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11 Abstract

12 Reconstructing the living environment of extinct vertebrates is often challenging due to the lack of proxies. We propose a new

13 proxy to the living environment based on the combined oxygen and sulphur stable isotope analysis of vertebrate hydroxyapatite.

14 We tested this isotopic proxy to 64 biogenic apatite (bones) samples that represent a wide spectrum of the extant vertebrate

15 phylogenetic diversity including crocodiles, snakes, turtles, mammals, birds, lizards, fish and amphibians. We show that the

16 combination of these two isotopic systems allows the living environment of all these vertebrates to be unambiguously distin-

17 guished between freshwater (aquatic vs semi-aquatic), seawater (aquatic vs semi-aquatic) and terrestrial. The main goal of this

18 study is to provide a present-day isotopic reference frame and to discuss methodological issues that will serve to interpret future

19 oxygen and sulphur isotope results obtained either from fossil or modern skeletal material. This new isotopic approach of

20 combined oxygen and sulphur isotope analysis will be particularly useful to document major aquatic-terrestrial transitions in

21 the fossil record but also to better constrain the living environment of some present-day species.

22 Keywords Geochemistry . Stable isotope . Biogenic apatite . Ecology . Fossil

23

24 Introduction

25 Background information

26 Vertebrate evolution has been many times punctuated by ecolog-

27 ical transitions between terrestrial and aquatic (freshwater vs sea-

28 water) environments resulting in major radiation events: during

29 the Late Devonian-Early Carboniferous, early tetrapods left

30aquatic environments and colonised terrestrial ones (Ahlberg

31and Milner 1994); during the Jurassic-Cretaceous, various

32crocodylomorphs belonging to the thalattosuchians, the

33pholidosaurids, the dyrosaurids and the eusuchians, radiated in

34the marine environments (Martin et al. 2014); One hundred mil-

35lion years later, during the Cenozoic (Eocene), early cetaceans

36also experienced a secondary adaptation to aquatic environments

37(Gingerich et al. 2001). Reconstruction of a thorough picture of
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38 these ecological transitions requires detailed knowledge of the

39 living environment of the extinct taxa involved.

40 Terrestrial, freshwater andmarine environments have different

41 physical and chemical properties such as density, viscosity and

42 salinity, resulting in specific morphological and physiological

43 adaptations of living species. Consequently, the morpho-

44 functional analysis of skeletal remains of fossil taxa has often

45 been used to elucidate their living environment. (Coates and

46 Clack 1990; Fernández and Gasparini 2000; Pierce et al. 2012;

47 Spoor et al. 2002). However, skeletal remains sometimes may be

48 incomplete or may have lost their original shape during post-

49 depositional events such as burial and tectonic deformation or

50 compaction. Such processes preclude a reliable interpretation of

51 anatomical features in terms of morpho-functionality.

52 Furthermore, soft tissues indicative of specific environments

53 such as salt glands are easily degraded, and delicate ossified

54 structures such as the semicircular canal system of the inner ear

55 are rarely preserved in the fossil record. Finally, morphological

56 features can predate functional adaptation (exaptation process) so

57 that it can be misinterpreted in terms of living environment.

58 The sediments in which vertebrate fossils are embedded also

59 constitute an important source of information. The detailed study

60 of the lithology, petrology and geochemistry, along with sedi-

61 mentary structures, allows precise reconstruction of the environ-

62 mental conditions that prevailed during the deposition of the

63 sediments. However, the living environment of vertebrates does

64 not necessarily represent the depositional environment in which

65 they were embedded (e.g. anoxic bottom waters). This is partic-

66 ularly true for vertebrates that travel long distances or migrate

67 (e.g. anadromous and catadromous fish). Furthermore, carcasses

68 can be transported over long distances after death resulting in a

69 mismatch between the environment deduced from the sediment

70 of the taphocoenosis and the genuine living environment.

71 Those problems have raised the need for other methods to

72 reconstruct living environments independently of vertebratemor-

73 phology and depositional environments. For instance, stable car-

74 bon, oxygen or strontium isotope compositions of bones and

75 teeth have been used as direct tracers of the living environment

76 and applied to fossilised remains, such as those of early tetrapods

77 (Goedert et al. 2018), early cetacean (Roe et al. 1998; Clementz

78 et al. 2006) or crocodilian taxa (Martin et al. 2016), to get a better

79 picture of these major ecological transitions. Here, we propose a

80 newmethod to determine past living environments of vertebrates

81 based on the combined analysis of oxygen and sulphur isotope

82 compositions of their biogenic apatite.

83 Oxygen isotope composition of vertebrate apatite

84 Oxygen isotope composition of surface waters (δ18Ow) is mainly

85 controlled by evaporation and condensation processes during

86 which isotopic fractionation takes place (Craig and Gordon

87 1965; Dansgaard 1964). Marine environments have relatively

88 uniform δ
18Ow values of 0 ± 1‰ except at high latitudes, where

89δ
18Ow values are lower, ranging from − 3 to − 1‰ due to mixing

90with ice melt, and at tropical latitudes where high evaporation

91rates result in positive δ18Ow values ranging from + 1 to + 2‰,

92especially in closed tropical and subtropical seas like the Red

93Sea, the Dead Sea, Mediterranean Sea or Caribbean Sea (Craig

94and Gordon 1965; Gat 1984; Gat et al. 1996). Hypersaline la-

95goons or sabkhas (but also inland lakes, e.g. in East Africa) can

96also reach δ
18Ow values higher than + 2‰ (e.g., Gat and Levy

971978).

98The δ18Ow values of freshwaters mainly derive from those of

99meteoric waters (groundwater contributions being possible)

100whose ultimate source is seawater. Evaporation of seawater at

101low latitudes, distillation and cooling of the humid air mass dur-

102ing its transport towards high latitudes are responsible for the

103negative δ18O values of meteoric waters (Dansgaard 1964). At

104the global scale, the higher the latitude and altitude, the lower the

105δ
18O values of rainfall and snow. These values are comprised

106between − 6 and − 2‰ at low latitudes and decrease down to

107about − 15‰ at high latitudes, polar caps excluded. Oxygen

108isotope compositions of vertebrate biogenic apatite phosphate

109(δ18Op) are linearly correlated with the oxygen isotope composi-

110tion of their environmental waters (Longinelli 1984; Luz et al.

1111984). Consequently, vertebrates living or ingesting different en-

112vironmental waters will record in their bones distinct oxygen

113isotope compositions. Nonetheless, it is worth to note that phys-

114iological factors such as evaporative transcutaneous water loss

115and thermo-metabolism, which are species-specific, also impact

116the oxygen isotope compositions recorded in bioapatites (e.g.

117Kohn 1996; Levin et al. 2006).

118Sulphur isotope composition of vertebrate apatite

119Sulphur isotope composition of sulphates (δ34S) is highly vari-

120able inmodern aquatic environments.Marine environments have

121high and relatively uniform sulphate δ
34S values close to +

12221.0‰ (Böttcher et al. 2007). Most freshwater environments

123(e.g. rivers, lakes, ponds, precipitations) have comparatively low-

124er sulphate δ34S values, ranging from − 20.0 to + 20.0‰ (Krouse

1251980; Kaplan 1983; Nehlich 2015). It has been shown that the

126sulphur isotope composition of food is recorded in vertebrate

127organic tissues (e.g. muscles, hairs) or molecules (e.g. bone col-

128lagen) with low isotopic fractionation (+ 0.5‰ ± 2.4‰, Nehlich

1292015), especially when compared to the oxygen isotopic system.

130A recent study also measured very low sulphur isotope fraction-

131ation values between the collagen of sub-fossil red fox and that of

132its preys (ranging from − 0.54 to + 0.03‰, with a mean analyt-

133ical error of ± 0.4; Krajcarz et al. 2019). Notably, this study

134further allows such low sulphur isotope fractionation to apply

135for carnivores.

136Sulphur isotope analysis of vertebrate organic tissues is, there-

137fore, particularly relevant to differentiate between freshwater and

138seawater environments. In particular, this method has been suc-

139cessfully used to determine the living environment exploited by
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140 fish at the species and population levels (Fry 2002; Fry and

141 Chumchal 2011; Hesslein et al. 1991; Nehlich et al. 2013;

142 Trembaczowski 2011) or in archaeological studies to know if

143 ancient human populations relied on freshwater or marine food

144 resources (e.g. Bocherens et al. 2016). More generally, terrestrial

145 environments (including freshwater ones) and animals living

146 there have generally relatively low δ
34S values compared to ma-

147 rine environments. Nonetheless, it is worth to note that coastal or

148 island environments may be substantially influenced by sulphate

149 from marine environments, which can be redeposited as rain or

150 aerosols (the so-called ‘sea spray’ effect) with sulphate δ
34S

151 values close to those of marine environment (+ 20.3‰; NielsenQ2

152 1974; Norman et al. 2006). Consequently, the δ
34S values of

153 vertebrates living in those terrestrial environments submitted to

154 sea spray effect can be relatively high and may complicate inter-

155 pretation concerning the living environment.

156 Due to technical difficulties, sulphur isotope analyses have

157 been only applied to organic tissues that easily degrade after

158 animal death and are rarely preserved in the fossil record. A

159 new method has been recently developed to measure the sul-

160 phur isotope ratios (34S/32S) of sulphate compound in calcium

161 phosphate minerals (analytical precision equals 0.5‰ (1σ))

162 with a low-S concentration (0.14% to 1.19%) such as verte-

163 brate bioapatites (Fourel et al. 2015; Goedert et al. 2016).

164 Previous results indicated that sulphur isotope compositions

165 of environmental waters are recorded in vertebrate inorganic

166 tissues (bone apatite) with low isotopic fractionation (0.8‰ ±

167 0.8‰, n = 5; Goedert et al. 2018). Therefore, sulphur isotope

168 analysis of bioapatite from extinct vertebrates can provide

169 estimates of the salinity of their aqueous environments

170 (Goedert et al. 2018).

171 Material and methods

172 Sixty-four vertebrate bone apatite samples have been col-

173 lected and analysed in this study (Online Information 1).

174 Samples were selected to encompass a broad ecological

175 and taxonomic spectrum of vertebrates (crocodiles, snakes,

176 turtles, mammals, birds, lizards, fish and amphibians). For

177 each taxonomic group, vertebrates of distinct ecology such

178 as aquatic (freshwater vs marine), semi-aquatic and terres-

179 trial were selected (Online Information 2). Oxygen and

180 sulphur isotope analyses have been performed on each

181 bone sample of the 64 vertebrates.

182 Forty vertebrate bone apatite samples were collected in the

183 osteological collections of the ‘Musée des Confluences’ of

184 Lyon, France. Samples were further selected in historical col-

185 lections to ensure a wild provenance. Specimens with a la-

186 belled precise localisation were prioritised when possible. In

187 addition, 24 vertebrate bone apatite samples for which sulphur

188 isotope composition have been previously published (Goedert

189 et al. 2016, 2018; cf. Table 1) have been added to the dataset

190and their oxygen isotope composition measured in this study.

191For each specimen, about 100 mg of bone powder was sam-

192pled using a spherical diamond-tipped drill bit. The surface of

193the bone, which may have been chemically treated for curato-

194rial purpose (samples coming from the ‘Musée des

195Confluences’), was removed prior to sampling.

196All statistical tests were performed using Past 3.22 soft-

197ware. We used Mann-Whitney U test to compare the different

198median values and give the associated P value (P). Data of

199Figs. 1 and 2 were plotted using KaleidaGraph 4.5.3 software.

200Figures were drawn using Inkskape 0.92.3.

201Oxygen isotope analysis

202Bone apatite samples were treated following the wet chem-

203istry protocol described by (Crowson et al. 1991) and

204slightly modified by (Lécuyer et al. 1993). This protocol

205consists in the isolation of phosphate (PO4
3−) from apatite

206using acid dissolution and anion-exchange resin. For each

207sample, 30 mg of enamel powder was dissolved in 2 mL of

2082 M HF overnight. The CaF2 residue was separated by

209centrifugation, and the solution was neutralised by adding

2102.2 mL of 2 M KOH. 2.5 mL of Amberlite™ anion-

211exchange resin was added to the solution to separate the

212PO4
3− ions. After 24 h, the solution was removed and the

213resin was eluted with 27.5 mL of 0.5 M NH4NO3. After

2144 h, 0.5 mL of NH4OH and 15 mL of an ammoniacal

215solution of AgNO3 were added, and the samples were

216placed in a thermostated bath at 70 °C during 7 h, allowing

217the precipitation of silver phosphate (Ag3PO4) crystals.

218When only a few mg of apatite powders could be collected,

219the wet chemistry procedure was adapted following

220(Bernard et al. 2009) for small sample weights (about

2213 mg).

222Oxygen isotope compositions were measured using a

223high-temperature pyrolysis (Py) technique involving a

224VarioPYROcube™ elemental analyser (EA) interfaced in

225continuous flow (CF) mode to an Isoprime™ isotopic ratio

226mass spectrometer (IRMS) (EA-Py-CF-IRMS technique

227(Fourel et al . 2011; Lécuyer et al . 2007) at the

228Laboratoire de Géologie de Lyon (UMR 5276, Université

229Claude Bernard Lyon 1). For each sample, 5 aliquots of

230300 μg of Ag3PO4 were mixed with 300 μg of pure graph-

231ite powder and loaded in silver foil capsules. Pyrolysis was

232performed at 1450 °C. Measurements were calibrated

233against the NBS120c (natural Miocene phosphorite from

234Florida: δ18O = 21.7‰ (V-SMOW), (Lécuyer et al. 1993)

235and the NBS127 (barium sulphate, BaSO4: δ
18O = 9.3‰

236(V-SMOW), (Hut 1987). Silver phosphate samples precip-

237itated from standard NBS120c were repeatedly analysed

238(δ18Op = 21.6‰; 1σ = 0.4; n = 16) along with the silver

239phosphate samples derived from fossil bioapatites to en-

240sure that no isotopic fractionation took place during the
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241 wet chemistry. The NBS120c average standard deviation

242 equals 0.29 ± 0.14‰. Data are reported as δ
18Op in ‰

243 values vs V-SMOW.

244 Sulphur isotope analysis

245 Sulphur isotope compositions were measured using a

246 VarioPYROcube™ elemental analyser in NCS combustion

247 mode interfaced in continuous-flow mode with an Isoprime

248 100™ isotope ratio mass spectrometer hosted by the plat-

249 form ‘Ecologie Isotopique’ of the ‘Laboratoire d’Ecologie

250 des Hydrosystèmes Naturels et Anthropisés’ (LEHNA,

251UMR 5023, Villeurbanne, France). For each bone apatite

252sample, 3 aliquots of 7 mg of bioapatite powder were

253mixed with 20 mg of pure tungsten oxide (WO3) powder

254and loaded in tin foil capsules. Tungsten oxide is a power-

255ful oxidant ensuring the full thermal decomposition of ap-

256atite sulphate into sulphur dioxide (SO2) gas (Goedert et al.

2572016). Measurements have been calibrated against the

258NBS127 (barium sulphate, BaSO4 δ
34S = + 20.3‰ (V-

259CDT), (Halas and Szaran 2001) and S1 (silver sulphide,

260Ag2S δ
34S = − 0.3‰ (V-CDT), (Robinson 1995) interna-

261tional standards. For each analytical run of bone samples,

262we have also analysed BCR32 samples as a compositional

Fig. 1 δ
18Op and δ

34Sapatite valuesQ3 of modern vertebrates including (from

left to right) crocodiles, snakes, turtles, mammals, birds, lizards, fish and

amphibians. aOxygen isotope composition of bone phosphate (δ18Op) as

variations in parts per mille from the ratio of 18O/16O in Vienna Mean

Ocean Water (‰ VSMOW) b Sulphur isotope composition of bone

apatite (δ34Sapatite) as variations in parts per mille from the ratio of
34S/32S in Vienna Canyon Diablo Troilite (‰ VCDT). For a, b, each

data point represents a biologically independent animal (n = 64) and

corresponds to the average value of five and three repeated

measurements for oxygen and sulphur isotope analysis, respectively

(see “Material and Methods”). Each error bar corresponds to 1 s.d.

(Online Information 1). For both panels, light blue, dark blue and green

colours indicate that the species lives in freshwater, seawater or terrestrial

environments, respectively (see Supplementary Information). The name

of each species is indicated close to the corresponding dot
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263 and isotopic standard (S% = 0.72, certified value

264 ((Community Bureau of Reference 1982); δ34S = 18.4‰

265 (V-CDT), (Fourel et al. 2015; Goedert et al. 2016) to en-

266 sure that analytical conditions were optimal to perform

267 sulphur isotope analyses of samples with low-S content.

268 The sample average standard deviation for δ34S measure-

269 ments is 0.34‰ ± 0.34‰. Data are reported as δ34S in ‰

270 vs V-CDT.

271Results

272Oxygen isotope

273The different vertebrates analysed had oxygen isotope com-

274positions ranging from + 12.1 to + 24.2‰ V-SMOW (Online

275Information 1; Fig. 1a), which mainly reflect the variability of

276oxygen isotope compositions of environmental waters. On the

Fig. 2 Reconstructed oxygen and sulphur isotope composition of the

environmental waters (δ18Ow, δ
34Sw) of the modern vertebrates. For

oxygen, the isotopic composition of water was calculated using

published isotopic fractionation equations for different groups of

vertebrates (Online Information 3). For sulphur, the isotopic

composition of water is very close to that recorded in bone apatite (i.e.,

almost no isotopic fractionation) and was calculated using published

values of sulphur isotope composition of bone apatite and associated

environmental water measured in present-day vertebrates (Goedert et al.

(2018); Online Information 4). Each data point represents a biologically

independent animal (n = 64) and corresponds to the average value of five

and three repeated measurements for oxygen and sulphur isotope

analysis, respectively (see “Material and Methods”). Each dot is

numbered according to the species it represents (cf. Table 1). Error bars

of each individual data point are given in Table S2 and S3 for oxygen and

sulphur respectively. Results are given as variations in parts per mille

from the ratio of 18O/16O in Vienna Mean Oean Water (‰ VSMOW)

for oxygen and 34S/32S in Vienna Canyon Diablo Troilite (‰ VCDT) for

sulphur. Species living in freshwater are represented by light blue dots;

those living in seawater are represented by dark blue dots, and green dots

are used for terrestrial species.(1): Crocodylus niloticus; (2): Crocodylus

siamensis; (3): Gavialis gangeticus; (4): Crocodylus porosus; (5):

Crocodylus suchus; (6): Crocodylus suchus; (7): Acrochordus

granulatus; (8): Xenochrophis flavipunctus; (9): Homalopsis buccata;

(10): Hydrophis obscurus; (11): Pelamis platura; (12): Cerastes

cerastes; (13): Testudo kleinmanni; (14): Dogania subplana; (15):

Chelydra serpentina; (16): Chelonia mydas; (17): Chelonia mydas;

(18): Trachemys scripta elegans; (19): Trachemys scripta elegans; (20):

Trachemys scripta elegans; (21): Trachemys scripta elegans; (22): Lutra

lutra; (23): Platanista gangetica; (24): Monachus monachus; (25):

Odobenus rosmarus; (26): Phoca vitulina; (27): Monodon monoceros;

(28): Enhydra lutris; (29): Phocoena phocoena; (30): Dugong dugon;

(31): Hydrodamalis gigas; (32): Hydrodamalis gigas; (33):

Hippopotamus amphibius; (34): Rhinoceros sondaicus; (35): Camelus

dromedarius; (36): Camelus bactrianus; (37): Ursus arctos; (38): Ursus

maritimus; (39): Tapirus indicus; (40): Tapirus terrestris; (41): Castor

fibre; (42): Larus argentatus; (43): Spheniscus demersus; (44): Anas

platyrhynchos; (45): Buteo buteo; (46): Amblyrhynchus cristatus; (47):

Cyprinus carpio; (48): Silurus glanis; (49): Oncorhynchus mykiss; (50):

Salmo trutta; (51): Salvelinus fontinalis; (52): Oncorhynchus mykiss;

(53): Sander lucioperca; (54): Solea solea; (55): Gadus morhua; (56):

Limanda limanda; (57): Dicentrarchus labrax; (58): Oncorhynchus

nerka; (59): Pelophylax ridibundus; (60): Pelophylax ridibundus; (61):

Pelophylax ridibundus; (62): Pelophylax ridibundus; (63): Pelophylax

ridibundus; (64): Salamandra salamandra
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277 whole, vertebrates living or foraging in marine environments

278 had significantly higher δ18Op values than animals living or

279 foraging in continental (freshwater or terrestrial) environments

280 (median δ
18Op = + 19.8‰, 1σ = 3.0, n = 18 vs median

281 δ
18O = + 15.4‰, 1σ = 2.4, n = 40; P = 4.244e-5 (Mann-

282 Whitney U test)).Q4Q5= It also worth to note that vertebrates which

283 live in both freshwater to seawater environment had interme-

284 diate median δ18Op values (δ
18Op = + 17.7‰, 1σ = 0.9, n = 6),

285 although the difference was only significant compared to con-

286 tinental environments and not seawater ones (P = 0.01255 and

287 P = 0.1611, respectively). One exception concerns the horned

288 desert viper (Cerastes cerastes) and the Kleinmann’s tortoise

289 (Testudo kleinmanni), which had both recorded high oxygen

290 isotope ratios in their bones due to their desert lifestyle.

291 Sulphur isotope

292 The different vertebrates analysed had sulphur isotope com-

293 positions apatite (δ34Sapatite) ranging from + 1.1 to + 22.9‰V-

294 CDT (Online Information 1; Fig. 1b). On the whole, verte-

295 brates living or foraging in marine environments had signifi-

296 cantly higher δ34S values than those living or foraging in con-

297 tinental (freshwater or terrestrial) environments (median

298 δ
34Sapatite = + 16.9‰, 1σ = 4.4, n = 18 vs δ

34Sapatite = +

299 10.4‰, 1σ = 4.4, n = 40; P = 0.0001357). This isotopic pat-

300 tern reflects an almost systematic 34S-enrichment of marine

301 environments compared to continental ones. It is again worth

302 to note that vertebrates living in freshwater to seawater envi-

303 ronment had intermediate median δ
34Sapatite values (δ

34S = +

304 13.8‰, 1σ = 6.0, n = 6), although the difference was not sig-

305 nificant with that of continental or marine environments (P =

306 0.1063 and P = 0.5264). Sulphur isotope analysis of fossilised

307 apatite can, therefore, help to detect the presence or proximity

308 of seawater in the living environments of extinct vertebrates.

309 Discussion

310 Oxygen isotope composition

311 Oxygen isotope analysis of vertebrate biogenic apatite has

312 been widely applied to fossilised apatite of extinct vertebrates

313 to get information on their living environment (e.g. Clementz

314 et al. 2003, 2006; Tütken et al. 2006; Amiot et al. 2015, 2009,

315 2010; Pouech et al. 2014; Guy et al. 2018). As illustrated by

316 our results, this analysis can be particularly useful to distin-

317 guish vertebrates living or foraging in marine environments

318 from those living or foraging in continental (freshwater or

319 terrestrial) ones (e.g. sharks: GatesQ6 2019; mosasaurs: Makádi

320 et al. 2012; coelacanths: Simon et al. 2003).

321 It can also be used to further differentiate aquatic or semi-

322 aquatic lifestyle from a terrestrial one in the case of sympatric

323 vertebrates (e.g. Amiot et al. 2010). Indeed, terrestrial animals

324lose more water than semi-aquatic animals through transcuta-

325neous evaporation or sweat. Water lost during this process as

326vapour is preferentially 16O-enriched, resulting in a relative

327
18O-enrichment of the residual body water (Cerling et al.

3282008). Although the different vertebrates sampled come from

329different region of the world, it should be noted for instance

330that the Eurasian otter (Lutra lutra) and the Eurasian beaver

331(Castor fibre), both having a semi-aquatic lifestyle, have re-

332corded lower oxygen isotope ratios in their bones than fully

333terrestrial mammals (Online Information 1 and Fig. 1a). This

334is also the case for the semi-aquatic mallard duck (Anas

335platyrhynchos), which recorded in its bones lower oxygen

336isotope ratios than the common buzzard (Buteo buteo)

337(Online Information 1 and Fig. 1). In the latter case, it is

338worthy to note that both specimens come from the same geo-

339graphic area and therefore rely on environmental waters of

340comparable oxygen isotope compositions.

341On the contrary, it can be used to detect desert lifestyle

342(Lécuyer et al. 1999). For instance, the horned desert viper

343(Cerastes cerastes) and the Kleinmann’s tortoise (Testudo

344kleinmanni), had both recorded high oxygen isotope ratios in

345their bones.

346Nonetheless, for low-latitude environments, oxygen iso-

347tope compositions of freshwater and marine environments

348can display significant overlap. Consequently, water oxygen

349isotope compositions recorded in vertebrate apatites may not

350always be a diagnostic tracer of their living environment (e.g.

351Pouech et al. 2014).

352Sulphur isotope composition

353Compared to oxygen, sulphur isotopes have been less applied

354to question the ecology of extinct vertebrates, principally due

355to technical difficulties. Due to the large amplitude of natural

356isotopic variations, particularly observed between terrestrial

357and marine environments, it remains a particularly relevant

358environmental tracer (cf. Background information).

359However, as discussed in the “Introduction” section, the

360‘sea spray’ effect may complicate interpretation concerning

361the living environment of vertebrates for terrestrial environ-

362ment located in the influenced of marine ones. Moreover,

363some freshwater settings may have sulphur isotope composi-

364tions close to that of marine environments. For instance, rivers

365draining basins in which marine evaporites are exposed may

366have elevated dissolved sulphate content (more than 200mg/L

367for the Colorado River system (Shope and Gerner 2014)) and

368δ
34S values (up to seawater-like 19.5‰ for the Mackenzie

369River system (Hitchon and Krouse 1972)). Therefore, verte-

370brates living in such environments are expected to have high

371sulphur isotope compositions that could be misinterpreted as

372reflecting an aqueous environment at least submitted to some

373marine influences. Finally, vertebrate species living in aquatic

374environments submitted to the influences of both fresh and
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375 marine water, like in estuaries, may record a sulphur isotope

376 composition in their bioapatite difficult to correctly interpret in

377 terms of living environment.

378 Combined oxygen and sulphur isotope composition

379 On the whole, the combined use of oxygen and sulphur isotope

380 compositions of bone apatite allows, in most cases, environmen-

381 tal identification for the present-day vertebrates after the conver-

382 sion of the measured δ
18O and δ

34S values of apatite into envi-

383 ronmental water δ18O value and dissolved environmental sul-

384 phate δ34S values using known isotopic fractionation equations

385 (Fig. 2; Online Information 3 and 4).

386 The complementarity of these two isotopic systems lies in the

387 different abundance ratios of oxygen and sulphur, respectively, in

388 seawater and freshwater bodies. Indeed, oxygen is equally pres-

389 ent (as H2O) in both marine and freshwater reservoirs whereas

390 sulphur content (as SO4
2−) of seawater is generally 100 to 1000

391 higher than in freshwater (Fry and Chumchal 2011).

392 Consequently, sulphur isotopes will be particularly relevant to

393 detect the presence of seawater in the environment, even if only

394 a small quantity of seawater intrudes freshwater environment,

395 and oxygen isotopes will be relevant to quantify the amount of

396 freshwater in the environment, in particular in aquatic environ-

397 ments where freshwater and seawater aremixing, like in deltas or

398 estuaries (Goedert et al. 2018).

399 Vertebrates living or foraging in marine environments tend to

400 have higher oxygen and sulphur isotope compositions recorded

401 in their bone apatite than those from freshwater and terrestrial

402 habitats. This rule is especially valid when we compare verte-

403 brates of close phylogenetic affinity. For instance, the wild gha-

404 rial (Gavialis gangeticus), living in freshwater streams, and the

405 two captive specimens of desert crocodiles (Crocodylus suchus),

406 kept in freshwater at the Zoo of Lyon, have recorded in their bone

407 apatite δ
18Op and δ

34Sapatite values (+ 12.1‰ and + 15.9‰, +

408 14.5‰ and + 8.2‰, and + 13.9‰ and + 8.5‰, respectively)

409 lower than those measured in bones of the wild Nile crocodile

410 (Crocodilus niloticus; + 17.5‰ and + 20.1‰) and saltwater

411 crocodile (Crocodilus porosus; + 16.8‰ and + 16.3‰), both

412 known to undertake incursions in brackish waters to seawaters

413 (cf. Supplementary Information). Similarly, the sea otter

414 (Enhydra lutris), fully adapted to life in seawater, has higher

415 δ
18Op and δ

34Sapatite values (+ 17.4‰ and + 18.1‰) than those

416 of the Eurasian otter (Lutra lutra) (δ18Op = + 14.0‰ and

417 δ
34S = + 12.8‰), inhabiting freshwater environments. In a simi-

418 lar way, the marine narwhal (Monodon monoceros) has higher

419 δ
18Op and δ

34Sapatite values (+ 17.0‰ and + 16.0‰) than those of

420 the South Asian river dolphin (Platanista gangetica; + 14.3‰

421 and + 10.2‰).

422 The general picture we have of major ecological transitions

423 that took place during vertebrate evolution are incomplete and

424 potentially biased as it corresponds to the final stages of these

425 transitions. For instance, the colonisation of terrestrial

426environments by early tetrapods at the beginning of the

427Carboniferous gave rise to a wide evolutionary radiation of ter-

428restrial tetrapods that are still present on lands today. Similarly,

429the multiple iterations of secondary adaptation to the aquatic

430environment are well illustrated by the numerous species of ver-

431tebrates belonging to different groups (crocodiles, snakes, turtles,

432lizards, birds and mammals), which live in present-day aquatic

433environments. All these vertebrates testify that different groups

434adapted to new environments from a common ancestor.

435However, the way these major ecological transitions proceeded,

436especially during their early stages, is difficult to infer and often

437remained elusive. Indeed, morpho-functional adaptations to a

438specific environment can be diachronous with its effective use

439(exaptation); the diagnose of living environment of vertebrates

440from morpho-functional analysis is thereby limited. Therefore,

441the combined use of 18O/16O and 34S/32S ratios of skeletal apatite

442should be particularly promising and powerful to document ma-

443jor ecological transitions in the fossil record for any phylogenetic

444group of vertebrates. For instance, this method has already been

445successfully applied to determine the aquatic environment of

446some Devonian early tetrapods and their associated vertebrate

447fauna (Goedert et al. 2018). Furthermore, it could also help to

448precise the ecology of some present-day aquatic vertebrates and

449shed light on the modalities of transition between terrestrial and

450aquatic environments during the course of vertebrate evolution

451over the Phanerozoic. It is also worthy to note that this method

452has the potential to shed light on the ecology of numerous

453present-day vertebrates living in transitional environments, and

454for which the ecology remains unclear.
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