
Combined Loop Transformation and Hierarchy
Allocation for Data Reuse Optimization

Jason Cong, Peng Zhang, Yi Zou
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095, USA

{cong, pengzh, zouyi}@cs.ucla.edu

Abstract—External memory bandwidth is a crucial bottleneck
in the majority of computation-intensive applications for both
performance and power consumption. Data reuse is an
important technique for reducing the external memory access
by utilizing the memory hierarchy. Loop transformation for
data locality and memory hierarchy allocation are two major
steps in data reuse optimization flow. But they were carried
out independently. This paper presents a combined approach
which optimizes loop transformation and memory hierarchy
allocation simultaneously to achieve global optimal results on
external memory bandwidth and on-chip data reuse buffer
size. We develop an efficient and optimal solution to the
combined problem by decomposing the solution space into two
subspaces with linear and nonlinear constraints respectively.
We show that we can significantly prune the solution space
without losing its optimality. Experimental results show that
our scheme can save up to 31% of on-chip memory size
compared to the separated two-step method when the memory
hierarchy allocation problem is not trivial. Also, run-time
complexity is acceptable for the practical cases.

High-level synthesis; loop transformation; memory
hierarchy optimization; data reuse

I. INTRODUCTION
Memory systems play an increasingly important role in

modern computation system design, for both general-purpose
processors and application-specific accelerators. External
memory bandwidth is a dominant bottleneck for system
performance and power consumption, and the total amount of
on-chip memory is a main component of implementation cost
[1]. Data reuse has proved to be an efficient technique for
reducing external memory access with a relatively small on-
chip memory cost. A great deal of attention has been paid over
the past two decades to optimizing the external memory
bandwidth by improving the data reuse and locality [2-20]. The
research can be classified into two categories.

 The work in the first category focuses on improving the
data locality and date reuse by code transformation, especially
loop transformation [2-9]. By changing the accessing order of
array references in the loop nests, the co-located references
become temporally “closer” and the data locality is improved.
Various loop transformations, such as loop interchange, loop

skewing, loop merging and loop tiling, were studied
extensively in [2] and proved to be beneficial for data reuse.
Reference [3] also presented a survey on the feasibility and
profitability of these specific loop transformations and the
sequential combination of them to form complex loop
transformations. But this approach suffers from the complexity
of enabling transformations for complex loop structures and the
mismatch of different objective functions.

To overcome these limitations, polyhedral-based affine
loop transformation framework is widely used to unify the
combination of a sequence of specific loop transformations into
one single affine transformation matrix [4-9]. The pioneering
work [4, 5] used unimodular transformation matrices to have a
unified representation of loop interchange, loop reversal and
loop skewing transformations. Constructive solutions were
given for finding the maximal number of parallel innermost and
outermost loops. To support more general transformations and
objectives, affine transformation framework was established
based on parametric integer linear programming [6-8]. Data
dependence and transformation legality constraints are
expressed with a polyhedral model in a linear form. To improve
data locality, iteration distances between dependent array
instances are formulated in the objective function to be
minimized. However, current loop transformations do not take
the memory platform information into consideration due to the
difficulty of modeling it directly in the cost functions.

The work in the second category optimizes the allocation of
the reuse buffers in the memory hierarchy [10-15]. The data
transfer and storage exploration (DTSE) methodology [1, 10]
established an integrated design flow for the memory hierarchy
optimization for customized memory systems. The
optimization flow first analyzes the possible data reuse copies
(the candidates of reuse buffers) of the array references at each
loop level in the source program [11, 12]. Then, heuristics
based on reuse buffer size and bandwidth reduction are applied
to decide which reuse copies (buffer candidates) are selected to
be implemented as an intermediate level in the memory
hierarchy [13, 14]. In contrast to the heuristic approach, optimal
allocation was also proposed by formulating the problem into a
mixed linear programming optimization problem [15]. For all
of these memory hierarchy allocation design flows, an
independent loop transformation steering preprocessing is
needed to optimize the data locality. And the final result of
memory hierarchy optimization is greatly affected by this
preprocessing. This work was supported in part by the Semiconductor Research

Corporation under Contract 2009-TJ-1879, and in part by the National
Science Foundation under the Expeditions in Computing Program CCF-
0926127.

978-1-4577-1400-9/11/$26.00 ©2011 IEEE 185

Recently, researchers noticed the importance of considering
memory platform characteristics in optimizing the loop
transformation [16]. Loop transformation and memory
hierarchy allocation are loosely coupled by introducing fast
hierarchical memory size estimators [17, 18] to evaluate the
promising transformations. But the authors do not provide a
systematic way to find those promising transformations. Other
researchers use analytic optimization formulations to optimize
the loop tiling parameters and memory hierarchy allocation
simultaneously [19, 20]. Their formulations are solved using
non-linear optimization, such as sequential quadratic
programming [19] and geometric programming [20]. However,
these schemes still need affine transformations as a
preprocessing procedure to improve data locality and enable
tiling.

To the best of our knowledge, this is the first work to
provide a systematic and efficient approach to optimizing the
affine loop transformation and memory hierarchy allocation
simultaneously to obtain the optimal data reuse implementation
in memory system design. The contributions of this work are
twofold.

• We formulate the global optimization problem in a
concise mathematic form. In formulating bandwidth
requirements, bi-directional binary allocation variables
are used to address the problem that the reuse direction
is unknown before the transformation is determined. In
formulating reuse buffer size requirements, the
calculation of the number of transformed loop
iterations is converted into an internal integer point
counting problem for a polytope.

• We also propose an efficient and optimal solution to
the combined optimization problem. The solution
space S is decomposed into a subspace (L) with linear
constraints and a subspace (N) with non-linear
constraints such that S=N×L. Our early feasibility
determination and equivalent matrix elimination
techniques further prune many suboptimal solutions in
N so that the execution time is only seconds for most
of our test cases. Experimental results show that for the
given memory bandwidth constraints, up to 31% on-
chip memory saving can be achieved compared to
previous local optimal schemes.

The remainder of this paper is organized as follows. Section
II demonstrates a motivation example to show the benefits of
combined global optimization. Section III describes some
preliminaries and the formulation of our combined optimization
problem. Section IV proposes an efficient solution to the
formulated non-linear optimization problem. Section V gives
the experimental result and the discussions of the proposed
scheme, and is followed by conclusions in Section VI.

II. A MOTIVATION EXAMPLE
As an example to demonstrate the necessity of combining

affine loop transformation and memory hierarchy allocation,
we first focus on the simple stencil code in Fig. 1(a). Four
references of the same array A are located in the innermost
loop of the loop nest, expressed as A0 (A[i, j, k]), A1 (A[i-3, j,
k]), A2 (A[i, j-2, k]), and A3 (A[i, j, k-1]). An array element
accessed by one reference in some iteration may be reused by
other references in other iterations.

Figure 1. (a) Original loop nest. (b) Iterations of original loop nest. (c)
Transformation T0 for locality of all data references. (d) Transformation

T1 for locality of selected data references.

Reuse distance (vector) [21] is used to describe the
difference of iteration vectors of two reusable array references.
For example, the reuse distance from A0 to A1 is (3, 0, 0),
which means the array element accessed by A0 in iteration (i, j,
k) can be reused by A1 in iteration (i+3, j, k). If we allocate a
reuse buffer in on-chip memory to store the data accessed by
A0 until these data are used by A1, external memory bandwidth
is saved for A1 access. To simplify our discussion, the loop
bounds are far greater than the reuse distances. And the
throughput of the loop nest measured by the number of
innermost iterations executed per second is fixed. Hence, the
total bandwidth is proportional to the number of references that
do not reuse data from other references in one innermost
iteration. The dead data in reuse buffers (which will no longer
be reused) will be replaced by the recently accessed active data.
The reuse buffer size is calculated as the maximal number of
active data in the reuse buffer at each loop iteration, and is
determined by reuse distance and the scanning order of the loop
iterations. Reuse distance from A0 to A3 is (0, 0, 1), and only
one buffer space is needed to realize the data reuse r03 in Fig.
1(b). But for reuse candidate r02 (from A0 to A2), the data reuse
relation is carried by loop j. To realize the data reuse from A0
to A2, all solid-point data in Fig. 1(b) needs to be stored in the
reuse buffer, and the buffer size is 2×400=800.

We adopt the data reuse analysis approach in [11, 12] to
evaluate the reuse buffer size for data reuse at each loop level.
For the program in Fig. 1(a), at innermost loop k, data reuse
within this loop is (A0→A3). After realizing this data reuse,
total bandwidth (BW) is reduced from the original 4 to 3
(normalized to the bandwidth for one reference), and the buffer
size (BS) is 1. At intermediate loop j, data reuse (A0→A2) and
(A0→A3) can be realized, and the corresponding BW and BS
are 2 and 800 respectively. Loop transformation is used to
improve the data locality and reduce the size of reuse buffers.
We take two transformations T0 and T1 into consideration as
shown in Fig. 1(c) and Fig. 1(d). If the comparison of two
vectors is performed in the lexicographic order, T0 minimizes
the maximal distance vector for all reuse reference pairs, and
this is the result of traditional locality improving transformation.
T1 only minimizes the distance of (A0→A1) and (A0→A3).
We also evaluate all the BW vs. BS candidates for the
transformed code in Fig. 1(c) and Fig. 1(d) respectively. The
comparison is shown in Table I.

186

In this paper the terms bandwidth and buffer size are used
specifically for external memory bandwidth and on-chip reuse
buffer size respectively. We can see from Table I that for
different bandwidth requirements, the optimal loop
transformation that has the minimum on-chip memory for data
reuse is different. Traditional locality-aware loop
transformation (T0) minimizes all the possible reuse distances
which can get the best result if the given bandwidth is small.
But when more bandwidth is given, the selection of the data
reuse distances to be optimized greatly impacts the loop
transformation optimization. Trying to optimize the reuse
distance of the references that are allocated in external memory
will not help to reduce bandwidth, but will over-constrain the
optimization of the reuse distance of the references that are
allocated in on-chip reuse buffers. In our example, we select
transformation T1 which only optimizes the reuse distances for
(A0→A1) and (A0→A3). When the given bandwidth is 2, T1
has the minimal on-chip memory buffer size. In fact, if even
more bandwidth is given as 3, only the innermost loop level
data reuse is needed. In this case, the original code has the
minimum buffer size instead.

TABLE I. BANDWIDTH AND BUFFER SIZE OF VARIOUS REUSE SCHEMES

Loop level of
data reuse

Original T0 T1
BW BS BW BS BW BS

Innermost 3 1 3 3 3 3

Intermediate 2 800 2 400 2 200

Outermost 1 360k 1 60k 1 160k

As shown in this motivation example, the best reuse-aware
loop transformation is highly dependent on the available off-
chip bandwidth and on-chip buffer size. But it is hard to
directly model these platform dependent requirements by the
loop transformation alone. Memory hierarchy allocation can
help to determine the selection of reuse distances to be
optimized in loop transformation. Instead of previous loosely
coupled methods which may get suboptimal results for various
bandwidth and buffer size requirements, this paper proposes a
fully integrated approach to optimize affine loop transformation
and memory hierarchy allocation simultaneously to obtain the
global optimal results.

III. PROBLEM FORMULATION
To simplify the formulation for the optimization problem,

we make the following assumptions for the applications. The
optimization is performed on perfectly nested loops. For
imperfectly nested loops, we can also adopt the embedding
approach proposed in [9] to convert the imperfectly nested
loops into perfectly nested loops. In addition, loop bounds are
constant or have a constant estimation. Array references are in
the affine form of iteration variables, and the affine coefficients
are far less than the loop bounds. The true data dependence
distance and data reuse distance of two specific array
references are constant (uniform distance). The majority of
real-life computation-intensive applications satisfy these
assumptions. Our problem is specified as: Given the high-level
program accordant to our assumptions, find the optimal affine
loop transformation with bounded coefficients and two-level
memory hierarchy allocation which minimize the on-chip reuse
buffer size under a specified bandwidth constraint. The dual

problem, given buffer size constraint minimizing bandwidth,
can be optimized by solving a sequence of the primal problems
in a binary searching way.

A. Polyhedral Representation
Imperative programming language imposes total ordering

for the execution of each statement, which is an over-constraint
for our memory system optimization. Polyhedral representation
only models the essential information of the application and
presents it in the linear form.

DEFINITION 1 (ITERATION DOMAIN [6]). The iteration vector
of a m-level loop nest is a vector of iteration variable,

0 1 1(, ,...,)−= T
mi i i i , where 0i … 1−mi are the iteration variables

from outermost to innermost loop. Iteration domain ⊂ mD is
the set of iteration vectors of the loop nest, and is expressed by
a set of linear inequalities { | }×= ⋅ ≥m mi i bPD .

EXAMPLE 1. Consider the loop nest in Fig. 1(a):

0

0 1 2 1 0 1 2

2

1 0 0 0
1 0 0 199

0 1 0 0
, }

0 1 0 299
0 0 1 0
0 0 1 399

{(, ,) | , ,
i

i i i i i i i
i

− −

− −

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= ⋅ ≥ ∈⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

D

DEFINITION 2 (LEXICOGRAPHIC ORDER [6]). Lexicographic
order relation l of two vector iteration vectors i and j is
defined as:

0 0 0 0 1 1 0 0 1 1 2 2

0 0 2 2 1 1

() () ()
 ... (...)− − − −

⇔ > ∨ = ∧ > ∨ = ∧ = ∧ > ∨
∨ = ∧ ∧ = ∧ >

l

m m m m

i j i j i j i j i j i j i j
i j i j i j

DEFINITION 3 (ACCESS FUNCTION [6]). For a k-dimensional
array reference, its access function ⊂ →m kH is the
mapping from iteration vector mi to the access index kh :

{ | }×= → = ⋅ +m k k k m m ki h h i bHH

Using iteration domain and access function, loop iterations
and the array access are concisely described as polytopes in the
space of integers. Data dependence and reuse possibility of
array references can be analyzed from this polyhedral
representation and expressed as dependence/reuse distance
vectors [22, 23].

DEFINITION 4 (DEPENDENCE DISTANCE VECTOR [2]). A0 is a
write reference and A1 is a read reference of the same array. If
the data element A0 writes in iteration i is read by A1 in
iteration j , the dependence distance vector is = −d j i .

DEFINITION 5 (REUSE DISTANCE VECTOR [2]). A0 and A1 are
two read references of the same array. If the data element A0
reads in iteration i is the same as the one A1 reads in
iteration j , the reuse distance vector from A0 to A1 is = −r j i .

EXAMPLE 2. The reuse distance from A0 to A1 in Fig. 1(a) is
a constant vector (3, 0, 0)T.

DEFINITION 6 (AFFINE LOOP TRANSFORMATION [6]). Affine
loop transformation changes the loop execution order by
performing an affine transformation m m×∈T on the loop
iteration vector: 'i i= ⋅T

187

EXAMPLE 3. Consider the transformations T0 in Fig. 1(c)
and T1 in Fig. 1(d):

0 0 1 0 1 0
0 1 0 , 0 0 1
1 0 0 1 0 0

0 1
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

T T

The transformed distance vector can be calculated directly
as ' = ⋅d dT and ' = ⋅r rT . Not every matrix generates a legal
loop transformation that preserves the semantics of the original
program. Assuming read-to-write and write-to-write data
dependence has been removed by a renaming preprocessing [2],
we only consider true data dependence constraints in this paper.

THEOREM 1 (LEGALITY OF AFFINE LOOP TRANSFORMATION
[6]). An affine transformation T is legal iff for every data
dependence distance vector d in the loop nest, the transformed
distance vector is lexicographically positive: , 0∀ ∈ ⋅ ld dTR ,
whereR is the set of dependence distance vectors.

B. Reuse Graph and Hierarchy Allocation
Data reuse graph [13, 14] that represents data reuse

candidates, is always used as the input for memory hierarchy
allocation optimization. Nodes of the graph are reuse copies
(array references in our simplified case), and edges weighted by
the reuse distance are the possible data reuse between two
nodes. Binary decision variables are allocated for each edge to
indicate whether the reuse is realized in the on-chip buffer.
Bandwidth and buffer size can be calculated using these binary
allocation variables to formulate the optimization problem [15].

In our formulation the reuse direction between two
references is unknown before the loop transformation is
determined. This makes it difficult to calculate bandwidth
consumption from allocation variables. To consider all the
possible data reuse directions, two binary variables are used to
indicate the data reuse of two references from two directions.
Using these binary variables and reuse distances in the reuse
graph, we can calculate the bandwidth and buffer size.

 DEFINITION 7 (BIDIRECTIONAL DATA REUSE GRAPH). For a
loop nest L, the bidirectional data reuse graph is a directed
graph (,)=G V E , where V is the read references in L, and for
every reuse relation vs→vt with distance str (vs and vt in V),
two edges est (vs→vt) and ets (vt→vs) are in E weighted by

str and - str .

Figure 2. Example of bidirectional data reuse graph.

Fig. 2 shows the proposed data reuse graph for the program
in Fig. 1(a). The binary variable xyb indicates whether data
reuse from node ∈x V to node ∈y V is realized in the on-chip
reuse buffer. We also introduce an intermediate binary
variable yn for each node ∈y V as

,
y xy

x V x y
n b

∈ ≠
= ∨ , indicating

whether node y reuses data from other nodes. Because loop
bounds are assumed to be far greater than reuse distance, we
can consider a node with ny=1 as totally reused, and ignore
marginal un-reusable access on the boundaries. If V has n
nodes, the normalized bandwidth is calculated as:

y
y V

BW n n
∈

= −∑

C. Buffer Size Calculation
The buffer size of one reuse edge is the number of iterations

within the iteration distance. The value is equal to the inner
product of data reuse distance and the loop iteration vector.

DEFINITION 8 (ACCUMULATED ITERATION VECTOR, AIV).
For an m-level loop nest, its AIV is 0 1 1(, ,...,)−= T

ml l l l ,
where 1 1− =ml , and 0.. 2,∀ = −k m kl is equal to the maximum
number of the total iterations of m-k-1 inner loops from k+1 to
m-1 within one iteration of loop k.

EXAMPLE 4. The AIV of the loops in Fig. 1(a) is l =(120000,
400, 1)T. If the reuse distance is r =(2, 0, 0), the buffer size is
the total number of iterations between iteration (i, j, k) and
(i+2, j, k), which is equal to the inner product of l and
r (240000).

PROBLEM 1. Given iteration domain D and affine
transformation T , calculate transformed AIV '()l T .

 Since each iteration in the transformed loops corresponds
to one iteration in the original loops, we can calculate '()l T by
counting the number of original iterations mapped into the
inner levels of the transformed loop nest when iterations of
outer loops are fixed.

'() ({ ' | ' ', ' })= ({ | , })k k kt t
l Max i i i t Max i i i t= ∈ = ∈ ⋅ =T TD D ,

where 'D is the transformed iteration domain, 'ki is iteration
vector of the outer k+1 transformed loops, 1kt +∈ is an
intermediate vector, and kT is the upper k+1 rows of matrix T.
Integer points in a polytope can be counted by polylib [24] and
Barvinok [25] libraries.

It seems unnecessary that the total buffer size is equal to the
sum of the sizes of all separate realized reuse buffers, because
overlapped reuse buffers may share data. However, the
following theorem ensures that data sharing between reuse
buffers does not need to be specially considered in the
formulation.

THEOREM 2 (NON-OVERLAP REUSE). For the problem
minimizing the sum of the allocated reuse buffer sizes under
bandwidth constraints, no same data will be allocated in two
reuse buffers in the optimal solution.

188

 PROOF. We first assume an optimal solution of the problem
has data overlap as in Fig. 3(a). The relative order of the
reused array instances a, b, c, d is determined after
transformation. If we remove the overlapped part from one
reuse buffer as in Fig. 3(b), the sum of the total buffer size will
reduce and bandwidth will not increase. Then, we get a better
solution than Fig. 3(a), which contradicts the assumption that
Fig. 3(a) is optimal. □

Figure 3. (a) A supposed optimal solution with data overlap. (b) A

contradictory case with smaller buffer size

D. Combined Optimization Problem
From the discussion above, we can summarize our

formulation as Problem 2. Eqn. 1 and Eqn. 2 are responsible for
the legality of transformation and direction of data reuse
respectively. Eqn. 3 and Eqn. 4 calculate the bandwidth. Eqn. 5
and Eqn. 6 calculate the buffer size, and Eqn. 7 ensures that the
ordering of all the iterations is determined for code generation
after transformation.

PROBLEM 2. Given an original iteration domainD with m
level of loops, a set of dependence distance vectorsR , a set of
array references V and their reuse distance
vectors { | , }= ∈xyr x y VS , and a bound of normalized
bandwidth N, find the optimal loop transformation T and
memory hierarchy allocation { }xyb to

 Mininize BS

 , 0 ∀ ∈ ⋅ lSubject to d dTR

(,), 0xy xy lx y V x y b r∀ ∈ ∧ ≠ ⋅ ≥T（ ）

,
,

∈ ≠
∀ ∈ = ∨y xy

x V x y
y V n b

∈

= − ≤∑ y
y V

BW n n N

,
() '()

∈ ∧ ≠
= ⋅ ⋅∑ T

xy xy
x y V x y

BS b r lT T

'() ({ , }) k kt
l Max i i t= ∈ ⋅ =T TD

() =rank mT

IV. EFFICIENT SOLUTION
In general, Problem 2 has a non-convex form in Eqn. (6)

and Eqn. (7), but we can have an efficient solution by utilizing
the problem characteristics and mathematic transformations.

A. Enumeration-Based Method
In Problem 2, lexicographic ordering in Eqn. 1 and 2 can be

converted into linear form by introducing additional variables
to indicate the positions of positive components. Nonlinear

operations on binary variables in Eqn. 2, 3 and 5 can also be
linearized using the approaches in [15].

But the non-linear terms in Eqn. 6 and 7 are not easy to
remove. We notice that these two equations are only related to
the loop transformation. In practical cases, the loop level
associated with data reuse is relatively small, and the
coefficient value of the optimal transformation matrix is also
small (always in [-1, 1]). If we enumerate the space of the
transformation matrix, Problem 2 is converted into a set of
linear programming problems.

We propose an enumeration-based two-step method to
solve Problem 2 as in Fig. 4. Instead of a brute-force search, we
present a set of efficient space pruning techniques to speed up
the search, while maintaining the optimality of results.

DEFINITION 9 (REUSE-FREE LOOP). A reuse-free loop is a
loop that does not carry realized reuse after transformation.

Figure 4. Enumeration-based solving method.

Since the loop bound is large enough, the optimal solution
must have the maximal number of outer reuse-free loops,
which means solutions with fewer outer reuse-free loops can be
pruned. The number of outer reuse-free loops will be efficiently
maximized by the techniques in Sections IV.B and IV.C.

B. Partial Feasibility Test
Outer p+1 reuse-free loops are related to the upper p+1 rows

of transformation matrix pT and allocation variables{ }xyb .

PROBLEM 3. Problem 2 with additional constraints:

(,), () 0xy p xyx y V x y b r∀ ∈ ∧ ≠ ⋅ =T . (8)

If a matrix Tp satisfies Eqn. 8, its sub-matrix containing
rows of Tp must also satisfy it. So we can enumerate the
maximal-ranked Tp in a row-by-row incremental way as
Algorithm 1. Only feasible sub-matrices are used to enumerate
larger ranked matrices. Row candidates in line 6 are all
possible rows for p=0, and then all feasible one-row sub-
matrices instead for p≥1. CheckRank in line 8 checks whether
a matrix is full-row-ranked. CheckNormalForm in line 9 and
CheckDependence in line 16 are described later in Section
IV.C.

CheckBandwidth tests the feasibility of Problem 3 for the
given upper p rows of the transformation matrix. Eqn. 5 and 6
are ignored. We cannot simply ignore Eqn. 2 even though we
have Eqn. 8. Because ⋅ xyrT will never be zero, the direction of
data reuse is constrained in Eqn. 2. But in Eqn. 8, the reuse
direction may be not constrained, and both variables bxy and byx
may be one. This reuse cycle makes the bandwidth calculation
incorrect. However, for calculating the bandwidth for a sub-
matrix, we can arbitrarily give a relative order for the

189

references x and y if 0⋅ =p xyrT . This is because if we swap
these two references, (1) Eqn. 3 and 4 will be unchanged
because of their symmetry; (2) Eqn. 8 will also have the same
form because ⋅ = ⋅p zy p zxr rT T . In our CheckBandwidth, the
bandwidth feasibility is directly checked by Eqn. 9, 3, and 4.

(,), (0) ()∀ ∈ ∧ ≠ = ⋅ == ∧ <xy p xyx y V x y b r x yT (9)

Algorithm 1 Outer Reuse-Free Sub-matrix Space Pruning
1: S → set of feasible matrices
2:
3: add an abstract zero-row matrix into S
4: for p = 0 to m do

 5: for all p row matrices Tp-1 in S do
 6: for all one-row candidates r do
 7: append row r to Tp-1 to form Tr
 8: feasible = CheckRank (Tr)
 9: feasible &= CheckNormalForm (Tr)
10: feasible &= CheckBandwidth (Tr)
11: if (feasible) then add p+1 row matrix Tr to S
12: end for
13: end for
14: if no p+1 row matrix in S then break
15: end for
16: delete each Tp from S if CheckDependence (Tp) fails
17: return all matrices with maximal rows in S

C. RT-Equivalent Matrix Pruning
Investigating Eqn. 8 and 9 further, we find that a set of sub-

matrices will generate the same constraints on{ }xyb .

DEFINITION 10 (RT-EQUIVALENT MATRIX). Matrices A and
B are row-transformed (RT) equivalent matrix if B can be
generated from A by a sequence of elementary row
transformations.

THEOREM 3. Two RT-equivalent sub-matrices impose the
same constraints on {bxy} in Eqn. 8.

PROOF. One elementary row transformation is equivalent to
left-multiplying an elementary row transformation matrix.

 0 0 ... 0 0∴ ⋅ = ⇔ ⋅ ⋅ ⋅ ⋅ = ⇔ ⋅ =xy xy l xy xy xy xyb r b r b rA E E A B . □

DEFINITION 11 (RT-NORMAL FORM). A matrix is in the RT-
normal form iff it has the following properties:

(1) The leading position of each row increases. The leading
position of a row is the position of the leftmost nonzero element.
(2) The coefficients in the leading positions are positive.
(3) The column of those leading positions has only one nonzero.

EXAMPLE 5. A typical RT-normal matrix looks like:
0 * 0 * 0 *
0 0 0 * 0 *
0 0 0 0 0 *

+⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟+⎝ ⎠

The RT-normal form can be achieved by procedures similar
to the Gaussian elimination. We can just enumerate the RT-
normal sub-matrices for the outer reuse-free loops, because
other non-RT-normal sub-matrix will not get better results than
the RT-normal ones. Then, the form of Eqn. 7, 8 and 9 is
unchanged, but Eqn. 1 is updated to:

,det() 0, , 0× × ×∃ ≠ ∀ ∈ ⋅ ⋅p p p p p p p ld dE E E TR . (10)

In Algorithm 1, CheckNormalForm checks whether a sub-
matrix is in RT-normal form using Definition 11. And
CheckDependence checks Eqn. 10 using Fourier-Motzkin
elimination. Because dependence check (Eqn. 10) is not
incremental as bandwidth check and normal form check,
CheckDependence is performed on the output of reuse-free
loop maximization. Finally, Algorithm 1 finds the maximal
feasible outer reuse-free sub-matrices which include all the
optimal solutions of the original Problem 2, while largely
reducing the search space by the sub-matrix pruning.

D. First-Order Buffer Size Optimization
The dominant (first-order) part of the buffer size is allocated

at the outermost loop which carries the realized data reuse. In
this section we enumerate one more row which is appended to
the outer reuse-free sub-matrix to minimize the dominant part
of the buffer size. For a fixed T, the buffer size for each reuse
distance is determined: Sxy = (T·rxy)T·l’(T). To simplify Eqn.2,
we introduce 1 1(0) (0)+ += ⋅ ∨ ⋅ = ∧ >≺xy p xy l p xyt r r x yT T to
specify the reuse direction between reuse nodes. The
allocation optimization can be expressed in a linear
programming form as Problem 4.

PROBLEM 4. Given txy, n, N, and Sxy, find optimal {bxy} to

 , , =0∀ ∈ ∧ ≠ ∧ xy xySubject to x y V x y t b

,
, 0

∈ ≠

∀ ∈ − ≥∑ xy y
x V x y

y V b n

∈
≥ −∑ y

y V
n n N

,

∈ ∧ ≠
= ∑ xy xy

x y V x y
Minimize BS b S

(,),0 1 0 1∀ ∈ ∧ ≠ ≤ ≤ ∧ ≤ ≤xy yx y V x y b n

THEOREM 4. The optimal solution for the linear
programming Problem 4 is always integral.

We omit the proof of Theorem 4 due to page limitations.
Theorem 4 ensures that we can find optimal integer solutions
for the allocation variables by solving a linear programming
which has efficient polynomial-time solving algorithms.

V. EXPERIMENTAL RESULTS
Our data reuse optimization algorithm is performed as a

source-to-source preprocessing step to a high-level synthesis
tool for evaluation, as shown in Fig. 5. Our design flow takes
loop kernels in high-level specifications like C/C++ as input,
and analyzes the polyhedral intermediate representation (IR)
with dependence and reuse distances by the LLVM-Polly
framework [26]. Data reuse optimization finds the optimal loop
transformation and on-chip buffer allocation. In the code
generator, loop transformation is performed by ClooG [27], and
the on-chip buffer is generated as in [12, 19]. The optimized
loop kernels are synthesized into VHDLs and then circuit
netlists by the high-level synthesis tool AutoPilot [28] and the
ASIC synthesis tool Design Compiler [29].

190

Table II. EXPERIMENT RESULTS

Design n N Only HA Separated LT+HA Combined LT+HA
 Logic SRAM Latency Power Logic SRAM Latency Power Logic SRAM Latency Power Time

FDTD_3D 4 2 60 76 2.43E+8 12.6 59 30 2.43E+8 2.8 56 25 2.43E+8 2.6 0.12
JACOBI_3D 7 5 61 129 3.65E+8 23.3 60 86 3.65E+8 14.6 58 74 3.65E+8 12.0 0.21
DENOISE 13 5 33 224 6.08E+8 36.3 32 149 6.08E+8 26.3 28 124 6.08E+8 21.1 0.36

SEG 27 3 224 761 1.22E+8 116.0 224 300 1.22E+8 18.0 221 254 1.22E+8 17.0 0.32
ME 64 8 63 149 1.32E+7 26.5 61 124 1.32E+7 21.4 61 124 1.32E+7 21.4 0.32

FDTD_4D 5 3 75 76 3.6E+10 12.9 71 25 3.6E+10 2.9 72 13 3.6E+10 2.6 0.66
JACOBI_4D 9 3 80 129 6.1E+10 23.7 75 74 6.1E+10 12.3 76 20 6.1E+10 2.9 2.4

Geomean 1.00 1.00 1.00 1.00 0.97 0.52 1.00 0.39 0.94 0.36 1.00 0.29

Figure 5. Implementation flow.

Our test designs include a set of real-life data-intensive loop

kernels: FDTD and JACOBI are stencil codes chosen from
polybench 2.0 [30]; ME is the 8×8 block matching algorithm
for motion estimation in video encoding [31]; DENOISE
smoothes a 3D image by averaging neighboring 13 pixels[32];
and SEG is a two-phase image segmentation algorithm [32].
The input data size is 352×288×600 and 352×288×600×100 for
3D and 4D kernels respectively. The proposed combined loop
transformation and memory hierarchy allocation scheme
(combined LT+HA) is compared with two reference points in
our experiments. The first reference point is the optimal
memory hierarchy allocation with original source code (only
HA). And the second point separately optimizes the LT and HA
(separated LT+HA) as was done in [12, 15].

A. Result and Analysis
Experimental results of the three approaches are reported in

Table II. The second column (n) in Table II shows the number
of read references in each design. And the third column (N) is
the bandwidth requirement (normalized to the bandwidth of
one read reference in the loop nest) for each design, which is
calculated from the available external memory bandwidth
(1GB/s) and the design performance requirements. We set the
clock frequency as 5ns, and all design implementations satisfy
the timing constraint. The ASIC implementation results of the
three approaches in 65nm process technology are compared,
such as the area of logic standard cells and on-chip SRAM in
103μm2, the execution latency in cycles, and the power
consumption in mW. We also list the execution time (in
seconds) of our combined optimization algorithm in the last

column. We normalize the four metrics to the values of the only
HA scheme, and calculate the geometric mean of the
normalized data as shown in the last row of Table II.

From the results, it is clear that loop transformation is
important to data reuse optimization in memory hierarchy.
Compared to the only HA scheme, the separated LT+HA
scheme and the combined LT+HA scheme can save the on-chip
memory size by 48% and 64% respectively, and also reduce the
power consumption by 61% and 71% respectively. The saving
of on-chip memory is achieved by shortening the lifetime of the
reused data using loop transformation. And our combined
LT+HA scheme gains an additional 31% memory reduction
compared to the separated LT+HA scheme, because loop
transformation has more precise objective functions to optimize
when considering memory hierarchy allocation simultaneously.
The gain in ME design is small because the optimization space
for this 2-level loop ME design is relatively small and the
separated LT+HA scheme also gets the optimal result. Because
the external memory bandwidth is fixed, the power reduction
mainly comes from the leakage power saving because there is
less on-chip SRAM allocated. The experimental results also
show that the logic cells area and the execution latency have
slight differences between the three approaches, which are less
than 6% and 1% respectively.

JACOBI_4D

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7
1E+8
1E+9

0 0.5 1 1.5 2 2.5
Off-Chip Bandwidth (GB/s)

O
n-

C
hi

p
B

uf
fe

r S
iz

e

only HA
separated LT+HA
combined LT+HA

Figure 6. Design space exploration.

Fig. 6 investigates the design space for the trade-off
between bandwidth and buffer size. When the bandwidth is too
high or too low, the optimization space of memory hierarchy
allocation is relatively small, and the separated LT+HA scheme
can also get optimal results. For the bandwidth in-between,
when the memory hierarchy allocation is not trivial, our
combined LT+HA scheme outperforms the other schemes
significantly.

191

B. Run-Time Complexity
In our iterative algorithm, the complexity of the feasibility

check procedures and memory hierarchy allocation are in
polynomial time, but the pruned search space size for loop
transformation is still exponential to the loop level. In practice,
the run-time is less than three seconds for our experimental
cases. In addition, we run random tests for more loop nests and
more references, and report the maximal run-time in Table III.
Table III shows that our scheme is efficient in a large range of
real-life cases which have less than 5 loops or 50 reuse
references.

Table III. EXECUTION TIME ON RANDOM CASES (IN SECONDS)

#reuse
reference

3-level
loop

4-level
loop

5-level
loop

10 0.13 0.65 10
20 0.53 5.6 57
50 3.5 40 463

100 20.4 306 4662

VI. CONCLUSION
Loop transformation and memory hierarchy allocation are

two coupled steps in the data reuse optimization flow. In this
work we present a combined optimization algorithm to
optimize loop transformation and memory hierarchy allocation
simultaneously to obtain global optimal results in on-chip reuse
buffer size and external memory bandwidth. A series of
efficient space pruning techniques are proposed to speed up the
execution of our algorithm by considering the characteristics of
the loop transformation matrix and memory allocation
constraints.

Our future work will concentrate on integrating more
optimizations such as loop tiling and inter-loop-nest
optimization, and further reducing the algorithm complexity by
introducing intelligent heuristics which can achieve nearly
optimal results for complex applications.

REFERENCES
[1] F. Catthoor, S. Wuytack, G. E. Greef, F. Banica, L. Nachtergaele,

A. Vandecappelle, Custom Memory Management Methodology:
Exploration of Memory Organization for Embedded Multimedia
System Design. Kluwer Academic, Dordrecht, Netherlands, 1998.

[2] R. Allan, K. Kennedy, Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kauffman
Publishers, 2002.

[3] K. S. McKinley, S. Carr, and C. W. Tseng, “Improving data locality
with loop transformations,” ACM Trans. Program, Language and
Systems, 18(4), pp. 424-453, 1996.

[4] M. E. Wolf, M. S. Lam, “A loop transformation theory and an
algorithm to maximize parallelism,” IEEE Transaction on Parallel
and Distributed Systems, 2(4), October 1991.

[5] M. Wolf and M. S. Lam, “A data locality optimizing algorithm,”
ACM SIGPLAN PLDI ’91, pages 30–44, 1991.

[6] P. Feautrier, “Some efficient solutions for the affine scheduling
problem, part I, one dimensional time,” International Journal of
Parallel Processing, 21(6), December 1992.

[7] P. Feautrier, “Some efficient solutions for the affine scheduling
problem, part II, multi-dimensional time,” International Journal of
Parallel Processing, 21(6), December 1992.

[8] A. W. Lim, G. I. Cheong, M. S. Lam, “An affine partitioning
algorithm to maximize parallelism and minimize communication,”
Proceedings of the 13th International Conference on
Supercomputing, ICS 1999.

[9] N. Ahmed, N. Mateev, and K. Pingali, “Synthesizing
transformations for locality enhancement of imperfectly-nested
loops,” International Journal of Parallel Processing, 29(5), Oct. 2001.

[10] F. Catthoor, K. Danckaert, C. Kulkarni, Data Access and Storage
Management for Embedded Programmable Processors. Kluwer
Academic Publishers, 2002.

[11] T. V. Achteren, F. Catthoor, R. Lauwereins, G. Deconinck, “Data
reuse exploration techniques for loop-dominated applications,”
IEEE/ACM Des. Autom. and Test Conf. (DATE), Paris, 2002.

[12] I. Issenin, E. Brockmeyer, M. Miranda, N. Dutt, “DRDU: A data
reuse analysis technique for efficient scratch-pad memory
management,” ACM Trans. Des. Autom. Electron. Syst., 12(2), p.
15, 2007

[13] E. Brockmeyer, M. Miranda, H. Corporaal, and F. Catthoor, “Layer
assignment techniques for low energy in multi-layered memory
organizations,” IEEE/ACM Design Automation and Test Conference
(DATE), pages 1070–1075, 2003

[14] R. Baert, E. d. Greef, E. Brockmeyer, “An automatic scratch pad
memory management tool and MPEG-4 encoder case study,” 45th
Design Automation Conference (DAC), 2008

[15] I. Issenin and N. Dutt, “Data reuse driven energy-aware MPSoC co-
synthesis of memory and communication architecture for streaming
applications,” 4th Int. Conf. CODES+ISSS, 2006, pp. 294–299

[16] M. Palkovic, H. Corporaal, F. Catthoor, “Trade-offs in loop
transformations,” ACM Transactions on Design Automation of
Electronic Systems, 14(2), March 2009.

[17] P. R. Panda, N. D. Dutt, A. Nicolau, “Local memory exploration and
optimization in embedded systems,” IEEE Trans. Comput.-Aided
Des., 18(1), page 3–13, January 1999.

[18] Q. Hu, P. G. Kjeldsberg, A. Vandecappelle, M. Palkovic, F.
Catthoor, “Incremental hierarchical memory size estimation for
steering of loop transformations,” ACM Transactions on Design
Automation of Electronic Systems, 12(4), 2007

[19] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, P. Sadayappan, “Automatic data movement and
computation mapping for multi-level parallel architectures with
explicitly managed memories,” the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming
(PPoPP’08), 2008

[20] Q. Liu, G. A. Constantinides, K. Masselos, P. Cheung, “Combining
data reuse with data-level parallelization for FPGA targeted
hardware compilation: a geometric programming framework,” IEEE
Trans. Comput.-Aided Des., 28(3), page 305–315, March 2009.

[21] M. Kandemir, A. Choudhary, “Compiler-directed scratch pad
memory hierarchy design and management,” Design Automation
Conference (DAC), 2002

[22] Omega project, http://www.cs.umd.edu/projects/omega
[23] Piplib, http://www.piplib.org
[24] Polylib, http://icps.u-strasbg.fr/polylib
[25] Barvinok library, http://freshmeat.net/projects/barvinok
[26] LLVM-polly, https://llvm.org/svn/llvm-project/polly
[27] ClooG, http://www.cloog.org
[28] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers and Z.

Zhang, “High-Level Synthesis for FPGAs: From Prototyping to
Deployment,” IEEE Trans. on Comput.-Aided Des. of Integr.
Circuits and Syst., 30(4), pp. 473-491, April 2011

[29] Synopsys Website, http://www.synopsys.com
[30] Polybench, http://www.cse.ohio-state.edu/~pouchet/software
[31] H.264 video coding reference software, http://iphome.hhi.de/

suehring/tml
[32] CDSC medical image benchmarks, http://www.cdsc.ucla.edu

192

