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Abstract 

 

Rationale 

Mesenchymal stromal cell therapy is a promising intervention for ARDS, although 

trials to date have not investigated its use alongside ECMO. Recent pre-clinical studies have 

suggested that combining these interventions may attenuate the efficacy of ECMO. 

Objectives 

To determine the safety and efficacy of mesenchymal stromal cell therapy in a model 

of ARDS and ECMO.  

Methods 

ARDS was induced in 14 sheep, after which they were established on veno-venous 

ECMO. Subsequently, they received either, endobronchial iPSC-derived human MSCs 

(hMSCs, n=7) or cell-free carrier vehicle (Vehicle control, n=7).  During ECMO, a low tidal 

volume ventilation strategy was employed in addition to protocolized hemodynamic support. 

Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and 

plasma were analysed, in addition to continuous respiratory and hemodynamic monitoring. 

Measurements and main results 

 The administration of hMSCs did not improve oxygenation (PaO2/FiO2 mean 

difference -146 mmHg, p = 0.076) or pulmonary function. However, histological evidence of 

lung injury (Lung Injury Score mean difference -0.07, p = 0.04) and BAL IL-8 were reduced. 

In addition, hMSC treated animals had a significantly lower cumulative requirement for 

vasopressor. Despite endobronchial administration, animals treated with hMSCs had a 

significant elevation in trans-membrane oxygenator pressure gradients. This was accompanied 
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by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator 

fibers.    

Conclusions 

Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane 

oxygenator function and does not improve oxygenation. These data do not recommend the safe 

use of hMSCs during VV-ECMO. 
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Introduction 

 

The quest for an effective pharmacological treatment for the Acute Respiratory Distress 

Syndrome (ARDS) has been unsuccessful. Recently, mesenchymal stromal cells (MSCs) have 

attracted attention as a candidate therapy for ARDS (1). 

MSCs are multipotent adult stem cells found in tissues of mesodermal origin such as 

bone marrow (2). Therapeutic interest in these cells has arisen because of their pleiotropic 

immunomodulatory abilities. During acute inflammation, MSCs appear to be 

immunosuppressive, influencing both innate and adaptive immune responses (3). In ARDS, 

their beneficial effects are believed to be mediated in a variety of ways, including; secretion of 

anti-inflammatory paracrine factors (4), restoration of epithelial and endothelial integrity (5), 

enhancement of alveolar fluid clearance (6), direct antimicrobial activity (7), and by 

mitochondrial transfer (8). In pre-clinical models of acute lung injury, MSCs have been shown 

to reduce mortality (9). A phase 2 study has been conducted in patients with ARDS with no 

reported infusion-related adverse events (10).   

To date, trials of MSCs in ARDS have excluded patients supported with extracorporeal 

membrane oxygenation (ECMO). The use of ECMO in acute severe respiratory failure has 

increased substantially in the last decade and is now an established tool for supporting those 

with refractory illness (11). The use of MSCs during ECMO, while potentially attractive, raises 

some unique considerations. Firstly, MSCs are large cells, with an average diameter between 

10-30 µm (12), which when administered therapeutically may pose a risk to the patency of a 

membrane oxygenator. Secondly, a defining characteristic of MSCs is avid plastic adherence 

(13); this too may threaten membrane oxygenators, which are constructed largely from plastics. 

Recent ex-vivo and small animal experimentation has confirmed these concerns (14, 15). 
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Conversely, immunomodulation by MSCs may provide additional benefits for ECMO patients, 

where the institution of extracorporeal support results in an additional inflammatory insult (16). 

Given the paucity of evidence to support the safe use of MSC therapy during ECMO, 

we conducted a controlled trial of clinical-grade induced pluripotent stem cell (iPSC) derived 

human MSCs (hMSCs) in an ovine model of ARDS, supported with veno-venous ECMO (VV-

ECMO). The primary objective was to assess the safety of MSC therapy and to investigate its 

effect on physiologic and biologic markers of pulmonary and systemic injury.           

Methods 

 

Study design 

Ethical approvals were obtained from University Animal Ethics Committees 

(QUT1600001108, UQPCH/483/17) and authorization for in-vivo use of hMSCs was granted 

by the Australian Department of Agriculture (2017/075). The study was conducted in 

accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific 

Purposes (17) and is reported in compliance with ARRIVE guidelines (18). Detailed methods 

and a comprehensive description of the experiments and analyses are provided in an online 

supplement. A schematic of the study protocol is provided in Figure 1.   

Animal model 

Fourteen healthy Border Leicester Cross ewes aged between 1-3 years and weighing 

between 46-55 kg (mean, 52.6 ± 3 kg), were randomly assigned to one of two groups; 

endobronchial iPSC-derived hMSC treatment (n=7) or endobronchial carrier vehicle only 

(n=7).  

In brief, animals were anesthetized with a combination of ketamine, midazolam, and 

fentanyl. Continuous neuromuscular blockade was maintained by infusion of vecuronium. In a 
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supine position, animals were tracheostomized and ventilated using a low tidal volume strategy 

(6 mL/kg actual body weight (ABW)). After instrumentation, acute lung injury was induced 

by combining an intravenous infusion of oleic acid (OA; 0.06 mL/kg; O1008, Sigma-Aldrich, 

Castle Hill, NSW, Australia) with endobronchial E. coli lipopolysaccharide (LPS; 100 µg; 

O55:B5, Sigma-Aldrich, Castle Hill, NSW, Australia). Once a PaO2/FiO2 ratio < 100 mmHg 

(PEEP ≥ 10 cmH2O) was obtained (T0), animals were established on VV-ECMO via a right-

sided jugular-jugular configuration (T1) and positioned in sternal recumbency. VV-ECMO was 

combined with a lower tidal volume strategy (4 mL/kg ABW) for 22 hours, at which time (T23) 

ECMO was stopped and a standardized recruitment manoeuvre was performed. Animals were 

returned to pre-ECMO ventilatory settings for one hour before being euthanized (T24).       

iPSC-derived hMSCs 

After one hour of VV-ECMO (T2), animals received a fixed dose of 3 x 108 iPSC-

derived hMSCs suspended in a carrier vehicle (hMSC) or carrier vehicle alone (Vehicle 

control). Cells were provided by Cynata Therapeutics Ltd. (CYP-001; Cynata Therapeutics 

Ltd., Melbourne, VIC, Australia). These cells were ≥ 99% positive for CD-73, CD-90, and CD-

105, but negative for CD-31 and CD-45. The total volume of vehicle was 60 mL (57.5% 

Plasmalyte-A, 40% Flexbumin 25%, 2.5% Dimethyl sulfoxide). Cells were ≥ 97% viable prior 

to administration. The distribution of delivery is described in Figure E1.  

Statistical analysis  

An a priori sample size calculation, based on the primary outcome of PaO2/FiO2 ratio 

at 24 hours,  is detailed in the online supplement. Data are expressed as mean (± SD) or median 

(IQR) if non-normally distributed. Analysis was undertaken in Graphpad Prism (v 8.1.2., 

GraphPad Software, San Diego, USA). Longitudinal data were analyzed by fitting a mixed 

model. This model uses a compound symmetry covariance matrix and is fit using restricted 
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maximum likelihood. Where a significant interaction was observed post-hoc comparisons were 

undertaken. Correction for multiple comparisons was made using the Benjamini-Hochberg 

method (false discovery rate restricted to 5%). Non-longitudinal data were compared using an 

unpaired t-test or a Mann-Whitney test as appropriate. Categorical data were compared using 

the chi-squared test. Statistical significance was assumed if P < 0.05.  

Results 

 

Baseline characteristics at injury (T0) are shown in Table 1 and in supplementary 

Table E1. All animals completed the study protocol and were euthanized at T24.  

Respiratory variables 

The use of ECMO facilitated a lower tidal volume ventilation strategy (4 (4-4) mL/kg 

ABW). The median ECMO flow rate was 2.75 L/min (2.5-3.25 L/min), with a sweep gas flow 

of 3 L/min (2-3.5 L/min). During VV-ECMO, animals had a median PaO2 of 109 mmHg (94-

131 mmHg) and a PaCO2 of 32 mmHg (30-35 mmHg). There were no significant differences 

in these parameters between groups (supplementary Figure E2). Animals were adequately 

anticoagulated during ECMO, as measured by activated partial thromboplastin time (aPTT) 

ratios. The dose of heparin was not significantly different between groups (supplementary 

Figure E2). 

Because VV-ECMO controls gas exchange, native lung function was assessed one hour 

after cessation of extracorporeal flow and after the performance of a standardized lung 

recruitment manoeuvre (T24). As shown in Figure 2 both the PaO2/FiO2 ratio (p = 0.076) and 

the oxygenation index (OI) (p = 0.153) were numerically better in the carrier vehicle only 

group, the differences were not statistically significant.  
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The plateau airway and driving pressures were similar between groups at T24 (Figure 

2). Static lung compliance was also similar, both during and after ECMO (Figure 2). The use 

of a protocolized recruitment manoeuvre did not improve compliance after cessation of 

extracorporeal support in either group (Figure 2).  

Hemodynamic variables 

This model of acute lung injury was associated with the development of hyperdynamic 

shock, which worsened over time (Figure 3). The administration of hMSCs resulted in 

significantly lower cumulative vasopressor doses (Figure 3). At T4, mean arterial pressure 

(MAP) was significantly higher in the hMSC treated group (p = 0.001), even though these 

animals received lower doses of noradrenaline (Figure 3). By T14, MAP was again similar 

between groups, although vasopressor requirements continued to be lower in hMSC treated 

animals. In addition, there were lower arterial lactate concentrations, higher arterial base 

excesses, and lower mean pulmonary artery pressures from 12 hrs (T14) post instillation in the 

hMSC group (Figure 3), however these were not statistically significant. Cumulative fluid 

balance at T24 was similar in both groups (Vehicle control, 2713 ± 970 mL vs. hMSCs, 2992 ± 

1237 mL, p = 0.648).  

Histopathology and lung injury  

The blinded assessment of lung tissue was conducted by an independent expert 

veterinary pathologist. Sections of the right lower lobe were prepared, and a lung injury score 

(LIS) was calculated (19). The administration of hMSCs resulted in significantly lower scores 

(p = 0.04) (Figure 4), principally mediated by a reduction in neutrophil infiltration.  

There were no significant differences in lung wet/dry ratio or bronchoalveolar lavage 

(BAL) total protein concentration (Figure 4). BAL fluid inflammatory cell counts are detailed 

in supplementary Table E4. There were no significant differences in these counts over time. 
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Similarly, there was no difference in lung tissue homogenate gene expression (as assessed by 

qPCR) between groups (supplementary Figure E3).  

In a post-hoc analysis, pulmonary arterial thrombosis was noted in 5 hMSC treated 

animals, but only one animal receiving carrier vehicle alone (p = 0.031). 

Inflammatory cytokines 

BAL and plasma cytokine concentrations were assessed longitudinally 

(supplementary Figure E4 and supplementary Figure E5). In BAL, statistically significant 

differences in IL-8 were observed at T3, T14, and T23 (p = 0.013, 0.016, and 0.028 respectively). 

In plasma, cytokine trajectories were similar between groups (supplementary Figure E5). 

Hematological and biochemical measurements 

A summary of hematological and biochemical values are provided in supplementary 

Tables E2 and E3. This lung injury model was associated with the development of acute 

kidney injury and abnormal liver function, although there were no significant differences in 

indices between groups. The administration of hMSCs resulted in a significantly lower 

lymphocyte count at T24 (p = 0.047) (supplementary Figure E5). 

Cell-ECMO membrane interaction and cell fate 

The administration of hMSCs was associated with a significant increase in the trans-

oxygenator pressure gradient, becoming apparent 4 hours after cell delivery (Figure 5). By T23, 

the mean pressure gradient in the hMSC group reached 64 ± 37 mmHg vs. 17 ± 9 mmHg in the 

vehicle only group. The instillation of carrier vehicle alone was associated with a reduction in 

the ECMO pump speed to flow ratio over time, a finding not observed in the hMSC group 

(Figure 5). During the study, there were no instances of pump or oxygenator failure requiring 
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a component exchange. Likewise, there was no evidence of clotting on the oxygenator surface 

by visual examination in either group.   

Membrane oxygenators from animals treated with hMSCs were isolated and preserved 

at the termination of ECMO, subsequent deconstruction and staining of the fiber bundles (n=7) 

revealed adherent cells exhibiting surface markers consistent with those of hMSCs 

(supplementary Figure E6). Similar cell populations were not apparent in vehicle only 

controls (n=3).  

Discussion 

 

We carried out a trial of clinical-grade iPSC-derived hMSCs, given endobronchially, 

for acute lung injury in sheep during VV-ECMO. The main findings of this study can be 

summarized as follows; (1) with regard to the primary outcome, hMSCs did not improve 

oxygenation at 24 hours. (2) hMSCs did not improve pulmonary mechanics but did improve 

the severity of histological lung injury and reduced the concentration of bronchoalveolar lavage 

IL-8. (3) in spite of endobronchial administration, hMSCs adhered to and impacted the function 

of a commercial membrane oxygenator in-vivo - with an increase in the trans-membrane 

oxygenator pressure gradient. In addition, more pulmonary arterial thromboses were noted in 

hMSC-treated lungs. (4) hMSCs reduced the depth and severity of shock.  

This study was conducted in a large animal model of ARDS and ECMO, which 

replicates several important clinical features (20). The ‘double-hit’ injury applied in this study 

resulted in acute severe hypoxemic respiratory failure consistent with modern criteria for the 

use of VV-ECMO (11). To support the severe acute respiratory failure, we employed a 

commercial ECMO device which is in widespread clinical use. Additionally, our protocolized 

intensive care was consistent with clinical best practice standards (21). A common criticism of 

pre-clinical trials of MSCs has been the use of heterogeneous, non-clinical grade cell products 
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(1), however, we tested a commercial hMSC product which is under investigation in clinical 

trials.  

MSCs have been administered to patients with respiratory failure on ECMO (22, 23). 

These reports, which include only three patients, did not describe infusion-related adverse 

events although failed to fully characterize the interaction between MSCs and the 

extracorporeal device. Kocyildrim et al. have conducted the only other pre-clinical study 

involving both MSCs and ECMO for respiratory failure (24). Their ovine based, 6-hour pilot 

study did not report on the impact of MSC administration on the performance of ECMO.    

hMSCs and pulmonary function 

In this study, the administration of hMSCs failed to improve oxygenation at T24. 

Furthermore, animals receiving hMSCs had a trend for worse oxygenation index values. In a 

phase 2a study of 60 patients with ARDS, the intravenous administration of hMSCs did not 

significantly improve PaO2/FiO2 ratio, although there was a signal toward improvement in 

oxygenation index in a post-hoc analysis (10). Pre-clinical studies of MSCs in ARDS have 

reported improvements in oxygenation, although few have produced lung injury as severe (25). 

In a recent systematic review of pre-clinical models combining ARDS and ECMO, only four 

achieved PaO2/FiO2 values <100 mmHg (20). The degree of lung injury in this model may 

explain why oxygenation is impaired in the treated group, despite improvements in 

inflammation and lung injury. Emerging research has highlighted the pro-coagulant effects of 

transplanted MSCs. These appear to be primarily mediated by MSC expression of tissue factor 

(26), but also by the secretion of pro-coagulant microvesicles (27) and by direct enhancement 

of platelet deposition (28). In pre-clinical experiments MSCs have been associated with the 

development of pulmonary emboli in-vivo (29). In this study, despite the use of heparin, almost 

all hMSC animals (n=6) had histological evidence of pulmonary arterial thrombosis at post-
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mortem. The presence of exogenous hMSCs within the disordered pulmonary vasculature may 

have contributed to impairments in oxygenation, tempered by the fact that there was no increase 

in mean pulmonary artery pressure in treated animals.             

Animals receiving hMSCs had improved composite histologic lung injury scores at 

post-mortem. The components of the score most influenced by hMSCs were neutrophil 

numbers in the alveolar and interstitial space. Multiple studies of MSCs in pre-clinical models 

of ARDS have demonstrated their ability to reduce neutrophil infiltration (30) and neutrophil 

extracellular trap formation (31). In this study, BAL neutrophil counts did not differ between 

groups. This may reflect the technical challenges of obtaining and assessing BAL cell counts. 

In a recent porcine model of ARDS and MSC therapy, a reduction in neutrophil infiltration was 

correlated with a reduction in BAL IL-8 concentrations (32), a finding confirmed in this study.   

hMSCs and the systemic inflammatory response 

Multiple pre-clinical models (33) and recent clinical trials (34-37) have examined the 

use of MSCs in the treatment of septic shock. Animals receiving hMSCs required less 

vasopressor support throughout the experiment to achieve an equivalent or higher MAP. A 

similar, early but non-sustained, reduction in vasopressor requirement has previously been 

described in a large-animal model of septic shock treated with MCSs (38). hMSCs did not alter 

plasma concentrations of pro-inflammatory cytokines over extended time periods in this study, 

a finding which has previously been identified in other pre-clinical (39) and clinical studies 

(34). A recent Phase I dose escalation study of MSCs in patients with septic shock 

demonstrated that the maximum effect of cell therapy on plasma cytokine levels occurred at 4 

hours post-administration and declined with time (36). In this study, that time period coincides 

with the maximum separation in vasopressor dose, MAP, and levels of IL-1β and IL-6 between 
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groups. This may indicate that repeat dosing of MSCs will be required for optimal therapeutic 

efficacy.    

hMSCs and ECMO 

The risk posed by MSCs to membrane oxygenators has been postulated for some time 

(1), but has only recently been shown to have an experimental basis. Our group has previously 

reported the ability of hMSCs to tightly adhere to the membrane fibers of a commercial 

oxygenator. This may have been the result of the known plastic avidity of MSCs (13). Recently, 

Cho et al. reported the loss of systemically administered MSCs in an ex-vivo model of veno-

arterial ECMO (15).  

Given the emerging signal that systemically administered MSCs may interact with 

membrane oxygenators, we decided to test endobronchial instillation in this study. Cardenes et 

al. have used 18F-fluorodeoxyglucose labelling to track the fate of both systemically and 

endobronchially administered MSCs in an ovine model of ARDS (40). While systemically 

administered cells have a wide biodistribution in the first 5 hours, endobronchially 

administered cells were retained at the site of instillation. There are key differences in our 

approach, including the means of inducing lung injury and its severity.  

Limitations 

This study has some limitations. First, while our model of injury replicates several 

relevant features including severe respiratory and hemodynamic failure, clinical ARDS is 

usually caused by infection and develops over several days, often in patients with other 

comorbidities (41). Second, MSCs are known to exhibit different functional responses 

dependent on the contemporary milieu, which in some circumstances may be detrimental (42). 

This study may have modelled only one phase of acute lung injury and so hMSCs may have 

exerted an effect which may differ in other phases.  Third, while our model extended 21 hours 
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post cell or vehicle delivery, this may have been too short a period to observe some beneficial 

effects of the intervention. For example, it may be that the favourable effect of hMSCs on 

histological injury may have translated to improvements in oxygenation over a longer time 

period. Conversely, an extension of the study period in the face of rising trans-oxygenator 

pressure gradients in the hMSC group may have ultimately led to circuit failures. Fourth, the 

use of a lung recruitment maneuver and the assessment of native lung function off ECMO may 

have had several adverse effects and we cannot be certain that these effects did not differ 

between groups. This approach was taken due to the challenge of assessing native lung function 

during ECMO, particularly where a lower tidal volume ventilatory strategy has been adopted. 

The study protocol was designed prior to the publication of the ART randomized controlled 

trial (43). Fifth, the addition of an uninjured control group may have provided further insights 

into the distribution of hMSCs during VV-ECMO. Finally, the dose and method of delivery of 

hMSCs remain a matter of conjecture. Based on the findings of our previous work (14), we 

chose not to investigate intravenous administration. Likewise, based on clinical trial 

experience, we opted to administer a single, fixed-dose of hMSCs. It is possible that varying 

the dose and/or route of administration of hMSCs may alter their efficacy and safety profile 

during ECMO.   

Conclusion 

 

In a 24-hour, ovine model of ARDS and VV-ECMO, we found that hMSC therapy was 

associated with impairment of the membrane oxygenator. The use of cell therapy did not result 

in improvements in oxygenation, the primary outcome of this study, but was associated with a 

reduction in histological evidence of lung injury and inflammation in the lung. Given these 

data we cannot currently recommend the administration of hMSCs during ECMO.     
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Figure Legends 

 

Figure 1. Study schematic. 

a Adjusted to maintain pH 7.30-7.45. Permissive hypercapnia was tolerated to a minimum pH of 7.15. 

b PaO2 55 – 80 mmHg. If despite an FiO2 of 1.0 oxygenation targets were not met, PEEP was 

increased, maintaining plateau pressure ≤ 32 cmH2O.  

c Total PEEP (extrinsic PEEP + intrinsic PEEP) did not exceed 20 cmH2O. PEEP was permitted to be 

reduced to 5 cmH2O to maintain plateau pressure ≤ 30 cmH2O. If despite a PEEP of 5 cmH2O, plateau 

pressure > 30 cmH2O, tidal volume was reduced in 1 mL/kg steps until set at 4 mL/kg. 

Figure 2. Oxygenation and respiratory parameters.  

a. PaO2/FiO2 ratio. b. Oxygenation index. c.  Airway pressures and lung compliance. Data are 

presented as mean (± 95% confidence interval). Where error bars intersect the x axis the 95% 

CI includes zero. 

Figure 3. Hemodynamic variables. 

a. Mean arterial pressure and vasopressor dose (mean). b. Mean pulmonary artery pressure. c. 

Cumulative vasopressor dose. d. Cardiac index, base deficit, and arterial lactate. Data are 

presented as mean (± 95% confidence interval). Where error bars intersect the x axis the 95% 

CI includes zero. ** - p < 0.01. 

Figure 4. Histopathology and lung injury. 

a. Representative images of lung parenchyma. All animals showed evidence of diffuse alveolar 

damage however the frequency and degree of injury differed between groups. Panel 1: 

extensive alveolar edema with interstitial leukocyte infiltration. Panel 2: marked leukocyte 

infiltration within alveolar spaces and larger airways.  Panel 3: some loss of alveolar structure 

with edema however a reduction in interstitial and alveolar leukocytes. Panel 4: preservation 
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of alveolar architecture with few leukocytes in the alveolar spaces. Panel 5 & 6: representative 

images of pulmonary arterial and arteriolar emboli (black arrows) in animals receiving hMCSs.  

b. Composite lung injury score (LIS), lung wet/dry ratio (right lower lobe). c. BAL total protein 

concentration. Data are presented as mean (± 95% confidence interval). * - p = < 0.05. 

Figure 5. Cell-ECMO interaction.  

a. Trans-membrane oxygenator pressure gradient. b. Pump revolutions per minute (RPM)/flow 

ratio. Data are presented as mean (± 95% confidence interval). Where error bars intersect the 

x axis the 95% CI includes zero. * - p = < 0.05. 
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Table 1. Baseline physiological characteristics 

 

 

 
Overall (n=14) Vehicle (n=7) hMSCs (n=7) 

Weight (kg) 52.6 ± 3 52.4 ± 3.2 52.9 ± 2.6 

Pre-ECMO tidal volume (mL/kg) 6.0 ± 0.1 6.0 ± 0.1 6.0 ± 0.1 

At time of injury (T0)    

Peak airway pressure (cmH2O) 31.5 ± 4.2 31.9 ± 3.3 31.1 ± 4.9 

Plateau pressure (cmH2O) 26.5 ± 3.9 26.1 ± 3.9 26.9 ± 3.8 

Driving pressure (cmH2O) 16.5 ± 3.9 16.1 ± 3.9 16.9 ± 3.8 

Static compliance (mL/cmH2O) 21 ± 5.0 19 ± 4.6 23 ± 4.6 

PaO2/FiO2 59 ± 20 58 ± 23 61 ± 17 

PaCO2 (mmHg) 41 (38-46) 38 (38-41) 44 (41-48) 

pH  7.36 ± 0.05 7.38 ± 0.04 7.34 ± 0.05 

Bicarbonate (mmol/L) 23.2 ± 1.5 23.6 ± 1.4 22.9 ± 1.5 

Base deficit (mmol/L) 1.30 ± 1.31 0.94 ± 1.15 1.66 ± 1.37 

Arterial lactate (mmol/L) 1.6 ± 0.7 1.8 ± 0.6 1.4 ± 0.7 

Heart rate (bpm) 102 (96-117) 108 (98-128) 98 (95-103) 

Mean arterial pressure (mmHg) 103 ± 19 96 ± 16 111 ± 19 

Central venous pressure (mmHg) 13 (11-13) 12 (11-13) 13 (13-14) 

Mean pulmonary artery pressure 

(mmHg) 

 

25 (16-29) 20 (17-27) 28 (19-29) 


