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Abstract. We present a method for object categorization in real-world scenes.

Following a common consensus in the field, we do not assume that a figure-

ground segmentation is available prior to recognition. However, in contrast to

most standard approaches for object class recognition, our approach automati-

cally segments the object as a result of the categorization.

This combination of recognition and segmentation into one process is made pos-

sible by our use of an Implicit Shape Model, which integrates both into a common

probabilistic framework. In addition to the recognition and segmentation result, it

also generates a per-pixel confidence measure specifying the area that supports a

hypothesis and how much it can be trusted. We use this confidence to derive a nat-

ural extension of the approach to handle multiple objects in a scene and resolve

ambiguities between overlapping hypotheses with a novel MDL-based criterion.

In addition, we present an extensive evaluation of our method on a standard

dataset for car detection and compare its performance to existing methods from

the literature. Our results show that the proposed method significantly outper-

forms previously published methods while needing one order of magnitude less

training examples. Finally, we present results for articulated objects, which show

that the proposed method can categorize and segment unfamiliar objects in differ-

ent articulations and with widely varying texture patterns, even under significant

partial occlusion.

1 Introduction

The goal of our work is object categorization in real-world scenes. That is, given some

training examples of an object category, we want to recognize a-priori unknown in-

stances of that category and assign the correct category label. In order to transfer this

capability to new domains, it is especially important that class characteristics be learned

instead of hard-coded into the system. Therefore, we aim to learn solely from example

images.

We pursue a two-staged approach. In the first step, we learn a Codebook of Local

Appearance that contains information which local structures may appear on objects of
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the target category. Next, we learn an Implicit Shape Model that specifies where on the

object the codebook entries may occur. As the name already suggests, we do not try to

define an explicit model for all possible shapes a class object may take, but instead de-

fine “allowed” shapes implicitly in terms of which local appearances are consistent with

each other. The advantages of this approach are its greater flexibility and the smaller

number of training examples it needs to see in order to learn possible object shapes. For

example, when learning to categorize articulated objects such as cows, as described in

Section 6, our method does not need to see every possible articulation in the training

set. It can combine the information of a front leg seen on one training cow with the

information of a rear leg from a different cow to recognize a test image with a novel

articulation, since both leg positions are consistent with the same object hypothesis.

This idea is similar in spirit to approaches that represent novel objects by a com-

bination of class prototypes [12], or of familiar object views [22]. However, the main

difference of our approach is that here the combination does not occur between en-

tire exemplar objects, but through the use of local image patches, which again allows

a greater flexibility. Also, the Implicit Shape Model is formulated in a probabilistic

framework that allows us to obtain a category-specific segmentation as a result of the

recognition process. This segmentation can then in turn be used to improve the recog-

nition results. In particular, we obtain a per-pixel confidence measure specifying how

much both the recognition and the segmentation result can be trusted.

In [13], we describe an early version of this approach. However, this earlier paper

contains only limited experimental evaluation, and the approach is restricted to scenes

containing only one object. In this paper, we extend the method to handle multiple ob-

jects in a scene, effectively resolving ambiguities between overlapping hypotheses by

a novel criterion based on the MDL principle. We also extensively evaluate the method

on two large data sets and compare its performance to existing methods from the liter-

ature. Our results show a significant improvement over previously published methods.

Finally, we present results for articulated objects, which show that the proposed method

can categorize and segment unfamiliar objects in different articulations and with widely

varying texture patterns. In addition, it can cope with significant partial occlusion.

The paper is structured as follows. The next section discusses related work. Af-

ter that, we describe the recognition approach and its extension to generate category-

specific segmentations. Section 4 then presents an evaluation on a car detection task.

Using the segmentation obtained in the previous step, Section 5 extends the approach

to resolve ambiguities between multiple object hypotheses with an MDL-based crite-

rion and compares our performance to existing methods. Finally, Section 6 shows ex-

perimental results for the recognition and segmentation of articulated objects. A final

discussion concludes our work.

2 Related Work

Various shape models have been used for the recognition of object classes. When regu-

larly textured objects are used, the shape can be modelled by spatial frequency statistics

of texture descriptors [20]. For detection and recognition of more general object classes,

many current methods learn global or local features in fixed configurations [21, 19, 23].
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Since they treat the object as a whole, such approaches need a large number of training

examples. Others learn the assembly of hand-selected object parts using configuration

classifiers [18] or by modelling the joint spatial probability distribution [4]. Weber &

Perona [24] also learn the local parts and explicitly compute their joint distribution.

Fergus et al. [9] extend this approach to scale-invariant object parts and estimate their

joint spatial and appearance distribution. However, the complexity of this combined es-

timation step restricts their methods to a small number of parts. Agarwal & Roth [1]

keep a larger number of object parts and apply a feature-efficient classifier for learning

spatial configurations between pairs of parts. However, their learning approach relies

on the repeated observation of cooccurrences between the same parts in similar spatial

relations, which again requires a large number of training examples.

The idea to use top-down knowledge to drive the segmentation process has recently

developed into an area of active research. Approaches, such as Deformable Templates

[26], or Active Appearance Models [7], are typically used when the object of interest

is known to be present in the image and an initial estimate of its size and location

can be obtained. Borenstein & Ullman [3] generate class-specific segmentations by

combining object fragments in a jigsaw-puzzle fashion. However, their approach is not

integrated with a recognition process. Yu & Shi [25] present a parallel segmentation and

recognition system in a graph theoretic framework, but only for a set of known objects.

Our approach integrates the two processes of recognition and segmentation in a

common probabilistic framework. Given a set of training examples from an object class,

it is able to automatically learn a category representation and recognize and segment a-

priori unknown objects of this class in novel settings. By representing allowed part

configurations in terms of an implicit model, it retains high flexibility while making

efficient use of the available training data. The following sections describe how this

combination is achieved.

3 Approach

An Implicit Shape Model ������ � ��� � ����� for a given object category � con-

sists of a class-specific alphabet �� (in the following termed a codebook) of local ap-

pearances that are prototypical for the object category, and of a spatial probability dis-

tribution ���� which specifies where each codebook entry may be found on the object.

In our definition, we impose two requirements for the probability distribution � ��� .

The first is that the distribution is defined independently for each codebook entry. This

makes the approach flexible, since it allows to combine object parts during recognition

that were initially observed on different training examples. In addition, it enables us

to learn recognition models from relatively small training sets, as our experiments in

Sections 4 and 6 demonstrate. The second constraint is that the spatial probability dis-

tribution for each codebook entry is estimated in a non-parametric manner. The method

is thus able to model the true distribution in as much detail as the training data permits

instead of making an oversimplifying Gaussian assumption.

The rest of this section explains how this learning and modeling step is implemented

and how the resulting implicit model is used for recognition and segmentation.
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Fig. 1. The recognition procedure. Image patches are extracted around interest points and com-

pared to the codebook. Matching patches then cast probabilistic votes, which lead to object hy-

potheses that can later be refined. Based on the refined hypotheses, we compute a category-

specific segmentation.

3.1 A Codebook of Local Appearance

In order to generate a codebook of local appearances of a particular object category,

we use an approach inspired by the work of Agarwal and Roth [1]. From a variety

of images, patches of size �� � �� pixels are extracted with the Harris interest point

detector [11]. Starting with each patch as a separate cluster, agglomerative clustering is

performed: the two most similar clusters �� and �� are merged as long as the average

similarity between their constituent patches (and thus the cluster compactness) stays

above a certain threshold �:

��	�
�������� ��� �

�
���������

������ ��

���� � ����
� �� (1)

where the similarity between two patches is measured by Normalized Greyscale Corre-

lation (���):

������ �� �

�
���� � ������ � �����

���� � ����
�

���� � ����
(2)

This clustering scheme guarantees that only those patches are grouped which are visu-

ally similar, and that the resulting clusters stay compact, a property that is essential for

later processing stages. From each resulting cluster, we compute the cluster center and

store it in the codebook.

Rather than to use this codebook directly to train a classifier, as in [1], we use them

to define our Implicit Shape Model. For this, we perform a second iteration over all

training images and match the codebook entries to the images using the ��� measure.

Instead of taking the best-matching codebook entry only, we activate all entries whose

similarity is above �, the threshold already used during clustering. For every codebook

entry, we store all positions it was activated in, relative to the object center.
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During recognition, we use this information to perform a Generalized Hough Trans-

form [2, 15]. Given a test image, we extract image patches and match them to the code-

book to activate codebook entries. Each activated entry then casts votes for possible

positions of the object center. Figure 1 illustrates this procedure. It is important to em-

phasize that we use a continuous voting space in order to avoid discretization artefacts.

We search for hypotheses as maxima in the continous voting space using Mean-Shift

Mode Estimation [5, 6]. For promising hypotheses, all patches that contributed to it can

be collected (Fig. 1(bottom)), therefore visualizing what the system reacts to. Moreover,

we can refine the hypothesis by sampling all the image patches in its surroundings, not

just those locations returned by the interest point detector. As a result, we get a repre-

sentation of the object including a certain border area.

3.2 Probabilistic Formulation

In the following, we cast this recognition procedure into a probabilistic framework (ex-

tending the framework from [13]). Let e be our evidence, an extracted image patch

observed at location �. By matching it to our codebook, we obtain a set of valid interpre-

tations ��. Each interpretation is weighted with the probability ��� ��e� ��. If a codebook

cluster matches, it can cast its votes for different object positions. That is, for every � �,

we can obtain votes for several object identities �� and positions �, which we weight

with ����� ����� ��. Formally, this can be expressed by the following marginalization:

����� ��e� �� �
�

�

����� ��e� ��� �������e� ��� (3)

Since we have replaced the unknown image patch by a known interpretation, the first

term can be treated as independent from e. In addition, we match patches to the code-

book independent of their location. The equation thus reduces to

����� ��e� �� �
�

�

����� ����� �������e�� (4)

�
�

�

������� ��� ���������� �������e�� (5)

The first term is the probabilistic Hough vote for an object position given its identity

and the patch interpretation. The second term specifies a confidence that the codebook

cluster is really matched on the object as opposed to the background. This can be used

to include negative examples in the training. Finally, the third term reflects the quality

of the match between image patch and codebook cluster.

By basing the decision on single-patch votes and assuming a uniform prior for the

patches, we obtain

�������� �� �
�

�

�

���	 ���

����� �
 �e�� ���� (6)

From this probabilistic framework, it immediately follows that the ��� ��e� and ������� ��� ��
should both sum to one. In our experiments, we assume a uniform distribution for both
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(meaning that we set �����e� � �
��� , with �� � the number of matching codebook en-

tries), but it would also be possible, for example, to let the ��� ��e� distribution reflect

the relative matching scores.

By this derivation, we have embedded the Hough voting strategy in a probabilistic

framework. In this context, the mean-shift search over the voting space can be inter-

preted as a Parzen window probability density estimation for the correct object loca-

tion. The power of this approach lies in its non-parametric nature. Instead of making

Gaussian assumptions for the codebook cluster distribution on the object, our approach

is able to model the true distribution in as much detail as is possible from the observed

training examples.

3.3 Object Segmentation

In this section, we describe a probabilistic formulation for the segmentation problem

(as derived in [13]). As a starting point, we take a refined object hypothesis � � �� �� ��
obtained by the algorithm from the previous section. Based on this hypothesis, we want

to segment the object from the background.

Up to now, we have only dealt with image patches. For the segmentation, we now

want to know whether a certain image pixel p is figure or ground, given the object

hypothesis. More precisely, we are interested in the probability ��p � figure���� ��.
The influence of a given patch e on the object hypothesis can be expressed as

��e� ����� �� �
����� ��e� ����e� ��

����� ��
�

�
� ����� ���� ����� �e���e� ��

����� ��
(7)

where the patch votes ����� ��e� �� are obtained from the codebook, as described in the

previous section. Given these probabilities, we can obtain information about a specific

pixel by marginalizing over all patches that contain this pixel:

��p � figure���� �� �
�

p��e���

��p � figure���� �� e� ����e� ����� �� (8)

with ��p � figure���� �� e� �� denoting patch-specific segmentation information, which

is weighted by the influence ��e� ����� �� the patch has on the object hypothesis. Again,

we can resolve patches by resorting to learned patch interpretations � stored in the

codebook:

��p � figure���� �� �
�

p��e���

�

�

��p�fig.���� �� e� �� ����e� �� ����� �� (9)

�
�

p��e���

�

�

��p�fig.���� �� �� ��
����� ���� ����� �e���e� ��

����� ��
(10)

This means that for every pixel, we build a weighted average over all segmentations

stemming from patches containing that pixel. The weights correspond to the patches’

respective contributions to the object hypothesis. For the ground probability, the result

is obtained in an analogue fashion.
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Fig. 2. Results on the UIUC car database with and without the MDL hypothesis verification stage.

The most important part in this formulation is the per-pixel segmentation infor-

mation ��p � figure���� �� �� ��, which is only dependent on the matched codebook

entry, no longer on the image patch. In our approach, we implement this probability

by keeping a separate segmentation mask for every stored occurrence position of each

codebook entry. These patch figure-ground masks are extracted from a reference seg-

mentation given for each training image. Further, we assume uniform priors for ��e� ��
and ����� ��, so that these elements can be factored out of the equations. In order to

obtain a segmentation of the whole image from the figure and ground probabilities, we

build the likelihood ratio for every pixel:

� �
��p � figure���� ��

��p � ground���� ��
� (11)

Figure 7 shows example segmentations of cars, together with ��p � figure���� ��,
the system’s confidence in the segmentation result. The darker a pixel, the higher its

probability of being figure. The lighter it is, the higher its probability of being ground.

The uniform gray region in the background of the segmentation image does not con-

tribute to the object hypothesis and is therefore considered neutral. The estimate of how

much the obtained segmentation can be trusted is especially important when the results

shall later be combined with other cues for recognition or segmentation. It is also the

basis for our MDL-based hypothesis selection criterion described in Section 5.

4 Results

In the early version presented in [13], our method has only been evaluated on small

datasets. In the rest of this paper, we therefore present an extensive evaluation on two

large databases, as well as a novel hypothesis verification stage based on the MDL cri-

terion, which resolves ambiguities between overlapping hypotheses and handles scenes

containing multiple objects

In order to compare our method’s performance to state-of-the-art approaches, we

applied it to the UIUC car database [1]. This test set consists of 170 images containing
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Fig. 3. (left) Two examples for overlapping hypotheses (in red); (middle) ��p � figure��� proba-

bilities for the front and (right) for the overlapping hypotheses. As can be seen, the overlapping

hypothesis in the above example is fully explained by the two correct detections, while the one

in the lower example obtains additional support from a different region in the image.

a total of 200 sideviews of cars. The images include instances of partially occluded

cars, cars that have low contrast with the background, and images with highly textured

backgrounds. In the dataset, all cars are approximately the same size.

Together with the test set, Agarwal & Roth provide a training set of 550 car and 500

non-car images. In our experiments, we do not use this training set, but instead train

on a much smaller set of only 50 hand-segmented images (mirrored to represent both

car directions) that were originally prepared for a different experiment. In particular,

our training set contains both European and American cars, whereas the test set mainly

consists of American-style sedans and limousines. Thus, our detector remains more

general and is not tuned to the specific test conditions. The original data set is at a

relatively low resolution (with cars of size 100*40 pixels). Since our detector is learned

at a higher resolution, we rescaled all images by a constant factor prior to recognition

(Note that this step does not increase the images’ information content). All experiments

were done using the evaluation scheme and detection tolerances from [1].

Figure 2 shows a recall-precision curve (RPC) of our method’s performance. The

plot was generated using the evaluation scheme and the detection tolerances from [1].

As can be seen from the figure, our method succeeds to generalize from the small train-

ing set and achieves an excellent performance with an Equal Error Rate (EER) of 91%.

Analyzing the results on the test set, we observed that a large percentage of the remain-

ing false positives are due to secondary hypotheses, which contain only one of the car’s

wheels, e.g. the rear wheel, but hypothesize it to be the front wheel of an adjoining

car (see Figure 3 for an example). This problem is particularly prominent in scenes

that contain multiple objects. The following section derives a hypothesis verification

criterion which resolves these ambiguities in a natural fashion and thus improves the

recognition results.

5 Multiple-Object Scene Analysis

As already mentioned in the previous section, a large number of the initial false posi-

tives are due to secondary hypotheses which overlap part of the object. This is a com-
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Fig. 4. Comparison of our results on the UIUC car database with others reported in the literature.

mon problem in object detection. Generating such hypotheses is a desired property of

a recognition algorithm, since it allows the method to cope with partial occlusions.

However, if enough support is present in the image, the secondary detections should be

sacrificed in favor of other hypotheses that better explain the image. Usually, this prob-

lem is solved by introducing a bounding box criterion and rejecting weaker hypotheses

based on their overlap. However, such an approach may lead to missed detections, as

the example in Figure 3 shows. Here the overlapping hypothesis really corresponds to a

second car, which would be rejected by the simple bounding box criterion (Incidentally,

only the front car is labeled as “car” in the test set, possibly for exactly that reason).

However, since our algorithm provides us with an object segmentation together with

the hypotheses, we can improve on this. In the following, we derive a criterion based on

the principle of Minimal Description Length (MDL), inspired by the approach pursued

in [14].

The MDL principle is an information theoretic formalization of the general notion

to prefer simple explanations to more complicated ones. In our context, a pixel can be

described either by its grayvalue or by its membership to a scene object. If it is explained

as part of an object, we also need to encode the presence of the object (“model cost”), as

well as the error that is made by this representation. The MDL principle states that the

best encoding is the one that minimizes the total description length for image, model,

and error.

In accordance with the notion of description length, we can define the savings [14]

in the encoding that can be obtained by explaining part of an image by the hypothesis

�:

�� � ����� ��������� ��������� (12)

In this formulation, ��� corresponds to the number� of pixels that can be explained

by �; ������ denotes the cost for describing the error made by this explanation; and

������ describes the model complexity. In our implementation, we assume a fixed cost

������ � � for each additional scene object. As an estimate for the error we use

������ �
�

p�������

��� ��p � figure���� (13)
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Fig. 5. Example detections on difficult images from the test set.

that is, over all pixels that are hypothesized to belong to the segmentation of �, we sum

the probabilities that these pixels are not figure.

The constants ��, ��, and �� are related to the average cost of specifying the

segmented object area, the model, and the error, respectively. They can be determined

on a purely information-theoretical basis (in terms of bits), or they can be adjusted in

order to express the preference for a particular type of description. In practice, we only

need to consider the relative savings between different combinations of hypotheses.

Thus, we can divide Eq(12) by �� and, after some simplification steps, we obtain

�� � �
��

��
� ���

��

��
�� �

��

��

�

p�������

��p � figure���� (14)

This leaves us with two parameters: ��

��
, which encodes the relative importance that

is assigned to the support of a hypothesis, as opposed to the area it explains; and ��

��
,

which specifies the total weight a hypothesis must accumulate in order to provide any

savings. Good values for these parameters can be found by considering some limiting

cases, such as the minimum support a hypothesis must have in the image, before it

should be accepted.

Using this framework, we can now resolve conflicts between overlapping hypothe-

ses. Given two hypotheses �� and ��, we can derive the savings of the combined hy-

pothesis ��� � ���:

������ � ��� � ��� � ������ � ��� � ��������� � ��� (15)

Both the overlapping area and the error can be computed from the segmentations ob-

tained in Section 3.3. Let �� be the stronger hypothesis of the two. Under the as-

sumption that �� opaquely occludes ��, we can set ��p � figure���� � � wherever

��p � figure���� � ��p � ground����, that is for all pixels that belong to the segmen-

tation of ��. Rather than to search for the globally optimal solution, which may become

untractable, it is sufficient for our application to consider only pairwise combinations,

as argued in [14].
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Fig. 6. All missing detections (above) and false positives (below) our algorithm returned on the

car test set. The last picture contains both a false positive and a missing detection.

5.1 Experimental Results

Figure 2 shows the results on the UIUC car database when the MDL criterion is ap-

plied as a verification stage. As can be seen from the figure, the results are significantly

improved, and the EER performance increases from 91% to 97.5%. Without the veri-

fication stage, our algorithm could reach this recall rate only at the price of a reduced

precision of only 74.1%. This means that for the same recall rate, the verification stage

manages to reject 64 additional false positives while keeping all correct detections. In

addition, the results become far more stable over a wider parameter range than before.

This can be illustrated by the fact that even when the initial acceptance threshold is low-

ered to �, the MDL criterion does not return more than 20 false positives. This property,

together with the criterion’s good theoretical foundation and its ability to correctly solve

cases like the one in Figure 3, makes it an important contribution.

Figure 4 shows a comparison of our method’s performance with other results re-

ported in the literature. The adjacent table contains a comparison of the equal error

rates (EER) with three other approaches. With an EER of 97.5%, our method presents

a significant improvement over previous results. Some example detections in difficult

settings can be seen in Figure 5. The images show that our method still works in the

presence of occlusion, low contrast, and cluttered backgrounds. At the EER point, our

method correctly finds 195 of the 200 test cases with only 5 false positives. All of these

cases are displayed in Figure 6. The main reasons for missing detections are combina-

tions of several factors, such as low contrast, occlusion, and image plane rotations, that

push the object hypothesis below the acceptance threshold. The false positives are due

to richly textured backgrounds on which a large number of spurious object parts are

found.

In addition to the recognition results, our method automatically generates object

segmentations from the test images. Figure 7 shows some example segmentations that

can be achieved with this method. Even though the quality of the original images is

rather low, the segmentations are reliable and can serve as a basis for later processing

stages, e.g. to further improve the recognition results using global methods.

6 Recognition of Articulated Objects

Up to now, we have only considered static objects in our experiments. Even though

environmental conditions can vary greatly, cars are still rather restricted in their possible
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(a) original (b) segment. (c) p(figure)

Fig. 7. (left) Example object detections, segmentations, and figure probabilities automatically

generated by our method; (right) Some more detections and segmentations (white: figure, black:

ground, gray: not sampled).

shapes. This changes when we consider articulated objects, such as walking animals. In

order to fully demonstrate our method’s capabilities, we therefore apply it to a database

of video sequences of walking cows originally used for detecting lameness in livestock

[16]. Each sequence shows one or more cows walking from right to left in front of

different, static backgrounds.

For training, we took out all sequences corresponding to three backgrounds and

extracted 113 randomly chosen frames, for which we manually created a reference seg-

mentation. We then tested on 14 different video sequences showing a total of 18 unseen

cows in front of different backgrounds and with varying lighting conditions. Some test

sequences contain severe interlacing and MPEG-compression artefacts and significant

noise. Altogether, the test suite consists of a total of 2217 frames, in which 1682 in-

stances of cows are visible by at least 50%. This provides us with a significant number

of test cases to quantify both our method’s ability to deal with different articulations and

its robustness to occlusion. Using video sequences for testing also allows to avoid any

bias caused by selecting only certain frames. However, since we are still interested in

a single-frame recognition scenario, we apply our algorithm to each frame separately.

That is, no temporal continuity information is used for recognition, which one would

obviously add for a tracking scenario.

We applied our method to this test set using exactly the same detector settings as

before to obtain equal error rate for the car experiments. The only change we made was

to slightly adjust the sensibility of the interest point detector in order to compensate for

the lower image contrast. Using these settings, our detector correctly finds 1535 out of

the 1682 cows, corresponding to a recall of ����	. With only 30 false positives over all

2217 frames, the overall precision is at �
��	. Figure 8 shows the precision and recall

values as a function of the visible object area. As can be seen from this plot, the method

has no difficulties in recognizing cows that are fully visible (����	 recall at ����	
precision). Moreover, it can cope with significant partial occlusion. When only ��	 of

the object is visible, recall only drops to ���
	. Even when half the object is occluded,

the recognition rate is still at ����	. In some rare cases, even a very small object portion

of about ��� �	 is already enough for recognition (such as in the leftmost image in

Figure 10). Precision constantly stays at a high level.

False positives mainly occur when only one pair of legs is fully visible and the

system generates a competing hypothesis interpreting the front legs as rear legs, or vice

versa. Usually, such secondary hypotheses are filtered out by the MDL stage, but if the
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Fig. 8. (left) Precision/Recall curves for the cow sequences when x% of the cow’s length is visible.

(right) Absolute number of test images for the different visibility cases.

correct hypothesis does not have enough support in the image due to partial visibility,

the secondary hypothesis sometimes wins.

Figures 9 and 10 show example detection and segmentation results for two se-

quences. As can be seen from these images, the system not only manages to recognize

unseen-before cows with novel texture patterns, but it also provides good segmentations

for them. Again, we want to emphasize that no tracking information is used to gener-

ate these results. On the contrary, the capability to generate object segmentations from

single frames could make our method a valuable supplement to many current tracking

algorithms, allowing to (re-)initialize them through shape cues that are orthogonal to

those gained from motion estimates.

7 Discussion and Conclusion

The probabilities ��p � figure��� in Figs. 3 and 7 demonstrate why our approach is

successful. These probabilities correspond to the per-pixel confidence the system has in

its recognition and segmentation result. As can be seen from the figure, the cars’ wheels

are found as the most important single feature. However, the rest of the chassis and even

the windows are represented as well. Together, they provide additional support for the

hypothesis. This is possible because we do not perform any feature selection during the

training stage, but store all local parts that are repeatedly encountered on the training

objects. The resulting complete representation allows our approach to compensate for

missing detections and partial occlusions.

Another factor to the method’s success is the flexibility of representation that is

made possible by the Implicit Shape Model. Using this framework, it can interpolate

between local parts seen on different training objects. As a result, the method only needs

a relatively small number of training examples to recognize and segment categorical

objects in different articulations and with widely varying texture patterns.

The price we have to pay for this flexibility is that local parts could also be matched

to potentially illegal configurations, such as a cow with 6 legs. Since each hypothesized

leg is locally consistent with the common object center, there would be nothing to pre-

vent such configurations. In our experiments, however, the MDL criterion effectively
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Fig. 9. Example detections and automatically generated segmentations from one cow sequence.

(middle row) segmentations obtained from the intial hypotheses; (bottom row) segmentations

from refined hypotheses.

solves this problem. Another solution would be to add a global, explicit shape model on

top of our current implicit model. Using the obtained object segmentations as a guide,

such a model could be learned on-line, even after the initial training stage.

Currently, our approach only tolerates small scale changes of about �����	. As our

next step, we will therefore aim to extend the approach to multiple scales. Recent work

by several researchers has shown considerable promise that this problem may be dealt

with by using scale-invariant interest point detectors [9, 17, 8]. Also, the current model

is purely representational. Although equation (5) allows for the inclusion of negative

training examples, we do not yet use any such discriminative information, nor do we

model the background explicitly. For the data sets used in this evaluation, this was not

necessary, but we expect that the performance and robustness of our method can be

further improved by incorporating these steps. Finally, we will explore how the method

scales to larger object sets and how multi-view objects should best be treated.

In conclusion, we have presented a method that combines the capabilities of object

categorization and segmentation in one common probabilistic framework. This paper

extends our previous method by a novel hypothesis verification criterion based on the

MDL principle. This criterion significantly improves the method’s results and allows to

handle scenes containing multiple objects. In addition, we have presented an extensive

evaluation on two large data sets for cars and cows. Our results show that the method

achieves excellent recognition and segmentation results, even under adverse viewing

conditions and with significant occlusion. At the same time, its flexible representation

allows it to generalize already from small training sets. These capabilities make it an

interesting contribution with potential applications in object detection, categorization,

segmentation and tracking.
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Fig. 10. Example detections and automatically generated segmentations from another sequence.

Note in particular the leftmost image, where the cow is correctly recognized and segmented

despite a high degree of occlusion.
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