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Gestational diabetes mellitus during pregnancy has severe implications for the health

of the mother and the fetus. Therefore, early prediction and an understanding of

the physiology are an important part of prenatal care. Metabolite profiling is a long

established method for the analysis and prediction of metabolic diseases. Here,

we applied untargeted and targeted metabolomic protocols to analyze plasma and

urine samples of pregnant women with and without GDM. Univariate and multivariate

statistical analyses of metabolomic profiles revealed markers such as 2-hydroxybutanoic

acid (AHBA), 3-hydroxybutanoic acid (BHBA), amino acids valine and alanine, the

glucose-alanine-cycle, but also plant-derived compounds like sitosterin as different

between control and GDM patients. PLS-DA and VIP analysis revealed tryptophan as

a strong variable separating control and GDM. As tryptophan is biotransformed to

serotonin we hypothesized whether serotonin metabolism might also be altered in GDM.

To test this hypothesis we applied a method for the analysis of serotonin, metabolic

intermediates and dopamine in urine by stable isotope dilution direct infusion electrospray

ionization mass spectrometry (SID-MS). Indeed, serotonin and related metabolites

differ significantly between control and GDM patients confirming the involvement of

serotonin metabolism in GDM. Clustered correlation coefficient visualization of metabolite

correlation networks revealed the different metabolic signatures between control and

GDM patients. Eventually, the combination of selected blood plasma and urine sample

metabolites improved the AUC prediction accuracy to 0.99. The detected GDM

candidate biomarkers and the related systemic metabolic signatures are discussed in

their pathophysiological context. Further studies with larger cohorts are necessary to

underpin these observations.
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INTRODUCTION

Gestational diabetes mellitus (GDM) is defined as glucose
intolerance with onset or new recognition in pregnancy
(Kautzky-Willer et al., 2004, 2016b). The prevalence of GDM
is rising worldwide, reaching up to 25.1% (Zhu and Zhang,
2016). Therefore, GDM is the most common form of metabolic
complication in pregnancy (Erem et al., 2015) and is associated
with fetal macrosomia (Witkop et al., 2009), hyperbilirubinemia,
and in consequence shoulder dystocia (Xiong et al., 2001; HAPO
Study Cooperative Research Group, 2008; Yogev et al., 2009)
as well as maternal morbidity (hypertension, polyhydramnion,
infection). Women who had GDM have an elevated risk to
develop Diabetes mellitus Type 2 (T2DM) or cardiovascular
disease (Tobias et al., 2011), as well as hyperlipidemia or
obesity (Bartha et al., 2008; Clausen et al., 2009; Landon et al.,
2009; Gillman et al., 2010; Harreiter et al., 2014) in later life,
whereas their children have a higher risk for obesity or impaired
fasting glucose (Silverman et al., 1995). Further, GDM affects
the psychological health of the mother and the child: GDM
increases a woman’s risk of postpartum depression 4-fold (Hinkle
et al., 2016), and postpartum depression is decreased with
treatment of GDM (Crowther et al., 2005; Beucher et al., 2010).
Intrauterine exposure to hyperglycemia is linked to an increased
risk for neuropsychiatric and neurodevelopmental disorders of
the offspring (Xiang et al., 2015; Nahum Sacks et al., 2016).

Early detection of GDM and treatment can reduce the risk
for mother and child. The current gold standard of diagnosing
GDM is an oral glucose tolerance test (oGTT) between 24 and
28 weeks of gestation. However, detection of women at risk even
earlier during pregnancy would be important to enable early
lifestyle modification or even drug treatment in order to improve
perinatal outcomes of these women. In addition other markers
than glucose could be useful in identification of women and
neonates at greatest risk. Therefore, the identification of new
reliable and easily accessible biomarkers for earlier diagnosis of
women with metabolic alterations during pregnancy would be of
great value.

When the fetus starts to grow the maternal metabolism
changes. More and more energy is required to ensure the
growth of the unborn child. For this reason the maternal
metabolic state must be modified in different and multiple ways
to afford the energy demand. Among the altered mechanisms, an
adaptation of hormones appears, such as insulin, serotonin (5-
hydroxytryptamin, 5HT), hepatocyte growth factor (HGF) and
cortisol (Ernst et al., 2011). Moreover transcription factors and
cell cycle regulators cause a change in the metabolism of the
mother during pregnancy (Ernst et al., 2011). These modulations
are essential physiological elements for the normal progress of
pregnancy, but can implicate pathological diabetic condition if
they are disrupted. Although the altered mechanisms in GDM
and overt diabetes are similar and pathways can be deduced, the
conditions and the pathophysiology differ, and more research is
needed on the most common but heterogeneous form, namely
GDM (International Association of Diabetes in Pregnancy Study
Group Working Group on Outcome et al., 2015; Kautzky-Willer
et al., 2016a; Simmons et al., 2016; Rosta et al., 2017).

Metabolomics has the capacity to detect early deregulations
and disruptions in metabolism associated with diseases or
disorders. To investigate physiological processes and to develop
(early) diagnostics, metabolomics is one of the most promising
technologies (Bain et al., 2009; Pinto et al., 2015; Allalou
et al., 2016). In case of glucose disrupted states (like GDM),
there are novel findings regarding hitherto inconspicious
hormones like melatonin or serotonin which arouse interest
(Ernst et al., 2011) and legitimate closer examinations of
the metabolome and hormone levels in GDM. Therefore we
used untargeted and targeted metabolomic technology for the
combined investigation of the metabolome in 32 pregnant
women with and without GDM in blood plasma and urine
and performed a metabolite profiling. Differences in the
profiles between the case and control group were detected
pointing to potential biomarkers and physiological processes
for early GDM. Complementary to these metabolite markers
the body mass index (BMI) and week of pregnancy (see
Supplementary Table S1) were monitored. Combined regression
analysis of the latter, blood plasma and urine metabolites
improved the AUC (Area under curve) prediction accuracy to
0.99. In this paper we discuss corresponding hypotheses and
assumptions for detected alterations in metabolic pathways for
a better understanding of the metabolomic changes occuring
in GDM.

MATERIALS AND METHODS

Study Population
Participants were recruited from the outpatient clinic at the
Medical University of Vienna. We investigated 14 women with
GDM and 18 women without GDM (nGDM). The participants
were 21–41 years old and in 12th−26th week of pregnancy
(see Supplementary Table S1 also for BMI). The study was
performed in accordance with the ethical principles of the
Declaration of Helsinki II and was approved by the local
ethics committee (Ethics Committee of the Medical University
of Vienna). All participants gave their written informed
consent.

GDM Definition, BMI and Sample
Preparation
GDM was diagnosed with a standard 2 h 75 g oral glucose
tolerance test (oGTT), according to the International
Association of Diabetes and Pregnancy Study Groups
(IADPSG) criteria (International Association of Pregnancy
Study Groups Consensus Panel et al., 2010; Colagiuri et al.,
2014). Eighteen control and fourteen GDM cases were defined.
Urine samples were taken before the oGTT and urine was stored
at −20◦C. Blood samples were taken at three time points of
the oGTT (0, 60, and 120min after glucose intake). Plasma
samples were prepared by centrifugation. Coagulation was
avoided with an anticoagulant, ethylenediaminetetraacetic acid
(EDTA). Samples were stored at −20◦C until measurement.
BMI was calculated as weight (kg) divided by the square of
height (m2).
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Plasma Sample Extraction, Derivatization,
GC-MS Analysis, Identification and
Quantification

Extraction and derivatization were performed slightly modified
according to Weckwerth et al. (2004b). Chemicals were
purchased from Sigma-Aldrich (Austria) if not stated otherwise:
Methanol (CHROMASOLV R©, HPLC grade), chloroform
(anhydrous ≥99%, stabilized with 0.5–1% ethanol). Water was
double-distilled and deionized (Milli-Q water R© Advantage A10,
Austria).

Samples were extracted in batches of 12, each including a
pooled quality control sample and a blank processed in the
same way. The pooled sample was a mixture of randomly
chosen blood aliquots of half of the women, containing most
of the metabolites expected in plasma (Dunn et al., 2011).
Extraction was done by adding 200 µl of plasma to 1.7ml of pre-
chilled (−20◦C) extraction mixture: methanol/chloroform/water
(2.5:1:0.5 (v/v/v)) (MCW) and internal standard was spiked
(1µmol of D-Sorbitol-13C6, 98 atom % 13C, Campro Scientific,
Germany). Sample tubes were agitated for 10 s and incubated
for 8min on ice. Samples were centrifuged for 4min at 14,000 g
at 4◦C. The one-phase-supernatant was collected in a new
Eppendorf tube, shortly vortexed and divided into two equal
aliquots, corresponding to 100 µl plasma each. Samples were
dried using a speed vac (SavantTM, Thermo Scientific, Austria)
and stored at −80◦C until measurements. One aliquot of each
sample was used for further GC-MS analyses and metabolites
were derivatized before measurement in two steps. Dried extracts
were acclimated at room temperature for 10min, dissolved
in 20 µl solution of 40 mg/ml methoxyamine hydrochloride
(CH3ONH2∗HCL) in pyridine and incubated for 90min at 30◦C
on a thermo shaker (550 rpm). Subsequently, 80 µl of N-methyl-
N-(trimethylsilyl) trifluoroacetamide (MSTFA) (MachereyNagel,
Germany) were added and incubated for 30min at 37◦C.
After centrifugation (2min at 14,000 g), the supernatant was
transferred to glass vials with micro inserts, closed with crimp
caps and measured by gas chromatography coupled to mass
spectrometry (GC-MS). GC-MS analyses and data validation
were performed according to previous publications (Mari et al.,
2013; Prezelj et al., 2016) with slight modifications on a
ThermoFisher Trace GC coupled to a Triple Quadrupole mass
analyzer (Thermo Scientific TSQ Quantum GCTM, Bremen,
Germany). Each batch included randomly chosen samples, a
blank, a pooled quality control sample and a pure non derivatized
alkane standard mixture of even-numbered n-alkanes (C10-C40,
each 50 mg/L in hexane) for retention index (RI) determination.
One microliter of sample was injected in splitless mode at
a constant injector temperature of 230◦C using a deactivated
stainless steel Siltek liner (Restek Corp., USA). GC separation
was performed on a HP-5MS capillary column (30m × 0.25mm
× 0.25µm) (Agilent Technologies, CA) at a constant helium
flow rate of 1mL min−1. Initial oven temperature was set to
70◦C and held for 1min, followed by a ramp to 76◦C at 1◦C
min−1 and a second ramp at 6◦C min−1 to 350◦C held for
1min. Transfer line temperature was set to 340◦C and post run
temperature to 325◦C for 10min. The quadrupole mass analyzer

was used in full scan mode with a scan range of m/z 40–600 Th
and a scan time of 250 msec. Electron impact (EI) ionization
was performed at 70 eV with 50 µA emission current and ion
source temperature was set to 250◦C. Metabolite derivatives were
identified by matching retention time as well as mass spectra
with those of reference standards and by comparison of alkane
based retention indices with an in house mass spectral library, as
well as the GMD library (Kopka et al., 2005). Metabolites were
considered as annotated with a spectral match factor higher than
850 (NIST MS Search 2.0 Program algorithm) and RI-deviation
lower than 4%. Deconvolution and RI-deviation calculation was
performed with AMDIS (Stein, 1999) and quantification with
LC-Quan 2.6.0 (Thermo Fisher Scientific Inc.). Peak areas of a
specific ion of a compound (quant m/z) were normalized to the
13C-sorbitol peak within each run. More detailed information
and a list of quantified analytes can be found in Supplementary
Table S1.

Stable Isotope Diluted Direct Infusion
Electrospray Ionization Mass Spectrometry
(SID-MS) Analysis of Serotonin Metabolism
in Urine
If not stated otherwise solvents were purchased from Sigma-
Aldrich (Austria) in high quality (CHROMASOLV R©, HPLC
grade), formic acid (ROTIPURAN R©) was purchased from
Carl Roth (Germany), acetic acid from Fisher Scientific
(Austria) and water was double-distilled Milli-Q water as stated
above.

Urine samples were purified prior analyses by solid phase
extraction (SPE) using a slightly modified protocol according to
Moriarty et al. (2011). Reaction tubes (15ml, Greiner bio-one)
were prepared by cutting a hole into the lid in the size of a SPE
C18 cartridge (InertSepTM 100mg/1ml, GL Sciences, Japan). SPE
cartridges were inserted into the tubes and conditioned with 3×
1ml methanol, followed by 3 × 1ml of acidified water to ph 3.5
with acetic acid. Before loading, urine samples were diluted by
adding 500 µl sample to 800 µL acidified water (ph 3.5) in a 2ml
reaction tube including internal standard serotonin-d4 (1 µMol)
(98 atom% D, CDN Isotopes, Canada). After vortexing and
centrifugation for 5min at 14,000 g the supernatant was loaded
on the SPE cartridge and washed with 1ml 5% (v/v) methanol
solution.Metabolites were eluted with 5× 1ml 0.1M ammonium
acetate in methanol. SPE cartridge tubes were centrifuged after
each solvent or sample loading step at 1,000 g for 30 sec at
4◦C. The collected eluate was dried for 2 h to absolute dryness
under a gentle stream of nitrogen (N2 99.999%) and stored
at−20◦C.

Purified and dried urine samples were dissolved in 200 µL
0.1% formic acid in methanol, centrifuged at 21,000 g and
supernatant were transferred to glass vials with micro-inserts
which were crimped with pre-perforated lids. Samples were kept
at 4◦C during all preparation steps of extraction, purification and
analyses.

Targeted SID-MS detection and quantification of serotonin-
melatonin-tryptophan pathway metabolites were performed on
an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific,
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USA). Direct infusion of samples was performed using a nano
UHPLC pump equipped with an autosampler (Dionex UltiMate
3000 RSLCnano UHPLC pump, Thermo Fisher Scientific) by an
isocratic flow. To prevent clogging of the nano spray needle, a
PicoChipTM nano emitter system for Infusion (New objective
Inc., USA) was used and ionization was conducted using a
nano spray ionisation source (NSI). In the following, instrument
descriptions and detailed parameters are given. Injection volume
was 5 µl, isocratic flow was performed at a flow rate of 500
nL/min, with 60% mobile phase A: 0.1% formic acid and 40%
mobile phase B (90% ACN, 10% H2O,+0.1% formic acid) with a
total run time of 15min. Tip size of the PicoChipTM nano emitter
was 15µm and NSI source parameters were as follows: source
voltage 1.9 kV, source current 100 µA, sheath gas 0, aux gas 0 and
capillary temperature 275◦C.

Accurate mass analysis was performed using the Orbitrap
FTMS mass analyzer using the lock mass option in MS
and MS/MS mode. Ions of cyclomethicone N5 (m/z =

371.101230) were used for internal mass calibration. Data
dependent MS2 scan experiments of a target parent mass list
was performed at a mass resolution of 120,000; scan event
1 was performed in full scan mode and a scan range of
m/z 110–600 Th, MS2 fragmentation of triggered precursor
masses in scan event 2 was performed by collision induced
dissociation (CID) with 50 eV normalized collision energy.
Precursor ions of the target analytes serotonin, 5-hydroxyindolic
acetic acid, N-acetylserotonin, 5-methoxytryptamin, melatonin,
6-hydroxymelatonin, L-tryptophan, 5-hydroxytryptophan and
dopamine, as well as observed MS2 fragments are summarized
in Table 1. Mass calibration was performed once a week. For
quantification average intensities of MS² product ions were used
and normalized to the stable isotope labeled internal standard
serotonin-d4.

Statistical Analysis
Log transformation and data normalization using internal
standards to avoid interday tuning differences were applied.
Two tailed unpaired t-test was used to compare the differences
in metabolites between the control and the GDM-group. A
p-value of less than 0.05 was regarded to be statistically
significant. Further, the data were analysed with principal
component analysis (PCA) and ANOVA integrated in the
statistical toolbox COVAIN (Sun and Weckwerth, 2012) to find
group separations and significant metabolite changes between
control and GDM. Additionally, the data matrices are analyzed
with partial least squares discriminant analysis (PLS-DA) using
SIMCA-PR (Umetrics, Sweden). The PLS-DA model employed
7 cross validation groups, assigning every 7th observation to
the same group, and grouping similar observations in the same
groups. In Supplementary Figure S1 Q2(cum) and R2(cum)
are given as indicators for goodness of fit and the predictive
quality of all three time points. Variable importance selection
was conducted with a VIP-analysis (variable importance in the
projection).

Clustered correlation coefficient matrix visualization was
performed with an in house written Matlab script (Matlab
R2016b, version 9.1, R© Natick, Massachusetts, United States).

The script is available upon request from the corresponding
author.

BMI, week of pregnancy and blood and urine sample
metabolites were analyzed by LASSO regression (least absolute
shrinkage and selection operator). For 21 patients (10 GDM,
11 normal) with serotonin and intermediates measurements, we
built statistical models to predict GDM from a combination
of metabolomics (131 metabolites) as well as serotonin
data (8 compounds). First, metabolomics data were log-
transformed. Second, all variables were standardized by the z-
score transformation. Third, LASSO regression combined with
a linear SVM (support vector machine) classifier, was applied to
select the best subset of variables that achieve highest prediction
accuracy. LASSO is a regularization regression method that
penalizes the absolute size of the regression coefficients to avoid
overfitting that is common in many regression problems. Here,
LASSO was applied with a range of lambda values, or the
regularization parameter. For each lambda value, a subset of
variables are selected. Then a linear SVM model was built
using these variables for the two-class (GDM = 1, nGDM = 0)
classification problem. The concept of SVM is to maximize the
margin that distinguish groups of data by fitting a “hyperplane.”
It proves to work well with biological data where the sample
size is small. The SVM model was evaluated by five-fold cross
validation (CV). After trying all lambda values, the best subset
of variables were selected from the model with minimal CV
error. All the analysis was done by the Statistics and Machine
Learning Toolbox in Matlab R2016b (version 9.1, R© Natick,
Massachusetts, United States).

RESULTS

Plasma Metabolite Analysis of Control and
GDM Patients during an Oral Glucose
Tolerance Test (oGTT)
We applied an universal integrative protocol for extraction and
analysis of metabolites from plasma samples (Weckwerth et al.,
2004b). After extraction with MCW (methanol, chloroform,
water in a one phase mixture) no further phase separation was
performed and the complete MCW extract was injected into
GC-MS. With the modified protocol 131 annotated and putative
metabolites were detected (see Supplementary Table S1). The
metabolite data were further analyzed by PLS-DA (see Figure 1).
Healthy pregnant women are labeled by black squares (class 1)
and diabetic individuals are labeled with red dots (class 2). PLS-
DA revealed a separation between case and control groups in all
three time points of the oGTT (Figures 1A–C). To detect the
metabolites, which are most responsible for the separation in the
PLS-scatter plots a VIP analysis has been performed. The pattern
of the corresponding VIP analysis (Figure 1D) illustrates the
metabolites importantance projection for the sample separation
seen in the PLS-DA plot in Figure 1B. VIP values larger
than one indicate important metabolites, which were grouped
into classes. The VIP plot (Figure 1D), sorted by importance,
showed the metabolites tryptophan and 3-hydroxybutanoic acid
as most discriminatory between GDM and control. Further

Frontiers in Molecular Biosciences | www.frontiersin.org 4 December 2017 | Volume 4 | Article 84

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Leitner et al. Serotonine Metabolism in Diabetes

T
A
B
L
E
1
|
M
e
ta
b
o
lit
e
a
n
d
m
a
ss

sp
e
c
tr
a
li
n
fo
rm

a
tio

n
o
f
ta
rg
e
te
d
S
ID
-M

S
a
n
a
ly
si
s.

M
e
ta
b
o
li
te

S
y
n
o
n
y
m

A
b
b
re
v
ia
ti
o
n

M
S
I*

P
u
b
C
h
e
m

C
ID

In
C
h
I

C
A
S

M
o
le
c
u
la
r

fo
rm

u
la

M
o
n
o
is
o
to
p
ic

m
a
s
s

[g
/m

o
l]

A
d
d
u
c
t/
in

s
o
u
rc
e

fr
a
g
m
e
n
t*
*

P
re
c
u
rs
o
r

ta
rg
e
t
li
s
t

m
/z

[T
h
]

M
S
2

fr
a
g
m
e
n
ts
**
*

S
e
ro
to
n
in

5
-

H
yd

ro
xy
tr
yp

ta
m
in
e

5
-H

T
1

5
2
0
2

In
C
h
I=

1
S
/C

1
0
H
1
2
N
2
O
/c
1
1
-

4
-3
-7
-6
-1
2
-1
0
-2
-1
-8
(1
3
)5
-

9
(7
)1
0
/h
1
-2
,5
-6
,1
2
-1
3
H
,3
-

4
,1
1
H
2

5
0
-6
7
-9

C
1
0
H
1
2
N
2
O

1
7
6
.0
9
5

[M
+
H
]+

1
7
7
.1
0
1
3
6

1
3
1
.0
0
,

1
2
1
.1
0
,

1
5
9
.1
2
,

1
3
5
.0
8
,

1
0
7
.0
9

[M
+
H
]+

-N
H
3

1
6
0
.0
7
4
7
4

1
3
2
.0
8
,

1
3
3
.0
6
,

1
1
5
.0
5

5
-h
yd

ro
xy
in
d
o
le
a
c
e
tic

a
c
id

5
-H

yd
ro
xy
in
d
o
le
-3
-

a
c
e
tic

a
c
id
,

5
-

H
yd

ro
xy
in
d
o
le
a
c
e
ta
te

5
-H

IA
A

1
1
8
2
6

In
C
h
I=

1
S
/C

1
0
H
9
N
O
3
/c
1
2
-7
-

1
-2
-9
-8
(4
-7
)6
(5
-1
1
-9
)3
-

1
0
(1
3
)1
4
/h
1
-2
,4
-5
,1
1
-

1
2
H
,3
H
2
,(
H
,1
3
,1
4
)

5
4
-1
6
-0

C
1
0
H
9
N
O
3

1
9
1
.0
5
8

[M
+
H
]+

1
9
2
.0
6
5
4
8

1
4
6
.0
6
,

1
1
9
.0
5
,

1
7
4
.1
5
,

1
6
4
.0
7
,

1
1
0
.0
6

b
y
p
e
a
k

1
4
6
.0
6
0
0
9

1
1
8
.0
7
,

1
0
0
.0
8
,

1
1
3
.9
5
,

1
3
1
.9
6
,

1
4
6
.0
6

N
-a
c
e
ty
ls
e
ro
to
n
in

N
-A

c
e
ty
l-
5
-

h
yd

ro
xy
tr
yp

ta
m
in
e
,

N
o
rm

e
la
to
n
in

1
9
0
3

In
C
h
I=

1
S
/C

1
2
H
1
4
N
2
O
2
/c
1
-

8
(1
5
)1
3
-5
-4
-9
-7
-1
4
-1
2
-3
-2
-

1
0
(1
6
)6
-1
1
(9
)1
2
/h
2
-3
,6
-

7
,1
4
,1
6
H
,4
-5
H
2
,1
H
3
,(
H
,1
3
,1
5
)

1
2
1
0
-8
3
-9

C
1
2
H
1
4
N
2
O
2

2
1
8
.1
0
6

[M
+
H
]+

2
1
9
.1
1
2
1
7

1
7
3
.0
5
,

1
9
1
.0
6
,

1
6
0
.0
8
,

[M
+
H
]+

-N
H
3

2
0
2
.0
8
5
8
0

1
6
0
.0
8
,

1
8
4
.0
8
,

1
0
2
.0
9
,

1
7
4
.0
9

5
-m

e
th
o
xy
tr
yp

ta
m
in
e

M
e
th
o
xy
tr
yp

ta
m
in
e

1
1
8
3
3

In
C
h
I=

1
S
/C

1
1
H
1
4
N
2
O
/c
1
-

1
4
-9
-2
-3
-1
1
-1
0
(6
-9
)8
(4
-5
-

1
2
)7
-1
3
-1
1
/h
2
-3
,6
-7
,1
3
H
,4
-

5
,1
2
H
2
,1
H
3

6
0
8
-0
7
-1

C
1
1
H
1
4
N
2
O

1
9
0
.1
1
1

[M
+
H
]+

1
9
1
.1
1
7
4
3

1
4
5
.0
2
,

1
6
3
.0
3
,

1
7
3
.1
3
,

1
9
1
.0
2

[M
+
H
]+

-N
H
3

1
7
4
.0
9
0
7
6

1
5
9
.0
7
,

1
4
3
.0
7

M
e
la
to
n
in

N
-A

c
e
ty
l-
5
-

m
e
th
o
xy
tr
yp

ta
m
in
e

1
8
9
6

In
C
h
I=

1
S
/C

1
3
H
1
6
N
2
O
2
/c
1
-

9
(1
6
)1
4
-6
-5
-1
0
-8
-1
5
-1
3
-4
-3
-

1
1
(1
7
-2
)7
-1
2
(1
0
)1
3
/h
3
-4
,7
-

8
,1
5
H
,5
-6
H
2
,1
-2
H
3
,(
H
,1
4
,1
6
)

7
3
-3
1
-4

C
1
3
H
1
6
N
2
O
2

2
3
2
.1
2
1

[M
+
H
]+

2
3
3
.1
2
8
0
2

1
7
4
.0
9
,

2
1
6
.1
0

[M
+
H
]+

-N
H
3

2
1
6
.1
0
1
5
9

1
7
4
.0
9
,

1
9
8
.0
9
,

1
1
6
.1
1

(C
o
n
ti
n
u
e
d
)

Frontiers in Molecular Biosciences | www.frontiersin.org 5 December 2017 | Volume 4 | Article 84

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Leitner et al. Serotonine Metabolism in Diabetes

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

M
e
ta
b
o
li
te

S
y
n
o
n
y
m

A
b
b
re
v
ia
ti
o
n

M
S
I*

P
u
b
C
h
e
m

C
ID

In
C
h
I

C
A
S

M
o
le
c
u
la
r

fo
rm

u
la

M
o
n
o
is
o
to
p
ic

m
a
s
s

[g
/m

o
l]

A
d
d
u
c
t/
in

s
o
u
rc
e

fr
a
g
m
e
n
t*
*

P
re
c
u
rs
o
r

ta
rg
e
t
li
s
t

m
/z

[T
h
]

M
S
2

fr
a
g
m
e
n
ts
**
*

6
-h
yd

ro
xy
m
e
la
to
n
in

6
-O

H
-m

e
la
to
n
in

1
1
8
6
4

In
C
h
I=

1
S
/C

1
3
H
1
6
N
2
O
3
/c
1
-

8
(1
6
)1
4
-4
-3
-9
-7
-1
5
-1
1
-6
-

1
2
(1
7
)1
3
(1
8
-2
)5
-1
0
(9
)1
1
/h
5
-

7
,1
5
,1
7
H
,3
-4
H
2
,1
-

2
H
3
,(
H
,1
4
,1
6
)

2
2
0
8
-4
1
-5

C
1
3
H
1
6
N
2
O
3

2
4
8
.1
1
6

[M
+
H
]+

2
4
9
.1
2
3
2
1

1
9
0
.0
9
,

2
3
2
.1
0

[M
+
H
]+

-N
H
3

2
3
2
.0
9
6
9
4

1
9
0
.0
9
,

2
1
7
.0
7

Tr
yp

to
p
h
a
n

L
-t
ry
p
to
p
h
a
n

Tr
p

1
6
3
0
5

In
C
h
I=

1
S
/C

1
1
H
1
2
N
2
O
2
/c
1
2
-

9
(1
1
(1
4
)1
5
)5
-7
-6
-1
3
-1
0
-4
-2
-1
-

3
-8
(7
)1
0
/h
1
-

4
,6
,9
,1
3
H
,5
,1
2
H
2
,(
H
,1
4
,1
5
)/
t9
-

/m
0
/s
1

7
3
-2
2
-3

C
1
1
H
1
2
N
2
O
2

2
0
4
.0
9

[M
+
H
]+

2
0
5
.0
9
6
7
9

1
8
8
.0
7
,

1
8
7
.0
2
,

1
5
9
.0
3
,

1
7
7
.1
3
,

1
6
3
.1
1
,

1
3
5
.1
2
,

1
2
1
.1
0
,

1
4
5
.1
0

[M
+
H
]+

-N
H
3

1
8
8
.0
7
0
3
3

1
4
6
.0
6
,

1
4
4
.0
8

5
-h
yd

ro
xy
tr
yp

to
p
h
a
n

5
-O

H
-t
ry
p
to
p
h
a
n

1
1
4
4

In
C
h
I=

1
S
/C

1
1
H
1
2
N
2
O
3
/c
1
2
-

9
(1
1
(1
5
)1
6
)3
-6
-5
-1
3
-1
0
-2
-1
-

7
(1
4
)4
-8
(6
)1
0
/h
1
-2
,4
-5
,9
,1
3
-

1
4
H
,3
,1
2
H
2
,(
H
,1
5
,1
6
)

5
6
-6
9
-9

C
1
1
H
1
2
N
2
O
3

2
2
0
.0
8
5

[M
+
H
]+

2
2
1
.0
9
1
7
5

2
0
4
.0
7
,

9
0
.9
8
,

1
5
9
.9
8

[M
+
H
]+

-N
H
3

2
0
4
.0
6
5
2
9

1
6
2
.0
5
,

1
8
6
.0
5

D
o
p
a
m
in
e

D
o
p
a
m
in
e

1
6
8
1

In
C
h
I=

1
S
/C

8
H
1
1
N
O
2
/c
9
-4
-3
-

6
-1
-2
-7
(1
0
)8
(1
1
)5
-6
/h
1
-

2
,5
,1
0
-1
1
H
,3
-4
,9
H
2

5
1
-6
1
-6

C
8
H
1
1
N
O
2

1
5
3
.0
7
9

[M
+
H
]+

1
5
4
.0
8
5
6
0

1
3
7
.0
6
,

1
4
0
.0
3
,

1
2
2
.0
2

[M
+
H
]+

-N
H
3

1
3
7
.0
5
8
9
9

1
1
9
.0
5
,

9
1
.0
5
,

1
0
9
.0
6

S
e
ro
to
n
in
-d

4
[2
H
4
]-
S
e
ro
to
n
in

1
7
1
7
5
2
1
8
0

In
C
h
I=

1
S
/C

1
0
H
1
2
N
2
O
/c
1
1
-

4
-3
-7
-6
-1
2
-1
0
-2
-1
-8
(1
3
)5
-

9
(7
)1
0
/h
1
-2
,5
-6
,1
2
-1
3
H
,3
-

4
,1
1
H
2
/i
3
D
2
,4
D
2

n
.a
.

C
1
0
H
1
2
N
2
O

1
8
0
.1
2

[M
+
H
]+

1
8
1
.1
2
7
3
5

1
6
4
.1
0
,

1
6
2
.0
8
,

1
6
1
.0
8

[M
+
H
]+

-N
H
3

1
6
4
.1
0
0
8
0

1
3
6
.1
1

*M
S
I
le
ve
la
c
c
o
rd
in
g
to
S
u
m
n
e
r
e
t
a
l.,
2
0
0
7
,
L
e
ve
lI
w
a
s
c
o
n
s
id
e
re
d
w
h
e
n
id
e
n
ti
fic
a
ti
o
n
w
a
s
c
o
n
fir
m
e
d
w
it
h
a
s
ta
n
d
a
rd

m
e
a
s
u
re
d
o
n
th
e
s
a
m
e
in
s
tr
u
m
e
n
t
w
it
h
th
e
s
a
m
e
m
e
th
o
d
o
n
M
S
1
a
n
d
M
S
2
le
ve
l.

**
F
o
r
m
a
n
y
m
e
ta
b
o
lit
e
s
a
n
in
s
o
u
rc
e
fr
a
g
m
e
n
ta
ti
o
n
re
s
u
lt
in
g
in
a
lo
s
s
o
f
a
n
N
H
3
w
a
s
o
b
s
e
rv
e
d
.

**
*M

o
s
t
a
b
u
n
d
a
n
t
M
S
2
fr
a
g
m
e
n
ts
(>
1
0
%
re
l.
In
te
n
s
it
y)
u
s
in
g
c
o
lli
s
io
n
in
d
u
c
e
d
d
is
s
o
c
ia
ti
o
n
(C
ID
)
a
t
c
o
lli
s
io
n
e
n
e
rg
y
=
5
0
e
V
.

Frontiers in Molecular Biosciences | www.frontiersin.org 6 December 2017 | Volume 4 | Article 84

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Leitner et al. Serotonine Metabolism in Diabetes

FIGURE 1 | PLS-DA model built for two classes, control and GDM for three different time points of the oral glucose tolerance test (oGTT). Healthy pregnant women

are labeled by black squares (class 1) and GDM individuals are labeled with red dots (class 2). (A) 0 h, (B) 1 h, (C) 2 h (D) VIP projection of the variables according to

the scores plot of B.

interesting metabolite markers discriminating GDM and control
are discussed below.

Amino Acids, Fatty Acids, Organic Acids,
Sugars, and Steroids Discriminate Control
and GDM
In Supplementary Figure S1 selected boxplots of statistically
significant organic acids, branched-chain amino acids (BCAA),
and further amino acids are shown. Valine, alanine and β-alanine
differ significantly between patients with and without GDM.
Several fatty acids, hydroxy acids and other organic acids as
well as ketone bodies and sugars show differences. 2- and 3-
hydroxybutanoic acid (α- and β-hydroxybutyric acid, AHBA
and BHBA) differ significantly (see boxplots Supplementary
Figure S1).

The intermediates of the tricarboxylic acid cycle (TCA) show
significant differences between the GDM- group and the control-
group. The potentially identified plant sterol β-sitosterol, derived
from diet, and cholesterol were found significantly changed.
β-Sitosterol had also high loadings in the VIP analysis (see
Figure 1D).

Serotonin Metabolism Is Changed in GDM
The strong VIP loadings of tryptophan pointed us to serotonin
metabolism. Because serotonin and intermediates are only

weakly covered by GC-MS we applied a stable isotope dilution
direct-infusion method (SIDE-MS assay, see section Materials
and Methods). We applied this assay to the analysis of urine
samples from the GDM and the control group. Urine analysis
is a non-invasive technique complementing any other profiling
method with lowest costs. In Figure 2A a principal component
analysis demonstrates that serotonin metabolism is altered
in GDM patients in comparison to the control-group. In
Figure 2B boxplots are shown of selected intermediates with high
loadings.

Integrative Analysis of Plasma and Urine
Metabolomics
Integrative analysis of plasma and urine metabolite profiles was
performed in two steps: (i) a systemic analysis using metabolite
correlation networks of control and GDM cases, and (ii) using a
linear regression method to determine the best set of candidate
biomarker for accurate prediction of GDM cases.

In Figures 3A,B clustering of correlation coefficients between
all metabolites from plasma and from urine samples is
shown. The clustered correlation map is very different between
control and GDM cases indicating a large reprogramming of
metabolism in GDM patients. This pattern can be interpreted
as a signature of GDM. Details are discussed below and in
the discussion. In Figures 3C,D detailed clustered correlation
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FIGURE 2 | Measurement of extracellular serotonin metabolic intermediates and dopamine in urine of GDM patients. (A) Principal component analysis of serotonin

metabolic intermediates. (B) Boxplots of serotonin metabolic intermediates in urine of GDM vs. control groups.

coefficient maps of the serotonin-related metabolites in urine
samples are depicted. Here, a remarkable difference is the
clustering of serotonin, dopamine, 5-HIAA, N-acetyl-serotonin
and tryptophan (cluster 1) and 5-methoxytryptamin, melatonin
and 6-hydroxy-melatonin (cluster 2) in the control samples
whereas cluster 1 is completely dissolved and cluster 2 is
maintained in GDM cases (see Figures 3C,D).

To select for the set of most discriminatory variables
from blood and urine sample metabolites a LASSO (least
absolute shrinkage and selection operator) regression method
was employed. For the 21 patients (10 GDM, 11 nGDM)
with serotonin and metabolic intermediate measurements, we
built statistical models to predict GDM from a combination
of 131 plasma metabolites as well as 8 urine metabolites

related to serotonin metabolism. LASSO regression wrapped
with a linear SVM (support vector machine) classifier, was
applied to select the best subset of variables that achieves the
highest prediction accuracy. We found that the best subset of
metabolites plus BMI achieves a good prediction performance
with an AUC (Area under curve) value 0.94 of the ROC
(Receiver operating characteristic) curve. These metabolites are
glycolic acid, urea, methionine, erythronic acid, an unknown
organic acid (potentially tartaric acid), glutamine, an unknown
carbohydrate, unknown, alanin, serin and tryptophan. Next, we
tested whether the prediction accuracy can be improved by
combining the serotonin data from urine analysis. Following the
same procedure, the best model adds five serotonin compounds,
namely, serotonin, 5-HIAA, L-tryptophan, melatonin and
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6-hydroxymelatonin, and achieves a higher AUC value of
0.99. The comparison between these two models is shown in
Figure 4A.

Correlation between BMI and Metabolites
of Serotonin Metabolism in Urine Samples
Pearson correlation coefficients (PCC) were calculated between
8 urine target compounds and BMI (Figure 4B). Significant
associations were found between BMI and dopamine (PCC =

0.50, p-value = 0.022), and 5-HIAA (PCC = 0.49, p-value =

0.023), respectively.

DISCUSSION

Changes in Serotonin Metabolism in GDM
vs. Control Group
L-tryptophan and its metabolites serotonin (5HT) and melatonin
have notable functions in regulating growth and development
of the fetus (Glover, 2015; St-Pierre et al., 2016; Wu et al.,
2016) and are involved in a magnifique number of physiological
pathways and adaption processes during pregnancy (Sano et al.,
2016). As L-trytophan (TRP) is highest ranked in the PLS-
analysis (Figure 1D), we searched for differences regarding
serotonin metabolism. Therefore, we applied a serotonin assay by
using stable isotope dilution direct electrospray ionization mass
spectrometry (SID-MS, see section Materials and Methods) to
analyze urine samples of the same patients. In the measurements
the control and the GDM patients showed significantly different
concentrations of serotonin and intermediates of this pathway
in urine samples (see Figure 2): serotonin levels were higher
in women with GDM compared with women without GDM.
Besides the well-known role of serotonin in mood and feeding
behavior, recent results renewed the interest in the role of
serotonin in metabolic diseases (Almaça et al., 2016). Conditions
of metabolic demand lead to the production of serotonin in the
pancreatic islet (Kim et al., 2010; Goyvaerts et al., 2015, 2016).
Further, studies showed that serotonin via autocrine signaling
increases beta- cell function and ß-cell mass during insulin
resistant states (e.g., pregnancy). In mouse models evidence
suggests that increased serotonin in islets during pregnancy
drives ß-cell expansion (Kim et al., 2010). Additionally, serotonin
levels were shown to rise in regard to BMI (Almaça et al., 2016).
A recent study showed that ß-cell-derived serotonin inhibits
glucagon secretion, a hormone which elevates the blood glucose
levels. Based on this, our results could be explained by (1) a
different lifestyle (nutrition: protein intake) of the patients with
GDM and those without GDM (2) a higher BMI of women
with GDM compared to the control group could be a reason
either, or (3) higher serotonin levels in the case of disrupted
metabolism, like GDM, could substantiate that serotonin is a
factor in maintaining normoglycemia, the increase presenting a
possible compensatory mechanism.

In summary, changes in L-tryptophan in the GDM group
pointed to an altered serotonin metabolism which indeed is
changed in GDM patients. Accordingly, alterations in serotonin
metabolism may be fundamental in the pathogenesis of GDM.

Nevertheless, such findings need to be confirmed by further
studies analyzing larger cohorts.

Glucose-L-Alanine Cycle
Some of the significantly changed metabolites are found in
the glucose-L-alanine cycle, which plays a role in glycolysis
and gluconeogenesis. These findings appear to be relevant for
the energy metabolism in GDM. The glucose-alanine cycle is
a biochemical route between muscle and liver metabolism. In
the muscle, protein is degraded resulting in glutamic acid.
Subsequently, the alanine aminotransferase transfers the amino
group from glutamate to pyruvate, which arises from glycolysis.
L-alanine is formed and then transferred frommuscle to the liver
through the blood. Finally, the amino acid is used in the liver
for gluconeogenesis. Several other metabolites show an alteration
in concentrations from the GDM group (see Supplementary
Figure S1). Furthermore, we analysed also the alanine-amino-
transferase activity and identified a significant change between
the case and control groups confirming the metabolomics data
(data not shown). A recent study suggests an up-regulated
glycolysis and higher alanine concentration in T2DM patients
(Huang and Joseph, 2012). Like in our study another recent
study discovered increased concentrations of alanine and lactate
as potential gluconeogenic precursors (Galazis et al., 2012) as
well as alanine and glutamate as significant marker in GDM
(Bentley-Lewis et al., 2015).

Strong Markers of GDM Disease −2- and
3-Hydroxybutanoic Acid
Ketone bodies play a role in the fatty acid biosynthesis.
3-hydroxybutanoic acid (β-hydroxybutyrate; BHBA) is an
organic acid, which is used for the biosynthesis of fatty
acids. BHBA reached statistical significance between the case
and control group. Furthermore, 2-hydroxybutanoic acid (α-
hydroxybutyrate; AHBA) shows the lowest p-value of all
metabolites between control and GDM and therefore is one of
the strongest metabolic alterations (Supplementary Figure S1).

Our results confirm already well documented conclusions:
AHBA is suggested as an early biomarker for insulin resistance
and proposed to identify insulin resistance earlier than current
diagnostic tests (Gall et al., 2010). Previous research has studied
liver and plasma metabolome in mice to identify early alterations
in development of insulin resistance and found significant
changes in metabolites, of which AHBA is also significant in our
study (Li et al., 2009). Altogether AHBA tends to be important
for decreased insulin sensitivity in GDM and may be critical in
the prevention and treatment of diabetes as potent biomarker.

Propanoate Metabolism
In consideration of four metabolites—lactic acid, AHBA, beta-
alanin, and valine—of the propanoate pathway which show
a significant change in case and control (see Supplementary
Table S1 and Supplementary Figure S1) it seems reasonable to
propose that the whole propanoate pathway is changed in the
case group. On the basis of our data we suggest an adaption in
the propanoate metabolism as described in an in-vivo study for
DM by Huang in 2006 (Huang et al., 2006). Literature-derived
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FIGURE 3 | Metabolite correlation network analysis visualized as clustered correlation coefficient matrix. (A) Clustered heat map shows a significant metabolic

signature of control samples. (B) GDM case show a different pattern compared to the control samples indicating a dramatic reprogramming of metabolism in GDM

disease. (C) Detailed view of serotonin/melatonin metabolites in urine samples of control. Cluster 1 is a highly correlated serotonin cluster and cluster 2 a highly

correlated melatonin cluster in normal metabolic conditions. (D) Detailed view of serotonin/melatonin metabolites in urine samples of GDM case. Cluster 1

disappeared in GDM cases and cluster 2 is conserved from control to GDM.

FIGURE 4 | Receiver operating characteristic (ROC) analysis of selected metabolites from plasma and urine samples of GDM vs. control patients. (A) Area under

curve (AUC) for selected metabolites from plasma analysis and combined analysis of selected analysis of plasma and urine analysis. The final AUC is 0.99. Selection of

variables was performed by LASSO regression (see section Materials and Methods). 11 Metabolites from blood samples and 5 metabolites from urine samples were

selected (for further information see results and discussion). (B) Correlation analysis of serotonin, associated metabolic intermediates and dopamine measured in urine

with BMI. The strongest correlation is found for dopamine.
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evidence comprises a lipidomic analysis which found statistically
significant pathways, among them the propanoate pathway (Zhao
et al., 2013).

Degradation of Valine and Fatty Acids
Among the amino acids especially valine is one with the
highest significance. Further, intermediates of the citric cycle
are significantly changed in GDM (see Supplementary Figure
S1). It seems very likely that the rate of degradation of amino
acids is varying between case and control group. From protein
breakdown L-valine is generated and finally succinyl-CoA
appears to contribute to the citric acid cycle in muscle. In liver
succinyl-CoA can be used for synthesis of glucose. Therefore,
there is considerable evidence of an alteration in gluconeogenesis
rates in the pathogenesis of GDM. 2,4-dihydroxybutyrate is
described in the HMDB as usually absent in normal human urine
extracts or present only in trace amounts in neonates (Wishart
et al., 2013). However, in our study this metabolite was identified
as being significantly changed between case and control group in
blood samples.

A metabolic Signature of GDM by
Combined Plasma and Urine
Metabolomics Analysis
The analysis of metabolite correlation networks is a powerful
method for the description of systemic biochemical regulation
(Steuer et al., 2003; Weckwerth, 2003, 2011; Weckwerth
et al., 2004a; Weckwerth and Morgenthal, 2005; Nägele et al.,
2014). Recently, we demonstrated that differential metabolite
correlation or covariance networks reflect biochemical regulation
depending on the genotype or other factors (Weckwerth et al.,
2004a; Sun andWeckwerth, 2012; Nägele et al., 2014). To reveal a
picture of the metabolite correlation network in control vs. GDM
case samples we used here a clustered correlation coefficient
matrix visualization (Figure 3). Based on this visualization clearly
distinguishable metabolite signatures differentiate control and
GDM cases (Figures 3A,B). In a more detailed analysis of
serotonin metabolites in urine samples a highly significant
reprogramming of serotonin/melatonin metabolism is visible.
Whereas serotonin and tryptophan and related metabolites form
a highly correlated cluster (cluster 1 in Figure 3C) this cluster is
compromised in GDM metabolism. In contrast, the melatonin
cluster (cluster 2 in Figures 3C,D) is conserved. There are several
reports that serotonin metabolism and especially serotonin
transport is impaired in GDM (Li et al., 2014). Subsequently this
would lead to changes in biochemical correlation networks as
shown in our study. Further studies are necessary to underline the
dynamics of these different metabolic signatures and especially
reveal causal relationships between changedmetabolite levels and
enzymatic regulation (Sun and Weckwerth, 2012; Nägele et al.,
2014).

To select for the best set of predictive candidate biomarker
we used LASSO regression (see sections Materials and Methods
and Results). The combined analysis of plasma metabolomics
and targeted metabolomics of serotonin metabolism in urine
revealed an improvement in prediction accuracy for GDM (see

Figure 4A). Recently, a study of type 2 diabetes (T2DM) showed
no improvement of prediction accuracy by integrating NMR
metabolite profiling of blood and urine samples (Friedrich et al.,
2015). In contrast, our targeted approach of profiling specific
serotonin-related metabolites in urine indeed improved the
prediction accuracy in GDM. Thereby the specificity of serotonin
metabolism in GDM is supported.

Integrative regression analysis revealed further interesting
metabolite markers. Glycolate was also recently detected as a
T2DM metabolite marker in woman (Friedrich et al., 2015).
In another study on T1D in rats urea was found to be a
significant marker in plasma samples (Zhang et al., 2008).
Several amino acids are part of the identified metabolic signature
for GDM such as methionine, glutamine, alanine, serine,
and tryptophan. Tryptophan is directly related to serotonin
metabolism. Consequently, the extension of the metabolic
signature by metabolites derived from the serotonin pathway
improved the prediction accuracy (Figure 3A). Another very
interesting metabolic marker is erythronic acid. This acid is
a side-product from the degradation of so called advanced
glycation end-products (AGE) such as fructosamine (Jakus
and Rietbrock, 2004). AGE’s play an important role in the
pathophysiology of diabetes. We further correlated serotonin-
related metabolites and others measured in the urine samples
with the BMI of the cohort and found a strong correlation
with dopamine. An intimate relationship between dopamine and
obesity is postulated in the “reward deficiency syndrome” (Blum
et al., 2014). We will investigate this relationship in more detail
in future studies.

CONCLUSION

Plasma metabolomics is a comprehensive technology for the
rapid and in depth analysis of all kinds of metabolic diseases.
The amount of information by this approach is still not fully
understood. Here, we applied this technology for the early
diagnosis of GDM. Based on the physiological interpretation
of identified metabolic markers we developed the hypothesis
that serotonin is involved in GDM pathogenesis. We tested this
hypothesis by targeted profiling of serotonin-derived metabolites
in urine samples and the integration of plasma and urine
metabolic markers improved the prediction accuracy of GDM
in our study. This workflow reveals the power of metabolomics
screening of metabolic diseases, especially in the context of
physiological interpretation of identified significant changes in
metabolites (McCabe and Perng, 2017). In future studies, we will
test our hypothesis in more detail and will extend the study to
larger cohorts to unambiguously validate or falsify the potential
metabolic marker from our study. Furthermore, our study lays
the ground to investigate GDM in more detail on a biochemical
and physiological basis.
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