
RESEARCH Open Access

Combined perception and control for timing in
robotic music performances
Umut Şimşekli*, Orhan Sönmez, Barş Kurt and Ali Taylan Cemgil

Abstract

Interaction with human musicians is a challenging task for robots as it involves online perception and precise
synchronization. In this paper, we present a consistent and theoretically sound framework for combining
perception and control for accurate musical timing. For the perception, we develop a hierarchical hidden Markov
model that combines event detection and tempo tracking. The robot performance is formulated as a linear
quadratic control problem that is able to generate a surprisingly complex timing behavior in adapting the tempo.
We provide results with both simulated and real data. In our experiments, a simple Lego robot percussionist
accompanied the music by detecting the tempo and position of clave patterns in the polyphonic music. The robot
successfully synchronized itself with the music by quickly adapting to the changes in the tempo.

Keywords: hidden Markov models, Markov decision processes, Kalman filters, robotic performance

1 Introduction

With the advances in computing power and accurate

sensor technologies, increasingly more challenging tasks

in human-machine interaction can be addressed, often

with impressive results. In this context, programming

robots that engage in music performance via real-time

interaction remained as one of the challenging problems

in the field. Yet, robotic performance is criticized for

being to mechanical and robotic [1]. In this paper, we

therefore focus on a methodology that would enable

robots to participate in natural musical performances by

mimicking what humans do.

Human-like musical interaction has roughly two main

components: a perception module that senses what

other musicians do and a control module that generates

the necessary commands to steer the actuators. Yet, in

contrast to many robotic tasks in the real world, musical

performance has a very tight realtime requirement. The

robot needs to be able to adapt and synchronize well

with the tempo, dynamics and rhythmic feel of the per-

former and this needs to be achieved within hard real-

time constraints. Unlike repetitive and dull tasks, such

expressive aspects of musical performance are hard to

formalize and realize on real robots. The existence of

humans in the loop makes the task more challenging as

a human performer can be often surprisingly unpredict-

able, even on seemingly simple musical material. In

such scenarios, highly adaptive solutions, that combine

perception and control in an effective manner, are

needed.

Our goal in this paper is to illustrate the coupling of

perception and control modules in music accompani-

ment systems and to reveal that even with the most

basic hardware, it is possible to carry out this complex

task in real time.

In the past, several impressive demonstrations of

robotic performers have been displayed, see Kapur [2]

as a recent survey. The improvements in the field of

human-computer interaction and interactive computer

music systems influenced the robotic performers to lis-

ten and respond to human musicians in a realistic man-

ner. The main requirement for such an interaction is a

tempo/beat tracker, which should run in real-time and

enable the robot to synchronize well with the music.

As a pioneering work, Goto and Muraoka [3] pre-

sented a real-time beat tracking for audio signals with-

out drums. Influenced by the idea of an untrained

listener can track the musical beats without knowing

the names of the chords or the notes being played, they

based their method on detecting the chord changes. The

method performed well on popular music; however, it is
* Correspondence: umut.simsekli@boun.edu.tr
Department of Computer Engineering, Boğaziçi University, 34342, Bebek,
Istanbul, Turkey

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

© 2012 Şimşekli et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:umut.simsekli@boun.edu.tr
http://creativecommons.org/licenses/by/2.0

hard to improve or adapt the algorithm for a specific

domain since it was built on top of many heuristics.

Another interesting work on beat tracking was pre-

sented in Kim et al. [4], where the proposed method

estimates the tempo of rhythmic motions (like dancing

or marching) through a visual input. They first capture

the ‘motion beats’ from sample motions in order to cap-

ture the transition structure of the movements. Then, a

new rhythmic motion synchronized with the back-

ground music is synthesized using this movement tran-

sition information.

An example of an interactive robot musician was pre-

sented by Kim et al. [5], where the humanoid robot

accompanied the playing music. In the proposed method,

they used both audio and visual information to track the

tempo of the music. In the audio processing part, an

autocorrelation method is employed to determine the

periodicity in the audio signal, and then, a corresponding

tempo value is estimated. Simultaneously, the robot

tracks the movements of a conductor visually and makes

another estimation for the tempo [6]. Finally, the results

of these two modules are merged according to their con-

fidences and supplied to the robot musician. However,

this approach lacks an explicit feedback mechanism

which is supposed to handle the synchronization between

the robot and the music.

In this paper, rather than focusing on a particular piece

of custom build hardware, we will focus on a deliberately

simple design, namely a Lego robot percussionist. The

goal of our percussionist will be to follow the tempo of a

human performer and generate a pattern to play in sync

with the performer. A generic solution to this task, while

obviously simpler than that for an acoustic instrument,

captures some of the central aspects or robotic perfor-

mance, namely:

• Uncertainties in human expressive performance

• Superposition–sounds generated by the human

performer and robot are mixed

• Imperfect perception

• Delays due to the communication and processing

of sensory data

• Unreliable actuators and hardware–noise in robot

controls causes often the actual output to be differ-

ent than the desired one.

Our ultimate aim is to achieve an acceptable level of

synchronization between the robot and a human perfor-

mer, as can be measured via objective criteria that corre-

late well with human perception. Our novel contribution

here is the combination of perception and control in a

consistent and theoretically sound framework.

For the perception module, we develop a hierarchical

hidden Markov model (a changepoint model) that

combines event detection and tempo tracking. This

module combines the template matching model pro-

posed by Şimşekli and Cemgil [7] and the tempo track-

ing model by Whiteley et al. [8] for event detection in

sound mixtures. This approach is attractive as it enables

to separate sounds generated by the robot or a specific

instrument of the human performer (clave, hi-hat) in a

supervised and online manner.

The control model assumes that the perception module

provides information about the human performer in

terms of an observation vector (a bar position/tempo

pair) and an associated uncertainty, as specified possibly

by a covariance matrix. The controller combines the

observation with the robots state vector (here, specified

as an angular-position/angular-velocity pair) and gener-

ates an optimal control signal in terms of minimizing a

cost function that penalizes a mismatch between the

“positions” of the robot and the human performer. Here,

the term position refers to the score position to be

defined later. While arguably more realistic and musically

more meaningful cost functions could be contemplated,

in this paper, we constrain the cost to be quadratic to

keep the controller linear.

A conceptually similar approach to ours was presented

by Yoshii et al. [9], where the robot synchronizes its steps

with the music by a real-time beat tracking and a simple

control algorithm. The authors use a multi-agent strategy

for real-time beat tracking where several agents monitor

chord changes and drum patterns and propose their

hypotheses; the most reliable hypothesis is selected. While

the robot keeps stepping, the step intervals are sent as

control signals from a motion controller. The controller

calculates the step intervals in order to adjust and syn-

chronize the robots stepping tempo together with beat

timing. Similar to this work, Murata et al. [10] use the

same robotic platform and controller with an improved

beat-tracking algorithm that uses a spectro-temporal pat-

tern matching technique and echo cancelation. Their

tracking algorithm deals better with environmental noise

and responds faster to tempo changes. However, the pro-

posed controller only synchronizes the beat times without

considering which beat it is. This is the major limitation of

these systems since it may allow phase shifts in beats if

somebody wants to synchronize a whole musical piece

with the robot.

Our approach to tempo tracking is also similar to the

musical accompaniment systems developed by Dannen-

berg [11], Orio [12], Cemgil and Kappen [13], Raphael

[14], yet it has two notable novelties. The first one is a

novel hierarchical model for accurate online tempo esti-

mation that can be tuned to specific events, while not

assuming the presence of a particular score. This enables

us to use the system in a natural setting where the

sounds generated by the robot and the other performers

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 2 of 20

are mixed. This is in contrast to existing approaches

where the accompaniment only tracks a target performer

while not listening to what it plays. The second novelty is

the controller component, where we formulate the robot

performance as a linear quadratic control problem. This

approach requires only a handful of parameters and

seems to be particularly effective for generating realistic

and human-like expressive musical performances, while

being fairly straightforward to implement.

The paper is organized as follows. In the sequel, we

elaborate on the perception module for robustly infer-

ring the tempo and the beat from polyphonic audio.

Here, we describe a hierarchical hidden Markov model.

Section 3 introduces briefly the theory of optimal linear

quadratic control and describes the robot performance

in this framework. Sections 4 describes simulation

results. Section 5 describes experiments with our simple

Lego robot system. Finally Section 6 describes the con-

clusions, along with some future directions for further

research.

2 The perception model
In this study, the aim of the perception model is to jointly

infer the tempo and the beat position (score position) of

a human performer from streaming polyphonic audio

data in an online fashion. Here, we assume that the

observed audio includes a certain instrument that carries

the tempo information such as a hi-hat or a bass drum.

We assume that this particular instrument is known

beforehand. The audio can include other instrument

sounds, including the sound of the percussion instrument

that the robot plays.

As the scenario in this paper, we assume that the per-

former is playing a clave pattern. The claves is the name

for both a wooden percussive instrument and a rhyth-

mic pattern that organizes the temporal structure and

forms the rhythmic backbone in Afro-Cuban music.

Note that, this is just an example, and our framework

can be easily used to track other instruments and/or

rhythmic patterns in a polyphonic mixture.

In the sequel, we will construct a probabilistic generative

model which relates latent quantities, such as acoustic

event labels, tempi, and beat positions, to the actual audio

recording. This model is an extension that combines ideas

from existing probabilistic models: the bar pointer model

proposed by Whiteley et al. [8] for tempo and beat posi-

tion tracking and an acoustic event detection and tracking

model proposed by Şimşekli and Cemgil [7].

In the following subsections, we explain the probabil-

istic generative model and the associated training algo-

rithm. The main novelty of the current model is that it

integrates tempo tracking with minimum delay online

event detection in polyphonic textures.

2.1 Tempo and acoustic event model

In [8], Whiteley et al. presented a probabilistic “bar

pointer model”, which modeled one period of a hidden

rhythmical pattern in music. In this model, one period

of a rhythmical pattern (i.e., one bar) is uniformly

divided into M discrete points, so called the “position”

variables, and a “velocity” variable is defined with a state

space of N elements, which described the temporal evo-

lution of these position variables. In the bar pointer

model, we have the following property:

mτ =
(⌊

mτ−1 + f (nτ−1)
⌋)

mod M. (1)

Here, m
τ
Î {0, . . . , M - 1} are the position variables,

n
τ
Î {0, . . . , N} are the velocity variables, f (·) is a map-

ping between the velocity variables n
τ
and some real

numbers, ⌊·⌋ is the floor operator, and τ denotes the

time frame index. To be more precise, m
τ
indicate the

position of the music in a bar and n
τ
determine how

fast m
τ
evolve in time. This evolution is deterministic or

can be seen as probabilistic with a degenerate probabil-

ity distribution. The velocity variables, n
τ
, are directly

proportional to the tempo of the music and have the

following Markovian prior:

p(nτ |nτ−1) =

⎧

⎨

⎩

pn

2 , nτ = nτ−1 ± 1

1 − pn, nτ = nτ−1

0, otherwise,

(2)

where pn is the probability of a change in velocity.

When the velocity is at the boundaries, in other words

if n
τ
= 1 or n

τ
= N, the velocity does not change with

probability, pn, or transitions respectively to n
τ+1 = 2 or

n
τ+1 = N - 1 with probability 1 - pn. The modulo opera-

tor reflects the periodic nature of the model and ensures

that the position variables stay in the set {0, . . . , M - 1}.

In order to track a clave pattern from a sound mix-

ture, we extend the bar pointer model by adding a new

acoustic event variable. For each time frame τ, we define

an indicator variable r
τ
on a discrete state space of R

elements, which determines the acoustic event label we

are interested in. In our case, this state space may con-

sist of event labels such as {claves hit, bongo hit, . . . ,

silence}. Since we are dealing with clave patterns, we

can assume that the rhythmic structure of the percus-

sive sound is constant, as the clave is usually repeated

over the whole musical piece [15]. With this assump-

tion, we come up with the following transition model

for r
τ
. For simplicity, we assume that r

τ
= 1 indicates r

τ

= {claves hit}.

p(rτ |rτ−1, nτ−1, mτ−1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
R−1

, rτ = i, rτ−1 = 1, ∀i ∈ {2, . . . , R}

1, rτ = 1, rτ−1 �= 1, μ(mτ) = 1
1

R−1
, rτ = i, rτ−1 �= 1, μ(mτ) �= 1, ∀i ∈ {2, . . . , R}

0, otherwise

(3)

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 3 of 20

where m
τ
is defined as in Equation 1 and μ (·) is a

Boolean function which is defined as follows:

μ(m) =

{

1, m is a position in a bar where a claves hit occurs

0, otherwise.
(4)

Essentially, this transition model assumes that the

claves hits can only occur on the beat positions, which

are defined by the clave pattern. A similar idea for clave

modeling was also proposed in Wright et al. [16].

By eliminating the self-transition of the claves hits, we

prevent the “double detection” of a claves hit (i.e.,

detecting multiple claves hits in a very short amount of

time). Figure 1 shows the son clave pattern, and Figure

2 illustrates the state transitions of the tempo and

acoustic event model for the son clave. In the figure, the

shaded nodes indicate the positions, where the claves

hits can happen.

Note that, in the original bar pointer model definition,

there are also other variables such as the meter indicator

and the rhythmic pattern indicator variables, which we

do not use in our generative model.

2.2 Signal model

Şimşekli and Cemgil presented two probabilistic models

for acoustic event tracking in Şimşekli and Cemgil [7]

and demonstrated that these models are sufficiently

powerful to track different kinds of acoustic events such

as pitch labels [7,17,18] and percussive sound events

[19]. In our signal model, we use the same idea that was

presented in the acoustic event tracking model [7].

Here, the audio signal is subdivided into frames and

represented by their magnitude spectrum, which is cal-

culated with discrete Fourier transform. We define x
ν,τ

as the magnitude spectrum of the audio data with fre-

quency index ν and time frame index τ, where ν Î {1, 2,

. . . , F} and τ Î {1, 2, . . . , T}.

The main idea of the signal model is that each acous-

tic event (indicated by r
τ
) has a certain characteristic

spectral shape which is rendered by a specific hidden

volume variable, v
τ
. The spectral shapes, so-called spec-

tral templates, are denoted by t
ν,i. The ν index is again

the frequency index, and the index i indicates the event

labels. Here, i takes values between 1 and R, where R

has been defined as the number of different acoustic

events. The volume variables v
τ
define the overall ampli-

tude factor, by which the whole template is multiplied.

By combining the tempo and acoustic event model and

the signal model, we define our hybrid perception model

as follows:

n0 ∼ p(n0), m0 ∼ p(m0), r0 ∼ p(r0)

nτ |nτ−1 ∼ p(nτ |nτ−1)

mτ |mτ−1, nτ−1 =
(⌊

mτ−1 + f (nτ−1)
⌋)

mod M

rτ |rτ−1, mτ−1, nτ−1 ∼ p(rτ |rτ−1, mτ−1, nτ−1)

vτ ∼ G(vτ ; av, bv)

xν,τ |rτ , vτ ∼

I
∏

i=1

PO(xν,τ ; tν,ivτ)[rτ =i],

(5)

where, again, m
τ
indicate the position in a bar, n

τ
indi-

cate the velocity, r
τ
are the event labels (i.e., r

τ
= 1 indi-

cates a claves hit), v
τ
are the volume of the played

template, t
ν,i are the spectral templates, and finally, x

ν,τ

are the observed audio spectra. Besides, here, the prior

distrubutions, p(n
τ
|·) and p(r

τ
|·) are defined in Equa-

tions 2 and 3, respectively. [x] is the indicator function,

where [x] = 1 if x is true, [x] = 0 otherwise and the sym-

bols G and PO represent the Gamma and the Poisson

distributions respectively, where

G (x; a, b) = exp((a − 1) log x − bx − log Ŵ(a) + a log(b))

PO (x; λ) = exp(x log λ − λ − log Ŵ(x + 1)),
(6)

where Γ is the Gamma function. Figure 3 shows the

graphical model of the perception model. In the graphi-

cal model, the nodes correspond to probability distribu-

tions of model variables and edges to their conditional

dependencies. The joint distribution can be rewritten by

making use of the directed acyclic graph:

p(n1:T , m1:T , r1:T , v1:T , x1:F,1:T) =

T
∏

τ=1

(

p(nτ |pa(nτ))p(mτ |pa(mτ))p(rτ |pa(rτ))

p(vτ |pa(vτ))

F
∏

ν=1

p(xν,τ |pa(xν,τ))
)

,

(7)

where pa(c) denotes the parent nodes of c.

The Poisson model is chosen to mimic the behavior of

popular NMF models that use the KL divergence as the

error metric when fitting a model to a spectrogram

[20,21]. We also choose Gamma prior on v
τ
to preserve

Figure 1 The 3 -2 son clave pattern which is written in 4/4. The hits are on the 1st, 4th, 7th, 11th, and the 13th sixteenth beats of a bar.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 4 of 20

conjugacy and make use of the scaling property of the

Gamma distribution.

An attractive property of the current model is that we

can integrate out analytically the volume variables, v
τ
.

Hence, given that the templates t
ν,i are already known,

the model reduces to a standard hidden Markov model

with a Compound Poisson observation model and a

latent state space of Dn × Dm × Dr, where × denotes the

Cartesian product and Dn, Dm, and Dr are the state

spaces of the discrete variables n
τ
, m

τ
, and r

τ
,

respectively. The Compound Poisson model is defined

as follows (see Şimşekli [17] for details):

p(x1:F,τ |rτ = i) =

∫

dvτ exp

(

F
∑

ν=1

logPO(xν,τ ; vτ tν,i) + logG(vτ ; av, bv)

)

=
Ŵ

(

∑F
ν=1 xν,τ + av

)

Ŵ(av)
∏F

ν=1 Ŵ(xν,τ + 1)

b
av
v

∏F
ν=1 t

xν ,τ

ν,i
(

∑F
ν=1 tν,i + bv

)�F
ν=1xν,τ +av

.

(8)

Since we have a standard HMM from now on, we can

run the forward-backward algorithm in order to

mτ

nτ

...
...

...

1

2

3

7

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2 An example of state transition diagram of the position, velocity, and the acoustic event subspace for M = 16 and N = 9. The
lines represent examples of possible state transitions where f(n

τ
) = n

τ
. The shaded nodes indicate the position in a bar where claves can hit,

provided that the rhythm pattern is the son clave. In other words, for this particular model, μ (m) = 1, ∀m Î {0, 3, 6, 10, 12}.

F F

nτ−1 nτ

mτ−1 mτ

rτ−1 rτ

vτ−1 vτ

xν,τ−1 xν,τ

Figure 3 Graphical model of the perception model. This graph visualizes the conditional independence structure between the random
variables and allows the joint distribution to be rewritten by utilizing Equation 7. Note that we use the plate notation for the observed variables
where F distinct nodes (i.e., x

ν,τ where ν Î {1, . . . , F}) are grouped and represented as a single node in the graphical model. In this case, F is the
number or frequency bins.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 5 of 20

compute the filtering or smoothing densities. Also, we

can estimate the most probable state sequence by run-

ning the Viterbi algorithm. A benefit of having a stan-

dard HMM is that the inference algorithm can be made

to run very fast. This lets the inference scheme to be

implemented in real-time without any approximation

[22]. Detailed information about the forward backward

algorithm can be found in “Appendix A”.

One point here deserves attention. The Poisson obser-

vation model described in this section is not scale invar-

iant; i.e., turning up the volume can affect the

performance. The Poisson model can be replaced by an

alternative that would achieve scale invariance. For

example, instead of modeling the intensity of a Poisson,

we could assume conditionally Gaussian observations

and model the variance. This approach corresponds to

using a Itakura-Saito divergence rather than the Kull-

back-Leibler divergence [23]. However, in practice, scal-

ing the input volume to a specific level is sufficiently

good enough for acceptable tempo tracking

performance.

2.3 Training

As we have constructed our inference algorithm with

the assumption of the spectral templates t
ν ,i to be

known, they have to be learned at the beginning. In

order to learn the spectral templates of the acoustic

events, we do not need the tempo and the bar position

information of the training data. Therefore, we reduce

our model into the model that was proposed in Şimşekli
et al. [19], so that we only care about the label and the

volume of the spectral templates. The reduced model is

as follows:

r0 ∼ p(r0)

rτ |rτ−1 ∼ p(rτ |rτ−1)

vτ ∼ G(vτ ; av, bv)

xν,τ |rτ , vτ ∼

I
∏

i=1

PO(xν,τ ; tν,ivτ)[rτ =i].

(9)

In order to learn the spectral templates, in this study,

we utilize the expectation-maximization (EM) algorithm.

This algorithm iteratively maximizes the log-likelihood

via two steps:

E-step:

q(r1:T , v1:T)(n) = p(r1:T , v1:T |x1:F,1:T , t
(n−1)
1:F,1:I) (10)

M-step:

t
(n)
1:F,1:I = arg max

t1 :F,1:I

〈log p(r1:T , v1:T , x1:F,1:T | t1:F,1:I)〉q(r1:T ,v1:T)(n) (11)

where 〈 f (x)〉p(x) = ∫ p (x) f (x) dx is the expectation of

the function f(x) with respect to p(x).

In the E-step, we compute the posterior distributions

of r
τ
and v

τ
. These quantities can be computed via the

forward-backward algorithm (see “Appendix A”). In the

M-step, we aim to find the t
ν,i that maximize the likeli-

hood. Maximization over t
ν,i yields the following fixed-

point equation:

t
(n)
ν,i =

∑T
τ=1 〈[rτ = i]〉(n)xν,τ

∑T
τ=1 〈[rτ = i]vτ 〉

(n)
. (12)

Intuitively, we can interpret this result as the weighted

average of the normalized audio spectra with respect to

v
τ
.

3 The control model
The goal of the control module is to generate the neces-

sary control signals to accelerate and decelerate the

robot such that the performed rhythm matches the per-

formance by its tempo and relative position. As observa-

tions, the control model makes use of the bar position

and velocity (tempo) estimates m
τ
and n

τ
inferred by the

perception module and possibly their associated uncer-

tainties. In addition, the robot uses additional sensor

readings to determine its own state, such as the angular

velocity and angular position of its rotating motors axis

that is connected directly to the drum sticks.

3.1 Dynamic linear system formulation

Formally, at each discrete time step τ, we represent the

robot state by the motors angular position m̂τ ∈ [0, 2π)

and angular velocity n̂τ > 0. In our case, we assume

these quantities are observed exactly without noise.

Then, the robot has to determine the control action u
τ
,

which corresponds to an angular acceleration/decelera-

tion value of its motor.

For correctly following the music, our main goal is to

keep the relative distance between the observed perfor-

mer state as in Figure 4a and the robot state as in

Figure 4b. Here, states of the robot and music corre-

spond to points on a two-dimensional space of velocity

and bar position values. We can visualize the state space

symbolically the difference between these states as in

Figure 4c.

Hence, we can model the problem as a tracking pro-

blem that aims to keep the differences between the per-

ceived tempo and the sensors values close to zero.

Therefore, we define a new control state s
τ
as,

sτ =

[

�mτ

�nτ

]

(13)

�mτ =
m̂τ

2π
−

mτ

M
(14)

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 6 of 20

�nτ =
n̂τ

2π
−

nτ

M
(15)

Intuitively, the control state represents the drift of the

robot relative to the performer; the goal of the control-

ler will be to force the control state toward zero.

At each time step τ, the new bar position difference

between the robot and the music ∆m
τ
is the sum of the

previous bar position difference ∆m
τ - 1 and the pre-

vious difference in velocity ∆n
τ - 1. Additionally, the dif-

ference in velocity n
τ
can only be affected by the

acceleration of the robot motor u
τ
. Hence, the transition

model is explicitly formulated as follows,

sτ+1 =

[

1 1

0 1

]

sτ +

[

0

1

]

uτ + ετ (16)

where u
τ
Î ℝ is the control signal to accelerate the

motor and ε
τ
is the zero-mean transition noise with ΣA

covariance. Here, the first coordinate of s
τ
give the

amount of difference in the score position of the perfor-

mer and the robot.

For example, consider a case where the robot is lag-

ging behind, so ∆m
τ
<0. If the velocity difference ∆n

τ
is

also negative, i.e., the robot is “slower”, then in subse-

quent time steps, the difference will grow in magnitude

and the robot would lag further behind.

We write the model as a general linear dynamic sys-

tem, where we define the transition matrix

A =

[

1 1

0 1

]

and the control matrix B = [0, 1]Τ to get

sτ+1 = Asτ + Buτ + ετ (17)

To complete our control model, we need to specify an

appropriate cost function. While one can contemplate

various attractive choices, due to computational issues,

we constrain ourselves to the quadratic case. The cost

function should capture two aspects. The first one is the

amount of difference in the score position. Explicitly, we

do not care too much if the tempo is off as long as the

robot can reproduce the correct timing of the beats.

Hence, in the cost function, we only take the position dif-

ference into account. The second aspect is the smooth-

ness of velocity changes. If abrupt changes in velocity are

mτ

nτ

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Music state infered by the perception
model

m̂τ

n̂τ

π

8

π

4

3π

8

π

2

5π

8

π

8

π

4

3π

8

π

2

5π

8

3π

4

7π

8
π

9π

8

5π

4

11π

8

3π

4

13π

8

7π

4

15π

8
2π

(b) Robot state read from the sensors

∆mτ

∆nτ

-0.2

-0.1

0

0.1

0.2

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) Control state calculated as the normalized difference of the robot and music states

Figure 4 Illustration of the position and the velocity states.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 7 of 20

allowed, the resulting performance would not sound rea-

listic. Therefore, we also introduce a penalty on large

control changes.

The following cost function represents both aspects

described in the previous paragraph:

Cτ (sτ , uτ) = �m2
τ + κu2

τ
(18)

where � Î ℝ
+ is a penalty parameter to penalize large

magnitude control signals.

In order to keep the representation standard, the

quadratic cost function can also be shown in the matrix

formulation as,

Cτ (sτ , uτ) = sT
τ Qsτ + uT

τ Ruτ (19)

with explicit values, R = � and

Q =

[

1 0

0 0

]

(20)

Hence, after defining the corresponding linear

dynamic system, the aim of the controller is to deter-

mine the optimal control signal, namely the acceleration

of the robot motor u
τ
given the transition and the con-

trol matrices and the cost function.

3.2 Linear-quadratic optimal control

In contrast to the general stochastic optimal control

problems defined for general Markov decision processes

(MDPs), linear systems with quadratic costs have an

analytical solution.

When the transition model is written as in Equation

17, the cost function is defined as,

Cτ (sτ , uτ) = sT
τ Qsτ + uT

τ Ruτ τ = 0, 1, . . . , T − 1

CT(sT , uT) = sT
TQsT

(21)

the optimal control u∗
τ can be explicitly calculated for

each state s
τ
in the form of Bertsekas [24],

u∗(sτ) = L∗sτ (22)

where gain matrix L* is defined as,

L∗ = −(BTK∗B + R)−1BTK∗A (23)

Here, K* is the converged value of the recursively

defined discrete-time Riccati equations,

Kt = AT(Kt−1 − Kt−1B(BTKt−1B + Rt)
−1BTKt−1)A + Q

K0 = Q
(24)

for stationary transition matrix A, control maxtrix B

and state cost matrix Q.

Thus, in order to calculate the gain matrix L*, a fixed-

point iteration method with an initial point of K0 = Q is

used to find the converged K value of K* = limt ® ∞ Kt.

Finally, the control optimal action u∗
τ can be deter-

mined real-time simply by a vector multiplication at

each time step τ. Choosing the control action uτ = u∗
τ,

Figure 5 shows an example of a simulated system.

3.3 Imperfect knowledge case

In the previous section, both perceived and sensor

values are assumed to be true and noise free. However,

possible errors of the perception module and noise of

the sensors can be modeled as an uncertainty over the

states. Actually, the perception module already infers a

probability density over possible tempi and score posi-

tions. So, instead of a single point value, we can have a

probability distribution as our belief state. However, this

would bring us out of the framework of the linear-quad-

ratic control into the more complicated general case of

partially observed Markov decision processes (POMDPs)

[24].

Fortunately, in the linear-quadratic Gaussian case, i.e.,

where the system is linear and the errors of the sensors

and perception model are assumed to be Gaussian, the

optimal control can still be calculated very similarly to

the previous case as in Equation 22, by merely replacing

s
τ
with its expected value,

u∗(sτ) = L∗E[sτ]. (25)

This expectation is with respect to the filtering density

of s
τ
. Since the system still behaves as a linear dynami-

cal system due to the linear-quadratic Gaussian case

assumption, this filtering density can be calculated in

closed form using the Kalman filter [24].

In the sequel, we will denote this expectation as E[s
τ
] =

μ
τ
. In order to calculate the mean μ

τ
, perceived values m

τ

, n
τ
and the sensor values m̂τ, n̂τ are considered as the

observations. Explicitly, we define the observation vector

yτ =

(

�mτ

�nτ

)

(26)

Here, we assume the observation model

yτ = sτ + εO (27)

where εO is a zero-mean Gaussian noise with observa-

tion covariance matrix ΣO which can be explicitly calcu-

lated as the weighted sum of the covariances of the

perception model and the sensor noise as,

�O =
�perception

M2
+

�robot

(2π)2 (28)

where Σperception is the estimated covariance of the

tempo and position values inferred by the perception

module by moment matching and Σrobot is the covar-

iance of the sensor noises specific to the actuators.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 8 of 20

Given the model parameters, the expectation μ
τ
is cal-

culated at each time step by the Kalman filter.

μτ = Aμτ−1 + Gτ (yτ − Aμτ−1)

�τ = Pτ−1 − Gτ Pτ−1

(29)

with initial values of,

μ0 = y0

P0 = �A
(30)

Here, ΣA is the variance of the transition noise and A

is the transition matrix defined in Equation 17, G
τ
is

Kalman gain matrix and P
τ
is the prediction variance

defined as,

Pτ = A�τ−1AT + �A

Gτ = Pτ−1(Pτ−1 + �O)−1
(31)

4 Simulation results

Before implementing the whole system, we have evalu-

ated our perception and the control models via several

simulation scenarios. We have first evaluated the per-

ception model on different parameter and problem set-

tings, and then simulated the robot itself in order to

evaluate the performance of both models and the syn-

chronization level between them. At the end, we com-

bine the Lego robot with the perception module and

evaluate their joint performance.

4.1 Simulation of the perception model

In order to understand the effectiveness and the limita-

tions of the perception model, we have conducted sev-

eral experiments by simulating realistic scenarios. In our

experiments, we generated the training and the testing

data by using a MIDI synthesizer. We first trained the

templates offline, and then, we tested our model by uti-

lizing the previously learned templates.

At the training step, we run the EM algorithm which

we described in Section 2.3, in order to estimate the

spectral templates. For each acoustic event, we use a

short isolated recording where the acoustic events con-

sist of the claves hit, the conga hit (that is supposed to

be produced by the robot itself), and silence. We also

use templates in order to handle the polyphony in the

music.

In the first experiment, we tested the model with a

monophonic claves sound, where the son clave is played.

At the beginning of the test file, the clave is played in

medium tempo, where the tempo is increased rapidly in

a couple of bars. In this particular example, we set M =

640, N = 35, R = 3, F = 513, pn = 0:01, and the window

length = 1,024 samples under 44.1 kHz sampling rate.

With this parameter setting, the size of the transition

matrix (see “Appendix A”) becomes 67;200 × 67,200;

however, only 0:87% of this matrix is non-zero. There-

fore, by using sparse matrices, exact inference is still

viable. As shown in Figure 6, the model captures the

slight tempo change in the test file.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Δ m
τ

Δ
 n

τ

Figure 5 A trajectory with using optimal control u
τ
for � = 150. Here, the arrows denote the magnitude and the direction of the optimal

control action u
τ
as a function of the state. Since the control action is defined as acceleration or deceleration only, actions can only affect the

velocity. Here, the robot was initially both faster, and its position was ahead of the performer. Hence, using the corresponding optimal control
action, it tends to decelerate. However, it cannot directly catch the performer, since both the deceleration would affect the position in time, and
there is also an associated penalty with large controls. Hence, the tempo cannot change quickly and the robot follows a non-trivial trajectory
until convergence.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 9 of 20

The smoothing distribution, which is defined as p(n
τ
,

m
τ
, r

τ
| x1:F,1:T), needs all the audio data to be accumu-

lated. Since we are interested in online inference, we

cannot use this quantity. Instead, we need to compute

the filtering distribution p(n
τ
, m

τ
, r

τ
| x1:F,1:τ) or we

can compute the fixed-lag smoothing distribution p(n
τ
,

m
τ
, r

τ
| x1:F,1:τ + 1) in order to have smoother estimates

by introducing a fixed amount of latency (see “Appendix

A” for details). Figure 7 shows the filtering, smoothing,

and the fixed-lag smoothing distributions of the bar

position, and the velocity variables provided the same

audio data as in Figure 6.

In our second experiment, we evaluated the perception

model on a polyphonic texture, where the sounds of the

conga and the other instruments (brass section, synths,

bass, etc.) are introduced. In order to deal with the poly-

phony, we trained spectral templates by using a polypho-

nic recording which does not include the claves and conga

sound. In this experiment, apart from the spectral tem-

plates that are used in the previous experiment, we trained

two more spectral templates by using the polyphonic

recording that is going to be played during the robotic

performance. Figure 8 visualizes the performance of the

perception model on polyphonic audio. The parameter

setting is the same as the first experiment described above,

except in this example we set N = 40 and R = 5. It can be

observed that the model performs sufficiently good

enough for polyphonic cases. Besides, despite the fact that

the model cannot detect some of the claves hits, it can still

successfully track the tempo and the bar position.

Tempo

B
P

M

1 2 3 4 5 6 7 8 9

100

150

200

0

0.5

1

Bar Position

1 2 3 4 5 6 7 8 9

200

400

600

0

0.5

1

Acoustic Events

1 2 3 4 5 6 7 8 9

1

2

3

0

0.5

1

Audio Spectra x
ν,τ

Time (sec)

F
re

q
u
e
n
c
y

1 2 3 4 5 6 7 8 9

50

100

150

200

250

300

350

400

450

500

−14

−12

−10

−8

−6

−4

−2

0

2

Spectral Templates t
ν,i

Acoustic Events

F
re

q
u
e
n
c
y

0.5 1 1.5 2 2.5 3 3.5

50

100

150

200

250

300

350

400

450

500

Figure 6 The performance of the perception model for a monophonic claves sound. In the leftmost figure, the spectral templates of the
acoustic events are shown. These events consist of {1:claves hit, 2:silence, and 3:conga hit}. The topmost three figures illustrate the smoothing
distribution of the velocity variables n

τ
, bar position variables m

τ
, and the acoustic event indicator variables r

τ
. It can be observed that the

model correctly captures the tempo change in the audio. Besides, the model correctly detects the claves hits as well, where it does not detect
any false conga hits.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 10 of 20

4.2 Simulation of the robot

In this section, we wish to evaluate the convergence prop-

erties of the model under different parameter settings. In

particular, we want to evaluate the effect of the perception

estimates over the control model. Therefore, we have simu-

lated a synthetic system where the robot follows the model

described in Equation 17. Moreover, we simulate a conga

hit whenever the state reaches to a predefined position as

in Figure 9, and both signals from the clave and conga are

mixed and fed back into the perception module, to simu-

late a realistic scenario. Before describing the results, we

identify and propose solutions to some technicalities.

4.2.1 Practical issues

Due to the modulo operation of the bar position represen-

tation, using a simple subtraction operation causes irregu-

larities at boundaries. Such as, when robot senses a bar

position close to the end of a bar and the perception mod-

ules infers a bar position at the beginning of the next bar,

the bar difference ∆m
τ
would be calculated close to 1 and

the robot would tend to decelerate heavily. But, as soon as

robot advances to the next bar, the difference becomes

closer to 0. However, this time robot would have already

slowed down greatly and would need to accelerate in

order to get back on track. In order to circumvent this

obstacle, a modular difference operation is defined that

would return the smallest difference in magnitude,

�mτ =
m̂τ

2π
−

mτ

M
+ bτ (32)

where b
τ
, namely bar difference between the robot

and the perception module, was defined as,

bτ = arg min
bτ ∈{−1,0,1}

(

m̂τ

2π
−

mτ

M
+ bτ

)2

. (33)

Additionally, even though the optimal control u
τ
could

be in ℝ
+, due to the physical properties of the robot, it

is actually in a bounded set such as [0, umax] during the

experiments with robot. Hence, its value is truncated

when working with the robot in order to keep it in the

constrained set. However, while this violates our theore-

tical assumptions, the simulations are not affected from

this non-linearity.

4.2.2 Results

In the first experiment, we illustrate the effect of the

action costs on the convergence by testing different

values of �. First, � is chosen as 0:1 to see the behavior

of the system with low action costs. During the

m
τ

Filtering Dist. p(m
τ
 | x

1:F,1:τ
)

2 4 6 8 10 12

200

400

600

0

0.5

1

m
τ

Smoothing Dist. p(m
τ
 | x

1:F,1:T
)

2 4 6 8 10 12

200

400

600

0

0.5

1

Time (sec)

m
τ

Fixed−Lag Smoothing Dist. p(m
τ
 | x

1:F,1:τ+L
)

2 4 6 8 10 12

200

400

600

0

0.5

1

(a)

B
P

M

Filtering Dist. p(n
τ
 | x

1:F,1:τ
)

2 4 6 8 10 12

130

140

150

160

170

0

0.5

1

B
P

M

Smoothing Dist. p(n
τ
 | x

1:F,1:T
)

2 4 6 8 10 12

130

140

150

160

170

0

0.5

1

Time (sec)

B
P

M

Fixed−Lag Smoothing Dist. p(n
τ
 | x

1:F,1:τ+L
)

2 4 6 8 10 12

130

140

150

160

170

0

0.5

1

(b)

Figure 7 The filtering, smoothing, and the fixed-lag smoothing distributions of (a) the bar position variables m
τ
and (b) the velocity

variables n
τ
. The lag in the fixed-lag smoothing distribution is selected to be 2 s (i.e., lagging one bar behind in 120 beats per minute). It can

be observed that introducing a certain amount of lag yields smoother estimates and at the same time introduces a fixed amount of latency.
Note that this experiment contains a dramatic tempo change where the tempo is increased by 40 BPMs in approximately 8 s.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 11 of 20

Tempo

B
P

M

1 2 3 4 5 6 7 8 9

110

120

130

140

150

0

0.5

1

Bar Position

1 2 3 4 5 6 7 8 9

200

400

600

0

0.5

1

Acoustic Events

1 2 3 4 5 6 7 8 9

1

2

3

4

5
0

0.5

1

Audio Spectra x
ν,τ

Time (sec)

F
re

q
u
e
n
c
y

1 2 3 4 5 6 7 8 9

50

100

150

200

250

300

350

400

450

500

−10

−8

−6

−4

−2

0

2

4

Spectral Templates t
ν,i

Acoustic Events

F
re

q
u
e
n
c
y

1 2 3 4 5

50

100

150

200

250

300

350

400

450

500

Figure 8 The performance of the perception model on polyphonic audio. In this experiment, the acoustic events consist of {1:claves hit, 2:
silence, 3:conga hit, 4: polyphonic texture1, 5: polyphonic texture2}.

Left Disk Right Disk

0π

π

4

5π

4

0π

3π

4

7π

8

7π

4

15π

8

Figure 9 Robot’s disks. One complete cycle of a disk completes a one 4/4 bar in the music. The disks are rotated with the same speed over
the congas. The positions of the sticks are adjusted according to the positions of the conga hits specified by the sheet music in Figure 16.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 12 of 20

simulation, the robot managed to track the bar position

as expected as in Figure 10a. However, while doing so,

it did not track the velocity, but instead, it fluctuated

around its actual value as shown in Figure 10b.

In the following experiment, while keeping � = 0.1,

the cost function is chosen as,

Cτ (sτ , uτ) = s′τ

[

1 0

0 1

]

sτ + u′
τ [κ]uτ (34)

in order to make the robot explicitly track velocity in

addition to bar position. However, as in Figure 10c and

10d it was easily affected by the perception module

errors and fluctuate a lot before converging. This beha-

vior mainly occurs because the initial velocity of the

robot is zero and the robot tends to accelerate quickly

in order to track the tempo of the music. However, with

this rapid increase in the velocity, its bar position gets

ahead of the bar position of the music. As a response

the controller would decelerate, and this would cause

the fluctuating behavior until the robot reaches a stable

tracking position.

In order to get smooth changes in velocity, � is cho-

sen larger (� = 150) to penalize large magnitude con-

trols. In this setting, in addition to explicit tracking of

bar position, robot also implicitly tracked the velocity

without making big jumps as in Figure 11. In addition

to good tracking results, the control module was also

more robust against the possible errors of the percep-

tion module. As seen in Figure 12, even the perception

module made a significant estimation error in the begin-

ning of the experiment, the controller module was only

slightly affected by this error and kept on following the

correct track with a small error.

As a general conclusion about the control module, it

could not track the performer in the first bar of the

songs, because the estimations of the perception module

are not yet accurate, and the initial position of the robot

is arbitrary. However, as soon as the second bar starts,

control state, expected normalized difference between

the robot state and the music state, starts to converge to

the origin.

Also note that, when � is chosen close to 0, velocity

values of the robot tend to oscillate a lot. Even sometimes

they became 0 as in Figure 10a and 10c. This means that

the robot has to stop in order to wait the performer

because of its previous actions with high magnitudes.

In the experiments, we observe that the simulated sys-

tem is able to converge quickly in a variety of parameter

0 5 10 15
0

500

1000

B
a
r

P
o
s
io

n

Position

Time (sec)
0 5 10 15

120

125

130

135

140

T
e
m

p
o
 (

B
P

M
)

Velocity

Time (sec)

0 5 10 15
0

pi/2

pi

3pi/2

2pi

R
o
b
o
t’
s
 P

o
s
it
io

n

Time (sec)
0 5 10 15

0

pi/32

pi/16

3pi/32

pi/8

R
o
b
o
t’
s
 V

e
lo

c
it
y

Time (sec)

(a) Simulation results for κ = 0.1

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Δ m
τ

Δ
 n

τ

τ = 0

τ = 1

τ = 2

τ = 3

τ = 4

(b) Trajectory of control state for κ = 0.1

0 5 10 15
0

500

1000

B
a
r

P
o
s
io

n

Position

Time (sec)
0 5 10 15

120

130

140

150

T
e
m

p
o
 (

B
P

M
)

Velocity

Time (sec)

0 5 10 15
0

pi/2

pi

3pi/2

2pi

R
o
b
o
t’
s
 P

o
s
it
io

n

Time (sec)
0 5 10 15

0

pi/32

pi/16

3pi/32

pi/8

R
o
b
o
t’
s
 V

e
lo

c
it
y

Time (sec)

(c) Simulation results for κ = 0.1 with ve-
locity difference cost

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Δ m
τ

Δ
 n

τ

τ = 0

τ = 1 τ = 2

τ = 3

τ = 4

(d) Trajectory of control state for κ = 0.1
with velocity difference cost

Figure 10 Simulation results for � = 0.1. Plotted in red, the robot aims to track the position inferred by the perception module plotted in
blue.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 13 of 20

settings, as can be seen from control state diagrams. We

omit quantitative results for the synthetic model at this

stage and provide those for the Lego robot. In this final

experiment, we combine the Lego robot with the per-

ception module and run an experiment with a mono-

phonic claves example with steady tempo. Here, we

estimate the tempo and score position and try to syn-

chronize the robot via optimal control signals. We also

compare the effects of different cost functions provided

that the clave is played in steady tempo, and the other

parameters are selected to be similar to the ones that

are described in synthetic data experiments. While

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Δ m
τ

Δ
 n

τ

τ = 0

τ = 1τ = 2

τ = 3

τ = 4

Figure 11 Trajectory of control state for � = 150.

0 5 10 15
0

500

1000

B
a
r

P
o
s
io

n

Position

Time (sec)
0 5 10 15

120

125

130

135

140

T
e
m

p
o
 (

B
P

M
)

Velocity

Time (sec)

0 5 10 15
0

pi/2

pi

3pi/2

2pi

R
o
b
o
t’
s
 P

o
s
it
io

n

Time (sec)
0 5 10 15

0

pi/32

pi/16

R
o
b
o
t’
s
 V

e
lo

c
it
y

Time (sec)

Figure 12 Simulation results for � = 150.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 14 of 20

perceptually more relevant measures can be found, for

simplicity, we just monitor and report the mean square

error.

In Figure 13a(b) shown are the average difference

between the position (velocity) of music and the posi-

tion (velocity) of the robot. In these experiments, we

tried two different cost matrices

Q =

[

1 0

0 1

]

, Qpos =

[

1 0

0 0

]

. (35)

Here, Q penalizes both the position and velocity error,

where Qpos penalizes only the position. The results seem

to confirm our intuition: the control cost parameter �

needs to be chosen carefully to tradeoff elasticity versus

rigidity. The figures visualize the corresponding control

behaviors for the three different parameter regimes: con-

verging with early fluctuations, close-to-optimal conver-

ging and converging slowly, respectively.

We also observe that the cost function taking into

account only the score position difference is competitive

generally. Considering the tempo estimate ∆n
τ
does not

significantly improve the tracking performance other

than the extremely small chosen � <1 which actually is

not an appropriate choice for �.

5 Experiments with a Lego robot

In this section, we describe a prototype system for musi-

cal interaction. The system is composed of a human

claves player, a robot conga player, and a central com-

puter as shown in Figure 14. The central computer lis-

tens to the polyphonic music played by all parties and

jointly infers the tempo, and bar position, and the

acoustic event. We will describe this quantities in the

following section. The main goal of the system is to

illustrate the feasibility of coupling listening (probabilis-

tic inference) with taking actions (optimal control).

Since the microcontroller used on the robot is not

powerful enough to run the perception module, the per-

ception module runs on the central computer. The per-

ception module sends the tempo and bar position

information to the robot through a Bluetooth connec-

tion. On the other hand, the control module runs on

the robot by taking into account its internal motor

speed and position sensors and the tempo and bar posi-

tion information. The central computer also controls a

MIDI synthesizer that plays the other instrumental parts

upon the rhythm.

5.1 The robot

The conga player robot is designed with Lego Mind-

storm NXT programmable robotics kit. The kit includes

a 48-MHz, 32-bits microcontroller with 64 KB memory.

The controller is capable of driving 3 servo motors and

4 sensors of different kinds. The controller provides a

USB and a Bluetooth communication interface.

The robot plays the congas by hitting them with sticks

attached to rotating disks as shown in Figure 15. The

disks are rotated by a single servo motor, attached to

another motor which adjusts the distance between the

congas and the sticks at the beginning of the experi-

ment. Once this distance calibration is done (with the

help of the human supervisor), the motor locks in its

final position, and disks start to rotate to catch the

tempo of the music. Although it looks more natural, we

did not choose to build a robot with arms hitting the

10
1

10
2

10
3

10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Δ m
τ

κ

M
S

E

Pos. Penalty

Pos+Vel Penalty

(a) MSE of position estimates

10
1

10
2

10
3

10
4

3

4

5

6

7

8

9

10
x 10

−6
Δ n

τ

κ

M
S

E

Pos. Penalty

Pos+Vel Penalty

(b) MSE of velocity estimates

Figure 13 Mean-squared errors as a function of �. The blue (square) and red (diamond) correspond for the cost matrices Q and Qpos,
respectively as defined in Equation 35.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 15 of 20

Claves

Lego Robot

Loud
Speaker

Perception

Midi
Synthesizer

Controller

Tempo

Bar Position

Motor Feedback

Motor Command

Figure 14 The overall system. The claves are played by a human performer. The tempo and bar position of the claves rhythm is perceived by
a central computer, and the song, accompanying the rhythm, is synthesized by a MIDI synthesizer. The central computer also sends the tempo
and position information to a conga playing Lego robot.

Figure 15 The Lego robot. Disks are attached on the same spindle, which is rotated by one servo motor. The other servo helps to adjust the
distance between the sticks and the congas.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 16 of 20

congas with drum sticks because the Lego kits are not

appropriate to build robust and precisely controllable

robotics arms,

The rhythm to be played by the robot is given in

Figure 16. The robot is supposed to hit the left conga at

3rd and 11th, and the right conga at 7th, 8th, 15th and

16th sixteenth beats of the bar. In order to play this

rhythm by constantly rotating disks, the rhythm must be

hardcoded on the disks. For each conga, we designed a

disk with sticks attached in appropriate positions such

that each stick corresponds to a conga hit as shown in

Figure 9. As the disks rotate, the sticks hit the congas at

the time instances specified in the sheet music.

5.2 Evaluation of the system

We evaluated the real-time performance of our robot con-

troller by feeding the tempo and score position estimates

directly from the listening module. In the first experiment,

we generated synthetic data that simulate a rhythm start-

ing at a tempo of 60 bpm; initially accelerating followed by

a ritardando. These data, without any observation noise,

are sent to the robot in real time; e.g., the bar position and

velocity values are sent in every 23 ms. The controller

algorithm is run on the robot. While the robot rotates, we

monitor its tachometer as an accurate estimate of its posi-

tion and compare it with target bar position.

We observe that the robot successfully followed the

rhythm as shown in Figure 17. In the second experiment

we used the same setup but this time the output of the

tempo tracker is send to the robot as input. The response

of the robot is given in Figure 18. The errors in tempo at

the beginning of the sequence comes from the tracker’s

error in detecting the actual bar position.

The mean-squared errors for the bar position and velo-

city for the experiments are given in the Table 1. We see

that the robot is able to follow the score position very

accurately while there are relatively large fluctuations in

the instantaneous tempo. Remember that in our cost func-

tion 21, we are not penalizing the tempo discrepancy but

only errors in score position. We believe that such con-

trolled fluctuations make the timing more realistic and

human like.

6 Conclusions

In this paper, we have described a system for robotic

interaction, especially useful for percussion performance

that consists of a perception and a control module. The

perception model is a hierarchical HMM that does

online event detection and separation while the control

module is based on linear-quadratic control. The com-

bined system is able to track the tempo quite robustly

and respond in real time in a flexible manner.

One important aspect of the approach is that it can be

trained to distinguish between the performance sounds

and the sounds generated by the robot itself. In syn-

thetic and real experiments, the validity of the approach

is illustrated. Besides, the model incorporates domain-

specific knowledge and contributes to the area of Com-

putational Ethnomusicology [25].

We also realized that and we will investigate another

platform for such demonstrations and evaluations as a

future work.

While our approach to tempo tracking is conceptually

similar to the musical accompaniment systems reviewed

earlier, our approach here has a notable novelty, where we

formulate the robot performance as a linear quadratic

control problem. This approach requires only a handful of

parameters and seems to be particularly effective for gen-

erating realistic and human-like expressive musical perfor-

mances, while being straightforward to implement. In

some sense, we circumvent a precise statistical characteri-

zation of expressive timing deviations and still are able to

generate a variety of rhythmic “feels” such as rushing or

lagging quite easily. Such aspects of musical performance

are hard to quantify objectively, but the reader is invited to

visit our web page for audio examples and a video demon-

stration at http://www.cmpe.boun.edu.tr/~umut/orum-

bata/. As such, the approach has also potential to be

useful in generating MIDI accompaniments that mimics a

real human musicians behavior, control of complicated

physical sound synthesis models or control of animated

visual avatars.

Clearly, a Lego system is not solid enough to create con-

vincing performances (including articulation and

dynamics); however, our robot is more a proof of concept

rather than a complete robotic performance system, and

one could anticipate several improvements in the hard-

ware design. One possible improvement for the perception

model is to introduce different kinds of rhythmic patterns,

i.e., clave patterns, to the perception model. This can be

done by utilizing the rhythm indicator variable, which is

presented in Whiteley et al. [8]. One other possible

improvement is to introduce continuous state space for

bar position and the velocity variables in order to have

more accurate estimates and eliminate the computational

needs of the large state space of the perception model.

However, in that case exact inference will not be tractable,

therefore, one should resort to approximate inference

schemata, as discussed, for example in Whiteley et al. [26].

As for the control system, it is also possible to investigate

Moderate h = 120

] 44
1 Q ^ Q ^ ^ Q ^ Q ^ ^

L L
Figure 16 The conga rhythm to be played by the robot.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 17 of 20

http://www.cmpe.boun.edu.tr/~umut/orumbata/
http://www.cmpe.boun.edu.tr/~umut/orumbata/

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Bar Position

Time (seconds)

B
a
r

P
o
s
it
io

n

Robot’s Position

Tracker’s Position

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Tempo

Time (seconds)

T
e
m

p
o
 (

b
e
a
t/
m

in
)

Robot Speed

Tracker Speed

Figure 17 Robots performance with synthetic data.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Bar Position

Time (seconds)

B
a
r

P
o
s
it
io

n

Robot’s Position

Tracker’s Position

0 5 10 15 20
0

50

100

150

200

250

300

Tempo

Time (seconds)

T
e
m

p
o
 (

b
e
a
t/
m

in
)

Robot Speed

Tracker Speed

Figure 18 Robots performance with real data from beat tracker.

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 18 of 20

POMDP techniques to deal with more diverse cost func-

tions or extend the set of actions for controlling, besides

timing, other aspects of expressive performance such as

articulation, intensity, or volume.

Appendix

A Inference in the perception model

Inference is a fundamental issue in probabilistic model-

ing where we ask the question “what can be the hidden

variables as we have some observations?” [27]. For

online processing, we are interested in the computation

of the so-called filtering density: p(n
τ
, m

τ
, r

τ
| x1:F,1:τ),

that reflects the information about the current state {n
τ
,

m
τ
, r

τ
} given all the observations so far x1:F,1:τ . The fil-

tering density can be computed online, however the

estimates that can be obtained from it are not necessa-

rily very accurate as future observations are not

accounted for.

An inherently better estimate can be obtained from

the so-called fixed-lag smoothing density, if we can

afford to wait a few steps more. In other words, in order

to estimate {n
τ
, m

τ
, r

τ
}, if we accumulate L more

observations, at time τ + L, we can compute the distri-

bution p(n
τ
, m

τ
, r

τ
| x1:F,1:τ + L) and estimate {n

τ
, m

τ
,

r
τ
} via:

{n∗
τ , m∗

τ , r∗
τ } = arg max

nτ nτ ,rτ

p(n1:τ+L, m1:τ+L, r1:τ+L |x1:F,1:τ+L). (36)

Here, L is a specified lag and it determines the trade

off between the accuracy and the latency.

As a reference to compare against, we compute an

inherently batch quantity: the most likely state trajectory

given all the observations, the so-called the Viterbi path

{n∗
1:T , m∗

1:T , r∗
1:T} = arg max

n1:T ,m1:T ,r1:T

p(n1:T , m1:T , r1:T |x1:F,1:T). (37)

This quantity requires that we accumulate all data

before estimation and should give a high accuracy at the

cost of very long latency.

Briefly, the goal of inference in the HMM is comput-

ing the filtering and the (fixed-lag) smoothing distribu-

tions and the (fixed-lag) Viterbi path. These quantities

can be computed by the well-known forward-backward

and the Viterbi algorithms.

Before going into details, we define the variable Ψ
τ
≡

[n
τ
, m

τ
, r

τ
], which encapsulates the state of the system

at time frame τ. By introducing this variable, we reduce

the number of latent variables to one, where we can

write the transition model as follows:

p(�0) = p(n0)p(m0)p(r0),

p(�τ |�τ−1) = p(nτ |nτ−1)p(mτ |nτ−1, mτ−1)p(rτ |nτ−1, mτ−1, rτ−1).
(38)

Here p(m
τ
|·) is the degenerate probability distribution,

which is defined in Equation 1. For practical purposes,

the set of all possible states (in Dn × Dm × Dr) can be

listed in a vector Ω and the state of the system at the

time slice τ can be represented as Ψτ = Ω (j), where j Î

{1, 2, . . . , (NMR)}. The transition matrix of the HMM,

A can be constructed by using Equation 38, where

A(i, j) = p(�τ+1 = �(i)|�τ = �(j)). (39)

For big values of N, M, and R this matrix becomes

extremely large, but sufficiently sparse so that making

exact inference is viable.

Now, we can define the forward (a) and the backward

(b) messages as follows:

ατ (�τ) = p(�τ , x1:F,1:τ),

βτ (�τ) = p(x1:F,τ+1:T |�τ).
(40)

We can compute these messages via the following

recursions:

ατ (�τ) = p(x1:F,τ |�τ)
∑

�τ−1

p(�τ |�τ−1)ατ−1(�τ−1),

βτ (�τ) =
∑

�τ+1

p(�τ+1 |�τ)p(x1:F,τ+1 |�τ+1) βτ+1(�τ+1).
(41)

Here, a0(Ψ0) = p(Ψ0), bT (ΨT) = 1 [28], and p(x1:F,τ |

Ψ
τ
) ≡ p(x1:F,τ | rτ). Once these messages are computed,

the smoothing distribution can be computed easily by

multiplying the forward and backward messages as

p(�τ |x1:F,1:T) ∝ ατ (�τ)βτ (�τ), (42)

where ∝ denotes the proportionality up to a multipli-

cative constant. Besides, the Viterbi path is obtained by

replacing the summations over r
τ
by maximization in

the forward recursion.

Acknowledgements

We are grateful to Prof. Levent Akin and the members of the AI lab for
letting us to use their resources (lab space and Lego© robots) during this
study. We also thank Antti Jylhä and Cumhur Erkut of the acoustics labs
Aalto University, Finland for the fruitful discussions. We also want to thank
Sabanc³ University Music Club (Müzikus) for providing the percussion
instruments. We would like to also thank Ömer Temel and Alper
Güngörmüşler for their contributions in program development. We thank
the reviewers for their constructive feedback. This work is partially funded by
The Scientific and Technical Research Council of Turkey (TÜBİTAK) grant
number 110E292, project “Bayesian matrix and tensor factorisations
(BAYTEN)” and Boğaziçi University research fund BAP 5723. The work of
Umut Şimşekli and Orhan Sönmez is supported by the Ph.D. scholarship
(2211) from TÜBİTAK.

Table 1 Mean-squared errors for real-time robot

performance

∆m ∆n

Synthetic data 0.04 1.98 × 10-6

Tempo-tracker data 0.08 2.83 × 10-5

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 19 of 20

Authors’ contributions

UŞ and ATC conceived and designed the perception model. OS and ATC
carried out the control model. UŞ and BK implemented the Lego© robot. UŞ,
OS, BK, and ATC wrote the paper. All authors read and approved the final
manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 16 April 2011 Accepted: 3 February 2012

Published: 3 February 2012

References

1. T Otsuka, K Nakadai, T Takahashi, T Ogata, HG Okuno, Real-time audio-to-
score alignment using particle filter for coplayer music robots. EURASIP J
Adv Signal Process. 2011, 2:1–2:13 (2011)

2. A Kapur, A history of robotic musical instruments, in International Computer

Music Conference (ICMC) (September 2005)
3. M Goto, Y Muraoka, Real-time beat tracking for drumless audio signals:

chord change detection for musical decisions. Speech Commun. 27(3-4),
311–335 (1999). doi:10.1016/S0167-6393(98)00076-4

4. T-h Kim, SI Park, SY Shin, Rhythmic-motion synthesis based on motion-beat
analysis. in ACM SIGGRAPH 2003 Papers 392–401 (2003)

5. YE Kim, AM Batula, D Grunberg, DM Lofaro, J Oh, P Oh, Developing
humanoids for musical interaction, in International Conference on Intelligent

Robots and Systems (2010)
6. DM Lofaro, P Oh, J Oh, Y Kim, Interactive musical participation with

humanoid robots through the use of novel musical tempo and beat
tracking techniques in the absence of auditory cues. in 2010 10th IEEE-RAS

International Conference on Humanoid Robots (Humanoids) 436–441 (2010)
7. U Şimşekli, AT Cemgil, Probabilistic models for real-time acoustic event

detection with application to pitch tracking. J New Music Res. 40, 175–185
(2011). doi:10.1080/09298215.2011.573561

8. N Whiteley, AT Cemgil, SJ Godsill, Bayesian modelling of temporal structure
in musical audio. in Proceedings of International Conference on Music

Information Retrieval (2006)
9. K Yoshii, K Nakadai, T Torii, Y Hasegawa, H Tsujino, K Komatani, T Ogata, HG

Okuno, in IROS 1743–1750 (2007)
10. K Murata, K Nakadai, K Yoshii, R Takeda, T Torii, HG Okuno, Y Hasegawa, H

Tsujino, A robot uses its own microphone to synchronize its steps to
musical beats while scatting and singing. IROS 2459–2464 (2008)

11. R Dannenberg, An on-line algorithm for real-time accompaniment. in
International Computer Music Conference 193–198 (1984)

12. N Orio, An automatic accompanist based on hidden markov models, in in
Proceedings of the 7th Congress of the Italian Association for Artificial

Intelligence on Advances in Artificial Intelligence, (ser. AI*IA 01. London:
Springer, 2001), pp. 64–69 http://portal.acm.org/citation.cfm?
id=648152.751104

13. AT Cemgil, HJ Kappen, Monte carlo methods for tempo tracking and
rhythm quantization. J Artif Intell Res. 18, 45–81 (2003)

14. C Raphael, Music plus one and machine learning. in International

Conference on Machine Learning 21–28 (2010)
15. T Völkel, J Abeßer, C Dittmar, H Großmann, Automatic genre classification

of latin american music using characteristic rhythmic patterns, in
Proceedings of the 5th Audio Mostly Conference: A Conference on Interaction

with Sound, vol. 16. (ser. AM ‘10. New York, NY, USA: ACM, 2010), pp. 1–16:7
http://doi.acm.org/10.1145/1859799.1859815

16. M Wright, WA Schloss, G Tzanetakis, Analyzing afro-cuban rhythms using
rotation-aware clave template matching with dynamic programming. in
ISMIR 647–652 (2008)

17. U Şimşekli, Bayesian methods for real-time pitch tracking, (Master’s thesis,
Boğaziçi University, 2010)

18. U Şimşekli, AT Cemgil, A comparison of probabilistic models for online
pitch tracking. in Proceedings of the 7th Sound and Music Computing

Conference (SMC) (July 2010)
19. U Şimşekli, A Jylhä, C Erkut, AT Cemgil, Real-time recognition of percussive

sounds by a model-based method. EURASIP J Adv Signal Process (in press)
(2011)

20. C Févotte, N Bertin, J-L Durrieu, Nonnegative matrix factorization with the
Itakura-Saito divergence. with application to music analysis. Neural Comput.
21(3), 793–830 (2009). doi:10.1162/neco.2008.04-08-771

21. E Vincent, N Bertin, R Badeau, Harmonic and inharmonic nonnegative
matrix factorization for polyphonic pitch transcription. in ICASSP (2008)

22. E Alpaydin, Introduction to Machine Learning (Adaptive Computation and

Machine Learning), (Cambridge: The MIT Press, 2004)
23. C Fevotte, AT Cemgil, Nonnegative matrix factorisations as probabilistic

inference in composite models. in Proceedings of the 17th European Signal

Processing Conference (EUSIPCO’09) (2009)
24. D Bertsekas, Dynamic Programming and Optimal Control, (Belmont: Athena

Scientific, 1995)
25. G Tzanetakis, A Kapur, WA Schloss, M Wright, Computational eth-

nomusicology. J Interdiscip Music Stud. 1(2), 1–24 (2007)
26. N Whiteley, AT Cemgil, S Godsill, Sequential inference of rhythmic structure

in musical audio. in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing ICASSP 2007. 4, IV-1321–IV-1324
(2007)

27. O Cappé, E Moulines, T Ryden, Inference in Hidden Markov Models (Springer

Series in Statistics), (Secaucus: Springer, 2005)
28. D Barber, AT Cemgil, Graphical models for time series. IEEE Signal Process

Mag Special Issue Graph. Models. 27(27), 18–28 (2010)

doi:10.1186/1687-4722-2012-8
Cite this article as: Şimşekli et al.: Combined perception and control for
timing in robotic music performances. EURASIP Journal on Audio, Speech,
and Music Processing 2012 2012:8.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Şimşekli et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:8

http://asmp.eurasipjournals.com/content/2012/1/8

Page 20 of 20

http://portal.acm.org/citation.cfm?id=648152.751104
http://portal.acm.org/citation.cfm?id=648152.751104
http://doi.acm.org/10.1145/1859799.1859815
http://www.ncbi.nlm.nih.gov/pubmed/18785855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18785855?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 The perception model
	2.1 Tempo and acoustic event model
	2.2 Signal model
	2.3 Training

	3 The control model
	3.1 Dynamic linear system formulation
	3.2 Linear-quadratic optimal control
	3.3 Imperfect knowledge case

	4 Simulation results
	4.1 Simulation of the perception model
	4.2 Simulation of the robot
	4.2.1 Practical issues
	4.2.2 Results

	5 Experiments with a Lego robot
	5.1 The robot
	5.2 Evaluation of the system

	6 Conclusions
	Appendix
	A Inference in the perception model

	Acknowledgements
	Authors' contributions
	Competing interests
	References

