genuine genotypic effects

W Computed n n = W1 ! genuine genotypic effects

I Ident nsibs nsibs Fix !

P Sym nsibs nsibs Fix ! To contain pi-hats

Z Sym nsibs snibs Fix ! To contain pIBD2’s

T Stand nsibs nsibs Fix

K Full 1 4 Fix ! First and second allele of sib1

L Full 1 4 Fix ! First and second allele of sib2

M Full 1 4 Fix ! First and second allele of sib3

S Full 1 1 Fix ! to contain nsibs

G Full 1 nvar Free ! grand mean

End Matrices;

Matrix S 3 ! sibship size 3

Matrix K 1 1 1 1

Matrix L 1 1 1 1

Matrix M 1 1 1 1

Matrix P

0

1 0

1 1 0

Matrix Z

0

1 0

1 1 0

Specify K a1s1 a2s1 a1s1 a2s1 !genotype sib1 to be used for \part

Specify L a1s2 a2s2 a1s2 a2s2 !genotype sib2 to be used for \part

Specify M a1s3 a2s3 a1s3 a2s3 !genotype sib3 to be used for \part
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Specify P   1

pi12 1

pi13 pi23 1

Specify Z   1

z12 1

z13 z23 1

Specify T   .5 ! when familial variance is modeled as

.5 .5 ! add gen variance

Begin Algebra;

V = (\part(B,K) + \part(B,L) + \part(B,M) ) % S ; !”B”

D = (\part(W,K) + \part(W,L) + \part(W,M) ) % S ; !used for deviation: W

End Algebra;

Means G + V + (\part(W,K)-D) | G + V + (\part(W,L)-D) | G + V + (\part(W,M)-D);

Covariance T@(F*F') + P@(Q*Q') + Z@(R*R') + I@(E*E') ;

End

Constrain sum allelic effects = 0

Constraint ni=1

Begin Matrices;

A full 1 n = A1

O zero 1 1

End Matrices;

Begin algebra;

B = \sum(A) ;

End Algebra;

Constraint O = B ;

end

Constrain sum allelic effects = 0

Constraint ni=1

Begin Matrices;

C full 1 n = C1

O zero 1 1

End Matrices;

Begin algebra;

B = \sum(C) ;

End Algebra;

Constraint O = B ;

option multiple issat

end

save full.mxs

!test for spurious association W=B

Specify 1 A 101 102 103 104 105

Specify 1 C 101 102 103 104 205 !first 4 equal to within; last unequal but because

!of second constrain 205 will be equal to 105

Specify 1 D 801 802 803 804 805 806 807 808 809 810

Specify 1 F 801 802 803 804 805 806 807 808 809 810

end

!Drop dominance: non-conservative test (i.e. genuine and spurious)

Specify 1 D 801 802 803 804 805 806 807 808 809 810

Specify 1 F 801 802 803 804 805 806 807 808 809 810

Drop @0 801 802 803 804 805 806 807 808 809 810

end

!Drop all allelic effects: non-conservative test (i.e. genuine and spurious)
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Specify 1 A 101 102 103 104 105

Specify 1 C 101 102 103 104 205

Specify 1 D 801 802 803 804 805 806 807 8O8 809 810

Specify 1 F 801 802 803 804 805 806 807 808 809 810

Drop @0 101 102 103 104 105 801 802 803 804 805 806 807 808 809 810

end

get full mxs

!drop QTL linkage effect while keeping association effects in the model

Drop Q 2 1 1 !QTL additive variance

Drop R 2 1 1 !QTL dominance variance

end

APPENDIX II: PARENTAL GENOTYPES AVAILABLE

!Mx script for the conduction of the combined linkage and association method

!testing for spurious association

!extended to sibships>2, additive and dominance association, multiple alleles

!using parental genotypes to calculate the mean genotypic value within a sibship

#define n 5 !number of alleles is 5

#define nvar 1 !univariate

#define nsibs 3 !sibshipsize = 3

#ngroups 4 !one precalculation group, one data group, two constraint groups

G1: calculation group between and within effects

Data Calc

Begin matrices; !start declaration of matrices

A Full 1 n free !will contain additive allelic effects within

C Full 1 n free !will contain additive allelic effects between

D Sdiag n n free !will contain dominance deviations within

F Sdiag n n free !will contain dominance deviations between

I Unit 1 n !unit vector to multiply allelic effects [1 1 1 1 1]

End matrices; !end declaration of matrices

Begin algebra;

K = (A'@I)+(A@I') ;

L = D + D' ;

W = K + L ;

M = (C'@I)+(C@I') ;

N = F + F' ;

B = M + N ;

End algebra ;

st .2 all

end

G2: datagroup: sibship size three

Data NInput=12

Missing =-99.00

Rectangular File=myfile.dat

Labels ph1 ph2 ph3 a1p1 a2p1 a1p2 a2p2 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13

pi23 z12 z13 z23

Select ph1 ph2 ph3 a1p1 a2p1 a1p2 a2p2 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13

pi23 z12 z13 z23;

!selects 3 phenotypes; one for each sib

!selects 6 allele variables for sib, a1s1 is allel #1 from sib #1

!selects 4 allele variables for parents a1p1 is allel #1 parent #1

!selects pi’s and z’s

Definition_variables

a1p1 a2p1 a1p2 a2p2 a1s1 a2s1 a1s2 a2s2 a1s3 a2s3 pi12 pi13 pi23 z12 z13 z23;

!declare the allele variables and the pIBD=2 as definition variables
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Begin Matrices;

F Lower nvar nvar Free !familial variance

Q Lower nvar nvar Free !QTL additive variance

R Lower nvar nvar Free !QTL dominance variance

E Lower nvar nvar Free !non-shared environmental variance

B Computed n n = B1 !spurious and genuine genotypic effects

W Computed n n = W1 !genuine genotypic effects

I Ident nsibs nsibs Fix !To multiply E

P Sym nsibs nsibs Fix !To contain pi-hats and to multiply Q

Z Sym nsibs snibs Fix !To contain pIBD2’s and to multiply R

T Stand nsibs nsibs Fix !To multiply F

K Full 1 4 Fix !First and second allele of sib1

L Full 1 4 Fix !First and second allele of sib2

M Full 1 4 Fix !First and second allele of sib3

N Full 1 4 Fix !a1p1 a1p2

O Full 1 4 Fix !a1p1 a2p2

X Full 1 4 Fix !a2p1 a1p2

Y Full 1 4 Fix !a2p1 a2p2

S Full 1 1 Fix !to contain 4: maximum of 4 possible

!genetically different offspring

G Full 1 nvar Free !grand mean

End Matrices;

Matrix S 4

Matrix K 1 1 1 1

Matrix L 1 1 1 1

Matrix M 1 1 1 1

Matrix N 1 1 1 1

Matrix O 1 1 1 1

Matrix X 1 1 1 1

Matrix Y 1 1 1 1

Matrix P

0

1 0

1 1 0

Matrix Z

0

1 0

1 1 0

Specify K a1s1 a2s1 a1s1 a2s1 !genotype sib1

Specify L a1s2 a2s2 a1s2 a2s2 !genotype sib2

Specify M a1s3 a2s3 a1s3 a2s3 !genotype sib3

Specify N a1p1 a1p2 a1p1 a1p2 !parental alleles

Specify O a1p1 a2p2 a1p1 a2p2 !parental alleles

Specify X a2p1 a1p2 a2p1 a1p2 !parental alleles

Specify Y a2p1 a2p2 a2p1 a2p2 !parental alleles

Specify P   1

pi12 1

pi13 pi23 1

Specify Z   1

z12 1

z13 z23 1

Specify T   .5 ! when familial variance is modeled as

.5 .5 ! add gen variance

Begin Algebra;

V = (\part(B,N) + \part(B,O) + \part(B,X) + \part(B,Y)) % S ; !Between effects

D = (\part(W,N) + \part(W,O) + \part(W,X) + \part(W,Y)) % S ; !for Within effects

End Algebra;

Means G + V + (\part(W,K)-D) | G + V + (\part(W,L)-D) | G + V + (\part(W,M)-D);

Covariance T@(F*F') + P@(Q*Q') + Z@(R*R') + I@(E*E') ;

End
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Constrain sum allelic effects = 0

Constraint ni=1

Begin Matrices;

A full 1 n = A1

O zero 1 1

End Matrices;

Begin algebra;

B = \sum(A) ;

End Algebra;

Constraint O = B ;

end

Constrain sum allelic effects = 0

Constraint ni=1

Begin Matrices;

C full 1 n = C1

O zero 1 1

End Matrices;

Begin algebra;

B = \Sum(C) ;

End Algebra;

Constraint O = B ;

end
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