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Abstract

Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems
are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical
properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems
in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account
for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study
systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small
genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to
explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple
genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on
specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than
post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We
derived the following design principles to guide the design of circuits that best suppress variability: (i) high protein
cooperativity and low miRNA cooperativity, (ii) imperfect complementarity between miRNA and mRNA was preferred to
perfect complementarity, and (iii) correlated expression of mRNA and miRNA – for example, on the same transcript – was
best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells
affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same
principles as variability in the steady state. Our model and findings provide a general framework to guide design principles
in synthetic biology.
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Introduction

Biological systems are complex, inherently noisy and only

partially understood [1–5]. Systems and synthetic biologists are

striving to better understand these systems, as well as to discover

generally applicable principles for controlling them in biomedical

and biotechnological applications. For example, a branch of

systems biology studies how to best interfere with variable and

under-characterized signaling pathways to identify novel drug

targets [6–8]. In clinical pharmacology, decisions need to be made

by using uncertain models of drug effects on the human body

across populations and should ideally be robust to patient-to-

patient differences [9,10]. Synthetic biologists strive to build

synthetic circuits that perform desired functions across a popula-

tion of cells, despite their noisy nature, cell-to-cell variability, and

changing environments [11,12].

We are faced with a challenge of how to best represent,

simulate, analyze, and carry out design for noisy systems with

under-characterized biochemical properties, which are often

represented as uncertain parameters. We propose a modeling

and simulation framework as a tool to aid in meeting these

challenges. In this manuscript we specifically focus on making

design decisions for synthetic genetic networks, but the modeling

technique is sufficiently general to be applicable to a wide range of

problems in biology, biological engineering, and medicine. The

framework accounts for different sources of variability and is

computationally efficient, so that it allows screening across broad

parameter ranges.

Intrinsic variability (or intrinsic stochasticity) is a relatively well

understood aspect of biological models. It arises from the

probabilistic nature of the timing of collision events between

reacting biological molecules, and its effect is most pronounced

when the number of molecules in the system is small. Traditionally

intrinsic variability is modeled by a stochastic master equation,

which is the foundation for modeling stochastic dynamics in most

physical, chemical, and biological phenomena [13]. Unfortunate-

ly, its analytic solution can only be found for a few trivial models,

and a good alternative for studying stochastic models is the exact
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simulation framework of Gillespie [14]. However, to obtain a

distribution resulting from the intrinsic variability, many trajecto-

ries of the Gillespie algorithm need to be simulated, which can be

computationally expensive. A practical alternative is to use

analytically tractable approximation schemes [15,16]. In this

manuscript we approximate stochastic dynamics by van Kampen’s

V-expansion [13] (also called the linear noise approximation or

perturbation expansion; see Methods), for its computational

efficiency and analytic form. The V-expansion separates the

macroscopic dynamics from the fluctuations around it, describing

each of these parts by a set of ordinary differential equations

(ODEs). This model allows for efficient propagation of the first two

moments of the intrinsic noise distribution through time using

deterministic equations for mean, variances, and covariances. The

model very accurately approximates stochastic dynamics for

medium and large molecular numbers and when variability is

small compared to the mean number of molecules, but can lose on

accuracy when numbers of molecules are very small and the

relative fluctuation size increases [17–19]; here we check using

Gillespie simulations that the V-expansion distributions are

accurate. Analytic studies of the accuracy of the V-expansion

and comparison with other traditional approaches for modeling

intrinsic noise such as Fokker Planck equation and the chemical

Langevin equation can be found in [17,18,20] and a summary on

validity of the V-expansion in the Supplementary material of [19].

Despite this caveat, and mainly due to its efficiency and possibility

of analytic study, the V-expansion has played an important role in

advancing the understanding of intrinsic variability [3,18,21–24].

The V-expansion can most conservatively be applied to models

with a single steady state — in this manuscript we will only

consider such models — but with certain limitations or modifi-

cations it can also be applied to multimodal and oscillatory models

[22,25–27].

Significant effort has been invested in modeling intrinsic

variability in systems and synthetic biology, although it has been

shown that extrinsic variability generally dominates, especially in

eukaryotic systems [2,28]. Extrinsic variability arises due to

varying components upstream of the system of interest; these

components affect the system, varying stochastically in time

themselves, and might be present in different amounts in cells due

to differences such as size and stage of the cell cycle [2,3,29]. For

example, the numbers of ribosomes and the numbers of RNA

polymerases vary in time and between cells. Another source of

extrinsic variability is cell-to-cell variability of the gene copy

number, which is common in synthetic biology applications when

genes are delivered into cells by plasmid transfection, after which

different numbers of plasmids are taken up by different cells. As a

result of such sources of variability, single cells within a population

possess distinct quantitative dynamic behaviors.

As yet, there is no commonly accepted framework for modeling

extrinsic variability. Despite several strong mathematical and

theoretical studies of intrinsic and extrinsic variability [2,3,30,31],

computational modeling efforts that combine intrinsic and

extrinsic variability are still rare. Shahrezaei et al. [32] proposed

an extension to the Gillespie approach that includes kinetic

parameter perturbations representing extrinsic variability; the

downside of this method is that it is extremely costly. Scott et al.

[26] proposed a more efficient, approximate model for steady-state

extrinsic variability that can account for variations of one

parameter at a time. Zechner et al. [33] used low-order moments

through the moment closure approach to approximate intrinsic

and extrinsic distributions; this approach requires analytic

derivation of a new model structure for each additional extrinsic

factor. Hallen et al. [34] proposed a non-mechanistic method of

modeling extrinsic variability by perturbing the steady-state

intrinsic noise distribution, but without any mechanistic assump-

tion regarding the sources of extrinsic variability. Singh et al. [35]

model extrinsic variability by adding noisy exogenous signals to an

intrinsic stochastic model.

Here we model extrinsic variability by introducing variability in

model parameters and initial conditions; rather than considering

them as point values, we consider them as distributions (Figures 1,

S1). We propagate these distributions through a model to simulate

model output distributions resulting from extrinsic variability. For

computational convenience we work with normally distributed

parameters, h*N(mh,Sh) (for simplicity h denotes a vector of all

parameters and initial conditions). To simulate propagation of

extrinsic variability through the model, we use the Unscented

Transform (UT). The UT efficiently maps the first two moments

of the variability distribution in the parameter space onto the first

two moments of variability distribution in the output. Estimates of

the mean and covariance matrix obtained by the UT are accurate

to second order in the Taylor series expansion for any nonlinear

function, which makes the algorithm very appealing for propa-

gating distributions through nonlinear functions [36]. Nonlinearity

is propagated through simulating the nonlinear function for a

chosen set of parameters (called sigma-points, see Methods) and

reconstructing the output distribution from these individual

simulations. This can capture nonlinearity such as a shifts in a

mean, for example, when extrinsic variability increases.

Despite knowing that extrinsic variability contributes signifi-

cantly to the total variability, little is known about its sources [37].

This creates a major caveat that arises when attempting to make

informed design decisions. The second ubiquitous caveat on the

way to building predictive models of stochastic systems is that

kinetic parameters are often unknown. Here we are motivated by a

question of how to make robust design choices, given these

uncertainties and limited knowledge of extrinsic variability.

In this paper we use our method to study variability in simple

gene regulatory networks; such networks are a basis for

transcription-based synthetic circuits. We first introduce a

combined intrinsic and extrinsic modeling approach and derive

Author Summary

Variability is inherent in biological systems, and in order to
understand them, we need to be able to model different
sources of variability. Systems have evolved to harness and
control the variability, and more recently, synthetic
biologists are trying to learn how to control variability in
engineered biological systems. Several sources of variabil-
ity exist; they arise due to stochastic expression of genes,
which is most pronounced when numbers of mRNA and
protein molecules are low, as well as due to differences
between individual cells. Here we propose a modeling
framework that combines different sources of biological
variability. Furthermore, current research seeks to control
biological variability though robust design of synthetic
biological circuits, for example for use in therapies and
other biomedical or biotechnological applications. Here
we apply our framework to guide design of synthetic
circuits that use transcriptional and post-transcriptional
regulation to suppress variability in the output protein of
interest. We find that certain properties and network
designs are better than others in their ability to control
variability, and here we report on the design guidelines to
aid synthetic circuit design to suppress variability, in spite
of our uncertain knowledge of parameters.

Variability in Computational Design
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the expression for the total variability. The framework is then used

to explore the effect of self-repression on protein variability in

simple genetic networks that are simultaneously under different

sources of noise. We are interested in details related to how self-

repression can be used as an element in synthetic circuits to reduce

variability. We consider two types of self-repression, on a

transcriptional and on a post-transcriptional level, and ask which

is more successful in reducing protein variability. We are further

interested in specific design principles that help optimally achieve

the aim of noise suppression.

Results

Combined model of intrinsic and extrinsic variability, and
derivation of total variability
The central methodological advance of this manuscript is a

method and efficient framework to model total variability as a

combination of intrinsic and extrinsic sources. Here we formalize

the framework (overview in Figure 1) and illustrate it on a simple

model of transcription and translation of a single gene, with species

mRNA, m, and protein, p (Figure 2A) [38]. The parameters of the

model are transcription rate, kr, translation rate, kp, and mRNA

and protein degradation rates, cr and cp, respectively. DNA0 is the

initial condition representing the copy number of genes encoding

protein p. We denote the vector of parameters and initial

conditions by h~(kr,kp,cr,cp,DNA0).

Here we represent intrinsic variability through the V-expansion,

which provides a set of ordinary differential equations for the

concentration means that are identical to a traditional ODE model

without variability, plus an additional set of differential equations

that describe time derivatives of the individual variances and

covariances (Figure 2B). All equations together approximate the

time evolution of the intrinsic noise distribution. Note that the

ODEs for the means do not depend on the variances and

covariances but that the ODEs for the variances and covariances

depend on means, variances, and covariances. Note also that

ODEs for propagating the variance and covariance do not

introduce any additional rate constant parameters beyond those

needed to propagate the concentration means, but that initial

values for variance and covariance need to be introduced in order

to integrate their differential equations. We express this as a system

of ordinary differential equations

d�xx

dt
~f (�xx,h) ð1Þ

dJ

dt
~g(�xx,J,h), ð2Þ

where �xx~(�mm,�pp)T is a vector representing the mean numbers of

mRNA and protein and J is the symmetric covariance matrix

J~
Varm Covm,p

Covp,m Varp

� �

:

We simulated intrinsic variability in single gene expression using

the V-expansion model. Time-course trajectories of mean number

of mRNA and protein (red) and their variances (green) are shown

in Figure 2C. The Figure also shows individual trajectories from

stochastic simulation runs (blue) using the Gillespie algorithm

(Methods) [14], which are consistent with the V-expansion

simulations. A more detailed comparison shows that the distribu-

tions from the V-expansion and the stochastic Gillespie simula-

tions are nearly identical (Figure S2). The multivariate Gaussian

distribution N(�xx,J) is depicted by an ellipse with mean �xx whose

axes’ directions are determined by eigenvectors and their sizes by

eigenvalues of the covariance matrix J (Figure 2D, see Methods

for further details). This represents variability in mRNA and

protein counts due to intrinsic noise only.

We next introduced extrinsic variability into the model, by

introducing parameters that follow a distribution with a probabil-

ity density function p(h), rather than parameters fixed to a

particular value. Operationally, the combined distribution is a

superposition of intrinsic distributions for different parameter

realizations sampled from the underlying parameter probability

distribution, h*P(h) (Figure 2E). The resulting output distribution

represents the total variability (i.e., variability resulting from intrinsic

as well as extrinsic sources). Mathematically we represent this

distribution with a mixture model with probability density function

ð

p(xD�xx(h),J(h))p(h)dh, ð3Þ

where p(xD�xx(h),J(h)) is a probability density of the intrinsic noise

distribution, in our specific case a normal distribution with mean

�xx(h) and a covariance matrix J
(h) resulting from the V-expansion

model with parameters h. For single gene expression, the mixture

model reads

Figure 1. Framework overview. The framework combines intrinsic and extrinsic sources of variability and computes the total variability in model
output. Extrinsic variability enters the model through variability in kinetic parameters and initial conditions. Intrinsic stochasticity is accounted for in
the choice of a dynamical system; the master equation is the standard way of representing intrinsic variability, and due to its intractability we use an
approximation of the master equation known as the V-expansion.
doi:10.1371/journal.pcbi.1002960.g001
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Figure 2. Framework illustrated on a single gene expression model. (A) Single gene expression model. (B) V-expansion equations (intrinsic
stochasticity). (C) Simulation of intrinsic variability (fixed parameters). (D) Simulation of covariance of intrinsic distribution (fixed parameters). (E)
Simulation of intrinsic and extrinsic variability. (F) Total variability.
doi:10.1371/journal.pcbi.1002960.g002
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ð

p
m

p

� �

�mm(h)

�pp(h)

" #

,
Var(h)m Cov(h)m,p

Cov(h)m,p Var(h)p

" #�

�

�

�

�

 !

p(h)dh

and its steady state is schematically depicted in Figure 2E.

This framework allows us to calculate the mean and variance of

the total variability distribution; the mean of a random variable X

drawn from the mixture model (3) was calculated as

E(X )~

ð

�xx(h)p(h)dh ð4Þ

and by using the law of total variance [39] we obtained the

covariance matrix [30]

Var(X )~E(J)zVar(�xx): ð5Þ

This equation shows that the total variability is decomposable

into two parts: variability due to intrinsic stochasticity, E(J), and

variability due to extrinsic sources, Var(�xx) (Figure 2F).

So far we have not restricted ourselves to any specific form of

the parameter distribution P(h); in order to obtain a combined

model and calculate the total variability, we generally need to

exhaustively draw samples from P(h) and simulate the V-

expansion model for each sampled parameter. However, for

normally distributed parameters, h*N(mh,Sh), we can take a

considerably more efficient approach, the Unscented Transform

(UT, see Methods). The UT selects a small collection of

representative control points in the parameter space (called sigma

points), propagates them through the V-expansion simulation

model to obtain the output instance for each, and then

reconstructs the first two moments of the output distribution

(which is equivalent to the above mixture model distribution) by

appropriate weighting of the sigma points. From the output

distribution, the total mean and the total variance are easily

computed. See Text S1 for further details and an example for the

single gene expression model.

We checked that our novel combined simulation framework

accurately approximates the exact total protein and mRNA

distributions resulting from Gillespie simulation. We first intro-

duced extrinsic variability into one parameter only, and then into

four parameters. In the first case, approximate distributions

resulting from the novel framework fit very well to exact

distributions in both steady and transient states (Figure S3). In

the second example with extrinsic variability in four parameters,

the approximation was slightly worse; this is becasue the total

variability distribution was not Gaussian, but skewed, and perhaps

also to inexactness in the V-expansion (Figure S4). However, our

approximation approximated well the distribution up to the

second moment, i.e. the mean and the variance.

Figure 3 shows examples of interplay between intrinsic and

extrinsic variability for distinct amounts of extrinsic variability. In

this example we considered parameters to be independent (i.e., the

covariance matrix Sh had zero for all off-diagonal entries), and all

parameters were varied with the same coefficient of variation a

(see Methods). When the variability in parameters was low,

intrinsic variability was dominant in the system (Figure 3A); this

can be seen from the sizes of the green ellipses (the ‘‘average’’ of

the green ellipses corresponds to E(J) in Eq. 5), which are much

larger than the size of the red ellipse (corresponding to Var(�xx)).
On the other hand, for high parameter variability the extrinsic

variability became dominant (Figure 3F; red ellipse is larger than

the green ones). For intermediate parameter variability, both

intrinsic and extrinsic sources contributed comparably to the

overall variability. Notice also that with increasing extrinsic

variability, the intrinsic components changed their size and shape;

this corresponds to the observation that intrinsic variability can

change with kinetic parameters [40]. The total variability is the

combination of red and averaged green ellipses; with increasing

extrinsic variability, the variability of the output increased. High

extrinsic variability has also shifted the mean; for example protein

mean has increased when extrinsic variability was increased (this

can be seen by comparing the x-component of the red ellipse mean

on Figures 3A and 3F, where the mean of the red ellipse represents

the mean of the output – combined intrinsic and extrinsic noise –

distribution).

In the remainder of this paper we report results obtained by

using this framework to study how different topologies of self-

repressing genetic networks affect the total variability in proteins.

The role of transcriptional and post-transcriptional
autoregulation in reducing variability
Negative feedback and self-repression are recurrent motifs

observed in gene regulatory networks. Their potential role in

suppressing variability has identified them as promising design

elements in synthetic biology [32,41–48]. Here we studied the

effects of self-repression on variability of the output protein in a

single gene model, while taking into account both intrinsic and

extrinsic sources of variability. We compared a case of negative

autoregulation on a transcriptional level with a case of post-

transcriptional regulation. In the transcriptional autoregulation

case, the output protein acts as a repressor that multimerizes and

binds to its own promoter region to repress its own transcription

(Figure 4A). In the post-transcriptional case, we model synthetic

microRNA (miRNA) that binds to its cognate mRNA, simulta-

neously preventing translation and promoting degradation

(Figure 5). In the remainder of this section we explore the

effectiveness of these control mechanisms. The results provide

specific guidelines for designing transcriptional and post-transcrip-

tional autoregulatory networks for achieving best (or worst)

suppression of protein variability.
Transcriptional autoregulation: High protein

cooperativity achieves best suppression of

variability. Simulations were made to study transcriptional

autoregulation using the single gene regulatory network model in

Figure 4A, in which the protein product represses its own

transcription through a mechanism modeled by the Hill equation

(which could represent protein oligomerization and DNA binding

to block transcription); this is a common modeling framework in

which binding is treated under a quasi-steady state assumption,

and is valid when binding kinetics are substantially faster than the

other reactions. We varied the Hill coefficient (n) and the

dissociation constant (Kd) and observed the effect on the variability

of the protein product. The quantity 1=Kd it is often associated

with the feedback strength [35,44]. Studies were made first with

only intrinsic sources of variability and then with both intrinsic and

extrinsic sources.

The intrinsic only case was studied with varying amounts of

feedback strength and values of the Hill coefficient. We quantified

variability as the relative squared coefficient of variation, CV 2
rel,

which is CV2
~s2(p)=m2(p) normalized by the CV 2 of the

network without autoregulation (see Methods). According to this

measure, whenever variability is less than 1 (CV2
relv1), the

negative feedback suppresses variability. Figure 4B shows the

dynamics of protein numbers under the influence of intrinsic

variability, which is represented by the means and standard

Variability in Computational Design
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deviations of the intrinsic noise distribution. For increasing

feedback strength the means as well as the variances decreased.

The measure of variability, CV2
rel, however, showed a minimum

for intermediate feedback strength due to competition between

different rates of decrease of the mean and the variance with

increasing feedback strength. Reported are the variabilities

calculated at the steady state; the data is plotted more concisely

in Figure 4C (case n~4).

We studied the effect of negative autoregulation on intrinsic

protein variability under different Hill coefficients, n, and different

feedback strengths (Figure 4C). Several observations were made.

Firstly, an optimal suppression of variability occurs for interme-

diate values of feedback strength. Secondly, there is a window of

feedback strength for which autoregulation is successful in

suppressing variability. And thirdly, the negative feedback only

suppresses variability for Hill coefficients greater than one, while in

the absence of protein cooperativity, the variability increases

relative to that in a circuit without the feedback loop. These

observations are consistent with those of Singh et al., who did

related analysis on a simplified model [35].

Next, we added extrinsic variability to the system by treating

each parameter as a distribution across a population rather than as

a constant value for all individuals. We studied the total protein

variability resulting from a combination of intrinsic and extrinsic

sources as a function of extrinsic variability. Initially, extrinsic

variability was introduced in only the transcription rate

(Figure 4D). Higher extrinsic variability led to greater suppression

of expressed protein variability. This result is in agreement with

Singh et al. [35]. As above in the intrinsic-only setting, the results

suggest that high cooperativity in the protein is preferred to low

cooperativity in order to achieve best suppression of variability

when both intrinsic and extrinsic sources are acting on the system.

Then we introduced variability in all other parameters individually

(Figure S5). When the main source of extrinsic variability was in

the gene copy number, translation rate, or in any of the

degradation rates, we observed a similar result, namely that under

higher extrinsic variability, self-repression suppressed protein

variability better than a circuit without self-repression. The

opposite was found for extrinsic variability in feedback strength

or Hill coefficient: the higher the extrinsic variability, the less

successful the loop was in suppressing the protein variability. In

other words, this means that a noisy feedback mechanism is less

successful in repressing protein variability than the feedback

mechanism that is not noisy; this can be seen from a simple

mathematical argument: a mixture distribution of individual

components has higher variability than one of its individual

components; the mixture corresponds to the total protein

variability when extrinsic noise is present in the feedback strength

or Hill coefficient, while its individual component corresponds to

the intrinsic protein variability when no extrinsic noise is present in

either of these parameters. Interestingly, the Hill coefficient is a

parameter that is generally thought of as relatively unvarying for a

given wild type protein.

In summary, transcriptional autoregulation is often thought of

as a tool in synthetic biology to decrease, across a population of

cells, the variability of the protein product of interest. Here we

studied how to construct such an autoregulatory loop in order to

achieve best suppression of variability. The results show that best

suppression can be achieved when proteins are highly cooperative,

and when extrinsic variability (either in transcription, translation,

Figure 3. Distributions of the total variability. Distributions of the total variability result from the combined effects of intrinsic stochasticity and
extrinsic variability due to parameter fluctuations in time and across cells. The amount of parameter variability is determined by Eqn. (13) in a
diagonal covariance matrix Sh . Variability in parameters is gradually increased: (A) a~0:01, (B) a~0:03, (C) a~0:05, (D) a~0:1, (E) a~0:2, and (F)
a~0:3.
doi:10.1371/journal.pcbi.1002960.g003
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or degradation rates) across a population is large. Furthermore,

there exists an optimal feedback strength that achieves best

suppression.

Transcriptional regulation suppresses variability better

than post-transcriptional regulation when extrinsic

variability in translation and protein degradation rates is

high. An important general problem in synthetic biology is to

decide among candidate network topologies, and to select those

with the best properties for implementation and potential tuning.

Here we examine this question in the context of deciding between

two topologies for suppression of variability of expressed protein.

One topology incorporates transcriptional and the other post-

transcriptional autoregulation. Crucially, we wanted our conclu-

sions and design choices to be robust, in spite of our limited

knowledge of extrinsic variability sources and network parameters.

Transcriptional autoregulation was modeled as above

(Figure 4A), and post-transcriptional regulation by a model shown

in Figure 5, in which a copy of mRNA and a synthetic miRNA are

transcribed from a synthetically engineered DNA molecule [47].

After mRNA and miRNA have been spliced and processed,

miRNA can bind to a complementary binding sequence on the

mRNA molecule. Once bound, it can unbind or trigger miRNA-

induced mRNA degradation, after which miRNA is recycled and

can bind to other mRNA molecules [49,50]. Binding and

unbinding rates are denoted by kon and koff , respectively, cr� is

the rate of miRNA-induced mRNA degradation, and cmi is the

degradation rate of miRNA.

To compare the effects of transcriptional and post-transcrip-

tional self-repression on suppression of expressed protein variabil-

ity, we introduced different amounts of extrinsic variability to

different parameters and initial conditions of both models. Results

showing suppression of total variability for different feedback

strengths are shown in Figure 6. Each row shows how total

variability in both models changes for different feedback strengths

Figure 4. Results for the single gene expression model. (A) Single gene expression model with transcriptional self-repression. (B) Examples of
protein distribution dynamics under no feedback (top-most) and under negative feedback. Increased feedback strength
(1=Kd~0,2|10{5,3:5|10{5,5|10{5,10{4,3|10{4,10{3 top to bottom) resulted in lower means and variances. Reported are the measures of
variability calculated for the steady-state distribution with Hill coefficient n~4. (C) Effect of self-repression on variability when intrinsic stochasticity is
the only source of variability, for Hill coefficient values of n~1, . . . ,4. (D) Effect of self-repression on the system with both intrinsic and extrinsic
variability. Extrinsic variability is introduced into the transcription rate. Extrinsic variability in parameters (eqn. (13)): a~0:01 (red), a~0:03 (blue),
a~0:05 (green), a~0:1 (black), a~0:2 (magenta) with Hill coefficient n~2 (full line; o), n~4 (dashed line; +).
doi:10.1371/journal.pcbi.1002960.g004
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when extrinsic variability enters through each parameter individ-

ually. Increasing amounts of parameter variability in the

transcriptional control model reduced protein variability for a

window of feedback strength for all four parameters. By contrast,

increasing amounts of parameter variability in the post-transcrip-

tional control model reduced protein variability only for kr and cr
and increased it for kp and cp. This latter observation is in line

with our intuition; any variability in protein numbers that is due to

extrinsic variability in kp and cp can not be suppressed by the post-

transcriptional self-repression loop as translation and protein

degradation in this case lie outside the self-repression loop.

Moreover, effects for transcriptional control occurred at signifi-

cantly smaller feedback strength than for post-transcriptional

control, although note that these were computed differently for the

two models. These results are summarized in Figure S5.

How can this knowledge help us choose between two designs of

self-repression to suppress variability in the output of a synthetic

circuit? Knowing that variability in translational parameters might

be high [51,52], our results suggest that the transcriptional self-

regulation motif would be a ‘‘safer’’ choice to implement than

post-transcriptional, if one aims to reduce the variability in the

protein. However, if the sources and quantitative contributions of

extrinsic variability were known and could be controled, one could

make a more informed choice.

Post-transcriptional self-repression: Imperfect

complementarity between miRNA and mRNA preferred to

perfect complementarity. The mechanism of post-transcrip-

tional regulation depends on the degree of complementarity

between miRNA and mRNA [49,53]; depending on complemen-

tarity, their interaction can either result in gene silencing through

prevention of translation, or through induced mRNA degradation.

If the complementarity is imperfect, binding and silencing will

occur, but not mRNA degradation; perfect complementarity will

lead to miRNA induced mRNA degradation. We model the effects

of degree of complementarity in our post-transcriptional model

(Figure 5) through the parameter cr� . In this section we studied

what values of cr� lead — and therefore what degree of

complementarity leads — to best suppression of variability.

The results are shown in Figure 7. The measure of intrinsic

protein variability is plotted against different values of feedback

strength. The results show that for low rates of miRNA-induced

mRNA degradation, cr� , there is wider and stronger window of

reduced intrinsic stochasticity than for high rates of cr� . The same

was observed also when high extrinsic variability was present in

the system, although the differences were less pronounced (Figure

S6). These results suggest that best noise suppression is achieved

if miRNAs repress translation but do not promote mRNA

degradation, and thus that imperfect complementarity between

mRNA and miRNA is preferred to perfect complementarity.

miRNA and mRNA transcribed on a single transcript are

best for suppression of protein variability. In the post-

transcriptional model so far, mRNA and miRNA were transcribed

on the same transcript. We next compared the ability of post-

transcriptional repression to suppress variability when mRNA and

miRNA were transcribed together, to when they were transcribed

on two separate transcripts (Figure 8). We chose the values of

transcription rates of mRNA and miRNA to be equal in both

models. The crucial difference between both circuits is that mRNA

and miRNA molecules are produced in a correlated manner when

encoded on the same transcript, and in an uncorrelated manner

when encoded on different transcripts. Figure 9 shows that for

extrinsic variability in parameters kr, kp, and cp, lower variability

was obtained for the ‘‘same-transcript design’’ compared to the

‘‘different-transcripts design’’, with results for kr especially

dramatic. However, both designs were equally successful in

reducing protein variability under extrinsic variability in param-

Figure 5. Single gene expression model with post-transcrip-
tional self-repression.
doi:10.1371/journal.pcbi.1002960.g005
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Figure 6. Comparison of total protein variability in transcrip-
tional (solid line) and post-transcriptional (dashed line) self-
repression circuits. Extrinsic variability in parameters (eqn. (13)):
a~0:01 (red), a~0:03 (blue), a~0:05 (green), a~0:1 (black), and a~0:2
(magenta). Feedback strength in transcriptional self-repression model is
1=Kd, in post-transcriptional kon=(koffzcr� ).
doi:10.1371/journal.pcbi.1002960.g006
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eter cr. This suggests that the latter circuit was less successful in

reducing variability than the former for most extrinsic sources; this

observation is in agreement with Osella et al. [46]. Furthermore,

for the same-transcript design, variability in kr and cr are

especially effective in suppressing protein variability.

Low cooperativity in miRNA achieves most robust

suppression of variability. It is currently unknown whether

cooperativity between miRNA molecules exists, what its mechanism

would be, or how one could go about designing it. Nevertheless, it has

been suggested that cooperative models might be more appropriate for

modeling regulation by miRNA than non-cooperative models [54].

These models use a Hill function, which circumvents the need for

modeling the precise molecular mechanism. Here we used one such

model (Figure 10A) to study the effect of miRNA cooperativity on

suppression of variability. High cooperativity was observed to reduce

variability slightly more inmagnitude; however, andmore significantly,

low cooperativity was successful in reducing variability for a much

broader range of feedback strengths (Figure 10B). In other words, the

suppression of noise in the absence of miRNA cooperativity was more

robust to varying feedback strength. Therefore, depending on how

difficult it is to design (or know) a precise feedback strength, low

cooperativity might be preferred to high cooperativity.

Correlated extrinsic variability. Little knowledge exists for

biological systems about the sources and amounts of extrinsic

variability, which makes it uncertain how one should specify the

covariance matrix Sh. To this point of the current report, we have

considered the covariance matrix to be diagonal, corresponding to

independent parameter variation. However, some biological

parameter variability might be correlated; for example, if

differences in cell size drive protein variability through changes

in concentration of the transcriptional, translational, and degra-

dation machinery, then transcriptional, translational, and degra-

dation rate-constant variability could be correlated. The frame-

work introduced here allows arbitrary parameter correlations

originating from extrinsic variability. While this may seem like

‘‘extra’’ parameters required by this framework, it is perhaps more

accurate to say that they are required to properly describe the

underlying biophysics, and the method we present exposes them

explicitly.

To explore how correlations in parameter variability affect

overall gene expression variability, we next carried out model

studies with different covariance matrices and analysed the results.

We are interested in the question of how correlations in extrinsic

variability affect the ability of autoregulatory circuits to suppress

total variability in protein concentration. Are rate correlations

important to understand and measure in order to understand total

biological variability, or are they minor contributors? Are there

particularly favorable correlation properties of kinetic rates across

a population of cells that suppress (or enhance) variability? How

robust is noise suppression in transcriptional relative to post-

transcriptional self-repression circuits to different parameter

distributions across cells?

To answer these questions, we first generated covariance

matrices with fixed diagonal elements but random off-diagonal

elements. This corresponds to the same total variation for each

parameter but different covariation among the parameters for

each trial. We simulated the total variability in protein numbers in

both transcriptional and post-transcriptional self-repression cir-

cuits using 1000 random matrices each. The variability of a system

with independent extrinsic parameter variability (all zeros off the

Figure 7. Variability in post-transcriptional circuit for different
values of ª

r
� . Parameter cr� depends on the level of complementarity

between mRNA and miRNA. cr�~0:1 (red), cr�~0:15 (blue), and cr�~0:4
(green). Feedback strength kon=(koffzcr� ). Intrinsic variability only was
used.
doi:10.1371/journal.pcbi.1002960.g007

 

Figure 8. Post-transcriptional repression model with miRNA transcribed on a different transcript than mRNA.
doi:10.1371/journal.pcbi.1002960.g008
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Figure 9. Comparison of total protein variability in circuits with mRNA and miRNA on the same (o) or different (+) transcripts.
Extrinsic variability in parameters (eqn. (13)): a~0:01 (red), a~0:03 (blue), a~0:05 (green), a~0:1 (black), and a~0:2 (magenta). Feedback strength is
kon=(koffzcr� ).
doi:10.1371/journal.pcbi.1002960.g009

Figure 10. Results for post-transcriptional self-repression modeled by a Hill function. (A) Single gene expression model with post-
transcriptional self-repression modeled by a Hill function. (B) Effect of self-repression on variability with only intrinsic sources of variability, for Hill
coefficient values of 1, . . . ,4.
doi:10.1371/journal.pcbi.1002960.g010
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diagonal) is taken as a reference and is plotted as the solid line in

Figure 11A. When we included correlated extrinsic variability, the

suppression was better or worse (indicated by dashed lines

appearing on both sides of the solid line). To address the question

of what type of extrinsic variability allows for better or worse

suppression, we compared the total variability resulting from

correlated parameters to that from uncorrelated parameters for

each pair of parameters (Figure S7). This allowed us to

hypothesize that the following correlation matrix would result in

strong suppression of variability in a transcriptional autoregulatory

network (note the order of indices is kr, kp, cr, cp for rows and

columns),

1 z { {

z 1 { {

{ { 1 z

{ { z 1

2

6

6

6

4

3

7

7

7

5

, ð6Þ

where az sign means the parameter pair is correlated and{ sign

that it is anti-correlated; likewise, the opposite correlation matrix

was hypothesized to result in weak suppression (and even

enhancement) of variability. This hypothesis was validated for

randomly generated variances (i.e., diagonals of the covariance

matrix). For every randomly generated variance vector, covariance

matrices with correlation properties defined by (6) with symmetric

off-diagonal elements choisen randomly between zero and one

resulted in better suppression (red) than independent extrinsic

variability (black), and correlation properties opposite to (6)

resulted in worse suppression (blue; Figure 11B). This result

suggests that transcriptional autoregulatory networks are best in

suppressing variability in systems where (i) transcription and

translation rates are correlated, (ii) mRNA degradation and

protein degradation rates are correlated, and (iii) all other pairs of

kinetic rates are anti-correlated.

Using the same approach we found that the post-transcriptional

autoregulation circuit strongly suppressed variability if their

extrinsic noise environment was determined by the following

correlation matrix pattern

1 z { {

z 1 z z

{ z 1 {

{ z { 1

2

6

6

6

4

3

7

7

7

5

, ð7Þ

and weakly suppressed (and even enhanced) variability for the

opposite correlation matrix pattern (Figure S8). Therefore,

extrinsic variability with (i) positively correlated transcription and

translation rates, (ii) positively correlated translation and mRNA

degradation, (iii) positively correlated translation and protein

degradation rates, and (iv) all other pairs anti-correlated, would

allow for best suppression of variability in the post-transcriptional

autoregulation circuit. This tells us that different circuits suppress

variability better or worse depending on the intra-cellular

environments that determine correlations between kinetic param-

eters.

We next investigated the question whether particular patterns of

parameter variability could control the effect of parameter

covariation on overall protein variability. We were curious

whether some diagonals could enhance or suppress the effect of

off-diagonals in creating protein number variability. To address

this question we sorted diagonals according to the similarity of the

outputs they produced for different covariance matrices, and

looked at which diagonal combinations resulted in small, medium,

and large differences in total protein variability as the correlation

pattern was varied (Figures 12A, B, C, respectively). For the

transcriptional self-repression circuit, we observed that when

extrinsic variability was dominated by variability in transcription

or translation, with variability in all other parameters small, then

different covariance matrices gave very similar total variability

results (Figure 12A is one example; other examples are given in

Text S1). In contrast, when extrinsic variability was a combination

of small and intermediate sizes for different parameters, with none

of them clearly dominating, then different covariance matrices

gave very different total variability results. These results imply

that, depending on the amount of extrinsic variability, it is either

important to understand correlations between parameters (as they

Figure 11. Total variability resulting from non-diagonal covariance matrices. (A) Simulations of total variability resulting from 50
representative random correlation matrices selected from 1000 runs for visual clarity (dashed line) and a diagonal correlation matrix (solid line). (B)
From a total of 1000 random correlation matrices, those resulting from correlation matrix (eqn. 6) are shown in red, and those correlated oppositely in
blue. Simulation resulting from a diagonal correlation matrix is represented by a solid black line.
doi:10.1371/journal.pcbi.1002960.g011
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effect the ability to suppress variability, Figure 12C) or not

important (as variability will be suppressed to the same extent

regardless of the correlations between parameters, Figure 12A).

For design purposes, where it may be difficult to even know and

certainly to control covariation fully, it may be useful to explicitly

choose combinations of variation that minimize the effect of

covariation.

The ability to specify arbitrary parameter correlations in

extrinsic variability is a valuable property of this modeling

framework. This property, combined with an efficient simulation

framework, allows exploration of how total variability of the model

output depends on different sources and properties of extrinsic

variability. Questions that remain to be answered include what is

the biological explanation for this phenomena, and how important

a role it plays in the detailed workings of biological systems.

Transient variability behaves differently than steady-

state variability. Up to this point in the current report, we

have studied distributions of variability in the steady state;

however, the framework allows the same analysis for any time

point in the simulation. Our observations are consistent with those

of Tao et al. [55], who showed theoretically that intrinsic

stochasticity in transient states might behave differently than

intrinsic stochasticity in the steady state. In addition, our

calculations show that this result also holds for the combination

of intrinsic and extrinsic variability. For example, while we saw

earlier that transcriptional self-repression with Hill coefficient n~1

could not suppress variability in the steady state, the variability

could be suppressed in transient states (Figure S9). Similarly, for

higher Hill coefficients, especially under strong feedback, variabil-

ity might be suppressed in the transient but not in the steady state

(Figure S10). This phenomenon has recently been observed

experimentally in the NF-kB signaling pathway [56]. Interestingly,

for both transcriptional and post-transcriptional self-repression,

the qualitative effect of different levels of extrinsic variability on the

system (results shown for transcriptional case in Figure S11) was

the same in the steady and transient states (steady state in Figure

S5). Taken together, these observations strongly caution that

conclusions about steady-state variability properties cannot

straightforwardly be extrapolated to transient states.

Discussion

Variability is ubiquitous to biological systems, and yet it is not well

understood. In order to engineer and intervene in such systems

successfully, variability must be taken into account in planning and

interpreting experiments and in designing synthetic networks. Here

we have introduced a framework for modeling and simulation of

dynamical systems under both intrinsic and extrinsic sources of

variability. One reason that understanding and treating variability is

so especially important for synthetic biology is that one seeks to

design circuits and devices that can perform successfully across a

population of cells and variety of experimental conditions; without

understanding variability and fluctuations, one risks building devices

or designing therapies that only perform well in a fraction of cells (or

patients) or only under limited environmental conditions.

Here we addressed the problem of constructing circuits that

exhibit low variability across cells. We investigated transcriptional

and post-transcriptional designs of self repression, and studied

their relative promise for noise suppression. We explored their

behavior for a range of feedback strengths and other design

parameters, and for various hypothetical amounts and types of

extrinsic variability. We derived a set of design principles for best

noise suppression in a protein concentration of interest. We

showed that transcriptional autoregulation is more successful than

post-transcriptional in suppressing noise under a wide range of

intrinsic and extrinsic variability levels and conditions. The

following design principles were shown to best suppress protein

concentration variability: (i) high cooperativity in protein binding

to DNA and low cooperativity in miRNA binding to mRNA, (ii)

imperfect complementarity between miRNA and mRNA was

preferred to perfect complementarity, and (iii) correlated expres-

sion of mRNA and miRNA — for example, on the same

transcript. We further showed that correlations in kinetic

parameters between cells affected the ability to suppress variability,

and that variability in transient states did not necessarily follow the

same principles as variability in the steady state. Also, we note that

biochemical design can not avoid fundamental limits on the lower

bound of stochastic fluctuations [57]. In this work we have focused

on one objective, which is to decrease variability of protein

expression. In synthetic biology applications, one might be

interested in additional objectives, such as maximizing the mean

protein expression, or keeping the mean fixed while suppressing

variability etc. The same analysis can be performed for such

objectives, and could potentially lead to different guidelines.

Our novel modeling and simulation framework combines

intrinsic and extrinsic sources of variability by combining the V-

expansion with the unscented transform. In contrast to few

previous methods, our framework is based on a deterministic

simulation with ordinary differential equations. One advantage of

our method is that it incorporates extrinsic variability by repeated

simulation of the same intrinsic model for carefully selected

parameter combinations where the number of simulations

Figure 12. Small, medium and large differences in total protein variability resulting from different covariance matrices. Simulations
of total variability resulting from 50 different random correlation matrices selected from 1000 runs for visual clarity (dashed line) and a diagonal
correlation matrix (solid line). The total variability shows different degrees of sensitivity to correlation matrices, depending on parameter variances: (A)
a1~0:01, a2~0:2, a3~0:03, a4~0:01 (B) a1~0:03, a2~0:01, a3~0:2, a4~0:2 (C) a1~0:01, a2~0:03, a3~0:03, a4~0:03.
doi:10.1371/journal.pcbi.1002960.g012
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increases linearly with the number of extrinsic factors (see

Methods), rather than generating a new model and exponentially

increasing the model size for each new extrinsic factor [33]. This

not only increases computational efficiency, but makes possible

analysis with a wide variety of available tools. It also allows for

screening across a large range of parameters (such as feedback

strength, kon and koff rates, and unknown sources and quantities

of extrinsic variability). The new approach is well suited to support

the design of synthetic circuits from building blocks with partially

unknown kinetic properties but that will perform desired functions

robustly in variable intracellular and extracellular environments

and across a population of cells. An important aspect of the

framework is that it can be applied to study variability and

dynamics at transient as well as steady states; we have shown that

variability might behave differently in both regimes, which

reiterates the importance of developing and using tools that are

applicable beyond steady-state regimes.

The computational efficiency of the framework, however, comes

at a cost of approximation; macroscopic dynamics remain non-

linear, but intrinsic and extrinsic variability distributions are both

approximated by the first two moments. We have shown that

transient and steady-state distributions resulting from our approx-

imation framework closely fit to exact distributions simulated by a

Gillespie algorithm and parameter sampling. We note once more

that the V-expansion is derived under the assumption of large

numbers of molecules and we recommend the results to be tested

by more accurate methods, especially for low molecule numbers.

For example, a sufficient number of Gillespie runs provides the

exact distribution [14]; another powerful technique, the Langevin

approximation, can be used to obtain more accurate than V-

expansion [20], although still approximate estimates of the

variance at a steady state, and its disadvantage is that it requires

monitoring of the convergence. An important point, however, is

that we have focused less on calculating exact quantitative values

of variability, and more on what changes in the network drive

variability increases or decreases. Our approximation framework

is sufficient for addressing this question, and due to computational

efficiency in both steady and transient states it is even advanta-

geous compared to exact simulation. We have applied the

framework to systems with a single steady state, but there is scope

for extending the framework to oscillatory and multimodal systems

[25–27]. Derivation of improved versions of the V-expansion is an

area of active research, for example accounting for slow and fast

variables [58] or increasing accuracy for small number of

molecules [59]. By developing better approximation frameworks

for intrinsic noise modeling, our combined intrinsic-extrinsic

method will increase in accuracy, too. Furthermore, while the

dynamics originating from intrinsic variability was modelled by the

V-expansion approximation framework in this manuscript, a

similar framework could be constructed based on other approx-

imation modeling approaches for intrinsic variability, for example

the moment closure method [60] or mass fluctuation kinetics [16].

The extrinsic variability modeled through parameter distributions

in this manuscript was assumed to be constant in time (i.e., static),

and a natural extension would be to introduce time-varying

parameter distributions (i.e., dynamic) [31,61]. Because of this, for

example, our method in its current form can not be used to

quantify the dependence of the total output variation on the

lifetime of extrinsic fluctuations [32].

There are different sources of biological variability and

uncertainty; a careful interpretation and appropriate inclusion in

a mathematical model is crucial to elucidate the dynamics of

biological variability and understanding of these different levels of

biological complexity. Firstly, there are intrinsic and extrinsic

sources of variability (discussed at length above). Secondly, there is

parameter uncertainty, which encompasses our limited knowledge

of kinetic rate values. This uncertainty is commonly included in

biological models and simulations as a distribution of kinetic

values, however, it is important to treat it separately from extrinsic

variability, which is also modeled by treating parameters as

distributions. An example of appropriate mathematical treatment

is a hierarchical Bayesian model [33,62]. A further type of

uncertainty is model uncertainty, by which we refer to our

uncertainty in model topology; the present manuscript does not

address this type of uncertainty. And thirdly, when modeling or

analyzing experimental biological data, one also needs to account

for measurement noise (or measurement error). In order to infer

sources of variability and reduce uncertainty in parameters, there

is a need for inference techniques for models that account for these

different levels of biological variability, uncertainty, and measure-

ment noise.

The presented modeling framework is only the first step in the

systems biology cycle of modeling, designing experiments, and

updating the model by inference from collected data. Based on this

modeling framework, we are now developing tools that account for

variability also in the experimental design stage, and for updating

the models from noisy data through parameter inference and

model selection algorithms. These techniques will allow us to

better explore and account for biological variability in synthetic

biology, a ubiquitous aspect of biological systems that is in practice

often neglected.

Methods

The V-expansion
The V-expansion is an approximation of the master equation. It

separates the macroscopic part of dynamics from the fluctuations

around it, describing each of these parts by a set of ODEs [13].

The resulting V-expansion model approximates the first two

moments of the intrinsic noise distribution in the form of ODEs for

each mean, variance, and covariance; for n species in the model,

the V-expansion generates n equations for the means, n equations

for variances, and n(n{1)=2 equations for covariances between all

pairs of species.

Readers interested in a theoretical derivation of the V-expansion

modeling framework are referred to van Kampen [13]. As a brief

summary we note that the V-expansion is derived assuming that the

macroscopic part of dynamics can be separated from the

fluctuations centred around it, and that the fluctuations scale as

the square root of the number of molecules [63]. This is captured by

the following ansatz: N~V�xxz
ffiffiffiffi

V
p

a, where N is the number of

molecules, �xx is the macroscopic concentration and a the fluctua-

tions. Parameter V represents the system size and can be thought of

as proportional to the volume. This ansatz is introduced into the

master equation governing the evolution of probability distribution

P(N,t) and then the master equation is Taylor-expanded around

V
{1=2. The terms of order V

0 collected together determine

equations governing macroscopic dynamics, and the terms of order

V
{1 the equations for dynamics of fluctuations.

The resulting set of ordinary differential equations describing

macroscopic (or average) behavior is

d�xxi

dt
~½Sv�i~gi(�xx), i~1, . . . ,m, ð8Þ

where S is the stoichiometry matrix and vj are the reaction

propensities of reactions Ni

vj
NizSij . The ODE for the
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covariance matrix of the fluctuations, Ji,j~cov(ai,aj), centred

around �xx is

dJ

dt
~CJzJC

T
zD, ð9Þ

where C is a Jacobian of a deterministic system given by equation

(8), evaluated along the macroscopic trajectory,

Cij~Lgi=L�xxj~L(Sv)i=L�xxj and is called the drift. Matrix D is the

diffusion matrix, D~
1
V
Sdiag(v)ST . Equations (8) and (9) together

form the V-expansion model, which approximates the first two

moments (mean �xx and covariance matrix J) of the distribution

that solves the master equation. The V-expansion model is a

deterministic and approximate description of intrinsic noise

distribution dynamics in time.

Visualizing multivariate normal distributions as ellipses
We visualised the multivariate normal distributions N(m,S) as

ellipses. The ellipse is one of the contours that represent equal

probability mass of the distribution. In general, these ellipses are

constructed from eigenvalues li and eigenvectors ei of the

covariance matrix S. They are centred at mean m, their axis

directions are determined by the eigenvectors and axis sizes by the

eigenvalues, +c
ffiffiffiffi

li
p

. Different values of c specify different

contours. In our figures we choose c~1 unless otherwise specified.

In particular, the ellipse determined by equation

(x{m)S{1(x{m)~c2, c2~x2p(a),

represents the multivariate analogue of the ‘‘confidence interval’’

containing 1{a of the probability mass of the distribution. For

example, a bivariate (p~2) normal distribution represented by an

ellipse with axes lengths 2c
ffiffiffiffi

li
p

, c2~1, contains 40% of

distribution, and an ellipse containing 95% of a distribution has

axes of lengths 2c
ffiffiffiffi

li
p

, c2~5:99.

The Unscented Transform
The unscented transform (UT) is an algorithm that efficiently

propagates normally distributed inputs through a nonlinear

function to obtain a distribution on the function outputs.

Figure 13 provides an overview of the UT.

Here N(mh,Sh) was the multivariate normal distribution on the

space of parameters and initial conditions h of dimension L. We

deterministically sampled from N(mh,Sh) a set of sigma points

h0~mh ð10aÞ

hs~mhz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Lzl)Sh

p

� �

s
, s~1, . . . ,L ð10bÞ

hs~mh{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Lzl)Sh

p

� �

s
, s~Lz1, . . . ,2L ð10cÞ

and assigned weights

w0(m)~
l

Lzl
ð11aÞ

w0(c)~
l

Lzl
z(1{a2zb) ð11bÞ

ws(m)~ws(c)~
1

2(Lzl)
, s~1, . . . ,2L, ð11cÞ

where l~a2(Lzk){L. See ref. [36] for guidelines on how to

choose parameters a, b and k; we chose a~0:7, b~2, k~0. The

above weights define the scaled unscented transform, which is the

generalized version of the unscented transform algorithm [64].

Function f was evaluated for every sigma point,

xs~f (hs), s~0, . . . ,2L:

The model outputs xs obtained were then reconstructed into a

multivariate normal distribution with mean mx and covariance

matrix Sx determined by the following equations:

mx&
X

2L

s~0

w(m)
s xs ð12aÞ

Sxx&

X

2L

s~0

w(c)
s (xs{mx)(xs{mx)

T ð12bÞ

Sxy&

X

2L

s~0

w(c)
s (xs{mx)(ys{my)

T : ð12cÞ

We note that the UT is computationally much more for efficient

compared to random sampling; UT only requires 2L+1 simula-

tions (one for each sigma point), while this number needs to be

considerably higher for exhaustive sampling, especially for high

dimensional parameter spaces. In terms of accuracy, the UT

estimates the first two moments accurately to second order in the

Taylor series expansion for any nonlinear function [65,66].

However, should one sample 2L+1 points randomly and

propagate them, one will not achieve this accuracy and therefore

exhaustive sampling is needed to achieve the same level of

accuracy as the UT (the exact number of simulations needed

depends on the specific system and space dimension of parameters

and initial conditions).

The UT can also be used to propagate log-normal distributions

(see Text S1 for details), and mixtures of (log-)normal distributions.

A measure of variability
The variance of protein numbers is not by itself a good measure

of variability, as it does not account for the protein mean; for

example, with increasing feedback strength in an autoregulatory

network, the fluctuations in protein numbers decrease, but the

mean number decreases, too. If absolute numbers of proteins are

small, then protein variance becomes relatively large compared to

its mean. For most applications, both mean and variance of the

protein numbers should be included in the measure of variability.
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Here we use the squared coefficient of variation, CV2
~(s=m)2

[4], normalised by CV 2
nsr, the measure of variability without self-

repression (nsr stands for no self-repression), to obtain the relative

coefficient of variation, CV2
rel~CV 2=CV2

nsr. Therefore, CV
2
rel will

have value 1 when no self-repression is present in the model.

Whenever variability according to this measure is less than 1, self-

repression is effective in suppressing variability.

Specifying extrinsic variability through parameter
distribution
Extrinsic variability is described by the covariance matrix Sh of

parameters and initial conditions. Extrinsic variability can enter

the system though variability in a single parameter or a

combination of parameters, and parameters can be arbitrarily

(anti-)correlated. A diagonal covariance matrix assumes indepen-

dence between all pairs of parameters. (Anti-)correlations between

parameters are modeled by including non-zero off-diagonal terms.

The covariance matrix is symmetric by definition.

We defined the amount of extrinsic variability by specifying a

coefficient of variation for each parameter,

aj~CV (hj)~
s(hj)

m(hj)
, j~1, . . . ,p, ð13Þ

and set the diagonal entries of the matrix Sh to a2j h
2
j . The

parameter dimension is denoted by p. We chose different amounts

of extrinsic variability aj[f0:01,0:02,0:03,0:1,0:2g, as noted in

specific figure captions.

When independence between parameters was assumed, the off-

diagonal terms were set to zero. Additionally, we also created

arbitrarily correlated parameter distributions by generating

random covariance matrices in the following manner. We first

generated a random correlation matrix of size p|p, by generating

a symmetric matrix with diagonal elements 1 and off-diagonal

elements sampled from a uniform distribution U({1,1), and then

finding the nearest valid correlation matrix S
corr by using

Higham’s algorithm [67]. This correlation matrix was transformed

to a covariance matrix by multiplying each element of the

correlation matric by the standard deviations corresponding to its

row and column, (Scov)i,j~(Scorr)i,jsisj , where s2i , were the

variances (i.e., diagonal elements of the covariance matrix).

Parameter values and units
The units are in the form of number of molecules (or number of

molecules/sec) rather than concentration (or concentration/sec).

This allows us to more easily to compare the exact Gillespie

simulation with the output of our approximation framework.

Parameters (kr,cr,kp,cp,DNA0) used in examples in figures were

set to (1,0:1,10,0:02,10) and (1,0:1,2:5,0:02,10). Parameters that

determine the feedback strength, 1=Kd and kon=(koffzcr� ), were

varied as indicated in the figures. The Hill coefficient n took

integer values between 1 and 4. The units of zeroth-order

parameters were number of molecules per second (or molecules per second),

first-order parameters per second and second-order parameters per

molecule per second. The conclusions were checked to hold for other

parameter combinations, in particular (5,0:2,10,0:2,10),
(2,0:1,2,0:02,10), (1,0:1,5,0:1,1), (1,0:1,1,0:1,1), and (1,1,1,1,10).

Supporting Information

Figure S1 Combined framework using the V-expansion and the

UT allows for efficient calculation of total variability.

(EPS)

Figure S2 Comparison of distributions generated by 10,000

stochastic Gillespie runs (blue) with the V-expansion simulation

(green) at steady state t~30 and a transient time point t~1:87. (A)
Projected univariate mRNA and protein distributions. (B)

Bivariate distribution between mRNA and protein. The inner

green ellipse principal axis sizes correspond to sizes of eigenvalues

of the covariance matrix (c~1 and it contains 40% of the

probability mass; see Methods). In the outer green ellipse, axis sizes

have been scaled so that the ellipse represents the 95%-confidence

interval contour, i.e., the contour containing 95% of the

probability mass of the corresponding multivariate normal

distribution.

(EPS)

Figure S3 Comparison of distributions generated by 1,000,000

stochastic Gillespie runs with varying transcription rate kr with

Figure 13. Schematic representation of the unscented transform. Adapted from ref. [36]. The UT provides a mechanism for approximating
the output distribution N(mx,Sx) obtained by propagating the input parameter distribution N(mh,Sh) through the function xs~f (hs). It does this by
deterministically choosing a minimal set of sample points (called sigma points; filled circles to left) from the parameter distribution, hs*N(mh,Sh).
Sigma points are then propagated through function f , xs~f (hs) (filled circles to right), and re-assembled into a Gaussian distribution on the output,
N(mx,Sx), which approximates the output distribution by the first two moments (ellipse to right).
doi:10.1371/journal.pcbi.1002960.g013
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coefficient of variation 0:1, i.e. kr*N(10,(0:1 � 10)2) (black) with
the combined V-expansion and UT simulation (red) at steady state

t~30 (top row) and a transient time point t~1:88 (bottom row).

(EPS)

Figure S4 Comparison of distributions generated by 1,000,000

stochastic Gillespie runs with varying parameters kr, kp, cr, and cp
independently with coefficient of variation 0:1 (black) with the

combined V-expansion and UT simulation (red) at steady state

t~30 (top row) and a transient time point t~1:88 (bottom row).

(EPS)

Figure S5 The effects of extrinsic variability in individual

parameters on the total protein variability. An arrow upwards

(downwards) means that with increasing amount of extrinsic variability

in the respective parameter, the total variability in the protein (CV2
rel)

increases (decreases).

(EPS)

Figure S6 Comparing total protein variability in post-transcrip-

tional circuit for different values of cr� , the parameter that depends

on the level of complementarity between mRNA and miRNA.

cr�~0:1 (solid line) cr�~2 (dashed line). Extrinsic variability in

parameters: a = 0.01 (red), a = 0.03 (blue), a = 0.05 (green), a = 0.1

(black), and a= 0.2 (magenta). Feedback strength is

kon=(koffzcr� ).

(EPS)

Figure S7 Total variability of transcriptional self-repression

resulting from different correlations of extrinsic variability. Lines

depicting variability resulting from positively correlated (w0:7)
extrinsic variability in a specified parameter pair are colored in

red, and lines resulting from anti-correlated (v{0:7) extrinsic
variability between the parameter pair are colored in blue.

Parameters determining the diagonal values of the covariance

matrix used in this example were a1~a2~a3~a4~0:01. We note

that for a few other sets of diagonal values, the distinction between

blue and red for some parameter pairs was less clear than for this

example.

(EPS)

Figure S8 Total variability of post-transcriptional self-repression

resulting from different correlations of extrinsic variability. Lines

depicting variability resulting from positively correlated (w0:7)
extrinsic variability in a specified parameter pair are colored in

red, and lines resulting from anti-correlated (v{0:7) extrinsic
variability between the parameter pair are colored in blue.

Parameters determining the diagonal values of the covariance

matrix used in this example were a1~a2~a3~a4~0:01. We note

that for a few other sets of diagonal values, the distinction between

blue and red for some parameter pairs was less clear than for this

example.

(EPS)

Figure S9 Intrinsic transient variability can be suppressed even

when intrinsic steady-state variability cannot be suppressed.

Shown is the total variability of the protein in the transcriptional

autoregulatory network with Hill coefficient n~1 for different

feedback strengths. At steady state (t~600) the autoregulatory

motif cannot suppress variability, which we see from the fact that

CV 2
relw1. However, in transient states (t~100 and t~60) the

total variability is suppressed compared to that in a network

without self-regulation. This follows from the fact that CV 2
relv1

for certain feedback strengths.

(EPS)

Figure S10 Transient variability can be suppressed better than

steady-state variability. Across all feedback strengths the minimum

variability reached in transient states (t~20,60,100) is lower than

the minimum variability reached in the steady state (t~600). For

high feedback strengths (w10{4) the steady-state variability is

greater than transient variability.

(EPS)

Figure S11 In transient states the qualitative effects of extrinsic

variability on total variability agree with those in steady states

(Figure 5). Results shown for 4 parameters in a transcriptional

autoregulation. Extrinsic variability in parameters: a = 0.01 (red),

a = 0.03 (blue), a = 0.05 (green), a = 0.1 (black), and a= 0.2

(magenta). Feedback strength is kon=(koffzcr� ).
(EPS)

Text S1 Contains a more detailed description of the procedure

for calculating total variability from the combined model with

intrinsic and extrinsic sources of variability, examples of extrinsic

variability that produce small and large differences in total

variability, and notes on using the unscented transform to

propagate log-normal distributions through a nonlinear function.

(PDF)
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