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Abstract—External memory bandwidth is a crucial bottleneck 
in the majority of computation-intensive applications for both 
performance and power consumption. Data reuse is an 
important technique for reducing the external memory access 
by utilizing the memory hierarchy. Loop transformation for 
data locality and memory hierarchy allocation are two major 
steps in data reuse optimization flow. But they were carried 
out independently. This paper presents a combined approach 
which optimizes loop transformation and memory hierarchy 
allocation simultaneously to achieve global optimal results on 
external memory bandwidth and on-chip data reuse buffer 
size. We develop an efficient and optimal solution to the 
combined problem by decomposing the solution space into two 
subspaces with linear and nonlinear constraints respectively. 
We show that we can significantly prune the solution space 
without losing its optimality. Experimental results show that 
our scheme can save up to 31% of on-chip memory size 
compared to the separated two-step method when the memory 
hierarchy allocation problem is not trivial. Also, run-time 
complexity is acceptable for the practical cases.  

High-level synthesis; loop transformation; memory 
hierarchy optimization; data reuse 

I.  INTRODUCTION 
Memory systems play an increasingly important role in 

modern computation system design, for both general-purpose 
processors and application-specific accelerators. External 
memory bandwidth is a dominant bottleneck for system 
performance and power consumption, and the total amount of 
on-chip memory is a main component of implementation cost 
[1]. Data reuse has proved to be an efficient technique for 
reducing external memory access with a relatively small on-
chip memory cost. A great deal of attention has been paid over 
the past two decades to optimizing the external memory 
bandwidth by improving the data reuse and locality [2-20]. The 
research can be classified into two categories. 

 The work in the first category focuses on improving the 
data locality and date reuse by code transformation, especially 
loop transformation [2-9]. By changing the accessing order of 
array references in the loop nests, the co-located references 
become temporally “closer” and the data locality is improved. 
Various loop transformations, such as loop interchange, loop 

skewing, loop merging and loop tiling, were studied 
extensively in [2] and proved to be beneficial for data reuse. 
Reference [3] also presented a survey on the feasibility and 
profitability of these specific loop transformations and the 
sequential combination of them to form complex loop 
transformations. But this approach suffers from the complexity 
of enabling transformations for complex loop structures and the 
mismatch of different objective functions.  

To overcome these limitations, polyhedral-based affine 
loop transformation framework is widely used to unify the 
combination of a sequence of specific loop transformations into 
one single affine transformation matrix [4-9]. The pioneering 
work [4, 5] used unimodular transformation matrices to have a 
unified representation of loop interchange, loop reversal and 
loop skewing transformations. Constructive solutions were 
given for finding the maximal number of parallel innermost and 
outermost loops. To support more general transformations and 
objectives, affine transformation framework was established 
based on parametric integer linear programming [6-8]. Data 
dependence and transformation legality constraints are 
expressed with a polyhedral model in a linear form. To improve 
data locality, iteration distances between dependent array 
instances are formulated in the objective function to be 
minimized. However, current loop transformations do not take 
the memory platform information into consideration due to the 
difficulty of modeling it directly in the cost functions. 

The work in the second category optimizes the allocation of 
the reuse buffers in the memory hierarchy [10-15]. The data 
transfer and storage exploration (DTSE) methodology [1, 10] 
established an integrated design flow for the memory hierarchy 
optimization for customized memory systems. The 
optimization flow first analyzes the possible data reuse copies 
(the candidates of reuse buffers) of the array references at each 
loop level in the source program [11, 12]. Then, heuristics 
based on reuse buffer size and bandwidth reduction are applied 
to decide which reuse copies (buffer candidates) are selected to 
be implemented as an intermediate level in the memory 
hierarchy [13, 14]. In contrast to the heuristic approach, optimal 
allocation was also proposed by formulating the problem into a 
mixed linear programming optimization problem [15]. For all 
of these memory hierarchy allocation design flows, an 
independent loop transformation steering preprocessing is 
needed to optimize the data locality. And the final result of 
memory hierarchy optimization is greatly affected by this 
preprocessing. This work was supported in part by the Semiconductor Research
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Recently, researchers noticed the importance of considering 
memory platform characteristics in optimizing the loop 
transformation [16]. Loop transformation and memory 
hierarchy allocation are loosely coupled by introducing fast 
hierarchical memory size estimators [17, 18] to evaluate the 
promising transformations. But the authors do not provide a 
systematic way to find those promising transformations. Other 
researchers use analytic optimization formulations to optimize 
the loop tiling parameters and memory hierarchy allocation 
simultaneously [19, 20]. Their formulations are solved using 
non-linear optimization, such as sequential quadratic 
programming [19] and geometric programming [20]. However, 
these schemes still need affine transformations as a 
preprocessing procedure to improve data locality and enable 
tiling. 

To the best of our knowledge, this is the first work to 
provide a systematic and efficient approach to optimizing the 
affine loop transformation and memory hierarchy allocation 
simultaneously to obtain the optimal data reuse implementation 
in memory system design. The contributions of this work are 
twofold. 

• We formulate the global optimization problem in a 
concise mathematic form. In formulating bandwidth 
requirements, bi-directional binary allocation variables 
are used to address the problem that the reuse direction 
is unknown before the transformation is determined. In 
formulating reuse buffer size requirements, the 
calculation of the number of transformed loop 
iterations is converted into an internal integer point 
counting problem for a polytope. 

• We also propose an efficient and optimal solution to 
the combined optimization problem. The solution 
space S is decomposed into a subspace (L) with linear 
constraints and a subspace (N) with non-linear 
constraints such that S=N×L. Our early feasibility 
determination and equivalent matrix elimination 
techniques further prune many suboptimal solutions in 
N so that the execution time is only seconds for most 
of our test cases. Experimental results show that for the 
given memory bandwidth constraints, up to 31% on-
chip memory saving can be achieved compared to 
previous local optimal schemes.  

The remainder of this paper is organized as follows. Section 
II demonstrates a motivation example to show the benefits of 
combined global optimization. Section III describes some 
preliminaries and the formulation of our combined optimization 
problem. Section IV proposes an efficient solution to the 
formulated non-linear optimization problem. Section V gives 
the experimental result and the discussions of the proposed 
scheme, and is followed by conclusions in Section VI. 

II. A MOTIVATION EXAMPLE 
As an example to demonstrate the necessity of combining 

affine loop transformation and memory hierarchy allocation, 
we first focus on the simple stencil code in Fig. 1(a).  Four 
references of the same array A are located in the innermost 
loop of the loop nest, expressed as A0 (A[i, j, k]), A1 (A[i-3, j, 
k]),  A2 (A[i, j-2, k]), and  A3 (A[i, j, k-1]). An array element 
accessed by one reference in some iteration may be reused by 
other references in other iterations. 

 

Figure 1.    (a) Original loop nest. (b) Iterations of original loop nest. (c) 
Transformation T0 for locality of all data references. (d) Transformation 

T1 for locality of selected data references. 

Reuse distance (vector) [21] is used to describe the 
difference of iteration vectors of two reusable array references. 
For example, the reuse distance from A0 to A1 is (3, 0, 0), 
which means the array element accessed by A0 in iteration (i, j, 
k) can be reused by A1 in iteration (i+3, j, k). If we allocate a 
reuse buffer in on-chip memory to store the data accessed by 
A0 until these data are used by A1, external memory bandwidth 
is saved for A1 access. To simplify our discussion, the loop 
bounds are far greater than the reuse distances. And the 
throughput of the loop nest measured by the number of 
innermost iterations executed per second is fixed. Hence, the 
total bandwidth is proportional to the number of references that 
do not reuse data from other references in one innermost 
iteration. The dead data in reuse buffers (which will no longer 
be reused) will be replaced by the recently accessed active data. 
The reuse buffer size is calculated as the maximal number of 
active data in the reuse buffer at each loop iteration, and is 
determined by reuse distance and the scanning order of the loop 
iterations. Reuse distance from A0 to A3 is (0, 0, 1), and only 
one buffer space is needed to realize the data reuse r03 in Fig. 
1(b). But for reuse candidate r02 (from A0 to A2), the data reuse 
relation is carried by loop j. To realize the data reuse from A0 
to A2, all solid-point data in Fig. 1(b) needs to be stored in the 
reuse buffer, and the buffer size is 2×400=800. 

We adopt the data reuse analysis approach in [11, 12] to 
evaluate the reuse buffer size for data reuse at each loop level. 
For the program in Fig. 1(a), at innermost loop k, data reuse 
within this loop is (A0→A3). After realizing this data reuse, 
total bandwidth (BW) is reduced from the original 4 to 3 
(normalized to the bandwidth for one reference), and the buffer 
size (BS) is 1. At intermediate loop j, data reuse (A0→A2) and 
(A0→A3) can be realized, and the corresponding BW and BS 
are 2 and 800 respectively. Loop transformation is used to 
improve the data locality and reduce the size of reuse buffers. 
We take two transformations T0 and T1 into consideration as 
shown in Fig. 1(c) and Fig. 1(d). If the comparison of two 
vectors is performed in the lexicographic order, T0 minimizes 
the maximal distance vector for all reuse reference pairs, and 
this is the result of traditional locality improving transformation. 
T1 only minimizes the distance of (A0→A1) and (A0→A3). 
We also evaluate all the BW vs. BS candidates for the 
transformed code in Fig. 1(c) and Fig. 1(d) respectively. The 
comparison is shown in Table I.  
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In this paper the terms bandwidth and buffer size are used 
specifically for external memory bandwidth and on-chip reuse 
buffer size respectively. We can see from Table I that for 
different bandwidth requirements, the optimal loop 
transformation that has the minimum on-chip memory for data 
reuse is different. Traditional locality-aware loop 
transformation (T0) minimizes all the possible reuse distances 
which can get the best result if the given bandwidth is small. 
But when more bandwidth is given, the selection of the data 
reuse distances to be optimized greatly impacts the loop 
transformation optimization. Trying to optimize the reuse 
distance of the references that are allocated in external memory 
will not help to reduce bandwidth, but will over-constrain the 
optimization of the reuse distance of the references that are 
allocated in on-chip reuse buffers. In our example, we select 
transformation T1 which only optimizes the reuse distances for 
(A0→A1) and (A0→A3). When the given bandwidth is 2, T1 
has the minimal on-chip memory buffer size. In fact, if even 
more bandwidth is given as 3, only the innermost loop level 
data reuse is needed. In this case, the original code has the 
minimum buffer size instead. 

TABLE I.  BANDWIDTH AND BUFFER SIZE OF VARIOUS REUSE SCHEMES  

Loop level of 
data reuse 

Original T0 T1 
BW BS BW BS BW BS 

Innermost 3 1 3 3 3 3 

Intermediate 2 800 2 400 2 200 

Outermost 1 360k 1 60k 1 160k 
 

As shown in this motivation example, the best reuse-aware 
loop transformation is highly dependent on the available off-
chip bandwidth and on-chip buffer size. But it is hard to 
directly model these platform dependent requirements by the 
loop transformation alone. Memory hierarchy allocation can 
help to determine the selection of reuse distances to be 
optimized in loop transformation. Instead of previous loosely 
coupled methods which may get suboptimal results for various 
bandwidth and buffer size requirements, this paper proposes a 
fully integrated approach to optimize affine loop transformation 
and memory hierarchy allocation simultaneously to obtain the 
global optimal results. 

III. PROBLEM FORMULATION 
To simplify the formulation for the optimization problem, 

we make the following assumptions for the applications. The 
optimization is performed on perfectly nested loops. For 
imperfectly nested loops, we can also adopt the embedding 
approach proposed in [9] to convert the imperfectly nested 
loops into perfectly nested loops. In addition, loop bounds are 
constant or have a constant estimation. Array references are in 
the affine form of iteration variables, and the affine coefficients 
are far less than the loop bounds. The true data dependence 
distance and data reuse distance of two specific array 
references are constant (uniform distance). The majority of 
real-life computation-intensive applications satisfy these 
assumptions. Our problem is specified as: Given the high-level 
program accordant to our assumptions, find the optimal affine 
loop transformation with bounded coefficients and two-level 
memory hierarchy allocation which minimize the on-chip reuse 
buffer size under a specified bandwidth constraint. The dual 

problem, given buffer size constraint minimizing bandwidth, 
can be optimized by solving a sequence of the primal problems 
in a binary searching way.  

A. Polyhedral Representation 
Imperative programming language imposes total ordering 

for the execution of each statement, which is an over-constraint 
for our memory system optimization. Polyhedral representation 
only models the essential information of the application and 
presents it in the linear form. 

DEFINITION 1 (ITERATION DOMAIN [6]). The iteration vector 
of a m-level loop nest is a vector of iteration variable, 

0 1 1( , ,..., )−= T
mi i i i , where 0i … 1−mi are the iteration variables 

from outermost to innermost loop. Iteration domain ⊂ mD is 
the set of iteration vectors of the loop nest, and is expressed by 
a set of linear inequalities { |  }×= ⋅ ≥m mi i bPD . 

EXAMPLE 1. Consider the loop nest in Fig. 1(a): 
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0 1 0 0
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0 1 0 299
0 0 1 0
0 0 1 399
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− −
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⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= ⋅ ≥ ∈⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

D  

DEFINITION 2 (LEXICOGRAPHIC ORDER [6]). Lexicographic 
order relation l  of two vector iteration vectors i and j is 
defined as: 

0 0 0 0 1 1 0 0 1 1 2 2

0 0 2 2 1 1

( ) ( ) ( )
               ... ( ... )− − − −

⇔ > ∨ = ∧ > ∨ = ∧ = ∧ > ∨
∨ = ∧ ∧ = ∧ >

l

m m m m

i j i j i j i j i j i j i j
i j i j i j

 

DEFINITION 3 (ACCESS FUNCTION [6]). For a k-dimensional 
array reference, its access function ⊂ →m kH is the 
mapping from iteration vector mi  to the access index kh : 

{ |  }×= → = ⋅ +m k k k m m ki h h i bHH  

Using iteration domain and access function, loop iterations 
and the array access are concisely described as polytopes in the 
space of integers. Data dependence and reuse possibility of 
array references can be analyzed from this polyhedral 
representation and expressed as dependence/reuse distance 
vectors [22, 23]. 

DEFINITION 4 (DEPENDENCE DISTANCE VECTOR [2]). A0 is a 
write reference and A1 is a read reference of the same array. If 
the data element A0 writes in iteration i is read by A1 in 
iteration j , the dependence distance vector is = −d j i . 

DEFINITION 5 (REUSE DISTANCE VECTOR [2]). A0 and A1 are 
two read references of the same array. If the data element A0 
reads in iteration i is the same as the one A1 reads in 
iteration j , the reuse distance vector from A0 to A1 is = −r j i . 

EXAMPLE 2. The reuse distance from A0 to A1 in Fig. 1(a) is 
a constant vector (3, 0, 0)T. 

DEFINITION 6 (AFFINE LOOP TRANSFORMATION [6]). Affine 
loop transformation changes the loop execution order by 
performing an affine transformation m m×∈T on the loop 
iteration vector: 'i i= ⋅T  
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EXAMPLE 3. Consider the transformations T0 in Fig. 1(c) 
and T1 in Fig. 1(d): 

0 0 1 0 1 0
0 1 0 ,    0 0 1
1 0 0 1 0 0

0 1
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

T T  

The transformed distance vector can be calculated directly 
as ' = ⋅d dT  and ' = ⋅r rT . Not every matrix generates a legal 
loop transformation that preserves the semantics of the original 
program. Assuming read-to-write and write-to-write data 
dependence has been removed by a renaming preprocessing [2], 
we only consider true data dependence constraints in this paper. 

THEOREM 1 (LEGALITY OF AFFINE LOOP TRANSFORMATION 
[6]). An affine transformation T is legal iff for every data 
dependence distance vector d in the loop nest, the transformed 
distance vector is lexicographically positive: , 0∀ ∈ ⋅ ld dTR , 
whereR is the set of dependence distance vectors. 

B. Reuse Graph and Hierarchy Allocation 
Data reuse graph [13, 14] that represents data reuse 

candidates, is always used as the input for memory hierarchy 
allocation optimization.  Nodes of the graph are reuse copies 
(array references in our simplified case), and edges weighted by 
the reuse distance are the possible data reuse between two 
nodes. Binary decision variables are allocated for each edge to 
indicate whether the reuse is realized in the on-chip buffer. 
Bandwidth and buffer size can be calculated using these binary 
allocation variables to formulate the optimization problem [15].   

In our formulation the reuse direction between two 
references is unknown before the loop transformation is 
determined. This makes it difficult to calculate bandwidth 
consumption from allocation variables. To consider all the 
possible data reuse directions, two binary variables are used to 
indicate the data reuse of two references from two directions. 
Using these binary variables and reuse distances in the reuse 
graph, we can calculate the bandwidth and buffer size. 

 DEFINITION 7 (BIDIRECTIONAL DATA REUSE GRAPH).  For a 
loop nest L, the bidirectional data reuse graph is a directed 
graph ( , )=G V E , where V is the read references in L, and for 
every reuse relation vs→vt with distance str (vs and vt in V), 
two edges est (vs→vt) and ets (vt→vs) are in E weighted by 

str and - str . 

 
Figure 2.    Example of bidirectional data reuse graph.  

Fig. 2 shows the proposed data reuse graph for the program 
in Fig. 1(a). The binary variable xyb indicates whether data 
reuse from node ∈x V to node ∈y V is realized in the on-chip 
reuse buffer. We also introduce an intermediate binary 
variable yn for each node ∈y V as

,
y xy

x V x y
n b

∈ ≠
= ∨ , indicating 

whether node y reuses data from other nodes. Because loop 
bounds are assumed to be far greater than reuse distance, we 
can consider a node with ny=1 as totally reused, and ignore 
marginal un-reusable access on the boundaries. If V has n 
nodes, the normalized bandwidth is calculated as: 

y
y V

BW n n
∈

= −∑  

C. Buffer Size Calculation 
The buffer size of one reuse edge is the number of iterations 

within the iteration distance. The value is equal to the inner 
product of data reuse distance and the loop iteration vector. 

DEFINITION 8 (ACCUMULATED ITERATION VECTOR, AIV).  
For an m-level loop nest, its AIV is 0 1 1( , ,..., )−= T

ml l l l , 
where 1 1− =ml , and 0.. 2,∀ = −k m kl  is equal to the maximum 
number of the total iterations of m-k-1 inner loops from k+1 to 
m-1 within one iteration of loop k. 

EXAMPLE 4. The AIV of the loops in Fig. 1(a) is l =(120000, 
400, 1)T. If the reuse distance is r =(2, 0, 0), the buffer size is 
the total number of iterations between iteration (i, j, k) and 
(i+2, j, k), which is equal to the inner product of l and 
r (240000). 

PROBLEM 1. Given iteration domain D  and affine 
transformation T , calculate transformed AIV '( )l T  . 

  Since each iteration in the transformed loops corresponds 
to one iteration in the original loops, we can calculate '( )l T by 
counting the number of original iterations mapped into the 
inner levels of the transformed loop nest when iterations of 
outer loops are fixed.   

'( ) ({ ' | ' ',  ' } )= ( { | ,  } )k k kt t
l Max i i i t Max i i i t= ∈ = ∈ ⋅ =T TD D , 

where 'D is the transformed iteration domain, 'ki is iteration 
vector of the outer k+1 transformed loops, 1kt +∈ is an 
intermediate vector, and kT is the upper k+1 rows of matrix T. 
Integer points in a polytope can be counted by polylib [24] and 
Barvinok [25] libraries. 

It seems unnecessary that the total buffer size is equal to the 
sum of the sizes of all separate realized reuse buffers, because 
overlapped reuse buffers may share data. However, the 
following theorem ensures that data sharing between reuse 
buffers does not need to be specially considered in the 
formulation.  

THEOREM 2 (NON-OVERLAP REUSE). For the problem 
minimizing the sum of the allocated reuse buffer sizes under 
bandwidth constraints, no same data will be allocated in two 
reuse buffers in the optimal solution.  

188



  PROOF. We first assume an optimal solution of the problem 
has data overlap as in Fig. 3(a). The relative order of the 
reused array instances a, b, c, d is determined after 
transformation. If we remove the overlapped part from one 
reuse buffer as in Fig. 3(b), the sum of the total buffer size will 
reduce and bandwidth will not increase. Then, we get a better 
solution than Fig. 3(a), which contradicts the assumption that 
Fig. 3(a) is optimal. □ 

 
Figure 3.     (a) A supposed optimal solution with data overlap. (b) A 

contradictory case with smaller buffer size 

D. Combined Optimization Problem 
From the discussion above, we can summarize our 

formulation as Problem 2. Eqn. 1 and Eqn. 2 are responsible for 
the legality of transformation and direction of data reuse 
respectively. Eqn. 3 and Eqn. 4 calculate the bandwidth. Eqn. 5 
and Eqn. 6 calculate the buffer size, and Eqn. 7 ensures that the 
ordering of all the iterations is determined for code generation 
after transformation.  

PROBLEM 2. Given an original iteration domainD with m 
level of loops, a set of dependence distance vectorsR , a set of 
array references V and their reuse distance 
vectors { | , }= ∈xyr x y VS , and a bound of normalized 
bandwidth N, find the optimal loop transformation T and 
memory hierarchy allocation { }xyb  to  

       Mininize BS

      , 0                                   ∀ ∈ ⋅ lSubject to d dTR

( , ), 0xy xy lx y V x y b r∀ ∈ ∧ ≠ ⋅ ≥T（ ）

,
,                                

∈ ≠
∀ ∈ = ∨y xy

x V x y
y V n b

                              
∈

= − ≤∑ y
y V

BW n n N

,
( ) '( )             

∈ ∧ ≠
= ⋅ ⋅∑ T

xy xy
x y V x y

BS b r lT T

'( ) ({ ,  } )       k kt
l Max i i t= ∈ ⋅ =T TD

( )                                          =rank mT
 

IV. EFFICIENT SOLUTION 
In general, Problem 2 has a non-convex form in Eqn. (6) 

and Eqn. (7), but we can have an efficient solution by utilizing 
the problem characteristics and mathematic transformations. 

A. Enumeration-Based Method 
In Problem 2, lexicographic ordering in Eqn. 1 and 2 can be 

converted into linear form by introducing additional variables 
to indicate the positions of positive components. Nonlinear 

operations on binary variables in Eqn. 2, 3 and 5 can also be 
linearized using the approaches in [15].  

But the non-linear terms in Eqn. 6 and 7 are not easy to 
remove. We notice that these two equations are only related to 
the loop transformation. In practical cases, the loop level 
associated with data reuse is relatively small, and the 
coefficient value of the optimal transformation matrix is also 
small (always in [-1, 1]). If we enumerate the space of the 
transformation matrix, Problem 2 is converted into a set of 
linear programming problems.  

We propose an enumeration-based two-step method to 
solve Problem 2 as in Fig. 4. Instead of a brute-force search, we 
present a set of efficient space pruning techniques to speed up 
the search, while maintaining the optimality of results.  

DEFINITION 9 (REUSE-FREE LOOP).  A reuse-free loop is a 
loop that does not carry realized reuse after transformation. 

 
Figure 4.    Enumeration-based solving method. 

 

Since the loop bound is large enough, the optimal solution 
must have the maximal number of outer reuse-free loops, 
which means solutions with fewer outer reuse-free loops can be 
pruned. The number of outer reuse-free loops will be efficiently 
maximized by the techniques in Sections IV.B and IV.C. 

B. Partial Feasibility Test 
Outer p+1 reuse-free loops are related to the upper p+1 rows 

of transformation matrix pT  and allocation variables{ }xyb . 

PROBLEM 3. Problem 2 with additional constraints:  

( , ), ( ) 0xy p xyx y V x y b r∀ ∈ ∧ ≠ ⋅ =T .                      (8) 

If a matrix Tp satisfies Eqn. 8, its sub-matrix containing 
rows of Tp must also satisfy it. So we can enumerate the 
maximal-ranked Tp in a row-by-row incremental way as 
Algorithm 1. Only feasible sub-matrices are used to enumerate 
larger ranked matrices. Row candidates in line 6 are all 
possible rows for p=0, and then all feasible one-row sub-
matrices instead for p≥1. CheckRank in line 8 checks whether 
a matrix is full-row-ranked. CheckNormalForm in line 9 and 
CheckDependence in line 16 are described later in Section 
IV.C.  

CheckBandwidth tests the feasibility of Problem 3 for the 
given upper p rows of the transformation matrix. Eqn. 5 and 6 
are ignored. We cannot simply ignore Eqn. 2 even though we 
have Eqn. 8. Because ⋅ xyrT will never be zero, the direction of 
data reuse is constrained in Eqn. 2. But in Eqn. 8, the reuse 
direction may be not constrained, and both variables bxy and byx 
may be one. This reuse cycle makes the bandwidth calculation 
incorrect. However, for calculating the bandwidth for a sub-
matrix, we can arbitrarily give a relative order for the 
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references x and y if 0⋅ =p xyrT . This is because if we swap 
these two references, (1) Eqn. 3 and 4 will be unchanged 
because of their symmetry; (2) Eqn. 8 will also have the same 
form because ⋅ = ⋅p zy p zxr rT T . In our CheckBandwidth, the 
bandwidth feasibility is directly checked by Eqn. 9, 3, and 4.  

( , ),  ( 0) ( )∀ ∈ ∧ ≠ = ⋅ == ∧ <xy p xyx y V x y b r x yT         (9) 

Algorithm 1 Outer Reuse-Free Sub-matrix Space Pruning 
1:  S → set of feasible matrices 
2:   
3:  add an abstract zero-row matrix into S  
4:  for p = 0 to m do 

  5:      for all p row matrices Tp-1 in S do 
  6:          for all one-row candidates r do 
  7:              append row r to Tp-1 to form Tr 
  8:              feasible    = CheckRank (Tr) 
  9:              feasible &= CheckNormalForm (Tr) 
10:              feasible &= CheckBandwidth (Tr) 
11:              if (feasible) then add p+1 row matrix Tr to S 
12:          end for 
13:      end for 
14:      if no p+1 row matrix in S then break 
15:  end for 
16:  delete each Tp from S if CheckDependence (Tp) fails 
17:  return all matrices with maximal rows in S 

C. RT-Equivalent Matrix Pruning 
Investigating Eqn. 8 and 9 further, we find that a set of sub-

matrices will generate the same constraints on{ }xyb .  

DEFINITION 10 (RT-EQUIVALENT MATRIX).  Matrices A and 
B are row-transformed (RT) equivalent matrix if B can be 
generated from A by a sequence of elementary row 
transformations. 

THEOREM 3. Two RT-equivalent sub-matrices impose the 
same constraints on {bxy} in Eqn. 8. 

PROOF. One elementary row transformation is equivalent to 
left-multiplying an elementary row transformation matrix. 

 0 0 ... 0 0∴ ⋅ = ⇔ ⋅ ⋅ ⋅ ⋅ = ⇔ ⋅ =xy xy l xy xy xy xyb r b r b rA E E A B . □  

DEFINITION 11 (RT-NORMAL FORM). A matrix is in the RT-
normal form iff it has the following properties: 

(1) The leading position of each row increases. The leading 
position of a row is the position of the leftmost nonzero element.  
(2) The coefficients in the leading positions are positive. 
(3) The column of those leading positions has only one nonzero. 

EXAMPLE 5. A typical RT-normal matrix looks like: 
0 * 0 * 0 *
0 0 0 * 0 *
0 0 0 0 0 *

+⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟+⎝ ⎠

 

The RT-normal form can be achieved by procedures similar 
to the Gaussian elimination. We can just enumerate the RT-
normal sub-matrices for the outer reuse-free loops, because 
other non-RT-normal sub-matrix will not get better results than 
the RT-normal ones. Then, the form of Eqn. 7, 8 and 9 is 
unchanged, but Eqn. 1 is updated to:  

,det( ) 0, , 0× × ×∃ ≠ ∀ ∈ ⋅ ⋅p p p p p p p ld dE E E TR .    (10) 

In Algorithm 1, CheckNormalForm checks whether a sub-
matrix is in RT-normal form using Definition 11. And 
CheckDependence checks Eqn. 10 using Fourier-Motzkin 
elimination. Because dependence check (Eqn. 10) is not 
incremental as bandwidth check and normal form check, 
CheckDependence is performed on the output of reuse-free 
loop maximization. Finally, Algorithm 1 finds the maximal 
feasible outer reuse-free sub-matrices which include all the 
optimal solutions of the original Problem 2, while largely 
reducing the search space by the sub-matrix pruning. 

D. First-Order Buffer Size Optimization 
The dominant (first-order) part of the buffer size is allocated 

at the outermost loop which carries the realized data reuse. In 
this section we enumerate one more row which is appended to 
the outer reuse-free sub-matrix to minimize the dominant part 
of the buffer size. For a fixed T, the buffer size for each reuse 
distance is determined: Sxy = (T·rxy)T·l’(T). To simplify Eqn.2, 
we introduce 1 1( 0) ( 0 )+ += ⋅ ∨ ⋅ = ∧ >≺xy p xy l p xyt r r x yT T to 
specify the reuse direction between reuse nodes. The 
allocation optimization can be expressed in a linear 
programming form as Problem 4.  

PROBLEM 4. Given txy, n, N, and Sxy, find optimal {bxy} to 

     , , =0∀ ∈ ∧ ≠ ∧ xy xySubject to x y V x y t b

,
,  0

∈ ≠

∀ ∈ − ≥∑ xy y
x V x y

y V b n

∈
≥ −∑ y

y V
n n N

,
      

∈ ∧ ≠
= ∑ xy xy

x y V x y
Minimize BS b S

( , ),0 1 0 1∀ ∈ ∧ ≠ ≤ ≤ ∧ ≤ ≤xy yx y V x y b n
 

THEOREM 4. The optimal solution for the linear 
programming Problem 4 is always integral. 

We omit the proof of Theorem 4 due to page limitations. 
Theorem 4 ensures that we can find optimal integer solutions 
for the allocation variables by solving a linear programming 
which has efficient polynomial-time solving algorithms. 

V. EXPERIMENTAL RESULTS 
Our data reuse optimization algorithm is performed as a 

source-to-source preprocessing step to a high-level synthesis 
tool for evaluation, as shown in Fig. 5.  Our design flow takes 
loop kernels in high-level specifications like C/C++ as input, 
and analyzes the polyhedral intermediate representation (IR) 
with dependence and reuse distances by the LLVM-Polly 
framework [26]. Data reuse optimization finds the optimal loop 
transformation and on-chip buffer allocation. In the code 
generator, loop transformation is performed by ClooG [27], and 
the on-chip buffer is generated as in [12, 19]. The optimized 
loop kernels are synthesized into VHDLs and then circuit 
netlists by the high-level synthesis tool AutoPilot [28] and the 
ASIC synthesis tool Design Compiler [29].  
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Table II.    EXPERIMENT RESULTS 

Design n N  Only HA  Separated LT+HA  Combined LT+HA 
 Logic SRAM Latency Power  Logic SRAM Latency Power  Logic SRAM Latency Power Time

FDTD_3D 4 2  60 76 2.43E+8 12.6  59 30 2.43E+8 2.8  56 25 2.43E+8 2.6 0.12
JACOBI_3D 7 5  61 129 3.65E+8 23.3  60 86 3.65E+8 14.6  58 74 3.65E+8 12.0 0.21
DENOISE 13 5  33 224 6.08E+8 36.3  32 149 6.08E+8 26.3  28 124 6.08E+8 21.1 0.36

SEG 27 3  224 761 1.22E+8 116.0  224 300 1.22E+8 18.0  221 254 1.22E+8 17.0 0.32
ME 64 8  63 149 1.32E+7 26.5  61 124 1.32E+7 21.4  61 124 1.32E+7 21.4 0.32

FDTD_4D 5 3  75 76 3.6E+10 12.9  71 25 3.6E+10 2.9  72 13 3.6E+10 2.6 0.66
JACOBI_4D 9 3  80 129 6.1E+10 23.7  75 74 6.1E+10 12.3  76 20 6.1E+10 2.9 2.4 

Geomean    1.00 1.00 1.00 1.00  0.97 0.52 1.00 0.39  0.94 0.36 1.00 0.29  
 

 
Figure 5.    Implementation flow. 

 
Our test designs include a set of real-life data-intensive loop 

kernels: FDTD and JACOBI are stencil codes chosen from 
polybench 2.0 [30]; ME is the 8×8 block matching algorithm 
for motion estimation in video encoding [31]; DENOISE 
smoothes a 3D image by averaging neighboring 13 pixels[32]; 
and SEG is a two-phase image segmentation algorithm [32]. 
The input data size is 352×288×600 and 352×288×600×100 for 
3D and 4D kernels respectively. The proposed combined loop 
transformation and memory hierarchy allocation scheme 
(combined LT+HA) is compared with two reference points in 
our experiments. The first reference point is the optimal 
memory hierarchy allocation with original source code (only 
HA). And the second point separately optimizes the LT and HA 
(separated LT+HA) as was done in [12, 15].  

A. Result and Analysis 
Experimental results of the three approaches are reported in 

Table II. The second column (n) in Table II shows the number 
of read references in each design. And the third column (N) is 
the bandwidth requirement (normalized to the bandwidth of 
one read reference in the loop nest) for each design, which is 
calculated from the available external memory bandwidth 
(1GB/s) and the design performance requirements. We set the 
clock frequency as 5ns, and all design implementations satisfy 
the timing constraint. The ASIC implementation results of the 
three approaches in 65nm process technology are compared, 
such as the area of logic standard cells and on-chip SRAM in 
103μm2, the execution latency in cycles, and the power 
consumption in mW. We also list the execution time (in 
seconds) of our combined optimization algorithm in the last 

column. We normalize the four metrics to the values of the only 
HA scheme, and calculate the geometric mean of the 
normalized data as shown in the last row of Table II.  

From the results, it is clear that loop transformation is 
important to data reuse optimization in memory hierarchy. 
Compared to the only HA scheme, the separated LT+HA 
scheme and the combined LT+HA scheme can save the on-chip 
memory size by 48% and 64% respectively, and also reduce the 
power consumption by 61% and 71% respectively. The saving 
of on-chip memory is achieved by shortening the lifetime of the 
reused data using loop transformation. And our combined 
LT+HA scheme gains an additional 31% memory reduction 
compared to the separated LT+HA scheme, because loop 
transformation has more precise objective functions to optimize 
when considering memory hierarchy allocation simultaneously. 
The gain in ME design is small because the optimization space 
for this 2-level loop ME design is relatively small and the 
separated LT+HA scheme also gets the optimal result. Because 
the external memory bandwidth is fixed, the power reduction 
mainly comes from the leakage power saving because there is 
less on-chip SRAM allocated. The experimental results also 
show that the logic cells area and the execution latency have 
slight differences between the three approaches, which are less 
than 6% and 1% respectively.  
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Figure 6.    Design space exploration. 

 

Fig. 6 investigates the design space for the trade-off 
between bandwidth and buffer size. When the bandwidth is too 
high or too low, the optimization space of memory hierarchy 
allocation is relatively small, and the separated LT+HA scheme 
can also get optimal results. For the bandwidth in-between, 
when the memory hierarchy allocation is not trivial, our 
combined LT+HA scheme outperforms the other schemes 
significantly. 
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B. Run-Time Complexity 
In our iterative algorithm, the complexity of the feasibility 

check procedures and memory hierarchy allocation are in 
polynomial time, but the pruned search space size for loop 
transformation is still exponential to the loop level. In practice, 
the run-time is less than three seconds for our experimental 
cases. In addition, we run random tests for more loop nests and 
more references, and report the maximal run-time in Table III. 
Table III shows that our scheme is efficient in a large range of 
real-life cases which have less than 5 loops or 50 reuse 
references.  

Table III. EXECUTION TIME ON RANDOM CASES (IN SECONDS) 

#reuse 
reference 

3-level 
loop 

4-level 
loop 

5-level 
loop 

10 0.13 0.65 10 
20 0.53 5.6 57 
50 3.5 40 463 

100 20.4 306 4662 
 

VI. CONCLUSION 
Loop transformation and memory hierarchy allocation are 

two coupled steps in the data reuse optimization flow. In this 
work we present a combined optimization algorithm to 
optimize loop transformation and memory hierarchy allocation 
simultaneously to obtain global optimal results in on-chip reuse 
buffer size and external memory bandwidth. A series of 
efficient space pruning techniques are proposed to speed up the 
execution of our algorithm by considering the characteristics of 
the loop transformation matrix and memory allocation 
constraints.  

Our future work will concentrate on integrating more 
optimizations such as loop tiling and inter-loop-nest 
optimization, and further reducing the algorithm complexity by 
introducing intelligent heuristics which can achieve nearly 
optimal results for complex applications. 
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