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Abstract: Salt stress is a major abiotic stress factor affecting crop production, and understanding of
the response mechanisms of seed germination to salt stress can help to improve crop tolerance and
yield. The differences in regulatory pathways during germination in different salt-tolerant barley
seeds are not clear. Therefore, this study investigated the responses of different salt-tolerant barley
seeds during germination to salt stress at the proteomic and metabolic levels. To do so, the proteomics
and metabolomics of two barley seeds with different salt tolerances were comprehensively examined.
Through comparative proteomic analysis, 778 differentially expressed proteins were identified, of
which 335 were upregulated and 443 were downregulated. These proteins, were mainly involved in
signal transduction, propanoate metabolism, phenylpropanoid biosynthesis, plant hormones and
cell wall stress. In addition, a total of 187 salt-regulated metabolites were identified in this research,
which were mainly related to ABC transporters, amino acid metabolism, carbohydrate metabolism
and lipid metabolism; 72 were increased and 112 were decreased. Compared with salt-sensitive
materials, salt-tolerant materials responded more positively to salt stress at the protein and metabolic
levels. Taken together, these results suggest that salt-tolerant germplasm may enhance resilience by
repairing intracellular structures, promoting lipid metabolism and increasing osmotic metabolites.
These data not only provide new ideas for how seeds respond to salt stress but also provide new
directions for studying the molecular mechanisms and the metabolic homeostasis of seeds in the
early stages of germination under abiotic stresses.

Keywords: barley; abiotic stress; salt stress; proteomic; metabolomic

1. Introduction

Salt stress is one of the foremost global environmental factors limiting plant growth
and crop productivity [1,2]. Soil salinity is promoted by industrial pollution, poor irrigation
practices and rising populations and is a major abiotic stress obstructing crop production
especially in arid and semi-arid areas [2,3]. It is predicted that, by about 2050 and without
the application of efficient management strategies, approximately 50% of arable soils will
suffer from salinity [4]. One of the important salts in soil is sodium chloride, which has high
solubility and ubiquitous distribution, and severe agricultural yield losses are caused by the
effects of salinity factors on plant development and productivity [5,6]. Seed germination
is considered the most critical stage in the life cycle and is highly susceptible to abiotic
stresses, such as salt stress [7,8].
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Seed germination refers to the process in which the metabolism is enhanced after seed
imbibition, the key genes related to germination begin to be expressed, and the radicle
gradually elongates and finally breaks through the endosperm and seed coat [9]. The inhibition
of seed germination by salt stress is mainly manifested as osmotic stress, the accumulation
of excessive reactive oxygen species, the destruction of the cell structure and the alteration
of the phytohormone balance, which together reduce the germination rate and prolong
the germination time [5]. Salt stress significantly affected seed germination by affecting
various metabolic processes, including starch hydrolysis, sucrose transport and amino acid
metabolism [10,11]. Thioredoxins (TRXs) are multifunctional proteins with catalytic activity
that regulate sulfhydryl redox [12]. A thioredoxin protein-encoding gene MsTRX has been
reported to improve salt tolerance by maintaining osmotic homeostasis in transgenic tobacco
(Nicotiana tabacum L.) [13]. Abscisic acid insensitive 4 (ABI4), a key component of abscisic
acid (ABA) signaling, is involved in reactive oxygen species (ROS) production and clearance
and regulates ROS metabolism by directly binding to RbohD and Vitamin C Defective 2 (VTC2)
during the regulation of Arabidopsis (Arabidopsis thaliana L.) seed germination under salt
stress [14]. A transcriptome study of Faba bean (Vicia faba L.) seed germination revealed that
many differential genes involved in hormone metabolism (e.g., LEA gene), cell wall loosening
and small interfering RNA pathways play an important regulatory role in seed germination
under salt stress [15]. Glycinate betaine is an osmoprotectant of plants against abiotic stresses,
and betaine aldehyde dehydrogenase (BADH), a key step in the biosynthesis of betaine
glycinate, is overexpressed in plants to enhance their salt tolerance [16]. The plant response
to salt stress is not determined by the proteins but also metabolites [17]. D-galactose [18],
trehalose [19], raffinose [20,21], Myo-inositol [22,23], etc., are reported to be associated with
salt tolerance in plants.

Tolerance to salt stress requires profound alterations to gene expression, which are
accompanied by changes in the composition of the plant transcriptome, metabolome and
proteome [24]. In recent years, the integration of various “omics” technologies has become
an effective strategy to better understand the response mechanisms to environmental
stress [25]. Data-independent acquisition (DIA), which involves sensitive protocols to
perform and identify abiotic stress-responsive proteins in plants, has emerged as a powerful
tool in quantitative proteomics [26,27]. Compared with previous proteomics methods DIA
can provide a consistent, reproducible and accurate way to cover deeper data from multiple
complex samples in shorter times [28,29]. Wide targeting of metabolite mechanisms by
ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS)
has been used to explore the ability of melatonin to alleviate the effects of drought on
soybean growth [30]. Through the combined transcriptome and metabolome analysis of
two millet genotypes with different tolerances under salt stress, the biosynthetic pathways
of phenylpropanoids, flavonoids, lignin and lysophospholipids have been found to play
important roles in determining the salt tolerance of millet [31]. The salt tolerance of tolerant
varieties is mainly due to more efficient ion channels and antioxidant systems, which
provide a comprehensive regulatory network for millet to handle salt, and the salt tolerance
of other cereal crops provides some inspiration [31]. Based on the combination of omics
approaches, more in-depth and systematic studies of the salt tolerance mechanisms of seed
germination are possible.

Barley (Hordeum vulgare L.) is one of the most important cereals in the world, after
wheat, maize and rice and is considered a marginal halophyte [32,33]. To investigate the
differences in the regulation of salt response during germination of different salt-tolerant
seeds, we selected two differentially salt-tolerant barley varieties, salt-tolerant variety GN2
and salt-sensitive variety GN18, which were identified in the previous laboratory screening.
This study performed a comprehensive analysis of proteomics and metabolomics at 24 h
of seed germination under salt stress to determine the changes in the regulation of their
protein abundance and their metabolites. The results of this study provide new ideas for
further research on the mechanism of salt tolerance during seed germination, help establish
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the salt response network of barley and provide candidate genes for the selection of new
salt-tolerant varieties.

2. Results
2.1. Structural and Physiological Changes in Response to Salt Stress during Seed Germination

As shown in Figure 1, the radicle of seeds began to emerge at 6 h, and the size
of the seeds increased gradually during the first 24 h of seed imbibition. The radicle
growth was inhibited to various degrees after salt stress, especially in GN18 compared
with GN2 (Figure 1A). The germination rate of GN18 was significantly reduced under salt
stress (Figure 1C). Salt treatment had an effect the relative water content (RWC) during
seed germination, and GN18 had lower RWC than GN2 between control and salt stress
(Figure 1D). These results illustrated that GN2 was more tolerant to salt stress than GN18
during the seed germination stage. Ultrastructural observation under scanning electron
microscopy showed that the two starch types, A and B, in seeds were oval and round,
respectively. Under normal germination conditions, a concave texture appeared on the
surface of the starch grains after seed imbibition, and starch degradation was activated.
Under the of salt stress conditions, the size of the starch grains was clearly decreased, and
the depression was not obvious. Compared with CK (water treatment), the numbers of
small starch granules were increased in GN2 and GN18 after salt stress (Figure 1B). The
activities of α-amylase had a decline to different degrees in both GN2 and GN18 after
salt stress, but GN18 was more significantly affected (Figure 1E). This result indicated
that starch degradation was activated during seed imbibition but that salt stress inhibited
water uptake and starch degradation to a certain extent after 24 h of salt stress, resulting in
delayed seed germination.

Figure 1. Morphological, ultrastructural and physiological parameter changes in the salt-tolerant
barley cultivar GN2 and salt-sensitive barley cultivar GN18 during seed germination under salt stress.
(A) Seed morphology images of seed germination from five periods in different treatment groups.
(B) SEM images at 24 h of seed germination. (C) Seed germination rate. (D) Relative water content.
(E) α-Amylase. Data are means three replicates (n = 3) ± standard deviation (SD). Different letters
indicate significant difference at p < 0.05 as determined by one-way ANOVA test. CK, water-treated
seeds; T, 200 mM salt solution-treated seeds; NaCl, 200 mM salt solution-treated seeds.

2.2. Analysis of DEPs in Seeds in Response to Salt Stress among Various Cultivars

To understand the effects of 24 h salt stress at the molecular level in seeds with different
salt tolerances in this study, seeds germinated in distilled water and in 200 mM salt solution
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were investigated by data-independent acquisition (DIA) quantitative proteomics. In total,
18,640 proteins were identified and annotated in the seeds of GN2 and GN18 (Table S1).
Among them, 778 proteins were regulated by salinity in GN2 and GN18 (Figure S1A,B,
Table S2), of which 259 and 76 proteins were upregulated and 325 and 118 proteins were
downregulated based the criteria: the ratios > 1.5 (upregulated) or < 0.67 (downregulated)
coupled with p < 0.05, respectively (Figure 2A). Of these, there were 18 common differen-
tially expressed proteins (DEPs) to GN2 and GN18 (Figure 2B). Gene ontology (GO) enrich-
ment analysis was performed using the cluster profiler R package with a threshold value of
p < 0.05, and the primary biological functions of the DEPs of GN2 and GN18 were classified
into cellular components (CC, 450; 144), molecular function (MF, 458; 154) and biological
process (BP, 490; 162) (Figure S1C,D). In GN2 and GN18, the biological process of the most
DEPs were involved in metabolic process (18.68%, 17.51%, respectively), cellular process
(17.83%, 14.87%, respectively), single-organism process (16.24%, 14.87%, respectively) and
response to stimulus (9.36%, 8.51%, respectively) (Table S3). The most molecular functions
were catalytic activity (41.61%) and binding (41.33%) in GN2, and the same molecular func-
tions (42.96% and 35.56%, respectively) were also in GN18 (Table S3). For GN2, the GO terms
mainly enriched were FAD biosynthetic process, flavin adenine dinucleotide biosynthetic
process and regulation of NAD(P)H oxidase activity (Figure 3A). However, the GO terms
mainly enriched were primary alcohol catabolic process, ethanolamine metabolic process, and
negative adaptation of signaling pathway in GN18 (Figure 3B).

Figure 2. Differentially expressed proteins (DEPs) of different salt-tolerant cultivars in response
to salt stress treatments during seed germination. (A) Number of DEPs in barley GN2 and GN18.
(B) Venn diagram analyses of DEPs in seeds. The magnitude of the Rich Factor is positively correlated
with the significance of the enrichment. (C) Visualization of common differentially abundant proteins
between GN2 and GN18 and their KEGG pathway classification.

To further understand the characteristics of DEPs, analyses of the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway and protein domains were performed
(Table S4). The results showed that the most significantly enriched pathways for GN2
included propanoate metabolism, beta-alanine metabolism, phenylpropanoid biosynthesis,
fatty acid metabolism and valine, leucine and isoleucine degradation (Figure 3C). The DEPs
were significantly enriched in 35 KEGG pathways in GN18 in cysteine and methionine
metabolism, sulfur metabolism, phenylalanine metabolism and cysteine and methionine
metabolism (Figure 3D). These results indicate that the different responses to salt stress
between GN2 and GN18 at proteomic levels.
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Figure 3. GO enrichment and KEGG pathway enrichment analysis of DEPs in GN2 and GN18 under
salt stress at 24 h. Top 20 GO terms of the enriched scatter plot of DEPs in the salt response during
the seed germination of (A) GN2 and (B) GN18. Top 20 KEGG pathways of the enriched scatter plot
of DEPs in the salt response during the seed germination of (C) GN2 and (D) GN18.

2.3. Metabolic Analyses of Barley Seeds in Response to Salt Stress during the Germination Process

To interpret the major effect of 24 h salt stress on GN2 and GN18 seeds germination
at the metabolite level, we performed principal component analysis (PCA) on seeds and
quality control (QC) samples of GN2 and GN18 to monitor the accuracy and repeatability
of the analytical process. Regarding positive ionization (PI) mode datasets, 34.5% and 7.7%
were explained by the first principal component (PC1) and the second principal component
(PC2), respectively (Figure 4A). Similarly, PC1 and PC2 accounted for 40.6% and 11.1% of
the total variability of the negative ionization (NI) model dataset, respectively. A total of
12,402 metabolites were identified during the analysis (Table S5). All known metabolites
included 1013 of positive ionization mode (POS) type and 1014 of negative ionization
mode (NEG) type, which were classified into 137 categories, with the dominant categories
being prenol lipids, steroids and steroid derivatives, fatty acyls, organooxygen compounds,
benzene and substituted derivatives and carboxylic acids and derivatives (Figure 4B,
Table S6). Metabolites production was mainly enriched in global and overview maps
(781), amino acid metabolism (319) and biosynthesis of other secondary metabolites (212)
(Figure 4C). The metabolites of GN2 and GN18 samples were well separated along PC1
revealed by PCA (Figures 5 and S2). Orthogonal projection to latent structures-discriminant
analysis (OPLS-DA) is the model that maximizes the benefit of viewing differences between
groups. The R2 values all exceed 0.9 for GN2 and GN18 (Figure 5). In addition, the OPLS-
DA model was validated by permutation tests using 100 alignment experiments. The
replacement R2’ and Q2’ values were less than the corresponding R2 and Q2 values of the
original model. Therefore, differential accumulated metabolites (DAMs) could be screened
between control and treatment by the model with variable importance for projection
(VIP) ≥ 1 and that the t-test p < 0.05.



Int. J. Mol. Sci. 2022, 23, 10515 6 of 20

Figure 4. Metabolite profiles identified in GN2 (salt-tolerant) and GN18 (salt-sensitive) seeds with
24 h treatments involving water (CK) and 200 mM salt solution (salt treatment, M). (A) PCA of
metabolomic profiles with quality control in positive and negative ionization modes. Overall score
plot of seed samples collected at GN2 (CK-2 vs. M-2) and GN18 (CK-18 vs. M-18). (B) Circular
diagram of all metabolites in the different groups, showing, from the outer circle to the inner circle, the
metabolites of GN2 and GN18, respectively. (C) KEGG pathway enrichment analysis was performed
for all identified metabolites.

In total, we identified 184 differential accumulated metabolites in GN2 and GN18,
of which 25.0%, 16.8% and 8.7% were carboxylic acids and derivatives, organooxygen
compounds and fatty acyls, respectively (Table S7). Compared with the control seeds
of GN2 (CK-2) and GN18 (CK-18), the number of DAMs for the 200 mM salt solution-
treated seeds of GN2 (M-2) and GN18 (M-18), respectively, comprised 88 (51 upregulated;
37 downregulated) and 96 (21 upregulated; 75 downregulated) (Figure 6A, Table S7). Venn
diagram analysis showed 46 common metabolites between GN2 and GN18, as well as 42
and 50 specific differential accumulated metabolites, respectively (Figure 6B, Table S8).
KEGG pathway enrichment analysis was performed to reveal the most important pathways
related to the responses of the different varieties to salt stress (p < 0.05) (Table S9). Compared
with the salt-treatment group, the DAMs of GN2 were mainly involved in aminoacyl-tRNA
biosynthesis, ABC transporters, glycine, serine and threonine metabolism, glyoxylate and
dicarboxylate metabolism and porphyrin and chlorophyll metabolism (Figure 6C), whereas
the DAMs of GN18 were mainly involved in valine, leucine and isoleucine biosynthesis,
biosynthesis of amino acids, alanine, aspartate and glutamate metabolism, glycine, serine
and threonine metabolism and cyanoamino acid metabolism (Figure 6D). These results
investigated that the changes of these accumulated metabolites and metabolic pathways
provide essential information on differences in salt tolerance among genotypes.
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Figure 5. PCA score map (A,B), OPLS-DA scores (C,D) and permutation test (E,F) in positive
ionization mode (POS). PCA score map of (A) GN2 and (B) GN18. (C) Scores of the OPLS-DA model
in GN2 and (D) GN18. OPLS-DA cross-validation in (E) GN2 and (F) GN18. R2Y and Q2 denote the
rate of the model interpretation of the Y matrix and the predictive ability of the model, respectively.
Q2 > 0.9 indicates a good predictive model. The permutation test produces a distribution of R2’ and
Q2’ values. A reliable model should produce much larger values of R2’and Q2’ than a random model
using the same dataset. Green and blue points indicate R2’ and Q2’ values, respectively.

Figure 6. Differentially accumulated metabolites (DAMs) in GN2 and GN18 in response to salt stress
treatments. (A) Numbers of differentially accumulated metabolites in barley GN2 and GN18 for 24 h.
(B) Venn diagram analyses of DAMs in seeds. KEGG pathway enrichment analysis of DAMs in (C) GN2
and (D) GN18.
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2.4. Integrative Proteomic and Metabolomic Analyses

Correlation analysis between DEPs and metabolites under salt stress revealed that 47
and 22 metabolic pathways were enriched in GN2 and GN18, respectively (Table S10). The
metabolic pathways of GN2 included phenylpropanoid biosynthesis, propanoate metabolism,
cyanoamino acid metabolism, starch and sucrose metabolism and biosynthesis of unsaturated
fatty acids. Meanwhile, sulfur metabolism, cysteine and methionine metabolism, pheny-
lalanine metabolism, tropane, piperidine and pyridine alkaloid biosynthesis and galactose
metabolism were identified in GN18. However, the core DEPs and DAMs regulatory networks
of the two different genotypes included 36 and 22 metabolic pathways, respectively, indicating
the response of different salt-tolerant barley seeds to salt stress (Table S10). To comprehensively
assess potential molecular mechanisms of salt stress response in two genotypes, we mapped
the comprehensive systemic biological pathway through the analysis KEGG pathways of
DEPs and DAMs (Figure 7). There were 36 proteins and 39 metabolites in GN2 (Figure 7A),
13 proteins and 28 metabolites in GN18 (Figure 7B). We noticed that the accumulation of
L-histidine, L-serine and L-glutamic acid, hydroxypyruvic acid, trehalose and L-malic acid
were the same in both genotypes. However, the accumulation of L-threonine, D-galactose,
myo-Inositol, LysoPA and uridine were upregulated in GN2, whereas they were downregu-
lated in GN18. Throughout the biological process, more DEPs were involved in the regulation
of GN2 compared with GN18 may have contributed to these results (Figure 8). These results
suggested that the expression of specific proteins and the accumulation of metabolites under
the same metabolic pathway, and the regulation of specific metabolic pathways lead to the
differences in salt tolerance between the two cultivars.

Figure 7. Biological response pathways of GN2 (A) and GN18 (B) seeds in response to salt stress.
Correlation analysis results of DEPs and DAMs were mapped into a comprehensive metabolic regulation
network diagram based on the KEGG pathway. The DEPs and DAMs are marked as circles and rectangles,
respectively; red and green indicate upregulation and downregulation, respectively.
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Figure 8. A summary of the partially critical DEPs related to the response of GN2 (A) and GN18
(B) seeds to salt stress and the KEGG pathways involved. All proteins are represented by a pink circle,
and the KEGG pathways are represented by circles of different colors. The color shade and circle size
are positively correlated with the number of proteins contained in the circle, with the least amount of
protein contained in purple circles and the most amount of protein contained in red circles.

3. Discussion

As a major adverse environmental factor, salt stress greatly affects crop yields world-
wide [34]. Crops have evolved elaborate regulatory mechanisms to manage salt stress,
including modifications to protein composition and regulatory activities at the overall level
as well as in changes in metabolites [35,36]. In this study, the alteration of proteins and
metabolites of two types of barley seeds with different salt tolerances was studied after
germination for 24 h under salt stress.

3.1. Signal Transduction in Response to Salt Stress

Signal transduction pathways play an important role in plant responses to abiotic
stresses [37]. Calcium, which is key to the regulation of plant growth and development
by Ca2+-modulated proteins, is involved in a variety of cellular processes [38]. During
salt stress, Ca2+ signaling, whose function and consequence are not limited to the single-
cell level, representing a complex phenomenon [39]. Wan et al. found that calcium-
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transporting ATPase in the Ca2+ signaling pathway responds to salt stress by upregulating
its expression [40]. In our study, calcium-transporting ATPase (HORVU6Hr1G030590.12)
was upregulated in GN2 after salt stress during seed germination at 24 h, demonstrating
that this protein plays a positive regulatory role in the salt stress response. ROPs, small
monomeric GTPases, are signaling hubs that regulate some cell polarity processes, usually
those involving cytoskeleton reorganization, and are identified as molecular switches
to shuttle between a signaling-inactive or activated GTP-bound state [41,42]. Guanine
nucleotide exchange factor-mediated of ROPs in turn regulates plant responses to complex
environmental conditions through reproduction [43]. Rop guanine nucleotide exchange
factor 1 (RopGEF1) (HORVU3Hr1G085680.4) is upregulated in salt-tolerant material, which
might be related to the salt stress response (Table S2). In addition, RopGEF1 can be
considered a negative regulator of the phytohormone ABA in signal transduction [44].
Taken together with our findings, these results will provide the basis for further research
into the function of RopGEF1 in salt tolerance. Many ubiquitin-like proteins (UBLs) have
been found in almost all eukaryotic organisms [45]. Although they are involved in a large
number of physiological processes [46], there are few reports on the function of UBL5 in
plants, particularly with regard to unsatisfactory environmental conditions. However, more
and more studies have examined the UBL5-mediated plant response to biotic and abiotic
stress in recent years. UBL5 might participate in the regulation of plant defense against
pathogens [46]. UBL5 overexpression in transgenic perennial ryegrass (Lolium perenne L.)
plants improves drought tolerance, which improves drought tolerance characterized by
higher leaf water potential and relative water content [47]. UBL5 (HORVU5Hr1G042600.1)
was found to be upregulated after salinity stress in the salt-tolerant cultivar in this study
(Figure 7, Table S2). This result suggests that UBL5 may have a salt-tolerant function
in plants.

3.2. Amino Acid Metabolism for Salt Tolerance

Amino acid metabolism is one of the critical ways through which plants can respond
to salt stress [48]. Glycine, serine and threonine metabolism play a crucial role in salt toler-
ance [48]. Betaine aldehyde dehydrogenase is an important gene involved in glycine betaine
biosynthesis pathway, and its introduction can enhance the tolerance of plant to various abiotic
stresses [49]. In this study, the regulation of DEPs and DAMs in this pathway was different
in the two genotypes. We detected that L-threonine was increased in GN2 but decreased
in GN18, and glyceric acid upregulated in GN18 but downregulated in GN2 (Figure 9). A
unique metabolite 2-Ketobutyric acid was detected in GN18 (Figure 9). In addition, betaine
aldehyde dehydrogenase (HORVU2Hr1G080970.14), glycine cleavage system P protein and
a predicted protein were regulated in GN2 among this pathway, but only amine oxidase
(HORVU2Hr1G082420.2) was regulated in GN18 (Table S4). In addition, the contents of
metabolites in GN2 related to the salt stress response, such as threonine, asparagine, gamma-
aminobutyric acid, gamma-glutamylcysteine and trans-Aconitate, were significantly increased,
while the accumulation of phenylalanine, glutamic acid, arginine, glutamine, beta-tyrosine
and histidine was decreased to varying degrees (Figure 7A, Table S7). In contrast, creatinine,
gamma-aminobutyric acid and gamma-glutamylcysteine accumulated significantly in GN18,
whereas the accumulation of phenylalanine, histidine, threonine, glutamic acid and proline
was significantly decreased (Figure 7B, Table S7). Interestingly, we made the same result
prediction as Pan et al. [31]. We speculated that the high tolerance of GN2 may be related to
its ability to maintain intracellular homeostasis through the accumulation of amino acids and
the further use of synthetic amino acids for the formation of the carbon skeleton of the cell
membrane and the synthesis of secondary metabolites.



Int. J. Mol. Sci. 2022, 23, 10515 11 of 20

Figure 9. The network of key DAMs in GN2 (A) and GN18 (B) seeds induced under salt stress
in metabolism. The upregulated and downregulated metabolites are indicated in red and green
colors, respectively. The metabolic pathway is circled with a blue dotted border, and the name of the
metabolic pathway is written in yellow font. The dotted arrows indicate multiple steps between the
two metabolites.

3.3. Carbohydrate Metabolism for Salt Tolerance

Higher accumulation of carbohydrates, the main source of energy stored in plant
vegetative organs, in plants after stress indicates better tolerance [50,51]. Carbohydrates
include sugars and sugar alcohols such as raffinose, trehalose, galactose, glucose, and
fructose [52]. D-galactose is sugar moiety linked to mature N-glycoprotein, and mature
N-glycoprotein may affect the ability of plants to adapt to salt stress, which has been
confirmed in Arabidopsis and Solanum lycopersicum [18,53,54]. Raffinose belongs to the
raffinose family of oligosaccharides (RFOs) and is an osmoprotectant that can accumulate
under abiotic stress and is the key to plant defense mechanisms [20,21]. We found that
D-galactose, raffinose and alpha-lactose rapidly accumulated in GN2 after being induced
by salt stress (Figures 7A and 9A, Table S7). However, in GN18, the accumulations of
D-galactose, D-glucose and D-glucose 1-phosphate were all decreased (Table S7). In the
galactose metabolism pathway, although probable galactinol–sucrose galactosyltransferase
1 (HORVU7Hr1G048710.4) was downregulated in both cultivars, the downregulation of
seed imbibition protein (HORVU3Hr1G020780.1) in GN18 may be the responsible reason
for the difference in salt tolerance between species (Table S4). Polyols can prevent metabolic
inactivation under low osmotic conditions due to their water-like hydroxyl groups and
can act as osmotic protective agents [55]. Myo-inositol is the most reported polyol, and an
increase in myo-inositol metabolism attenuates salt-induced damage [22,23]. After 24 h of
salt stress in seeds, the myo-inositol content was significantly increased in GN2, whereas
the myo-inositol synthesis of GN18 was significantly decreased. Therefore, we speculate
that GN2 can increase salt tolerance by rapidly inducing the metabolism of soluble sugar,
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accelerating the biosynthesis of myo-inositol, and improving the osmotic balance and
antioxidant system activity under salt stress.

3.4. Effects of Salt Stress on Phytohormone Signal Transduction

Endogenous plant hormones are closely related to plant growth and development and
play an important role in oxidative stress. ABA fulfils a pivotal regulatory role in the plant
abiotic stress response and is the main hormone regulating seed germination, which can
alleviate the impact of salt stress on seed germination [56,57]. Salt stress triggers a rapid
accumulation of ABA in plants in a short period of time and induces some ABA-induced
proteins [58,59]. Late embryogenesis-abundant (LEA) proteins are involved in the ABA signal
transduction process [60]. OsLEA5 is validated to be involved in ABA-mediated antioxidant
defense and plays a role in rice drought and salt stress responses [61]. Previous studies
have shown that LEA protein belongs to a small family of highly hydrophilic proteins that
respond to salt stress environments and that are induced by osmotic stresses in vegetative
tissues, boosting plant tolerance to osmotic and oxidative stress [62,63]. We found that LEA
proteins (HORVU1Hr1G059910.1) were significantly upregulated in GN2 and involved in
numerous biological processes, including the ABA response, postembryonic development
and seed development. It is worth mentioning that LEA protein (HORVU1Hr1G059900.1,
HOR-VU3Hr1G030650.1) was also identified in GN18, but the upregulated expression fold
change was less than that of GN2 (Table S2). Early methionine (Em) protein, characterized as
group 1 LEA protein, was first identified and described in wheat embryos and is reported
to play a fundamental role in the response to environmental stress [64,65]. Em protein CS41,
which is significantly expressed in barley seeds after 24 h and 48 h of salt stress, can respond
to ABA [66]. Our results further confirm this conclusion. The expression of Em protein
CS41 (HORVU1Hr1G059950.2) was significantly upregulated after 24 h stress in salt-tolerant
materials. Similarly, dehydration proteins (dehydrins), which can be significantly upregulated
by abiotic stresses such as salinity, have been identified as a group 2 member of the LEA
family, which accumulate abundantly after salt stress during seed germination [67,68]. The
20 dehydrins, in GN2 were significantly upregulated after 24 h of salt stress during seed
germination, which may enhance salt tolerance by retaining water in the seeds and thus
alleviating salt stress. One negative regulator of the ABA signaling pathway is the nodulin
homeobox (NDX) protein, which is inhibited by ABA to enhance ABI4-mediated inhibition
of storage reserve mobilization and germination [69,70]. In our research, the NDX-like
proteins were significantly upregulated in salt-tolerant materials, presumably because NDX
inhibited ABI4 expression and thereby alleviated ABI4-mediated mobilization of storage
reserves and inhibition of seed germination (Table S2). The specific expression of NDX
may also be an important regulatory mode in the mechanism of GN2 salt tolerance. An
enormous range of BTB protein family members, such as BTB domain-containing protein, is
confirmed to participate in biological regulatory networks and regulate hormone-mediated
signaling in plants under abiotic stress [71,72]. The RCAR-PP2C-SnRK2 regulatory module
can mediate reversible protein phosphorylation regulation, enabling ABA to play a regulatory
role in plant abiotic stress responses [73,74]. In this process, PP2C inhibits the activity of
SnRKs through negative regulation, leading to a signaling cascade reaction [56,75]. PP2C
(HORVU2Hr1G046600.4) was upregulated in GN18 but was not identified in GN2. Thus, we
speculate that ABA signaling may have more complex and diverse regulatory patterns in the
first 24 h of seed germination.

3.5. Cell Walls, Biomembranes and Protein Stability under Salt Stress

The cell wall plays a critical role in protecting plants from abiotic stresses [76]. Leuine-
rich repeat extension (LRX) protein acts as a cell wall localization protein important for
regulating cell wall integrity [77]. There are 11 LRX proteins in total, which can gen-
erally be divided into two clades according to their tissue-specific expression patterns,
with LRX1–LRX7 mainly expressed in vegetative tissues [78,79]. It would be an inter-
esting re-search direction to elucidate how LRXs participate in the sensing of cell wall
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integrity [76]. The upregulated LRX proteins (HORVU6Hr1G089280.1) in GN2 may im-
prove the salt tolerance of seeds (Table S2). We will further study these proteins in the
future. The genes encoding transmembrane proteins are associated with salt tolerance [80].
Transmembrane protein (HORVU4Hr1G050360.1) was identified as upregulated in GN2.
Non-specific phospholipase (NPC), also known as phosphatidylcholine-specific phospho-
lipase C (PC-PLC), plays an important role in response to abiotic stresses [81]. We found
NPC1 (HORVU5Hr1G115230.1) was regulated in GN2 seeds under salt stress (Figure 7,
Table S2). Furthermore, we identified lysophosphatidic acid (lysoPA), which was relative
to salt tolerance both in GN2 and GN18, within different accumulation ways (Figure 7) [82].
The changes in the fatty acid composition of membrane lipids are closely related to the salt
tolerance of plants [83]. A reduction in saturated fatty acid contents and a high level of un-
saturated fatty acids can preserve the membrane fluidity necessary for membrane function,
which is an effective way for plants to adapt to salt stress [84]. Linoleic acid, an unsaturated
fatty acid, is involved in basal energy metabolism and lipid signal transduction in the
abiotic stress response, and plays a variety of roles in plant development and the stress
response [85,86]. In our study, linoleic acid synthesis was inhibited in both materials with
different salt tolerances but particularly in salt-sensitive materials. In addition, fatty acyls,
including 9(S)-HPODE, 13S-hydroxy octadecadienoic acid and 11-dehydrothromboxane B2,
were rapidly accumulated after salt induction in GN2 (Figure 7A, Table S7), whereas only
erucic acid accumulated in GN18 (Figure 7B, Table S7). We noted a significant difference
in the accumulation of 13S-hydroxylinoleic acid in the two materials: while it was rapidly
induced in GN2, its synthesis was significantly inhibited in GN18. We speculate that one of
the reasons for the higher salt tolerance of GN2 compared to GN18 is its ability to maintain
a considerable level of unsaturated fatty acids that can reduce the effect of salt damage on
the membrane. Ribosomal protein (RP) is an essential component of the ribosome that is
responsible for protein synthesis [87,88]. RPs are transcriptionally affected under abiotic
stress conditions, which significantly influences the translation of other proteins and to
regulate protein synthesis in response to osmotic stress [89,90]. A total of 24 RP-like DEPs
were detected in our study, of which 14 were upregulated and 20 were downregulated.
Among salt-tolerant materials, we detected 14 upregulated and 8 downregulated DEPs, and
2 were downregulated in salt-sensitive materials (Table S2). Previous studies found that
RPS4, RPS6, RPS26, RPS29 and RPL37 were upregulated in response to stress to enhance
plant stress resistance, which is consistent with our findings [91,92].

3.6. Antioxidants under Salt Stress

Saline stress in plants will lead to a breakdown of the balance between ROS production
and scavenging, resulting in changes in intracellular homeostasis, increased plasma membrane
oxidation and increased saturated fatty acids [93,94]. To detoxify, plants have evolved ROS
scavenging systems that involve enzymes [95]. Thioredoxins (TRXs) are involved in the
regulation of the cellular redox environment and play an important role in complex redox
regulation in response to environmental signals, protein transcription and translation, seed
germination, cell division and development [96,97]. Chloroplastic thioredoxins are involved
in the light regulation of carbon metabolism by regulating the pentose phosphate pathway
and the C4 pathway [96]. TRXs in plants are classified into different types, and y-type TRXs
are chloroplastic [98,99]. We found that five y-type TRX proteins were upregulated in GN2
(Table S2). Hence, we speculate that y-type TRXs, as the main antioxidants in plastids, may
have physiological significance and new functions in salt resistance in barley seeds. Protein
L-isoaspartate O-methyltransferase (PCMT1 or PIMT) is a widely distributed and highly
conserved enzyme related to protein repair functions [100–102]. The researchers found that
overexpression of OsPIMT1 and OsPIMT2 in rice seeds significantly reduced the contents
of hydrogen peroxide and malondialdehyde in the seeds and correspondingly increased
the contents of catalase and ascorbic acid peroxidase [103]. In the present study, PCMT
(HORVU2Hr1G083100.1) was found to be upregulated in GN18 (Table S2). To the best of our
knowledge, this is the first time that these proteins have been identified in barley seeds.
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4. Materials and Methods
4.1. Barley Materials and Seed Germination under Salt Stress

GN2 (salt-tolerant) and GN18 (salt-sensitive) barley land cultivars were obtained from
State Key Lab Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement
and Germplasm Enhancement. The germination experiment consisted of two treatments,
distilled water as the control and salt stress treatment using 200 mM NaCl solution. Each
250 grains of both barley cultivars were first washed with 75% alcohol for 15 s and then
washed three times with sterile deionized water and were placed in 15 cm Petri dishes
that contained two pieces of filter paper in the dark at 22 ◦C for 24 h. The seeds were
subsequently stores at −80 ◦C until their analysis.

4.2. Measurement of Seed Morphology and Physiological Parameters

Seed morphology was investigated and photographed with a stereomicroscope (Leica-
M165 C; Leica, Wetzlar, Germany). With reference to Sangwongchai et al. [104], different grain
ultrastructures from various cultivars were visualized using scanning electron microscopy
(SEM). Each treatment had three biological replications. Seed germination was defined as
radicle protrusion. The seed germination rate was calculated by counting the number of
germination of 50 seeds in 124 h with three biological replicates for each treatment. In this
experiment, the method of determining the relative water content (RWC) of Mostofa [105] was
adapted and improved. The relative water content (RWC) was calculated using the weight
of freshly collected seeds and the weight of seeds after drying to a constant weight in an
oven at 105 ◦C. The formula was: RWC = (FW − DW)/DW × 100. The α-amylase activity
was measured by using the assay kits (Laierbio, Hefei, China, LE-Y1795) according to the
manufacturer’s protocols.

4.3. Isolation of Total Proteins and Proteome Analysis

Total proteins from each sample (CK-2, GN2 treated with water; T-2, GN2 treated
with 200 mM NaCl; CK-18, GN18 treated with water; T-18, GN18 treated with 200 mM
NaCl) were extracted using the cold acetone method [106]. The total extracted protein
concentration was determined using a BCA protein assay kit. Proteins were then digested
with sequence-grade modified trypsin (Promega, Madison, WI, USA). The peptide mixture
was redissolved in buffer A (20 mM ammonium formate in water, pH = 10.0, adjusted
with ammonium hydroxide), and each peptide mixture sample was fractionated by high
pH separation using an Ultimate 3000 system (ThermoFisher scientific, Waltham, MA,
USA) connected to a reverse-phase column (XBridge C18 column, 4.6 mm × 250 mm,
5 µm, (Waters Corporation, Milford, MA, USA). For subsequent identification, 10 separated
fractions were collected and dried for each sample. In addition, collected peptide fractions
were analyzed by online nanospray LC-MS/MS on an Orbitrap Fusion Lumos coupled
to an EASY-nLC 1200 system (Thermo Fisher Scientific, Waltham, MA, USA). Analyses of
data-dependent acquisition (DDA) and data-independent acquisition (DIA) proteomics
were performed with three biological replicates. Raw DDA and DIA data were processed
and analyzed using Spectronaut X (Biognosys AG, Schlieren, Switzerland) with default
settings and parameters. The Spectronaut was set up to search the database of barley
along with the contaminant database, assuming the use of trypsin as the digestion en-
zyme. The retention time prediction type was set to dynamic iRT. Data extraction was
determined by Spectronaut X based on extensive mass calibration. Spectronaut Pulsar [107]
will dynamically determine the ideal extraction window dynamically depending on the
iRT calibration and gradient stability. A Qvalue (FDR) cutoff of 1% was applied to the
precursor and protein level. Decoy generation was set to mutated, which is similar to
scrambled but will only apply a random number of amino acid position swamps (min = 2,
max = length/2). All selected precursors passing the filters were used in the quantification.
Proteins were annotated by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases, with a fold change >1.5 or <0.67 and Q value < 0.05 considered
to indicate differentially expressed proteins (DEPs) within the functional enrichment of
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the GO term annotation and KEGG pathway. Protein–protein interaction (PPI) network
was identified using String [108] and the network file was visualized using Cytoscape
software [109].

4.4. Detection and Identification of Metabolites and Analysis

The total metabolites in the samples were extracted according to previous stud-
ies [110,111]. Briefly, 100 mg of lyophilized sample was prepared by using a grinder
at 30 Hz for 1.5 min. The sample was then homogenized with 1 mL of pre-chilled methanol
(−20 ◦C) for 1 min. Afterward, the samples were centrifuged at 13,000× g for 15 min at
4 ◦C and the obtained supernatants were absorbed and filtered prior to UPLC-MS/MS anal-
ysis [112]. The quality control (QC) sample was prepared by a mixture of equal amounts of
the supernatants from all of the samples. A UHPLC system (Thermo UltiMate 3000) with a
UPLC HSS T3 column (2.1 mm × 150 mm, 1.8 µm) coupled to a Q Exactive system (Orbitrap
MS, Thermo) was used for LC-MS/MS analyses according to the method described by
Wang et al. [113]. The acquired raw MS data files were converted to mzXML format using
Proteowizard (v3.0.8789). Then, data peak identification, filtration and alignment were
performed with the R statistical package XCMS (v3.1.3). [114]. For a visualization of the
differences among different groups of samples, the identified metabolites were subjected to
principal component analysis (PCA), an unsupervised dimensionality reduction method, to
partial least squares discriminant analysis (PLS-DA), a supervised dimensionality reduction
method and to orthogonal projection to latent structures-discriminant analysis (OPLS-DA)
using the corresponding R package models (http://www.r-project.org/, accessed on 20
August 2015). Metabolites compared between two groups with variable importance of
the projection (VIP) ≥ 1 and p < 0.05 based on t-test were used to identify differentially
accumulated metabolites (DAMs). Furthermore, DAMs were mapped to the online KEGG
software for pathway enrichment analysis (FDR ≤ 0.05).

5. Conclusions

In the present study, we used DIA and untargeted LC/MS to reveal the molecular
mechanisms of different salt-tolerant barley during seed germination in response to salt
stress. In total, 778 DEPs and 187 DAMs were identified after 24 h salt stress. Further
analysis of proteomic and metabolomic investigations indicated that the differences in
salt tolerance among various cultivars were related to the relevant metabolic pathways
involved in the TCA cycle. These results provide a basis for further elucidation of the
mechanisms of barley seed germination in response to salt stress and provide an important
theoretical starting point for resolving the mechanisms of seed germination in response to
abiotic stresses.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms231810515/s1.

Author Contributions: Y.C. and J.W. carried out the proteomic and metabolomic analysis and drafted
the manuscript. L.Y., B.L. and X.M. participated in material culture and performed the statistical analysis.
C.L., X.S., E.S. and K.Y. helped to draft the manuscript. H.W. and Y.M. conceived of the study and
participated in its design. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the China Agriculture Research System (Grant CARS-05-
04B-2, CARS-05-01A-08); Industrial Support Project of Colleges and Universities in Gansu Province
(2021CYZC-12); National Natural Science Foundation of China (31960426, 32160460, 32160496); Fuxi
Talent Project of Gansu Agricultural University (Ganfx-03Y06); Key Projects of Natural Science Foun-
dation of Gansu Province (20JR10RA507,21JR7RA801); Gansu Provincial Department of Education:
Outstanding Graduate Student Innovation Star Project (2021CXZX-371). We thank the professionals
of BioMed Proofreading LLC for English corrections and copyediting this manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

http://www.r-project.org/
https://www.mdpi.com/article/10.3390/ijms231810515/s1
https://www.mdpi.com/article/10.3390/ijms231810515/s1


Int. J. Mol. Sci. 2022, 23, 10515 16 of 20

Data Availability Statement: The mass spectrometry proteomics data have been deposited in the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner
repository [115] with the dataset identifier IPX0004221003/PXD032701.

Conflicts of Interest: The authors have declared no competing interests.

References
1. Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks.

Front. Plant Sci. 2014, 5, 151. [CrossRef] [PubMed]
2. Yang, Y.; Yan, G. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 58–66. [CrossRef] [PubMed]
3. Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11.

[CrossRef] [PubMed]
4. Butcher, K.; Wick, A.F.; Desutter, T.; Chatterjee, A.; Harmon, J. Soil salinity, a threat to global food security. Agron. J. 2016, 108,

2189–2200. [CrossRef]
5. Rana, M.; Mark, T. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [CrossRef]
6. Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822.

[CrossRef]
7. Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63,

507–533. [CrossRef]
8. Xu, E.; Chen, M.; He, H.; Zhan, C.; Cheng, Y.; Zhang, H.; Wang, Z. Proteomic Analysis Reveals Proteins Involved in Seed

Imbibition under Salt Stress in Rice. Front. Plant Sci. 2016, 7, 2006. [CrossRef]
9. Woolhouse, H.W.; Bewley, J.D.; Black, M. Physiology and biochemistry of seeds in relation to germination. Vol. 1: Development,

Germination and Growth. J. Ecol. 1980, 68, 315. [CrossRef]
10. Shu, K.; Qi, Y.; Chen, F.; Meng, Y.; Luo, X.; Shuai, H.; Zhou, W.; Ding, J.; Du, J.; Liu, J.; et al. Salt stress represses soybean seed

germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front. Plant Sci. 2017, 8, 1372.
[CrossRef]

11. Zhang, N.; Zhang, H.J.; Sun, Q.Q.; Cao, Y.Y.; Li, X.; Zhao, B.; Wu, P.; Guo, Y.D. Proteomic analysis reveals a role of melatonin in
promoting cucumber seed germination under high salinity by regulating energy production. Sci. Rep. 2017, 7, 503. [CrossRef]

12. Limor-Waisberg, K.; Ben-Dor, S. Diversification of Quiescin sulfhydryl oxidase in a preserved framework for redox relay. BMC
Evol. Biol. 2013, 13, 70. [CrossRef]

13. Duan, X.; Wang, Z.; Zhang, Y.; Li, H.; Yang, M.; Yin, H.; Cui, J.; Chai, H.; Gao, Y.; Hu, G.; et al. Overexpression of a Thioredoxin-
Protein-Encoding Gene, MsTRX, from Medicago sativa Enhances Salt Tolerance to Transgenic Tobacco. Agronomy 2022, 12, 1467.
[CrossRef]

14. Luo, X.; Dai, Y.; Zheng, C.; Yang, Y.; Chen, W.; Wang, Q.; Chandrasekaran, U.; Du, J.; Liu, W.; Shu, K. The ABI4-RbohD/VTC2
regulatory module promotes Reactive Oxygen Species (ROS) accumulation to decrease seed germination under salinity stress.
New Phytol. 2021, 229, 950–962. [CrossRef]

15. Yang, F.; Chen, H.; Liu, C.; Li, L.; Liu, L.; Han, X.; Wan, Z.; Sha, A. Transcriptome profile analysis of two Vicia faba cultivars with
contrasting salinity tolerance during seed germination. Sci. Rep. 2020, 10, 7250. [CrossRef]

16. Yu, H.; Zhou, X.; Wang, Y.; Zhou, S.; Fu, F.; Li, W. A betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus
enhances tolerance of Arabidopsis to high salt and drought stresses. Plant Growth Regul. 2017, 83, 265–276. [CrossRef]

17. Jia, X.M.; Zhu, Y.F.; Hu, Y.; Zhang, R.; Cheng, L.; Zhu, Z.L.; Zhao, T.; Zhang, X.; Wang, Y.X. Integrated physiologic, proteomic, and
metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Hortic. Res. 2019, 6, 91. [CrossRef]

18. Zhang, X.; Tang, H.; Du, H.; Bao, Z.; Shi, Q. Sugar metabolic and n-glycosylated profiles unveil the regulatory mechanism of
tomato quality under salt stress. Environ. Exp. Bot. 2020, 177, 104145. [CrossRef]

19. Wang, W.S.; Zhao, X.Q.; Li, M.; Huang, L.Y.; Xu, J.L.; Zhang, F.; Cui, Y.R.; Fu, B.Y.; Li, Z.K. Complex molecular mechanisms
underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J. Exp. Bot. 2016, 67,
405–419. [CrossRef]

20. Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61.
[CrossRef]

21. Liu, L.; Wu, X.; Sun, W.; Yu, X.; Qiang, Z. Galactinol synthase confers salt-stress tolerance by regulating the synthesis of galactinol
and raffinose family oligosaccharides in poplar. Ind. Crops Prod. 2021, 165, 113432. [CrossRef]

22. Zhang, J.; Yang, N.; Li, Y.; Zhu, S.; Zhang, S.; Sun, Y.; Zhang, H.X.; Wang, L.; Su, H. Overexpression of PeMIPS1 confers tolerance
to salt and copper stresses by scavenging reactive oxygen species in transgenic poplar. Tree Physiol. 2018, 38, 1566–1577. [CrossRef]

23. Hu, L.; Zhou, K.; Liu, Y.; Yang, S.; Zhang, J.; Gong, X.; Ma, F. Overexpression of MdMIPS1 enhances salt tolerance by improving
osmosis, ion balance, and antioxidant activity in transgenic apple. Plant Sci. 2020, 301, 110654. [CrossRef]

24. Keyvan, A.; Setsuko, K. Crop and medicinal plants proteomics in response to salt stress. Front. Plant Sci. 2013, 4, 8. [CrossRef]
25. Lai, Y.; Zhang, D.; Wang, J.; Wang, J.; Ren, P.; Yao, L.; Si, E.; Kong, Y.; Wang, H. Integrative transcriptomic and proteomic analyses

of molecular mechanism responding to salt stress during seed germination in hulless barley. Int. J. Mol. Sci. 2020, 21, 359.
[CrossRef]

http://proteomecentral.proteomexchange.org
http://doi.org/10.3389/fpls.2014.00151
http://www.ncbi.nlm.nih.gov/pubmed/24795738
http://doi.org/10.1111/jipb.12689
http://www.ncbi.nlm.nih.gov/pubmed/29905393
http://doi.org/10.1093/aob/mcw191
http://www.ncbi.nlm.nih.gov/pubmed/27707746
http://doi.org/10.2134/agronj2016.06.0368
http://doi.org/10.1146/annurev.arplant.59.032607.092911
http://doi.org/10.1126/science.1183700
http://doi.org/10.1146/annurev-arplant-042811-105550
http://doi.org/10.3389/fpls.2016.02006
http://doi.org/10.2307/2259257
http://doi.org/10.3389/fpls.2017.01372
http://doi.org/10.1038/s41598-017-00566-1
http://doi.org/10.1186/1471-2148-13-70
http://doi.org/10.3390/agronomy12061467
http://doi.org/10.1111/nph.16921
http://doi.org/10.1038/s41598-020-64288-7
http://doi.org/10.1007/s10725-016-0245-0
http://doi.org/10.1038/s41438-019-0172-0
http://doi.org/10.1016/j.envexpbot.2020.104145
http://doi.org/10.1093/jxb/erv476
http://doi.org/10.1016/j.plaphy.2016.09.005
http://doi.org/10.1016/j.indcrop.2021.113432
http://doi.org/10.1093/treephys/tpy028
http://doi.org/10.1016/j.plantsci.2020.110654
http://doi.org/10.3389/fpls.2013.00008
http://doi.org/10.3390/ijms21010359


Int. J. Mol. Sci. 2022, 23, 10515 17 of 20

26. Boussadia, O.; Mariem, F.B.; Mechri, B.; Boussetta, W.; Braham, M.; Hadj, S. Response to drought of two olive tree cultivars (cv
Koroneki and Meski). Sci. Hortic. 2008, 116, 388–393. [CrossRef]

27. Doerr, A. DIA mass spectrometry. Nat. Methods 2014, 12, 35. [CrossRef]
28. Buts, K.; Michielssens, S.; Hertog, M.L.; Hayakawa, E.; Cordewener, J.; America, A.H.; Nicolai, B.M.; Carpentier, S.C. Improving

the identification rate of data independent label-free quantitative proteomics experiments on non-model crops: A case study on
apple fruit. J. Proteom. 2014, 105, 31–45. [CrossRef]

29. Wang, Y.; Sang, Z.; Xu, S.; Xu, Q.; Zeng, X.; Jabu, D.; Yuan, H. Comparative proteomics analysis of Tibetan hull-less barley under
osmotic stress via data-independent acquisition mass spectrometry. GigaScience 2020, 9, giaa019. [CrossRef]

30. Zou, J.; Yu, H.; Yu, Q.; Jin, X.; Cao, L.; Wang, M.; Wang, M.; Ren, C.; Zhang, Y. Physiological and UPLC-MS/MS widely targeted
metabolites mechanisms of alleviation of drought stress-induced soybean growth inhibition by melatonin. Ind. Crops Prod. 2021,
163, 113323. [CrossRef]

31. Pan, J.; Li, Z.; Dai, S.; Ding, H.; Wang, Q.; Li, X.; Ding, G.; Wang, P.; Guan, Y.; Liu, W. Integrative analyses of transcriptomics and
metabolomics upon seed germination of foxtail millet in response to salinity. Sci. Rep. 2020, 10, 13660. [CrossRef]

32. Isayenkov, S.V. Genetic sources for the development of salt tolerance in crops. Plant Growth Regul. 2019, 89, 1–17. [CrossRef]
33. Wang, M.; Ding, Y.; Wang, Q.; Wang, P.; Han, Y.; Gu, Z.; Yang, R. NaCl treatment on physio-biochemical metabolism and phenolics

accumulation in barley seedlings. Food Chem. 2020, 331, 127282. [CrossRef] [PubMed]
34. Latef, A.A.H.A.; Alhmad, M.F.A.; Kordrostami, M.; Abo-Baker, A.B.; Zakir, A. Inoculation with Azospirillum lipoferum or

Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. J. Plant
Growth Regul. 2020, 39, 1293–1306. [CrossRef]

35. Lavergne, F.D.; Broeckling, C.D.; Brown, K.J.; Cockrell, D.M.; Haley, S.D.; Peairs, F.B.; Pearce, S.; Wolfe, L.M.; Jahn, C.E.; Heuberger,
A.L. Differential Stem Proteomics and Metabolomics Profiles for Four Wheat Cultivars in Response to the Insect Pest Wheat Stem
Sawfly. J. Proteome Res. 2020, 19, 1037–1051. [CrossRef] [PubMed]

36. Vo, K.T.X.; Rahman, M.M.; Rahman, M.M.; Trinh, K.T.T.; Kim, S.T.; Jeon, J.S. Proteomics and Metabolomics Studies on the Biotic
Stress Responses of Rice: An Update. Rice 2021, 14, 30. [CrossRef] [PubMed]

37. Yang, Z.; Wang, C.; Xue, Y.; Liu, X.; Chen, S.; Song, C.; Yang, Y.; Guo, Y. Calcium-activated 14-3-3 proteins as a molecular switch in
salt stress tolerance. Nat. Commun. 2019, 10, 1199. [CrossRef] [PubMed]

38. Bush, D.S. Calcium Regulation in Plant Cells and its Role in Signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1995, 46, 95–122.
[CrossRef]

39. Manishankar, P.; Wang, N.; Köster, P.; Alatar, A.A.; Kudla, J. Calcium Signaling during Salt Stress and in the Regulation of Ion
Homeostasis. J. Exp. Bot. 2018, 17, 4215–4226. [CrossRef]

40. Lu, J.; Du, J.; Tian, L.; Li, M.; Zhang, X.; Zhang, S.; Wan, X.; Chen, Q. Divergent Response Strategies of CsABF Facing Abiotic
Stress in Tea Plant: Perspectives from Drought-Tolerance Studies. Front. Plant Sci. 2021, 12, 763843. [CrossRef]

41. Mucha, E.; Fricke, I.; Schaefer, A.; Wittinghofer, A.; Berken, A. Rho proteins of plants–functional cycle and regulation of
cytoskeletal dynamics. Eur. J. Cell Biol. 2011, 90, 934–943. [CrossRef] [PubMed]

42. Bloch, D.; Yalovsky, S. Cell polarity signaling. Curr. Opin. Plant Biol. 2013, 16, 734–742. [CrossRef] [PubMed]
43. Schepetilnikov, M.; Makarian, J.; Srour, O.; Geldreich, A.; Yang, Z.; Chicher, J.; Hammann, P.; Ryabova, L.A. GTPase ROP2 binds

and promotes activation of target of rapamycin, TOR, in response to auxin. EMBO J. 2017, 36, 886–903. [CrossRef] [PubMed]
44. Li, Z.; Takahashi, Y.; Scavo, A.; Brandt, B.; Nguyen, D.; Rieu, P.; Schroeder, J.I. Abscisic acid-induced degradation of Arabidopsis

guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc. Natl. Acad. Sci. USA 2018, 15, E4522–E4531.
[CrossRef]

45. Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 2009, 458, 422–429. [CrossRef]
46. Chen, B.; Lin, L.; Lu, Y.; Peng, J.; Zheng, H.; Yang, Q.; Rao, S.; Wu, G.; Li, J.; Chen, Z.; et al. Ubiquitin-Like protein 5 interacts with

the silencing suppressor p3 of rice stripe virus and mediates its degradation through the 26S proteasome pathway. PLoS Pathog.
2020, 16, e1008780. [CrossRef]

47. Patel, M.; Milla-Lewis, S.; Zhang, W.; Templeton, K.; Reynolds, W.C.; Richardson, K.; Biswas, M.; Zuleta, M.C.; Dewey, R.E.; Qu,
R.; et al. Overexpression of ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass. Plant Biotechnol. J. 2015,
13, 689–699. [CrossRef]

48. Zhang, Z.; Mao, C.; Shi, Z.; Kou, X. The Amino Acid Metabolic and Carbohydrate Metabolic Pathway Play Important Roles
during Salt-Stress Response in Tomato. Front. Plant Sci. 2017, 8, 1231. [CrossRef]

49. Niazian, M.; Sadat-Noori, S.A.; Tohidfar, M.; Mortazavian, S.M.M.; Sabbatini, P. Betaine Aldehyde Dehydrogenase (BADH) vs.
Flavodoxin (Fld): Two Important Genes for Enhancing Plants Stress Tolerance and Productivity. Front. Plant Sci. 2021, 12, 650215.
[CrossRef]

50. Kerepesi, I.; Galiba, G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci.
2000, 40, 482–487. [CrossRef]

51. Ashraf, M.; Harris, P.C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004, 166, 3–16. [CrossRef]
52. Wang, W.; Pang, J.; Zhang, F.; Sun, L.; Yang, L.; Zhao, Y.; Yang, Y.; Wang, Y.; Siddique, K.H.M. Integrated transcriptomics and

metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L.). Plant Physiol. Biochem. 2021, 166,
605–620. [CrossRef]

http://doi.org/10.1016/j.scienta.2008.02.016
http://doi.org/10.1038/nmeth.3234
http://doi.org/10.1016/j.jprot.2014.02.015
http://doi.org/10.1093/gigascience/giaa019
http://doi.org/10.1016/j.indcrop.2021.113323
http://doi.org/10.1038/s41598-020-70520-1
http://doi.org/10.1007/s10725-019-00519-w
http://doi.org/10.1016/j.foodchem.2020.127282
http://www.ncbi.nlm.nih.gov/pubmed/32559597
http://doi.org/10.1007/s00344-020-10065-9
http://doi.org/10.1021/acs.jproteome.9b00561
http://www.ncbi.nlm.nih.gov/pubmed/31995381
http://doi.org/10.1186/s12284-021-00461-4
http://www.ncbi.nlm.nih.gov/pubmed/33721115
http://doi.org/10.1038/s41467-019-09181-2
http://www.ncbi.nlm.nih.gov/pubmed/30867421
http://doi.org/10.1146/annurev.pp.46.060195.000523
http://doi.org/10.1093/jxb/ery201
http://doi.org/10.3389/fpls.2021.763843
http://doi.org/10.1016/j.ejcb.2010.11.009
http://www.ncbi.nlm.nih.gov/pubmed/21277045
http://doi.org/10.1016/j.pbi.2013.10.009
http://www.ncbi.nlm.nih.gov/pubmed/24238831
http://doi.org/10.15252/embj.201694816
http://www.ncbi.nlm.nih.gov/pubmed/28246118
http://doi.org/10.1073/pnas.1719659115
http://doi.org/10.1038/nature07958
http://doi.org/10.1371/journal.ppat.1008780
http://doi.org/10.1111/pbi.12291
http://doi.org/10.3389/fpls.2017.01231
http://doi.org/10.3389/fpls.2021.650215
http://doi.org/10.2135/cropsci2000.402482x
http://doi.org/10.1016/j.plantsci.2003.10.024
http://doi.org/10.1016/j.plaphy.2021.06.021


Int. J. Mol. Sci. 2022, 23, 10515 18 of 20

53. Kang, J.S.; Frank, J.; Kang, C.H.; Kajiura, H.; Vikram, M.; Ueda, A.; Kim, S.; Bahk, J.D.; Triplett, B.; Fujiyama, K.; et al. Salt
tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc. Natl. Acad. Sci.
USA 2008, 105, 5933–5938. [CrossRef]

54. Chung, C.Y.; Majewska, N.I.; Wang, Q.; Paul, J.T.; Betenbaugh, M.J. SnapShot: N-Glycosylation Processing Pathways across
Kingdoms. Cell 2017, 171, 258–258.e1. [CrossRef]

55. Palma, F.; Tejera, N.A.; Lluch, C. Nodule carbohydrate metabolism and polyols involvement in the response of medicago sativa
to salt stress. Environ. Exp. Bot. 2013, 85, 43–49. [CrossRef]

56. De Zélicourt, A.; Colcombet, J.; Hirt, H. The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci.
2016, 21, 677–685. [CrossRef]

57. He, Y.; Yang, B.; He, Y.; Zhan, C.; Cheng, Y.; Zhang, J.; Zhang, H.; Cheng, J.; Wang, Z. A quantitative trait locus, qSE3, promotes
seed germination and seedling establishment under salinity stress in rice. Plant J. 2019, 97, 1089–1104. [CrossRef]

58. Zhang, J.; Jia, W.; Yang, J.; Ismail, A.M. Role of aba in integrating plant responses to drought and salt stresses. Field Crops Res.
2006, 97, 111–119. [CrossRef]

59. Ryu, H.; Cho, Y.G. Plant hormones in salt stress tolerance. J. Plant Biol. 2015, 58, 147–155. [CrossRef]
60. Chinnusamy, V.; Jagendorf, A.; Zhu, J.K. Understanding and improving salt tolerance in plants. Crop Sci. 2005, 45, 437–448.

[CrossRef]
61. Huang, L.; Zhang, M.; Jia, J.; Zhao, X.; Huang, X.; Ji, E.; Ni, L.; Jiang, M. An Atypical Late Embryogenesis Abundant Protein

OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. Plant Cell Physiol. 2018, 59, 916–929.
[CrossRef] [PubMed]

62. Liu, Y.; Liang, J.; Sun, L.; Yang, X.; Li, D. Group 3 LEA Protein, ZmLEA3, Is Involved in Protection from Low Temperature Stress.
Front. Plant Sci. 2016, 7, 1011. [CrossRef] [PubMed]

63. Amirbakhtiar, N.; Ismaili, A.; Ghaffari, M.R.; Firouzabadi, F.N.; Shobbar, Z.S. Transcriptome response of roots to salt stress in a
salinity-tolerant bread wheat cultivar. PLoS ONE 2019, 14, e0213305. [CrossRef] [PubMed]

64. Espelund, M.; Saebøe-Larssen, S.; Hughes, D.W.; Galau, G.A.; Larsen, F.; Jakobsen, K.S. Late embryogenesis-abundant genes
encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress.
Plant J. 1992, 2, 241–252. [CrossRef]

65. Xiang, D.J.; Man, L.L.; Zhang, C.L.; Liu, P.; Li, Z.G.; Zheng, G.C. A new Em-like protein from Lactuca sativa, LsEm1, enhances
drought and salt stress tolerance in Escherichia coli and rice. Protoplasma 2018, 255, 1089–1106. [CrossRef]

66. Dermendjiev, G.; Schnurer, M.; Weiszmann, J.; Wilfinger, S.; Ott, E.; Gebert, C.; Weckwerth, W.; Ibl, V. Tissue-Specific Proteome
and Subcellular Microscopic Analyses Reveal the Effect of High Salt Concentration on Actin Cytoskeleton and Vacuolization in
Aleurone Cells during Early Germination of Barley. Int. J. Mol. Sci. 2021, 22, 9642. [CrossRef]

67. Hanin, M.; Brini, F.; Ebel, C.; Toda, Y.; Takeda, S.; Masmoudi, K. Plant dehydrins and stress tolerance: Versatile proteins for
complex mechanisms. Plant Signal. Behav. 2011, 6, 1503–1509. [CrossRef]

68. Abedini, R.; GhaneGolmohammadi, F.; PishkamRad, R.; Pourabed, E.; Jafarnezhad, A.; Shobbar, Z.S.; Shahbazi, M. Plant
dehydrins: Shedding light on structure and expression patterns of dehydrin gene family in barley. J. Plant Res. 2017, 130, 747–763.
[CrossRef]

69. Zhu, Y.; Hu, X.; Duan, Y.; Li, S.; Wang, Y.; Rehman, A.U.; He, J.; Zhang, J.; Hua, D.; Yang, L.; et al. The Arabidopsis Nodulin
Homeobox Factor AtNDX Interacts with AtRING1A/B and Negatively Regulates Abscisic Acid Signaling. Plant Cell 2020, 32,
703–721. [CrossRef]

70. Alizadeh, M.; Hoy, R.; Lu, B.; Song, L. Team effort: Combinatorial control of seed maturation by transcription factors. Curr. Opin.
Plant Biol. 2021, 63, 102091. [CrossRef]

71. Melnick, A.; Ahmad, K.F.; Arai, S.; Polinger, A.; Ball, H.; Borden, K.L.; Carlile, G.W.; Prive, G.G.; Licht, J.D. In-depth mutational
analysis of the promyelocytic leukemia zinc finger BTB/POZ domain reveals motifs and residues required for biological and
transcriptional functions. Mol. Cell. Biol. 2000, 20, 6550–6567. [CrossRef]

72. Wan, X.; Peng, L.; Xiong, J.; Li, X.; Wang, J.; Li, X.; Yang, Y. AtSIBP1, a Novel BTB Domain-Containing Protein, Positively Regulates
Salt Signaling in Arabidopsis thaliana. Plants 2019, 8, 573. [CrossRef]

73. Raghavendra, A.S.; Gonugunta, V.K.; Christmann, A.; Grill, E. ABA perception and signalling. Trends Plant Sci. 2010, 15, 395–401.
[CrossRef]

74. Zhang, M.; Lv, D.; Ge, P.; Bian, Y.; Chen, G.; Zhu, G.; Li, X.; Yan, Y. Phosphoproteome analysis reveals new drought response and
defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J. Proteom. 2014, 109, 290–308. [CrossRef]

75. Zhang, L.; Li, X.; Li, D.; Sun, Y.; Li, Y.; Luo, Q.; Liu, Z.; Wang, J.; Li, X.; Zhang, H.; et al. CARK1 mediates ABA signaling by
phosphorylation of ABA receptors. Cell Discov. 2018, 4, 30. [CrossRef]

76. Liu, J.; Zhang, W.; Long, S.; Zhao, C. Maintenance of Cell Wall Integrity under High Salinity. Int. J. Mol. Sci. 2021, 22, 3260.
[CrossRef]

77. Zhao, C.; Jiang, W.; Zayed, O.; Liu, X.; Tang, K.; Nie, W.; Li, Y.; Xie, S.; Li, Y.; Long, T.; et al. The LRXs-RALFs-FER module controls
plant growth and salt stress responses by modulating multiple plant hormones. Natl. Sci. Rev. 2020, 8, nwaa149. [CrossRef]

78. Baumberger, N.; Doesseger, B.; Guyot, R.; Diet, A.; Parsons, R.L.; Clark, M.A.; Simmons, M.P.; Bedinger, P.; Goff, S.A.; Ringli,
C.; et al. Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall
proteins form a vegetative and a reproductive clade. Plant Physiol. 2003, 131, 1313–1326. [CrossRef]

http://doi.org/10.1073/pnas.0800237105
http://doi.org/10.1016/j.cell.2017.09.014
http://doi.org/10.1016/j.envexpbot.2012.08.009
http://doi.org/10.1016/j.tplants.2016.04.004
http://doi.org/10.1111/tpj.14181
http://doi.org/10.1016/j.fcr.2005.08.018
http://doi.org/10.1007/s12374-015-0103-z
http://doi.org/10.2135/cropsci2005.0437
http://doi.org/10.1093/pcp/pcy035
http://www.ncbi.nlm.nih.gov/pubmed/29432551
http://doi.org/10.3389/fpls.2016.01011
http://www.ncbi.nlm.nih.gov/pubmed/27471509
http://doi.org/10.1371/journal.pone.0213305
http://www.ncbi.nlm.nih.gov/pubmed/30875373
http://doi.org/10.1111/j.1365-313X.1992.00241.x
http://doi.org/10.1007/s00709-018-1207-3
http://doi.org/10.3390/ijms22179642
http://doi.org/10.4161/psb.6.10.17088
http://doi.org/10.1007/s10265-017-0941-5
http://doi.org/10.1105/tpc.19.00604
http://doi.org/10.1016/j.pbi.2021.102091
http://doi.org/10.1128/MCB.20.17.6550-6567.2000
http://doi.org/10.3390/plants8120573
http://doi.org/10.1016/j.tplants.2010.04.006
http://doi.org/10.1016/j.jprot.2014.07.010
http://doi.org/10.1038/s41421-018-0029-y
http://doi.org/10.3390/ijms22063260
http://doi.org/10.1093/nsr/nwaa149
http://doi.org/10.1104/pp.102.014928


Int. J. Mol. Sci. 2022, 23, 10515 19 of 20

79. Zhao, C.; Zayed, O.; Yu, Z.; Jiang, W.; Zhu, P.; Hsu, C.C.; Zhang, L.; Tao, W.A.; Lozano-Durán, R.; Zhu, J.K. Leucine-rich repeat
extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2018, 115, 13123–13128. [CrossRef]

80. Quan, X.; Liu, J.; Zhang, N.; Xie, C.; Li, H.; Xia, X.; He, W.; Qin, Y. Genome-Wide Association Study Uncover the Genetic
Architecture of Salt Tolerance-Related Traits in Common Wheat (Triticum aestivum L.). Front. Genet. 2021, 12, 663941. [CrossRef]

81. Nakamura, Y.; Ngo, A.H. Non-specific phospholipase C (NPC): An emerging class of phospholipase C in plant growth and
development. J. Plant Res. 2020, 133, 489–497. [CrossRef] [PubMed]

82. Li, W.; Song, T.; Wallrad, L.; Kudla, J.; Wang, X.; Zhang, W. Tissue-specific accumulation of pH-sensing phosphatidic acid
determines plant stress tolerance. Nat. Plants 2019, 5, 1012–1021. [CrossRef] [PubMed]

83. Mansour, M.M. The plasma membrane transport systems and adaptation to salinity. J. Plant Physiol. 2014, 171, 1787–1800.
[CrossRef] [PubMed]

84. Zhang, J.; Yang, D.; Li, M.; Shi, L. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt
Stress. PLoS ONE 2016, 11, e0159622. [CrossRef]

85. Carvalhais, L.C.; Schenk, P.M.; Dennis, P.G. Jasmonic acid signalling and the plant holobiont. Curr. Opin. Microbiol. 2017, 37,
42–47. [CrossRef]

86. Sui, N.; Wang, Y.; Liu, S.; Yang, Z.; Wang, F.; Wan, S. Transcriptomic and Physiological Evidence for the Relationship between
Unsaturated Fatty Acid and Salt Stress in Peanut. Front. Plant Sci. 2018, 9, 7. [CrossRef]

87. Saha, A.; Das, S.; Moin, M.; Dutta, M.; Bakshi, A.; Madhav, M.S.; Kirti, P.B. Genome-Wide Identification and Comprehensive
Expression Profiling of Ribosomal Protein Small Subunit (RPS) Genes and their Comparative Analysis with the Large Subunit
(RPL) Genes in Rice. Front. Plant Sci. 2017, 8, 1553. [CrossRef]

88. Wang, J.; Ma, Z.; Li, C.; Ren, P.; Yao, L.; Li, B.; Meng, Y.; Ma, X.; Si, E.; Yang, K.; et al. Dynamic Responses of Barley Root
Succinyl-Proteome to Short-Term Phosphate Starvation and Recovery. Front. Plant Sci. 2021, 12, 649147. [CrossRef]

89. Liu, A.; Xiao, Z.; Li, M.W.; Wong, F.L.; Yung, W.S.; Ku, Y.S.; Wang, Q.; Wang, X.; Xie, M.; Yim, A.K.; et al. Transcriptomic
reprogramming in soybean seedlings under salt stress. Plant Cell Environ. 2019, 42, 98–114. [CrossRef]

90. Karunadasa, S.S.; Kurepa, J.; Shull, T.E.; Smalle, J.A. Cytokinin–induced protein synthesis suppresses growth and osmotic stress
tolerance. New Phytol. 2020, 227, 50–64. [CrossRef]

91. Kawasaki, S.; Borchert, C.; Deyholos, M.; Wang, H.; Brazille, S.; Kawai, K.; Galbraith, D.; Bohnert, H.J. Gene expression profiles
during the initial phase of salt stress in rice. Plant Cell 2001, 13, 889–905. [CrossRef]

92. Kim, K.Y.; Park, S.W.; Chung, Y.S.; Chung, C.H.; Kim, J.I.; Lee, J.H. Molecular cloning of low-temperature-inducible ribosomal
proteins from soybean. J. Exp. Bot. 2004, 55, 1153–1155. [CrossRef]

93. Choudhury, S.; Panda, P.; Sahoo, L.; Panda, S.K. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal.
Behav. 2013, 8, e23681. [CrossRef]

94. Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front.
Plant Sci. 2015, 6, 69. [CrossRef]

95. Wang, Y.; Shen, W.; Chan, Z.; Wu, Y. Endogenous Cytokinin Overproduction Modulates ROS Homeostasis and Decreases Salt
Stress Resistance in Arabidopsis Thaliana. Front. Plant Sci. 2015, 6, 1004. [CrossRef]

96. Gelhaye, E.; Rouhier, N.; Navrot, N.; Jacquot, J.P. The plant thioredoxin system. Cell Mol. Life Sci. 2005, 62, 24–35. [CrossRef]
97. Vanacker, H.; Guichard, M.; Bohrer, A.S.; Issakidis-Bourguet, E. Redox Regulation of Monodehydroascorbate Reductase by

Thioredoxin y in Plastids Revealed in the Context of Water Stress. Antioxidants 2018, 7, 183. [CrossRef]
98. Lemaire, S.D.; Michelet, L.; Zaffagnini, M.; Massot, V.; Issakidis-Bourguet, E. Thioredoxins in chloroplasts. Curr. Genet. 2007, 51,

343–365. [CrossRef]
99. Geigenberger, P.; Thormahlen, I.; Daloso, D.M.; Fernie, A.R. The Unprecedented Versatility of the Plant Thioredoxin System.

Trends Plant Sci. 2017, 22, 249–262. [CrossRef]
100. Aswad, D.W. Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamida-

tion of asparagine 25. Evidence for methylation at the alpha-carboxyl group of atypical L-isoaspartyl residues. J. Biol. Chem. 1984,
259, 10714–10721. [CrossRef]

101. Murray, E.D., Jr.; Clarke, S. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a
new site of methylation at isomerized L-aspartyl residues. J. Biol. Chem. 1984, 259, 10722–10732. [CrossRef]

102. Biterge, B.; Richter, F.; Mittler, G.; Schneider, R. Methylation of histone H4 at aspartate 24 by protein L-isoaspartate O-
methyltransferase (PCMT1) links histone modifications with protein homeostasis. Sci. Rep. 2014, 4, 6674. [CrossRef]

103. Petla, B.P.; Kamble, N.U.; Kumar, M.; Verma, P.; Ghosh, S.; Singh, A.; Rao, V.; Salvi, P.; Kaur, H.; Saxena, S.C.; et al. Rice PROTEIN
l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious
isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. New Phytol. 2016, 211, 627–645.
[CrossRef]

104. Sangwongchai, W.; Krusong, K.; Thitisaksakul, M. Salt tolerance at vegetative stage is partially associated with changes in grain
quality and starch physicochemical properties of rice exposed to salinity stress at reproductive stage. J. Sci. Food Agric. 2022, 102,
370–382. [CrossRef]

105. Mostofa, M.G.; Fujita, M. Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative
and glyoxalase systems. Ecotoxicology 2013, 22, 959–973. [CrossRef]

http://doi.org/10.1073/pnas.1816991115
http://doi.org/10.3389/fgene.2021.663941
http://doi.org/10.1007/s10265-020-01199-8
http://www.ncbi.nlm.nih.gov/pubmed/32372398
http://doi.org/10.1038/s41477-019-0497-6
http://www.ncbi.nlm.nih.gov/pubmed/31451794
http://doi.org/10.1016/j.jplph.2014.08.016
http://www.ncbi.nlm.nih.gov/pubmed/25262536
http://doi.org/10.1371/journal.pone.0159622
http://doi.org/10.1016/j.mib.2017.03.009
http://doi.org/10.3389/fpls.2018.00007
http://doi.org/10.3389/fpls.2017.01553
http://doi.org/10.3389/fpls.2021.649147
http://doi.org/10.1111/pce.13186
http://doi.org/10.1111/nph.16519
http://doi.org/10.1105/tpc.13.4.889
http://doi.org/10.1093/jxb/erh125
http://doi.org/10.4161/psb.23681
http://doi.org/10.3389/fpls.2015.00069
http://doi.org/10.3389/fpls.2015.01004
http://doi.org/10.1007/s00018-004-4296-4
http://doi.org/10.3390/antiox7120183
http://doi.org/10.1007/s00294-007-0128-z
http://doi.org/10.1016/j.tplants.2016.12.008
http://doi.org/10.1016/S0021-9258(18)90570-3
http://doi.org/10.1016/S0021-9258(18)90571-5
http://doi.org/10.1038/srep06674
http://doi.org/10.1111/nph.13923
http://doi.org/10.1002/jsfa.11367
http://doi.org/10.1007/s10646-013-1073-x


Int. J. Mol. Sci. 2022, 23, 10515 20 of 20

106. Zhang, C.W.; Wei, Y.P.; Xiao, D.; Gao, L.W.; Lyu, S.W.; Hou, X.L.; Bouuema, G. Transcriptomic and proteomic analyses provide
new insights into the regulation mechanism of low-temperature-induced leafy head formation in Chinese cabbage. J. Proteom.
2016, 144, 1–10. [CrossRef]

107. Kim, Y.J.; Chambers, A.G.; Cecchi, F.; Hembrough, T. Targeted data-independent acquisition for mass spectrometric detection of
RAS mutations in formalin-fixed, paraffin-embedded tumor biopsies. J. Proteom. 2018, 189, 91–96. [CrossRef]

108. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.;
Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43,
D447–D452. [CrossRef]

109. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

110. Wang, Y.; Zhang, X.; Yang, S.; Yuan, Y. Lignin Involvement in Programmed Changes in Peach-Fruit Texture Indicated by
Metabolite and Transcriptome Analyses. J. Agric. Food Chem. 2018, 66, 12627–12640. [CrossRef]

111. Ying, S.; Su, M.; Wu, Y.; Zhou, L.; Fu, R.; Li, Y.; Guo, H.; Luo, J.; Wang, S.; Zhang, Y. Trichome regulator SlMIXTA-like directly
manipulates primary metabolism in tomato fruit. Plant Biotechnol. J. 2020, 18, 354–363. [CrossRef] [PubMed]

112. Yu, C.; Luo, X.; Zhan, X.; Hao, J.; Zhang, L.; Song, Y.B.; Shen, C.; Dong, M. Comparative metabolomics reveals the metabolic
variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas. BMC Plant Biol. 2018, 18, 197.
[CrossRef] [PubMed]

113. Wang, J.; Yang, K.; Yao, L.; Ma, Z.; Li, C.; Si, E.; Li, B.; Meng, Y.; Ma, X.; Shang, X.; et al. Metabolomics Analyses Provide Insights
into Nutritional Value and Abiotic Stress Tolerance in Halophyte Halogeton glomeratus. Front. Plant Sci. 2021, 12, 703255.
[CrossRef] [PubMed]

114. Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process untargeted metabolomic
data. Anal. Chem. 2012, 84, 5035–5039. [CrossRef]

115. Ma, J.; Chen, T.; Wu, S.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource.
Nucleic Acids Res. 2019, 47, D1211–D1217. [CrossRef]

http://doi.org/10.1016/j.jprot.2016.05.022
http://doi.org/10.1016/j.jprot.2018.04.022
http://doi.org/10.1093/nar/gku1003
http://doi.org/10.1101/gr.1239303
http://doi.org/10.1021/acs.jafc.8b04284
http://doi.org/10.1111/pbi.13202
http://www.ncbi.nlm.nih.gov/pubmed/31254436
http://doi.org/10.1186/s12870-018-1412-4
http://www.ncbi.nlm.nih.gov/pubmed/30223770
http://doi.org/10.3389/fpls.2021.703255
http://www.ncbi.nlm.nih.gov/pubmed/34290730
http://doi.org/10.1021/ac300698c
http://doi.org/10.1093/nar/gky869

	Introduction 
	Results 
	Structural and Physiological Changes in Response to Salt Stress during Seed Germination 
	Analysis of DEPs in Seeds in Response to Salt Stress among Various Cultivars 
	Metabolic Analyses of Barley Seeds in Response to Salt Stress during the Germination Process 
	Integrative Proteomic and Metabolomic Analyses 

	Discussion 
	Signal Transduction in Response to Salt Stress 
	Amino Acid Metabolism for Salt Tolerance 
	Carbohydrate Metabolism for Salt Tolerance 
	Effects of Salt Stress on Phytohormone Signal Transduction 
	Cell Walls, Biomembranes and Protein Stability under Salt Stress 
	Antioxidants under Salt Stress 

	Materials and Methods 
	Barley Materials and Seed Germination under Salt Stress 
	Measurement of Seed Morphology and Physiological Parameters 
	Isolation of Total Proteins and Proteome Analysis 
	Detection and Identification of Metabolites and Analysis 

	Conclusions 
	References

