
Numerical results: Figs. 2 and 3 show the IBC results for the scat- 
tering problem of a 2D perfect-conducting rectangular cylinder 
which is illuminated by a plan TM wave with incident angle cp = 
0". The cross-section dimensions of the cylinder are lh  x 2h. The 
convergence process for IBC coefficients A( TI,  7,) and induced 
current J( 7') are clearly shown in Figs. 2 and 3. It can be seen 
that the iterative process is very quick to converge. Usually a 
steady solution for the induced current can be obtained after three 
or four iterative processes. Fig. 4 shows the final solutions of 
induced current distributions for the scattering problems of a 2D 
perfectly-conducting circular cylinder (r = 2h and cp = Oo) and rec- 
tangular cylinder (3h x l h  and cp = 30"). 

In all these calculations, the conformal FD meshes have three 
layers, and the node step is 0.0%. The first initial values for 
induced current are all set as 1. Of course, other values can be 
used with no effect on the final results. To check the validity of 
IBC, we calculate the corresponding MOM solutions and ME1 
solutions, which are given accompanying the IBC solutions for 
comparison. It can be seen that the solutions of these three meth- 
ods agree very well with each other. 
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Fig. 4 Induced currents on 2D Cylinder scatterers 
a Circular cylinder: r = 2 1  and cp = 0" 
b Rectangular cylinder: 3 1  X lh and cp = 30" 
- by MOM 

by ME1 
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Conclusion: IBC is a novel truncation boundary condition for 
solving electromagnetic scattering problems by the FD method. It 
is simple in concept, easily applied and quick to converge. Since 
there is no limitation on the two points involved in the equation, 
eqns. 1 and 2 can be applied to the node at an arbitrary position. 
Therefore, we can truncate the mesh very close to the object's sur- 
face, which results in a reduction in the number of the unknowns 
and a saving in computer memory. Three general cases have been 
successfully solved by applying IBC. 
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Combined LMS/F algorithm 

Shao-Jen Lim and J.G. Harris 

Indexing terms: Least mean squares methods, Adaptive filters 

A new adaptive filter algorithm has been developed that combines 
the benefits of the least mean square (LMS) and least mean fourth 
(LMF) methods. This algorithm, called LMS/F, outperforms the 
standard LMS algorithm judging either constant convergence rate 
or constant misadjustment. While LMF outperforms LMS for 
certain noise profiles, its stability cannot be guaranteed for known 
input signals even for very small step sizes. However, both LMS 
and LMSF have good stability properties and LMS/F only adds 
a few more computations per iteration compared to LMS. 
Simulations of a non-stationary system identification problem 
demonstrate the performance benefits of the LMSiF algorithm. 

Introduction; The least mean square algorithm (LMS) has been 
used for many years to adapt filter structures in such problems as 
system identification, equalisation and interference cancellation 
[l]. Not surprisingly, many researchers have studied methods for 
improving the convergence rate of LMS without dramatically 
increasing the complexity of computation. Some of the first stud- 
ies considered simple variable-step algorithms in which the step 
size is slowly decreased against time but such simple procedures 
fail for non-stationary inputs. The least mean fourth (LMF) algo- 
rithm, developed by Walach and Widrow [6], optimised a criterion 
of the error raised to the fourth power instead of the more usual 
square power used for LMS. Though LMF has been shown to 
outperform LMS in certain situations, LMF is hampered by the 
difficulty of setting a stable step size parameter. In practice, higher 
order power filters can quickly become unstable unless an 
extremely small step size is used [6]. In an attempt to address the 
above problems, least mean mixed-norm adaptive filtering 141 and 
the LMS+F algorithm [2] have been designed. Though these algo- 
rithms also combine LMS and LMF, they result in systems whose 
stability is still a function of the unknown plant for system identi- 
fication. In this Letter, we develop the combined LMSIF algo- 
rithm as a method to improve the performance of the LMS 
adaptive filter without sacrificing the simplicity and stability prop- 
erties of LMS. Many other methods have been suggested for 
adapting the step size but these require much more complicated 
formulations, and more computation than LMSIF [3, 51. For 
example, the VS (variable step) algorithm [3] keeps track of sign 
changes of ekxk, and increases the step size until sign changes 
become frequent and decreases the step size if there are frequent 
sign changes. In fact, VS faces some problems such as setting 
appropriate values for six adjustable parameters including the 
maximum and minimum step sizes. If these values are not set 
properly, a smaller minimum step size might not decrease the mis- 
adjustment, but only degrade the convergence rate of the VS algo- 
rithm. 

Combined LMS/F: The weight update equation for the LMSIF 
algorithm is 

where W, represents the adaptive weight values at iteration k,  ek is 
the system error and X, is a vector of the last L + 1 samples of the 
input signal. The positive threshold V,  provides a mechanism to 
trade off faster convergence and lower misadjustment. When e,' >> 
Vth, the weight update reduces to the standard LMS algorithm 
with a step size of p. When V,,? >> e; ,  eqn. 1 behaves like the least 
mean fourth (LMF) algorithm with a step size of @!& This gives 
the combined benefits of a large step size LMS for fast conver- 
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gence and small step size LMF for low misadjustment. The algo- 
rithm automatically changes between the two types of behaviour 
based on the current error measurement. The choice of step size p 
is subject to exactly the same restrictions as for LMS-that is, p 
must be less than the reciprocal of the largest eigenvalue of the 
autocorrelation matrix of the input signal [l]. The simplicity of 
setting the step size is a marked difference from algorithms such as 
LMF [6] and LMS+F [2] where a stable step size parameter 
depends on parameters from the unknown system, the initial value 
of the weights as well as the characteristics of the input signal. 
Once a proper value of p is chosen for LMSF, no value of the 
positive threshold V,, can make the update unstable. 

We can integrate eqn. 1 to determine the error criterion that is 
minimised by the LMS/F update rule at each iteration: 

As we would expect, a Taylor series analysis of eqn. 2 shows that 
when 141 is small Jk = ek4/(2Vh) (LMF) and when lekl is large J, 2- 

E: (LMS). 
In fact, by setting F~~~ = 0 . 4 5 ~  (where plms and p are the step 

sizes of LMS and LMSIF, respectively) and V,, = 5qn; 1, we could 
make both the algorithms have the same misadjustment when the 
plant noise is Gaussian distributed. 

To deal with non-stationary problems, an automatically 
adjusted V,, is proposed. Since we usually do not have any prior 
knowledge of the unknown plant noise n,, the expected value of 
5 4  may be considered as a way to estimate the value 5E[n;]. 
Since 5E[I e: I] is sensitive to large error variations when the adap- 
tive process is not in steady state, 5E[1tkl12 is used to estimate V, 
in the following non-stationary identification problems in order to 
add robustness to outliers. 

plant noise 

I 
plant 

i plant model 

Fig. 1 Block diagram for system identification of unknown plant P(z) 
with adaptivefilter given by Q(z) 

Simulation vesults: Fig. 1 depicts a non-stationary system identifi- 
cation problem to show the performance of LMSP compared to 
both LMS and VS [3]. For the first 1000 iterations, the non-sta- 
tionary unknown plant transfer functions is given as P(z) = 1 + 
10z’ + 202* + 30z3 + 2021 + 10z5 + z6 while the next 1000 iter- 
ations the unknown system was changed to P(z) = 1 - 1Oz’ + 
2022 - 30z3 + 2024 - 1025 + z6. The adaptive filter is given by 
Q(z) = WO + W,zl + W,z2 + W3z3 + W4P + W8z5 + Wgz6 where 
W, denotes the free weights to be determined and they are initially 
set to zero. The standard deviation of the white Gaussian noise n, 
abruptly switches from 2.5 to 3.5 at iteration 1001. Also, p = 
0.009, plms = 0 . 4 5 ~  and V,, is set using the automatic adaptation 
formula 

o k + l  = x o k  f (1 - x ) l f k l  ( 3 )  

( h ) i c + i  = 5(01~+i)~  (4) 

where h is set equal to 0.9995 and 0, is a standard IIR estimator 
for E[jeic1]. Fig. 2 shows that LMS/F has a faster convergence rate 
and better misadjustment rate than both LMS and VS [3] for this 
non-stationary system identification problem. Comparison against 
other algorithms (e.g. LMS+F [2]) are not shown since their stabil- 
ity properties cannot be guaranteed. 

Since both LMS and LMSiF use only one step size for each 
dimension, they are slowed by large eigenvalue spread problems. 

However LMSF can be generalised to provide different step sizes 
for each dimension to solve such problems. Since the white Gaus- 
sian noise in this example has an eigenvalue spread of one for any 
number of dimensions, eigenvalue spread is not an issue for this 
problem. 

3 
iteration number k )04412 

Fig. 2 Comparison of adaptive threshold LMS/F against LMS for non- 
stationary system identqication problem 
For both LMS and LMS/F, p = 0.009, pIms = 0 . 4 5 ~  
One version of VS algorithm is shown for comparison purposes with 
optimised parameters L,,, = 0.009, pmin = 0.0041, mo = 2, m ,  = 3 and 
a = 1.01 

LMS 
variable step 
LMSIF 

- - _ _  

Conclusion: This LMSF algorithm has been developed and shown 
to outperform LMS and VS judging either constant convergence 
rate or constant misadjustment, Unlike many other attempts at 
speeding the convergence rate, the choice of step size to guarantee 
stability for LMSP is exactly the same choice as for LMS. 
Finally, LMSF is still simple enough for many 8-bit microcontrol- 
ler and even analogue hardware implementations 
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