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Abstract 

Achieving accurate speed prediction provides the most critical support parameter for high-level energy manage-

ment of plug-in hybrid electric vehicles. Nowadays, people often drive a vehicle on fixed routes in their daily travels 

and accurate speed predictions of these routes are possible with random prediction and machine learning, but 

the prediction accuracy still needs to be improved. The prediction accuracy of traditional prediction algorithms is 

difficult to further improve after reaching a certain accuracy; problems, such as over fitting, occur in the process 

of improving prediction accuracy. The combined prediction model proposed in this paper can abandon the tran-

sitional dependence on a single prediction. By combining the two prediction algorithms, the fusion of prediction 

performance is achieved, the limit of the single prediction performance is crossed, and the goal of improving vehicle 

speed prediction performance is achieved. In this paper, an extraction method suitable for fixed route vehicle speed 

is designed. The application of Markov and back propagation (BP) neural network in predictions is introduced. Three 

new combined prediction methods, all named Markov and BP Neural Network (MBNN) combined prediction algo-

rithm, are proposed, which make full use of the advantages of Markov and BP neural network algorithms. Finally, the 

comparison among the prediction methods has been carried out. The results show that the three MBNN models have 

improved by about 19%, 28%, and 29% compared with the Markov prediction model, which has better performance 

in the single prediction models. Overall, the MBNN combined prediction models can improve the prediction accu-

racy by 25.3% on average, which provides important support for the possible optimization of plug-in hybrid electric 

vehicle energy consumption.

Keywords: Plug-in hybrid electric vehicles, Energy consumption, Vehicle speed prediction, Markov, BP neural 

networks, Combined prediction model
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1 Introduction
Plug-in hybrid electric vehicles (PHEVs) are gradually 

becoming the main mode of transportation to replace 

fuel vehicles. Energy-saving and emission reduction has 

received increased attention [1, 2]. Energy management is 

a key technology, necessary to improve PHEVs fuel econ-

omy [3, 4]. �e rule-based energy management strategy is 

mature [5, 6]; however, it has a lot of restrictions, such as 

the changes in vehicle parameters, driving conditions and 

driver habits [7, 8], and difficulty achieving significant 

optimization results. �e optimized energy management 

strategy can achieve better control effects for improving 

vehicle fuel economy [9], but the real-time performance 

of the strategy is poor. For example, the global optimi-

zation control can optimize the most reasonable energy 

management strategy under the condition of grasping the 

overall driving conditions [10]. However, the actual driv-

ing conditions cannot be obtained during vehicle travel; 

therefore, the application of the optimized energy man-

agement strategy is limited. �e development of intelli-

gent transportation systems has provided opportunities 

for improving the performance of energy management 

strategies for PHEV [11]. Considering the characteris-

tics of the abovementioned energy management strate-

gies, a predictive control [12, 13], with both optimization 
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and real-time, is presented and widely followed, which 

is based on the predictive energy management strategy 

[14, 15]. Furthermore, the vehicle speed prediction model 

becomes a necessary module.

�e vehicle speed prediction model can be divided into 

real-time learning and offline learning. Each model is 

most suitable for different types of problems. Real-time 

learning [16] is a data prediction model for online learn-

ing. Offline learning [17] is a data prediction model based 

on historical data. Real-time learning is more varied and 

offline learning is simple to use, but the real-time learn-

ing build environment is more complex when developing 

energy management strategies. Nowadays, people’s lives 

are gradually regularized. Vehicles, as a means of trans-

portation for people’s daily travel, are on a fixed route. 

With the passage of time, the vehicle speed data on the 

fixed route begins to reflect the characteristics of the 

fixed driving cycle. �e offline learning model perfectly 

reflects these inherent characteristics after incorporating 

this feature. �erefore, it is not necessary to repeat real-

time learning of vehicle speed data on the fixed route. In 

this case, offline learning is more appropriate than real-

time learning.

For the study of offline learning models, two commonly 

used models are utilized, namely, random prediction 

represented by Markov [18] and machine learning rep-

resented by a neural network [19]. Ref. [20] proposed a 

vehicle speed prediction method based on driving data, 

using deep learning of a neural network to predict future 

short-term vehicle speed. However, deep learning relies 

heavily on driving data, and the prediction accuracy will 

drop sharply because of driving data that occurs outside 

of learning. Ref. [21] proposed three methods for vehi-

cle speed prediction based on neural networks, BP, layer 

recurrent (LR), and radial basis function (RBF). However, 

the prediction power of neural networks is limited by fit-

ting, and the prediction error is a little large, such that 

the RMSE is about 2.28 km/h. Ref. [22] designed a high-

order Markov velocity predictor combined with a linear 

programming algorithm, and the speed prediction accu-

racy was significantly improved compared with the first-

order Markov. Although the predicting vehicle speed 

within the training speed can ensure high accuracy, the 

predicted vehicle speed outside the training speed can-

not be followed well. In this case, the prediction accuracy 

is 4.47 km/h, which is relatively large. Ref. [23] designed 

an algorithm based on the velocity constrained Markov 

stochastic model to predict vehicle speed. �e generated 

velocity trajectory was used to predict the speed of each 

cycle on the fixed route ahead, but the predicted veloc-

ity error is large, such that the RMSE is about 3.8 km/h. 

Ultimately, prediction accuracy has become a key issue in 

predictive models. In a word, achieving accurate vehicle 

speed prediction is a challenge.

From the above research, it can be found that many 

vehicle speed prediction models have their advantages, 

but also reflect their shortcomings. For example, con-

tradiction between the high accuracy and generalization 

exists in the vehicle speed prediction model of the neural 

network structure; Markov is good at grasping the global 

speed change state, but the prediction accuracy is poor. 

�erefore, the research can proceed toward the direction 

of exploring the advantages of each prediction model to 

form a new combined prediction algorithm. However, 

in recent years of research on vehicle speed prediction, 

the combined prediction model has been rarely studied. 

Ref. [24] uses a neural network model based on histori-

cal speed to predict the average traffic speed of a road 

segment. �en, the Hidden Markov models (HMMs) are 

used to represent the statistical relationship between the 

average vehicle speed and the vehicle speed. However, 

the prediction curve derived from the combination is not 

very good.

�is paper intends to make full use of the characteris-

tics of Markov and BP neural network prediction mod-

els to form a combined prediction model. �e predicted 

vehicle speed obtained from Markov with the charac-

teristics of the following state of speed change, and then 

local high-accuracy fitting through the BP neural net-

work, will be utilized to obtain better prediction results 

of the vehicle speed than the two prediction methods. 

�e arrangement of this article is as follows: �e sec-

ond part introduces the source of road driving cycle data 

used by the prediction model. �e third part describes 

the vehicle speed combined prediction model and the 

Markov speed prediction model, as well as the BP neural 

network model used in the model. �e fourth part shows 

the effect of the vehicle speed prediction model and ana-

lyzes the characteristics of the prediction model. Finally, 

the fifth part draws conclusions.

2  Driving Cycle Data Acquisition
�e data acquisition experiment of road driving cycle 

needs to be carried out in the actual traffic environment. 

Nowadays, people’s lives are relatively regular, and it is 

more common to travel on a fixed route in daily life. �e 

paper decides to select the driving condition information 

extracted by a fixed route as the data foundation of the 

research [25], which can reduce the amount of data used 

by the model and improve work efficiency. Vehicle speed 

data with multiple features is not the focus of this paper. 

According to the research needs, a modified vehicle 

equipped with a global positioning system (GPS) is used 

to obtain road driving cycle.
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�e route selected in the paper is the travel route 

commonly used by the population in the region. In 

order to facilitate the extraction of experimental data, 

the one-way travel plan is replaced by a round-trip 

cycle plan, which can also reflect the vehicle speed 

characteristics of the route. �e characteristics of the 

route selected by the experiment are that there are 

many pedestrians and deceleration zones on the road, 

the traffic volume is small, and the driving speed of 

the vehicle is not allowed to exceed 60 km/h. Because 

the modified test car is not allowed to drive on the city 

road, a section of road in Yanshan University is selected 

as the test route. Experimental equipment is used to 

extract vehicle speed and GPS location information 

on this test route, as shown in Figure  1. �e vehicle 

is traveling from the starting point and drives around 

until reaching the initial position, while the driving tra-

jectory will be generated and the vehicle speed can be 

collected. In the experiment, it should be noted that the 

vehicle speed with a fixed step size is extracted within 

a fixed time interval, which is beneficial to reduce the 

complexity of the data. Elimination of duplicate data 

can improve subsequent prediction efficiency, and it 

paves the way for the construction of the prediction 

model.

On the basis of the above experimental methods, it is 

also necessary to repeat the experiment several times at 

a fixed time every day to obtain sufficient speed char-

acteristics of the route. Some of the vehicle speed data 

is plotted as shown in Figure  2. It can be seen from 

the figure that it takes about 10 minutes to perform a 

driving cycle on this section, and the maximum speed 

during the driving cycle does not exceed 45 km/h. 

�e speed-distance relationship curve after integra-

tion processing is shown in Figure 3. Different sections 

will begin to show a fixed speed characteristic, which 

is the characteristic of the road driving cycle. Finally, 

the received vehicle speed data is collated, combined, 

and segmented for use in predictive models. �e road 

condition data obtained will become the basis of the 

prediction model and support the verification of the 

accuracy of the prediction model.

Figure 1 Experimental section and driving route

Figure 2 Driving speeds under the fixed route

Figure 3 Fixed route driving speed-distance curves
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3  Vehicle Speed Prediction Algorithm
For vehicles on a given route, mathematical statistics and 

machine learning methods, based on historical driving 

data, can be used to predict future speeds, such as neu-

ral networks [26, 27]. It is also possible to predict future 

speeds by means of random prediction, such as Markov 

[28]. �e following discusses research on the vehicle 

speed prediction model.

3.1  Markov Prediction Algorithm

Markov is a stochastic process that is widely used as an 

effective predictor in engineering [29]. �e Markov pre-

diction process is as shown in Eq. (1), where X(tm) = xm 

indicates the current state value, P{} indicates the state 

set, X
(

tm+h

)

= xm+h indicates the future state value, and 

X(t1) = x1, X(t2) = x2, . . . , indicates the historical state 

value. �e formula illustrates the non-positive nature 

of the process, that is, inferring any state in the future 

based on the current state, and is not directly related to 

past historical states. �e future state of the vehicle has 

a strong randomness and non-aftereffects. For exam-

ple, the previous driving state has no direct influence on 

the current driving state, so the vehicle driving state has 

Markov characteristics [30].

�e steps of Markov prediction can be divided into 

state division, calculation of transition probability, deci-

sion transfer, and prediction [31]. First, according to the 

multiple sets of vehicle speeds of the fixed route, the 

speed and acceleration state distribution of the vehicle 

per second are shown in Figure 4. �e vehicle state under 

this route is basically distributed between 0‒45 km/h and 

the acceleration is distributed at −3~3 m/s2.

According to the distribution characteristics of vehi-

cle speed and acceleration, the vehicle state in this 

(1)

p
{

X
(

tm+h

)

= j|X(t1) = x1, X(t2) = x2, . . . , X(tm) = xm
}

= P
{

X
(

tm+h

)

= j|X(tm) = xm
}

, j ∈ I , ∀h > 0.

range is meshed. After obtaining the vehicle status grid, 

the grid without state points is removed. �e remaining 

meshes are encoded as shown in Figure 5.

In the process of calculating the transition prob-

ability, because Markov’s multi-step prediction leads 

to error accumulation and the prediction time of this 

paper is set to 5 s, the prediction time is relatively 

short, so the single-step Markov prediction technique 

is used to reduce the prediction error. �en, the state 

transition probability matrix of the road driving cycle is 

calculated according to the expression of the state tran-

sition probability, and the predicted steps are 1 s, 2 s, 3 

s, 4 s, 5 s, respectively, as shown in Eq. (2):

where Nij is the number of state transitions from state i to 

state j; Ni represents the number of state transitions from 

state i to all states; Pij represents the transition probabil-

ity from state i to state j.

�e predicted state S1 is determined based on the 

current state S0, and the state transition satisfies the 

condition shown as

where r is a random number in the range 0‒1. It can be 

seen from the inequality shown by Eq. (3), that when the 

state transition probability Ps0j is large, the state j is more 

likely to be the prediction state.

According to the state transition probability calcu-

lated by Eq. (2) and satisfying the constraint charac-

teristics of Eq. (3), an accurate Markov state transition 

matrix can be obtained. �e state transition probabil-

ity distribution is summarized in the next 5 prediction 

time intervals, as shown in Figure  6 , where the area 

size of the circle represents the transition probability of 

(2)Pij = Nij

/

Ni,

(3)

S1−1∑

j=1

PS0j < r <

S1∑

j=1

PS0j ,

Figure 4 Distribution of vehicle speed and acceleration

Figure 5 Vehicle speed status code map
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the state i to the next state j. �e larger the area, the 

greater the transition probability.

In the final step of decision transfer and prediction, we 

can use the transition probability and current state of the 

future 1‒5 s state transition matrix to complete Markov’s 

future 1‒5 s speed prediction, which is one of the predic-

tion models used in the combined prediction algorithm 

of vehicle speed. �e next prediction model used in the 

combined prediction algorithm of vehicle speed will be 

described later.

3.2  BP Neural Network Prediction Algorithm

BP neural network is a feed forward neural network 

based on error correction [32]. It generally has three or 

more layers of structure, including one or more input lay-

ers and an output layer; whereas, the neurons between 

the layers are fully correlated. �ere are no correlations 

between various neurons in the layer. �e state vector 

X = (x1, x2, . . . , xn)
T is passed from the input layer to 

the hidden layer, and its output is calculated by Eq. (4). 

Where wij is the weight between the input layer and the 

hidden layer, aj is the network hidden layer node thresh-

old, and f (·) is the activation function. �e hidden layer 

output H is passed to the output layer, and the state vec-

tor O of its output is calculated by Eq. (5). Where wjk is 

the weight between the hidden layer and the output layer, 

and bk is the network output layer node threshold. �e 

error e is obtained by comparing the actual output with 

the expected output from Eq. (6).

�e error back-transfer reuses the weights and thresh-

old updates layer-by-layer using Eqs. (7) and (8), where 

the learning rate η is expressed. �is process is repeated 

(4)Hj = f

(

n
∑

i=1

wijxi − aj

)

, j = 1, 2, . . . , l,

(5)Ok = f





l
�

j=1

Hjwjk − bk



, k = 1, 2, . . . , m,

(6)ek = Yk − Ok , k = 1, 2, . . . , m,

(7)







wij = wij + ηHj

�

1 − Hj

�

xi
m
�

k=1

wjkek , i = 1, 2, . . . , n; j = 1, 2, . . . , l,

wjk = wjk + ηHjek , j = 1, 2, . . . , l; k = 1, 2, . . . , m,

(8)











aj = aj + ηHj

�

1 − Hj

�

xi

m
�

k=1

wjkek , j = 1, 2, . . . , l,

bk = bk + ek , k = 1, 2, . . . , m.

Figure 6 Future 1‒5 s state transition probability map
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until the error falls within an acceptable range. As shown 

in Figure  7, the established neural network model out-

puts the speed of the next 1‒5 s.

By changing the network parameters, such as the num-

ber of neurons, the number of hidden layers, and the 

learning algorithm, the BP neural network model can 

obtain the network model that is most suitable for solving 

the problem [33]. To predict vehicle speed, it is necessary 

to adjust the input neuron types of the neural network 

model according to the range of vehicle speed fluctuation 

and the structure of the prediction model [34]. Appro-

priate input parameters for the predictive model can be 

obtained by correlation analysis or repeated testing. �e 

selected parameters are meaningful for the differen-

tiation of the vehicle’s driving cycle. �e combination of 

historical vehicle speed, average vehicle speed, idle time 

ratio, speed multiplied acceleration variance, speed vari-

ance, and positive acceleration mean can lead to a better 

prediction outcome.

�e number of neurons and the number of layers in the 

hidden layer need to be selected within the appropriate 

range [35]. �e hidden layer usually does not exceed two 

layers, and the BP neural network can realize the map-

ping from n-dimensional to l-dimensional. If the hidden 

layer neurons are too small, the convergence speed of the 

whole network may be lowered, and the convergence will 

not be easy to implement. Conversely, if there are too 

many neurons in the hidden layer, the network topology 

will be more complicated. �e computational tasks will 

increase continuously during the iterative process, and 

the error may not be optimal [36]. Eq. (9) is two empiri-

cal formulas for estimating the number of hidden layer 

neurons:

where l is the number of the neurons in the hidden layer, 

n is the number of the neurons in the input layer, m is 

(9)

{

l =
√
n + m + a,

l = 2n + a,

the number of the neurons in the output layer, and a is a 

random number.

In fact, the method of determining the number of the 

hidden layer neurons based solely on the input and the 

output is inaccurate in many cases [37]. �is is because 

the factors affecting the network structure are mainly 

the number of the training samples, the size of the sam-

ple noise, and the complexity of the function or clas-

sification problem to be simulated. Although the above 

method is lacking in accuracy in practical applications, 

we can use the above formula to determine the initial 

value of the hidden layer of the neural network. In most 

cases, it is still based on experimental methods used to 

gradually change the number of the hidden layer nodes. 

When the network error is the smallest, the optimal 

number of the hidden layer nodes is selected.

�e three commonly used activation functions are 

shown in Eq. (10):

In the formula, the input range of x is real, and the 

three formulas are “purelin”, “logsig”, and “tansig”. 

After the simulation tests, it is found that the hidden 

layer tends to use “logsig” and “tansig”, while the out-

put layer is more suitable for “purelin”.

�e learning algorithm has many types. �ere is no 

perfect theoretical guidance on the selection of training 

functions: it needs to be verified by practice. �e result 

is that the elastic BP algorithm “trainrp” and the fixed-

ratio variable gradient algorithm “trainscg” have bet-

ter effects. In the training of the network, it is selected 

according to the actual situation. Finally, some param-

eters of the BP neural network model used in this paper 

are shown in Table 1.

(10)























y = f (x) = x,

y = f (x) =
1

1 + e−x
, y ∈ (0, 1),

y = f (x) =
1 − e−2x

1 + e−2x
, y ∈ (−1, 1).

Figure 7 BP neural network model

Table 1 BP neural network model parameters

Parameter name Value or option

Hidden layer nodes 35

Hidden layer nodes transfer function type Tansig

Output layer neuron excitation function Purelin

Training function type Trainlm

Learning function type Trainrp

The max iteration number 20000

The network learning rate 0.05

Network training goal error 1 ×  10−5



Page 7 of 13Zhang et al. Chin. J. Mech. Eng.           (2020) 33:60  

3.3  Combined Prediction Algorithm

Both of the above prediction models can predict the road 

driving cycle, but the accuracy of the single prediction 

model needs to be improved. It is an inefficient method 

for repeatedly debugging the parameters of a single 

prediction model on the way to pursue higher predic-

tion accuracy. �ese two models have their own unique 

advantages, so the paper attempts to improve the predic-

tion accuracy of the prediction model from the perspec-

tive of combined prediction. In the idea of combined 

prediction, the paper designs three combined methods 

of Markov and BP Neural Network (MBNN) to form 

combined prediction models. �e three combinations of 

MBNN are described below.

�e first combined prediction model, MBNN1, is 

shown in Figure  8. �e road driving cycle V_MI is an 

input to the Markov prediction module, and the pre-

dicted 1‒5 s vehicle speed of the Markov output is 

transmitted to the BP neural network module via the 

characteristic parameter extraction module of the 

vehicle speed. In this figure, the meaning of some vari-

ables has been expressed, the other parts, such as n 

and T, are the number of calculated vehicle speed, m 

is the number of calculated positive acceleration, vi 

is the vehicle speed at time i, ti is the duration of idle 

time, ai+ is the positive acceleration at time i, vai is the 

product of velocity and acceleration at time i, and vam 

is the product of the average velocity and the average 

acceleration in n dimensions. At the same time, the BP 

module accepts the current vehicle speed V_current 

from the previous module and the future 1‒5 s vehicle 

speed V_MO predicted by the Markov module. Finally, 

the BP neural network module outputs the future 1‒5 s 

vehicle speed V_BO. �e combination of the prediction 

model is mainly to use Markov to grasp the character-

istics of the overall state of change and the high-accu-

racy local fitting of the BP neural network. �e Markov 

model should first predict the change state of the future 

1‒5 s vehicle speed and then the BP neural network can 

fit this state with high precision.

�e second combined prediction model, MBNN2, 

is shown in Figure  9. �e method is similar to the 

first method. �e main difference is that the BP net-

work module increases the parameter of the historical 

approaching vehicle speed, called V_history.

�e third combined prediction model MBNN3 is 

shown in Figure  10. �e method is different from the 

first two methods, and the input of the vehicle speed 

characteristic parameter extraction module is a histori-

cal approaching vehicle speed. �is type of parameter 

extraction method is the same one used in the BP neu-

ral network prediction model, except that the former 

has the input of Markov predicted vehicle speed. �e 

main feature of the three MBNN combined predic-

tion models is that the Markov predicted vehicle speed 

factor is added to the BP neural network prediction 

Figure 8 MBNN1 combined prediction model

Figure 9 MBNN2 combined prediction model
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module, and the final predicted vehicle speed is output 

by the BP neural network prediction module.

According to the combined prediction models pro-

posed in this paper, the combined prediction flow chart is 

summarized in detail, as shown in Figure 11. �e vehicle 

speed data sequence is divided into two parts: the former 

part is used as the training data of the Markov prediction 

model and the BP neural network model and the latter 

part is used as the comparison data of the test combined 

prediction model. �e specific process of combination is 

divided into the following four steps.

Step 1: Based on the training vehicle speed data, the 

Markov state transition matrix is calculated and the 

Markov speed prediction is performed.

Step 2: �e characteristic parameters of the Markov 

predicted vehicle speed is extracted. �e red font in 

the figure is the characteristic parameters extraction 

of the historical near-vehicle speed used by MBNN3. 

�e black font is the characteristic parameters 

extraction method used in MBNN1 and MBNN2.

Step 3: BP neural network is trained according to the 

BP neural network input variable requirements of 

the three combined prediction models. From here, 

the training of the combined prediction model has 

been completed.

Step 4: �e prediction effect test of the combined 

prediction model is carried out. �e other three 

sets of road driving cycles on the route is selected, 

and the Markov state transition matrix calculated in 

step 1 is used to obtain the Markov predicted vehi-

cle speed for the future 1~5 s. �en, the character-

istic parameters are extracted according to the com-

bined prediction model requirements. Next, the BP 

neural network module input variables are imported 

to complete the prediction. At last, the contrast 

between the predicted vehicle speed and the actual 

vehicle speed is completed. �e red font and line at 

step 4 still indicate different methods of characteris-

tic parameters extraction. �e dotted line indicates 

the equivalent use of the functional module.

4  Prediction Results Analysis
�e simulation analysis of this paper is based on the fixed 

route speed data and selects the other three sets of road 

driving cycles on the fixed route to verify the prediction 

effects of BP, Markov, MBNN1, MBNN2, and MBNN3. 

�e following is a comparative analysis with a set of 

results data.

Figures 12 and 13 are the prediction effect diagrams of 

single prediction models. �e initial 90 s is mainly influ-

enced by the parameter of the historical vehicle speed, 

so the initial time of the prediction is selected at 89 s. 

In order to verify the prediction effect of the model, the 

speed prediction of the future 1‒5 s is performed every 

second.

�e final predicted speed curves overlap together 

with the actual vehicle speed curves to form the com-

parison figures of vehicle speed prediction. From these 

two figures, we can see the predicted characteristics of 

the Markov and BP neural network. �e BP neural net-

work has a slower response to the change state, but the 

local variation trend has a good fitting effect. It is often 

fitted to the trend of the speed of the next few seconds, 

but there is no actual follow-up to the actual speed curve. 

�erefore, the speed predicted by the BP neural network 

in Figure 13 is mostly attached to the surface of the actual 

speed curve. On the contrary, in Figure 12 Markov bet-

ter follows the global speed change state. Most of the pre-

dicted vehicle speeds can coincide with the actual vehicle 

speed curve, but the local variation trend fitting effect is 

poor, resulting in large error.

�e initial conditions of MBNN are the same as for a 

single prediction model. Figures  14, 15 and 16 are the 

diagrams showing the speed prediction effects of the 

Figure 10 MBNN3 combined prediction mode
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three MBNNs. It can be seen from the figure that MBNN 

better combines the advantages of the Markov model and 

BP neural network model. �e predicted speed curve 

better follows the change state of the actual speed curve, 

and can overlap better than the BP neural network speed 

prediction. Furthermore, the fluctuation of the locally 

fitted speed curve is smaller than that of the Markov 

prediction.

In order to see the above predicted performance more 

clearly, these images are partially enlarged, as shown in 

Figure  17. �e results are consistent with the charac-

teristics of the single prediction model analyzed above. 

�e results of the neural network perform well linearly, 

while Markov fluctuates greatly. �e use of the combi-

nation method balances the predicted performance of 

the two models and the predicted performance is better. 

Figure 11 Combined prediction process diagram
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Intuitively, the predictions of the three MBNN are not 

very different. �e following analysis is based on the data.

Figure  18 compares the vehicle speed prediction 

errors of the five prediction algorithm models. �e pre-

diction error is calculated from the mean of the predic-

tion bias within the 5 s prediction duration recorded 

every second. As can be seen from the figure, MBNN 

can reduce the fluctuation range of error compared to a 

single prediction model. At the moments of large error, 

the prediction error of MBNN is smaller than that of a 

single prediction model, and other times can be kept at 

an average level.

�e paper uses Root Mean Square Error (RMSE) to 

further evaluate the accuracy of speed prediction [38]. 

�e expression of RMSE is as shown in Eq. (11), and the 

evaluation time of RMSE can be adjusted by changing the 

value of n:

where vp,i is the predicted speed of the i seconds after 

time p, vr,i is the actual speed of the i seconds after time 

r, time r, and time p are the same time point. In order to 

distinguish between predicted and actual values, differ-

ent symbols are used: n represents the RMSE evaluation 

steps.

(11)
RMSE =

√

√

√

√

√

n
∑

i=1

(

vp,i − vr,i
)2

n
,

Figure 12 Markov speed prediction

Figure 13 BP neural network speed prediction

Figure 14 MBNN1 speed prediction

Figure 15 MBNN2 speed prediction

Figure 16 MBNN3 speed prediction
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�e vehicle speed prediction evaluation results obtained 

by Eq. (11) are listed in Table 2, which summarizes the pre-

diction accuracy of the five prediction models in the fixed 

route and the three groups of 5 s within the vehicle speed 

prediction simulation. Taking the first set of predictions as 

an example, the RMSE in a single BP prediction model and 

a Markov prediction model within 5 s is 2.3775 m/s and 

2.2123 m/s, while the RMSE performances in the three 

MBNN combined prediction models within 5 s are 1.7880 

m/s, 1.5420 m/s, and 1.5366 m/s, respectively. Compared 

to the better performing Markov prediction model, the 

improvement ratios of the combined prediction models 

are about 19%, 30%, and 31%, respectively. Furthermore, 

in the other two groups of speed prediction, the improve-

ment ratios are 17%, 26%, 27% and 20%, 28%, and 28%. 

On the whole, the performance improvement ratios of 

the three combined prediction algorithms are 19%, 28%, 

and 29%. Among them, MBNN2 and MBNN3 performed 

better, and MBNN3 performed best in most cases. Sum-

marizing the performance of the combined prediction 

algorithms, the MBNN prediction models can improve the 

accuracy by 25.3% on average. Furthermore, it can be seen 

from the law of Table 2 that within a small prediction step, 
Figure 17 Enlarged figures of vehicle speed prediction result

Figure 18 Vehicle speed prediction error for 5s prediction duration
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the accuracy of the prediction model is not much different 

because the prediction accuracy is high. However, as the 

prediction step length is extended, the accuracy advantage 

of MBNN will become larger and larger.

5  Conclusions
In order to improve the energy management effect of 

plug-in hybrid vehicles, this paper studies the prob-

lem of vehicle speed prediction in the control strategy. 

An experiment on a fixed route was conducted and 

a set of road driving cycle extraction methods were 

designed. �e BP neural network and Markov predic-

tion model were adopted and analyzed. Although the 

speed prediction of the fixed route can be realized by 

a single prediction model, the prediction accuracy of a 

single prediction model reaches a certain range; there-

fore, it is difficult to obtain an improvement in predic-

tion effect by only debugging a single prediction model. 

Better speed prediction accuracy has an impact on the 

energy management effect of plug-in hybrid vehicles. 

�erefore, this paper proposes a combined prediction 

algorithm that can efficiently improve prediction accu-

racy. Based on the advantages of a BP neural network 

and Markov prediction algorithm, the prediction model 

is improved, and three combined prediction models, 

MBNN1, MBNN2, and MBNN3, are designed. �e pre-

diction results show that the predicted speed curves 

obtained by the three MBNN models follow the change 

state of the actual speed curve better, and the fluctua-

tion of the prediction error is reduced. Finally, the pre-

dictive value of MBNN is evaluated via RMSE from 

the perspective of generalization ability and accuracy. 

�e RMSE performance in 5 s is distributed between 

1‒2 m/s. Compared with the preferred single predic-

tion model adopted in this paper, the MBNN prediction 

models can improve accuracy by 25.3% on an average. 

�is proves that the MBNN prediction models have 

obvious advantages. In summary, the designed com-

bined prediction model can give full play to the predic-

tion advantages of a Markov and BP neural network, 

which will play an important role in speed prediction 

and energy optimization of plug-in hybrid vehicles.
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