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Combined optimization of spatial and temporal
filters for improving Brain-Computer Interfacing

Guido Dornhege, Benjamin Blankertz, Matthias Krauledat, Florian Losch, Gabriel Curio, Klaus-Robert Müller

Abstract— Brain-Computer Interface (BCI) systems create a
novel communication channel from the brain to an output device
by bypassing conventional motor output pathways of nerves and
muscles. Therefore they could provide a new communication and
control option for paralyzed patients. Modern BCI technology is
essentially based on techniques for the classification of single-
trial brain signals. Here we present a novel technique that
allows the simultaneous optimization of a spatial and a spectral
filter enhancing discriminability rates of multi-channel EEG
single-trials. The evaluation of 60 experiments involving 22
different subjects demonstrates the significant superiority of the
proposed algorithm over to its classical counterpart: the median
classification error rate was decreased by 11%. Apart from the
enhanced classification, the spatial and/or the spectral filter that
are determined by the algorithm can also be used for further
analysis of the data, e.g., for source localization of the respective
brain rhythms.

Index Terms— EEG, Event-Related Desynchronization, Brain-
Computer Interface, Common Spatial Patterns, Single-Trial-
Analysis

I. INTRODUCTION

B rain-Computer Interface (BCI) research aims at the de-
velopment of a system that allows direct control of, e.g.,

a computer application or a neuroprosthesis, solely by human
intentions as reflected by suitable brain signals, cf. [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. We will be
focussing on noninvasive, electroencephalogram (EEG) based
BCI systems. Such devices can be used as tools of commu-
nication for the disabled or for healthy subjects that might be
interested in exploring a new path of man-machine interfacing,
say when playing BCI operated computer games. Furthermore
BCI research helps to explain how different mental states are
reflected in the brain and how the respective EEG patterns can
be characterized. Therefore it contributes also to more general
neuroscientific issues.

A classical approach to establish EEG-based control is to
set up a system that is controlled by a specific EEG feature
which is known to be susceptible to conditioning and to let
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the subjects learn the voluntary control of that feature, cf. [4].
In contrast, the Berlin Brain-Computer Interface (BBCI) uses
well established motor competences in control paradigms and
a machine learning approach to extract subject-specific dis-
criminability patterns from high-dimensional features. This ap-
proach has the advantage that the long subject training needed
in the operant conditioning approach is replaced by a short
calibration measurement (20 minutes) and machine training (1
minute). The machine adapts to the specific characteristics of
the brain signals of each subject, accounting for the high inter-
subject variability. With respect to the topographic patterns
of brain rhythm modulations the Common Spatial Patterns
(CSP) (see [14]) algorithm has proven to be very useful to
extract subject-specific, discriminative spatial filters. So far
the frequency band on which the CSP algorithm operates is
either selected manually or unspecifically set to a broad band
filter, cf. [14], [6]. Thus a simultanenous optimization of a
frequency filter with the spatial filter is highly desirable given
the individual variability across different subjects. Recently, in
[15] the CSSP algorithm was presented, in which very simple
frequency filters (with one delay tap) for each channel are
optimized together with the spatial filters. Although the results
showed an improvement of the CSSP algorithm over CSP, the
flexibility of the frequency filters is still very limited. Here we
present a method that allows to simultaneously optimize an
arbitrary FIR filter within the CSP analysis on BCI data. The
proposed algorithm outperforms CSP and CSSP on average,
and for certain data sets (where a separation of the discrimina-
tive rhythm from dominating non-discriminative rhythms is of
importance) a considerable increase of classification accuracy
can be achieved. We would like to stress however that the new
CSSSP (Common Sparse Spectral Spatial Pattern) method is
by no means limited to BCI applications. On the contrary it is
a completely generic new signal processing technique that is
applicable for all general single trial EEG settings that require
discrimination between EEG states based on modulations of
brain rhythms.

II. EXPERIMENTAL SETUP

In this paper we investigate data from 60 EEG experiments
with 22 different subjects. All experiments included so called
calibration sessions without feedback which are used to train
subject-specific classifiers. Many experiments also included
feedback sessions in which the subject could steer a cursor or
play a computer game like brain-pong by BCI control. Data
from feedback sessions are not used in this a-posteriori study
since they depend on an intricate interaction of the subject
with the original classification algorithm.
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An empty screen is shown

second 0 second 3−3.5 second 4.5−6

on the computer screen

Letter L, R, F was visualized

The user should imagine

the corresponding class

The user should do nothing

Fig. 1: The figure shows the time structure of a sequence in an ex-
periment. Approximately 100 sequences per session and 3-4 session
were recorded. At time point zero a letter is shown to the user on a
computer screen. The user should start immediately with imagination
of the class corresponding to this letter and stop doing so when the
letter disappears after 3–3.5 seconds. After further 1.5–2.5 seconds a
new letter is shown.

In the experimental sessions used for the present study,
labeled trials of brain signals were recorded in the following
way: The subjects were sitting in a comfortable chair with
arms lying relaxed on the armrests. All 4.5–6 seconds one of
3 different visual stimuli indicated for 3–3.5 seconds which
mental task the subject should accomplish during that period
(cf. Fig. 1). The investigated mental tasks were imagined
movements of the left hand (l), the right hand (r), and one
foot (f ). Note that in a few experiments only two mental tasks
were used. Brain activity was recorded from the scalp with
multi-channel EEG amplifiers using 32, 64 resp. 128 chan-
nels. Besides EEG channels, we recorded the electromyogram
(EMG) from both forearms and the leg as well as horizontal
and vertical electrooculogram (EOG) from the eyes. The EMG
and EOG channels were used exclusively to make sure that the
subjects performed no real limb or eye movements correlated
with the mental tasks that could directly (artifacts) or indirectly
(afferent signals from muscles and joint receptors) be reflected
in the EEG channels and thus be detected by the classifier,
which operates on the EEG signals only. Between 120 and 200
trials for each class were recorded. In this study we investigate
only binary classifications, but the results can be expected to
safely transfer to the multi-class case.

III. NEUROPHYSIOLOGICAL BACKGROUND

According to the ’homunculus’ model, first described in
[16], for each part of the human body exists a corresponding
region in the primary motor and primary somatosensory area
of the neocortex. The ’mapping’ from the body part to the re-
spective brain areas approximately preserves topography, i.e.,
neighboring parts of the body are represented in neighboring
parts of the cortex. For example, while the feet are located
close to the vertex, the left hand is represented lateralized (by
about 6 cm from the midline) on the right hemisphere and the
right hand almost symmetrically on the left hemisphere.

Macroscopic brain activity during resting wakefulness con-
tains distinct ’idle’ rhythms located over various brain areas,
e.g., the µ-rhythm can be measured over the pericentral sen-
sorimotor cortices in the scalp EEG, usually with a frequency
of about 10 Hz ([17]). Furthermore, in electrocorticographic
recordings Jasper and Penfield ([16]) described a strictly local
β -rhythm at about 20 Hz over the human motor cortex.
In non-invasive scalp EEG recordings the 10 Hz µ-rhythm
is commonly mixed with the 20 Hz-activity. Basically, these
rhythms are cortically generated; while the involvement of a
thalamo-cortical pacemaker has been discussed since the first

description of EEG by Berger ([18]), Lopes da Silva ([19])
showed that cortico-cortical coherence is larger than thalamo-
cortical pointing to a convergence of subcortical and cortical
inputs.

The moment-to-moment amplitude fluctuations of these lo-
cal rhythms reflect variable functional states of the underlying
neuronal cortical networks and can be used for brain-computer
interfacing. Specifically, the pericentral µ- and β -rhythms are
diminished, or even almost completely blocked, by movements
of the somatotopically corresponding body part, independent
of their active, passive or reflexive origin. Blocking effects are
visible bilateral but with a clear predominance contralateral to
the moved limb. This attenuation of brain rhythms is termed
event-related desynchronization (ERD), see [20].

Since a focal ERD can be observed over the motor and/or
sensory cortex even when a subject is only imagining a
movement or sensation in the specific limb, this feature can
well be used for BCI control: The discrimination of the
imagination of movements of left hand vs. right hand vs.
foot can be based on the somatotopic arrangement of the
attenuation of the µ and/or β -rhythms. To this end, different
ways to improve the classification performance of the CSP
algorithm were suggested, e.g., [15].

There is another feature independent from the ERD reflect-
ing imagined or intended movements, the movement related
potentials (MRP), denoting a negative DC shift of the EEG
signals in the respective cortical regions. See [21], [22] for
an investigation of how this feature can be exploited for BCI
use and combined with the ERD feature. This combination
strategy was able to greatly enhance classification performance
in offline studies. In this paper we focus only on improving the
ERD-based classification, but all the improvements presented
here can also be used in the combined algorithm.

There are two problems when using ERD features for BCI
control:

(1) The strength of the sensorimotor idle rhythms as mea-
sured by scalp EEG is known to vary strongly between
subjects. This introduces a high intersubject variability on the
accuracy with which an ERD-based BCI system works.

(2) The precentral µ-rhythm is often superimposed by the
much stronger posterior α-rhythm, which is the idle rhythm
of the visual system. It is best articulated with eyes closed,
but also present in awake and attentive subjects, see Fig. 2
at channel Pz. Due to volume conduction the posterior α-
rhythm interferes with the precentral µ-rhythm in the EEG
channels over motor cortex. Hence a µ-power based classi-
fier is susceptible to modulations of the posterior α-rhythm
that occur due to fatigue, change in attentional focus while
performing tasks, or changing demands of visual processing.
When the two rhythms have different spectral peaks as in
Fig. 2, channels Cz and C4, a suitable frequency filter can
help algorithms that optimize spatial filters to find the more
discriminative spectral peak. The subject specific optimization
of such a filter integrated in the CSP algorithm is addressed
in this paper.
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Fig. 2: The plot shows exemplarily the spectral energy ([dB] on the
y-axis) for one subject during left hand (dark line) and foot (light
line) motor imagery between 5 and 25 Hz (x-axis) at scalp positions
Pz, Cz and C4. In both central channels two peaks, one at 8 Hz
and one at 12 Hz are visible during foot imagery. The first peak
seems to reflect mainly the idle rhythm of the visual system (α-
rhythm) whereas the latter peak reflects the idle rhythm of the sensory
motor area of the left hand which is present during foot imagery
(not involving the left hand) and blocked during left hand imagery.
Below each channel the r2-value which measures discriminability is
shown. It clearly indicates that the peak around 12 Hz contains more
discriminative information.

IV. SPATIAL FILTER - THE CSP ALGORITHM

The common spatial pattern (CSP) algorithm ([23]) is very
useful when calculating spatial filters for detecting ERD effects
([24]) and for ERD-based BCIs, see [14], and has been ex-
tended to multi-class problems in [25]. Given two distributions
in a high-dimensional space, the (supervised) CSP algorithm
finds directions (i.e., spatial filters) that maximize variance for
one class and at the same time minimize variance for the other
class. After having band-pass filtered the EEG signals to the
rhythms of interest, high variance reflects a strong rhythm and
low variance a weak (or attenuated) rhythm. Let us take the
example of discriminating left hand vs. right hand imagery.
According to Section III, the spatial filter that focusses on the
area of the left hand is characterized by a strong motor rhythm
during imagination of right hand movements (left hand is in
idle state), and by an attenuated motor rhythm during left hand
imagination.

This criterion is exactly what the CSP algorithm optimizes:
maximizing variance for the class of right hand trials and
at the same time minimizing variance for left hand trials.
Furthermore the CSP algorithm calculates the dual filter that
will focus on the area of the right hand in sensor space.
Moreover a series of orthogonal filters of both types can be
determined.

Fig. 3: The figures illustrates the calculation of CSP patterns. The plot
on the left shows the original data distributions for two classes (light
gray and black points). The respective means and covariance matrices
are visualized by the principle axes. A mid gray cross indicates the
distribution of the whole data set (both classes taken together). The
latter distribution is whitened (linear projection such that the variance
in evary direction is 1), see plot in the middle. Here the principle
axes of the class distributions are perpendicular, cf. eqn 3. A suitable
rotation makes these axes coincide with the coordinate axes.

The CSP algorithm is trained on labeled data, i.e., we have
a set of trials si, i = 1,2, ..., where each trial is represented as
a real-valued matrix of several channels (as rows) and time
points (as columns). A spatial filter w ∈ IR#channels projects
these trials to the signal w>si with only one channel. The idea
of CSP is to find a spatial filter w such that the projected
signal has high power for one class and low power for the
other. Here the power for a trial is calculated by the variance
in the time domain. Obviously simultaneous maximization of
one term and minimization of another term require instructions
how to do so. An important observation helps here, namely
that only the direction of the spatial solution w and not the
length is important for further calculation and interpretation.
Consequently this independence of a solution for w from
scaling allows to fix the length of w to some arbitrary value,
say that the sum of the variances of all projected trials and
both classes is fixed to 1. In doing so maximization of the
sum of the variances of all projected trials of one class
directly leads to the minimization of the sum of the variances
of all projected trials of the other class, since the sum of
both is constant. Formally this is expressed by the following
optimization problem:

max
w ∑

i:Trial in Class 1
var(w>si), s.t. ∑

i
var(w>si) = 1, (1)

where var(·) is the variance of the vector. An analogous
formulation can be given for the second class.

Using the definition of the variance we simplify the problem
to

max
w

w>Σ1w, s.t. w>(Σ1 +Σ2)w = 1, (2)

where Σy is the covariance matrix of the trial-concatenated
matrix of dimension [#channels × #concatenated time-points]
belonging to the respective class y ∈ {1,2}.

Formulating the dual optimization problem we see that the
problem can be solved by calculating a matrix Q and diagonal
matrix D with elements in [0,1] such that

QΣ1Q> = D and QΣ2Q> = I −D (3)

(⇒ Q(Σ1 +Σ2)Q> = I)
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and by choosing the highest diagonal element of D and the
corresponding row vector of Q. This row vector is the solution
w for equation (2).

A solution of equation (3) can be revealed in the following
way (see Fig. 3 for a visualization). First whiten the matrix
Σ1 +Σ2, i.e., determine a matrix P such that P(Σ1 +Σ2)P> =
I which is possible due to positive definiteness of Σ1 + Σ2.
Then define Σ̂y = PΣyP> and calculate an orthogonal matrix
R and a diagonal maxtrix D by eigenvalue theory such that
Σ̂1 = RDR>. Therefore Σ̂2 = R(I −D)R> since Σ̂1 + Σ̂2 = I
and Q := R>P satisfies (3). The projection that is given by the
j-th row of matrix R has a relative variance of d j ( j-th element
of D) for trials of class 1 and relative variance 1−d j for trials
of class 2. If d j is near 1 the filter given by the j-th row of
R maximizes variance for class 1, and since 1− d j is near
0, minimizes variance for class 2. Typically one would retain
some projections corresponding to the highest eigenvalues d j,
i.e., CSPs for maximizing variance for trials of class 1 and
minimizing variance for class 2, and some corresponding to
the lowest eigenvalues, i.e., CSPs with the opposite property.

V. COMBINED SPECTRAL AND SPATIAL FILTER

As discussed in Section III the content of discriminative
information in different frequency bands is highly subject-
dependent. For example the subject whose spectra are visu-
alized in Fig. 2 shows a highly discriminative peak at 12 Hz
whereas the peak at 8 Hz does not show good discrimination.
Since the lower frequency peak has high band energy a better
performance in classification can be expected, if we reduce
the influence of the lower frequency peak for this subject.
However, for other subjects the situation looks different, i.e.,
the classification might fail if we exclude this information.
Thus it is desirable to optimize a spectral filter for better
discriminability. Here are two approaches to this task.

CSSP. In [15] the following was suggested: Given si the
signal sτ

i is defined to be the signal si delayed by τ timepoints
with respect to the sampling rate. In CSSP the usual CSP
approach is applied to the concatenation of si and sτ

i in the
channel dimension, i.e., the delayed signals are treated as
new channels. By this concatenation step the algorithm is
able to neglect or emphasize specific frequency bands. Of
course, this strongly depends on the choice of τ which can be
accomplished by some validation approach on the training set.
More complex frequency filters can be found by concatenating
more delayed EEG-signals with several delays. In [15] it was
concluded that in typical BCI situations where only small
training sets are available, the choice of only one delay tap is
most effective in the CSSP approach. The increased flexibility
of a frequency filter with more delay taps does not trade off
the increased complexity of the optimization problem.

CSSSP. The idea of our new CSSSP algorithm is to learn
a complete global spatial-temporal filter in the spirit of CSP
and CSSP.

A digital frequency filter consists of two sequences a and b
with length na and nb such that the signal x is filtered to y by

a(1)y(t) = b(1)x(t)+b(2)x(t −1)+ ...+b(nb)x(t −nb −1)

− a(2)y(t −1)− ...−a(na)y(t −na −1)

where t denotes the index in the time series. Here we restrict
ourselves to FIR (finite impulse response) filters by defining
na = 1 and a = 1. Furthermore we define b(1) = 1 and fix the
length of b to some T with T > 1. By this restriction we resign
some flexibility of the frequency filter but it allows us to find
a suitable solution in the following way: We are looking for a
real-valued sequence b1,...,T with b(1) = 1 such that the trials

si,b = si + ∑
τ=2,...,T

bτ sτ
i (4)

can be classified better in some way.
Using equation (1) we have to solve the problem

max
w,b,b(1)=1

∑
i:Trial in Class 1

var(w>si,b), s.t. ∑
i

var(w>si,b) = 1.

(5)

Let us define by Στ
y := E(〈si(sτ

i )
> + sτ

i s>i | i :
Trial in Class y〉) for τ > 0 and Σ0

y := E(〈sis>i | i :
Trial in Class y〉), namely the correlation between the
signal and the by τ delayed signal. Since we can assume
that E(〈sτ

i s>i , | i : Trial in Class y〉) ≈ E(〈sτ+ j
i (s j

i )
>, | i :

Trial in Class y〉) for small j > 0, equation (5) can be
approximately simplified to

max
b,b(1)=1

max
w

w>

(

T−1

∑
τ=0

(T−τ

∑
j=1

b( j)b( j + τ)

)

Στ
1

)

w,

s.t. w>

(

T−1

∑
τ=0

(T−τ

∑
j=1

b( j)b( j + τ)

)

(

Στ
1 +Στ

2
)

)

w = 1.

(6)

With the usual CSP techniques we can calculate the optimal w
for each b (see equation (2) and (3)). Since b(1) = 1, a (T −
1)-dimensional problem remains which can be solved using
optimization techniques like gradient or line-search methods
if T is not too large.

Consequently we get for each class a frequency band filter
and a pattern (or similar to CSP more than one pattern by
choosing the next eigenvectors).

However, with increasing T the complexity of the frequency
filter has to be controlled in order to avoid overfitting. One
way to restrict the complexity of a solution is to enforce a
sparse solution for b, i.e. a solution for b with only a few
non-zero entries. Sparsity of b is achieved by introducing a
regularization term in the following way:

max
b,b(1)=1

max
w

w>

(

T−1

∑
τ=0

(T−τ

∑
j=1

b( j)b( j + τ)

)

Στ
1

)

w−C/T ||b||1,

s.t. w>

(

T−1

∑
τ=0

(T−τ

∑
j=1

b( j)b( j + τ)

)

(

Στ
1 +Στ

2
)

)

w = 1.

(7)

Here C is a non-negative regularization constant, which has
to be chosen, e.g., by cross-validation. Since the 1-norm is
used in this formulation sparse solutions are achieved. (see
e.g. [26], [27] for a discussion of sparsification approaches).
With higher C we get sparser solutions for b until at one
point the usual CSP approach remains, i.e., b(1) = 1,b(m) =
0 for m > 1. We call this approach Common Sparse Spectral
Spatial Pattern (CSSSP) algorithm. Note that a usual personal
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Fig. 4: The figure on the left shows the most discriminative pattern
obtained by the classical CSP algorithm applied to broad band filtered
data for one experiment and left hand vs. foot imagery. By the use of
the proposed combined spatial and spectral optimization the CSSSP
algorithm extracts the pattern on the right which shows a much clearer
and more plausible topography.

computer calculates the CSSSP solution on this data in about
one minute.

In Fig. 4 the influence of the temporal filter on the choice
of the spatial filter is shown.

VI. FEATURE EXTRACTION, CLASSIFICATION AND
VALIDATION

A. Feature Extraction

After choosing all channels except the EOG and EMG
and a few of the outermost channels of the cap we apply
a causal band-pass filter from 7–30 Hz to the data, which
encompasses both the µ- and the β -rhythm. For classification
we extract the interval 500–3500 ms after the presented visual
stimulus. To these trials we apply the original CSP ([14])
algorithm (see Section IV), the extended CSSP ([15]), and
the proposed CSSSP algorithm (see Section V). For CSSP we
choose the best τ by leave-one-out cross validation on the
training set. For CSSSP we present the results for different
regularization constants C with fixed T = 16. With this T
frequency filters with suitable characteristics are available.
However, a modification of this parameter was not tested.
Furthermore we use 3 patterns per class which leads to 6-
dimensional output signal. As a measure of the amplitude in
the specified frequency band we calculate the logarithm of
the variances on the spatially and temporally filtered output
signals as feature vectors.

B. Classification and Validation

The presented preprocessing reduces the dimensionality of
the feature vectors to six. Since we have 120 up to 200 samples
per class for each data set, there is no additional need for
regularization beyond the one of the CSSSP procedure when
using linear classifiers according to our experience. When
testing non-linear classification methods on these features, we
could not observe any statistically significant gain for the given
experimental setup when compared to Linear Discriminant
Analysis (LDA) (see also [28], [7], [29]). Therefore we choose
LDA for classification.

For validation purposes the (chronologically) first half of
the data are used to train a classifier which is then applied
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Fig. 5: The plot on the left shows the frequency response for one
learned frequency filter for the subject whose spectra is shown in
Fig. 2. In the plot on the right the resulting spectra are visualized
after applying the frequency filter. By this technique the classification
error could be reduced from 17.3 % to 1.4 %.

to the second half of the data to estimate the performance of
the classifier. For a first analysis the regularization constant C
was chosen fixed to C = 0.1,0.5,1,5 to be able to estimate the
influence of this constant. The validation procedure included
an automatic selection of the hyperparameter C, an optimal
C was chosen out of {0,0.01,0.1,0.2,0.5,1,2,5} for each
dataset individually by a 2× 5-fold cross validation on the
trainset only. In this 2× 5-fold cross validation the training
data is split randomly into 5 disjoint subsets of nearly equal
size. Now a classifier is trained on 4 subsets and is applied
to the excluded subset. This is repeated for all 5 subsets for
2 different splittings such that one gets 10 errors. The means
of these errors for each parameter C were used to select the
optimal C. For CSSP the optimal parameter τ was also chosen
by cross validation on the training set.

VII. RESULTS

Fig. 5 shows one chosen frequency filter for the subject
whose spectra are shown in Fig. 2 and the remaining spectrum
after using this filter. As expected the filter detects that there is
a high discriminability in frequencies at 12 Hz, but only a low
discrimination in the frequency band at 8 Hz. Since the lower
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Fig. 6: The plot on the left shows the ERD curve on one projected
CSP channel for the subject whose spectra is shown in Fig. 2. After
applying the temporal filter calculated by the CSSSP approach the
ERD curve on the right is obtained. Below each plot the r2-values
as a measure of discriminability are visualized. They show that the
ERD curves on the right can be discriminated better.
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Fig. 7: Each plot shows the validation error of one algorithm against
another, in row 1 that is CSP (y-axis) vs. CSSSP (x-axis), in row 2 that
is CSSP (y-axis) vs. CSSSP (x-axis). In columns the regularization
parameter of CSSSP is varied between 0.1, 0.5, 1 and 5. In each plot
a cross above the diagonal marks a dataset where CSSSP outperforms
the other algorithm.

frequency peak is very predominant for this subject without
having a high discrimination power, a filter is learned which
drastically decreases the amplitude in this band, whereas full
power at 12 Hz is retained.

Fig. 6 shows the ERD curve for the same subject on one
projected CSP channel if one uses data filtered to 7–30 Hz or
data additionally temporally filtered with the CSSSP approach.
r2-values (see [30]) are a measure of discriminability between
data samples of different classes. In this figure, they reveal the
superiority of the suitably filtered data against the normal one.

Applied to all datasets and all pairwise class combinations
of the datasets we get the results shown in Fig. 7. First of all,
it is obvious that a small choice of the regularization constant
C is problematic, since the algorithm then tends to overfit. For
high values of C CSSSP tends towards the CSP performance
since using frequency filters is penalized too strongly. In
between there is a range where CSSSP is significantly better
than CSP. Furthermore there are some datasets where the gain
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Fig. 8: The figures compare the test error for all datasets of CSSSP
on the x-axis vs. CSP (left figure) and CSSP (right figure) on the y-
axis. Note that all model parameters (τ for CSSP and C for CSSSP)
are chosen on the training set using a cross validation procedure. For
crosses above the diagonal CSSSP outperforms the other algorithms.
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Fig. 9: On the left the boxplots for the results of Fig. 8 for all
three algorithms are shown. Here the median-value, the minimum
and maximum values and the 25% and 75%-percentiles are marked.

when using CSSSP is very significant.
Compared to CSSP the situation is similar, namely CSSSP

outperforms the CSSP in many cases and on average, but there
are also a few cases, where CSSP is better.

An open issue is the choice of the parameter C. If we choose
it constant at 1 for all datasets then Fig. 7 shows that CSSSP
will typically outperform CSP (see [1]). Compared to CSSP
both cases appear, namely that CSSP is better than CSSSP and
vice versa.

A more refined way is to choose C individually for each
dataset. One way to accomplish this choice is to perform cross-
validations for a set of possible values of C and to select the C
with minimum cross-validation error. This was done again for
all datasets. The results are shown in Fig. 8. One can observe
that there are many datasets where CSSSP outperforms CSP
and CSSP, but there are also a few where one of the other
algorithms is better. In these cases CSSSP overfits due to the
wrong choice of the parameter C. However, according to a
Wilcoxon Rank test CSSSP significantly exceeds the other
algorithms (p < 0.005). In Fig. 9 these results are also shown
as box plots with median, minimum and maximum value and
25 %- and 75 %-percentile. Again the superiority of CSSSP
against CSSP and CSP is clearly observable: The median
classification error rate for CSSSP is 20.7%, for CSSP 21.0%
and for CSP 23.3%, i.e., the median classification error rate
for CSSSP is 11% lower than for CSP and competative to
CSSP.
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Note that one could in principle also use the r2-values shown
in Fig. 2 to determine a filter. Based on some heuristic on these
values one could choose a global frequency band and apply
the corresponding bandpass filter to the data before calculating
CSP. However, CSSSP outperforms this algorithm by 9% in
median classification error rate, too.

VIII. CONCLUDING DISCUSSION

In past BCI research the CSP algorithm has proven to
be very sucessful in determining spatial filters which ex-
tract discriminative brain rhythms. However the performance
can suffer when non-discriminative brain rhythms with an
overlapping frequency range interfere. The presented CSSSP
algorithm successfully overcomes this problem by optimizing
simultaneously the spatial and spectral filters. The trade-off
between flexibility of the estimated frequency filter and the
danger of overfitting needs to be controlled and is accounted
for by CSSSP using a regularizing sparsity constraint. The
successfulness of the proposed algorithm when comparing it to
the original CSP and to the CSSP algorithm was demonstrated
on a corpus of 60 EEG data sets recorded from 22 different
subjects. Apart from the excellent classification performance
seen when applying CSSSP, an advantage is that an inter-
pretable spatial and temporal filter is learned from data (see
Fig. 5). It allows to clearly reveal discriminating parts in the
spectrum and thus to contribute to a better understanding of the
mechanisms a subject uses for, say, an imagination task. When
developing a new paradigm, CSSSP can thus be useful to
optimize paradigm design and subject instructions. Finally, we
would like to remark that CSSSP is – although very well suited
to single trial EEG analysis – a universal signal processing
algorithm not limited to the analysis of brain signals: It is a
general purpose method that can be readily applied whenever
it is necessary to construct spatial and temporal filters for
multivariate time-series analysis.
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