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Abstract
Detection and tracking of other vehicles and lane geometry will be required for
many future intelligent driver assistance systems. By integrating the estimation
of these two features into a single filter, a more optimal utilization of the avail-
able information can be achieved. For example, it is possible to improve the
lane curvature estimate during bad visibility by studying the motion of other
vehicles.

This paper derives and evaluates various approximations that are needed in
order to deal with the non-linearities that are introduced by such an approach.

Keywords: automotive tracking, extended Kalman filter, lane geometry,
collision avoidance
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� Övrig rapport

�
�

URL för elektronisk version

http://www.control.isy.liu.se

ISBN

—

ISRN

—

Serietitel och serienummer
Title of series, numbering

ISSN

1400-3902

LiTH-ISY-R-2686

Titel
Title

Combined road prediction and target tracking in collision avoidance

Författare
Author

Andreas Eidehall, Fredrik Gustafsson

Sammanfattning
Abstract

Detection and tracking of other vehicles and lane geometry will be required for many future
intelligent driver assistance systems. By integrating the estimation of these two features
into a single filter, a more optimal utilization of the available information can be achieved.
For example, it is possible to improve the lane curvature estimate during bad visibility by
studying the motion of other vehicles.

This paper derives and evaluates various approximations that are needed in order to deal
with the non-linearities that are introduced by such an approach.

Nyckelord
Keywords automotive tracking, extended Kalman filter, lane geometry, collision avoidance



Combined road prediction and target tracking in collision avoidance

Andreas Eidehall Fredrik Gustafsson
Vehicle Dynamics and Active Safety Department of Electrical Engineering

Volvo Car Corporation University of Linköping
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Abstract
Detection and tracking of other vehicles and lane geom-
etry will be required for many future intelligent driver
assistance systems. By integrating the estimation of these
two features into a single filter, a more optimal utiliza-
tion of the available information can be achieved. For
example, it is possible to improve the lane curvature
estimate during bad visibility by studying the motion of
other vehicles.

This paper derives and evaluates various approximations
that are needed in order to deal with the non-linearities
that are introduced by such an approach.

I. Introduction
Future intelligent automotive systems such as adaptive
cruise control, collision avoidance or lane guidance will
require detailed knowledge about the vehicle surroundings
[6]. In this paper, vehicle surroundings will refer to lane
geometry and other vehicles. Typically, lane information
is obtained from a vision system and other vehicles are
detected with a radar.

The importance of integrating data from object tracking
and road geometry tracking has quite recently been rec-
ognized [3], [2], [7]. The main idea is to try to improve
the road geometry estimate by studying the motion of
other vehicles and vice versa. For example, if a couple
of tracked vehicles suddenly all start moving right, one
of two things can have happened. The first is that they
all started a lane change manoeuvre and the road remains
straight. The other is that we are entering a curve and the
vehicles are still following the center of their lanes. These
possibilities can be treated in a Bayesian framework,
together with the information from the lane tracker, to
build a new estimator. In order to do this we need to
construct a new object measurement equation based on
the road geometry.

II. Overview
The position on the road for each vehicle is denoted (x,y).
This means that x is the driven distance along the road and
y the lateral position in the lane. We will need to relate
this to absolute, or Cartesian, position denoted (x̃, ỹ). The
purpose of Section III-A is to find this transformation
(x̃, ỹ) = T (x,y). To derive this, we need a model of the
road, and we start with a general model describing the
road curvature as c(x) = c0 +c1x. This describes a clothoid
curve and is a commonly used parametrization in collision
avoidance applications. The trigonometric formulas that
arise do not give an explicit expression for T (x,y). If such
an expression is needed, either the trigonometric functions
can be Taylor expanded, or a simpler model with c1 = 0
can be used (constant curve radius). These approximations
are treated in Section III-C.

To be able to apply a Kalman filter, we first define a state
vector that contains road geometry, the host vehicle’s and
the tracked vehicles’ positions. Section IV-A gives the
measurement equations, where the host vehicle’s sensors
are expressed as functions of the state vector. A suitable
motion model for the host vehicle and the tracked vehicles
is suggested in Section IV-B.

Having said this, the results presented in Section V should
be possible to appreciate, without understanding all of the
detail in the model and filter described in Section III and
IV.

III. Measurement equation derivation
A. Coordinate system derivation
We will start by deriving a two dimensional coordinate
transformation which is a mapping T from a curved
coordinate system (x,y) which follows the road to a
cartesian coordinate system (x̃, ỹ) which is attached to the
host vehicle, see Figure 1. The first part of the derivation
is similar to what was done in [4].

We start with a planar curve r(x), where x is distance
along a curve. Assume the curvature along the curve is
given by c = c(x). Now, if t̂(x) is the tangent vector, where
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Fig. 1. The vectors used in the derivation of T .

the hat means |t̂(x)|= 1, we define the normal vector n(x)
as

n(x) =
d t̂
dx

(x)

From vector analysis we get an alternative expression for
n(x) where we use the fact that it is perpendicular to t̂(x)
and that its length is precisely c(x). We first define

R(α) �
(

cosα −sinα
sinα cosα

)

Then n(x) = c(x)R(−π
2 )t̂(x). Thus, we end up with the

differential equation

d t̂
ds

(x) = c(x)R(−π
2
)t̂(x)

which has the solution

t̂(x) = exp(R(−π
2
)
∫ x

0
c(τ)dτ)t̂0 = R(−

∫ x

0
c(τ)dτ)t̂0 (1)

This can then be used to obtain an expression for the
position:

r(x) =
∫ x

0
t̂(τ)dτ+ r0 =

=
∫ x

0
R(−

∫ τ1

0
c(τ2)dτ2)dτ1t̂0 + r0 (2)

The vectors r(x) and t̂(x) are illustrated in Figure 1.

To construct the coordinate transformation T we first
define one of our coordinates to be the distance along
the curve: T (x,0) = r(x). To define the other coordinate
we require T to be orthogonal, i.e.

dT (x,y)
dy

⊥ t̂(x) for all x

A natural choice is to simply extend a straight line at
T (x,0) along −R(−π

2 )t̂(x). This choice will also give us
a positively oriented transformation. T will look like

(
x̃
ỹ

)
= T (x,y) = r(x)−R(−π

2
)t̂(x)y (3)

B. Choosing curvature function
The road is often modelled as segments of straight lines,
arcs and clothoids, see for example [4]. Clothoids are
segments were the curvature changes linearly with the
distance along the curve. According to [1], this agrees
well with how roads are constructed. The function

c(x) = c0 + c1x (4)

will suffice for all these cases. Of course, when approach-
ing a curve we might, for example, have situations were
the section 0 - 50 meters of our field of view is a straight
line and the section 50 - 100 meters is a clothoid, a case
which can not be modelled with a linear curvature law.

Plugging (4) into (1) and using

t̂0 =
(

cosβ
sinβ

)

we get

t̂(x) = R(−c0x− c1x2/2)
(

cosβ
sinβ

)
=

=
(

cos(c0x+ c1x2/2) sin(c0x+ c1x2/2)
−sin(c0x+ c1x2/2) cos(c0x+ c1x2/2)

)(
cosβ
sinβ

)

=
(

cosβcos(c0x+ c1x2/2)+ sinβsin(c0x+ c1x2/2)
−cosβsin(c0x+ c1x2/2)+ sinβcos(c0x+ c1x2/2)

)

=
(

cosβ −sinβ
sinβ cosβ

)(
cos(c0x+ c1x2)
−sin(c0x+ c1x2)

)

= R(β)
(

cos(c0x+ c1x2)
−sin(c0x+ c1x2)

)
(5)

(5) gives the second term of (3). In order to get an
expression for the first term we need to integrate (5),
which can not be done analytically. Instead we need to
do some sort of approximation.

Before we continue we shall use the free parameter r0 to
describe an offset perpendicular to t̂0 by simply setting

r0 = yoffR(−π
2
)t0 = yoff

(
0 1
−1 0

)(
cosβ
sinβ

)
= R(β)

(
0

−yoff

)

The vector r0 is shown in Figure 1.



C. Approximations
Approximation A: Omitting the clothoid parameter

Using c1 = 0 in (5) we get

t̂(x) = R(β)
(

cos(c0x)
−sin(c0x)

)

which, used in (2) gives

r(x) = R(β)
(

sin(c0x)
cos(c0x)−1

)
1
c0

−R(β)
(

0
yoff

)

and, since rotations commute, the coordinate transforma-
tion (3) becomes

Ta(x,y) � r(x)−R(
π
2
)t(x)y =

= R(β)
(

(1+ c0y)sin(c0x)
(1+ c0y)cos(c0x)−1− c0yoff

)
1
c0

Approximation B: Linearizing the trigonometric
functions

If we use sinτ = τ and cosτ = 1 then (5) becomes

t̂(x) = R(β)
(

1
−c0x− c1x2/2

)

Plugging this into (2) we get

r(x) = R(β)
(

x
−c0x2/2− c1x3/6

)
−R(β)

(
0

yoff

)

and from (3) we get the coordinate transformation

Tb(x,y) � R(β)
(

x+ y(c0x+ c1x2/2)
y− yoff − c0x2/2− c1x3/6

)

Approximation C: As B, plus further approximations

We now do some further approximation steps

Tb(x,y) ≈ R(β)
(

x
y− yoff − c0x2/2− c1x3/6

)
≈

≈
(

1 −β
β 1

)(
x

y− yoff − c0x2/2− c1x3/6

)
=

=
(

x−β(y− yoff − c0x2/2− c1x3/6)
βx+ y− yoff − c0x2/2− c1x3/6

)
≈

≈
(

x
y− yoff +βx− c0x2/2− c1x3/6

)
� Tc(x,y)

This is a commonly used approximation.

IV. Filter construction
To be able to use a Kalman filter, we will build three
state space models, based on the approximations from the
previous section. The states for the host vehicle are shown
in Figure 2. Note that we have β = −Ψrel . We need c1

as state in all three filters for dynamic reasons. Observed
vehicles will have the states xi, ẋi and yi, where i runs
through all detected objects.

yoff

Ψrel

W

radius = c  + c x
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Fig. 2. W , yoff, Ψrel , c0 and c1 are the host vehicle states. The mapping
T transforms from the coordinate system (x,y) to the coordinate system
(x̃, ỹ).

A. Measurement equations
The measurements for the host vehicle are Ψm

rel , cm
0 , Lm

and Rm where the last two are the distances to the left
and right lane marking. Superscript m denotes measured
quantities. For other vehicles we measure the position, x̃m

and ỹm. These relate to the states as

Lm
t = −Wt/2− yoff,t + e1,t

Rm
t = Wt/2− yoff,t + e2,t

Ψm
rel,t = Ψrel,t + e3,t

cm
0,t = c0,t + e4,t

(6a)

(
x̃m

i,t
ỹm

i,t

)
= T (xi,t ,yi,t)+

(
e5,t

e6,t

)
i

(6b)

where T can be replaced with any of the approximations.
Of course, T depends on all the host vehicle states
as well. The variables (e1, . . . ,e6) are some stochastic
measurement noise.

B. Motion models
Since x and y are the curved road coordinates, the motion
model of other vehicles can be greatly simplified. For
example, it allows us to use the equation ẏi = 0 which
simply means that we assume that other vehicles will fol-
low their own lanes. In the longitudinal direction we will
use the ẍi = 0− ahost cosΨrel , ahost being the measured
acceleration of the host vehicle so that with sample time



Ts we get the motion equations:

xi
t+1 = xi

t +Tsẋ
i
t +ahost,t cosΨrel,tT

2
s /2+w1,t

ẋi
t+1 = ẋi

t +ahost,t cosΨrel,tTs +w2,t (7a)

yi
t+1 = yi

t +w3,t

For the road geometry parameters we first clarify that Ψrel

is the angle offset to the lane and Ψabs is the angle to
some fix reference. We can obtain a relationship between
the two by taking the time derivative of Ψrel

Ψrel = Ψabs + γ ⇒
Ψ̇rel = Ψ̇abs + γ̇ = Ψ̇abs +

v
r

= Ψ̇abs + c0v

where r is the current road radius, v the velocity and γ
denotes the angle between the lane and some fix reference.
Ψ̇abs can typically be measured with a yaw rate sensor.
We also have

ẏoff = sinΨrelv ≈ Ψrelv

Using Ẇ = 0 and ċ1 = 0 we can write the motion
equations for the host vehicle states:

Wt+1 = Wt +w4,t

yoff,t+1 = yoff,t + vTsΨrel,t +w5,t

Ψrel,t+1 = Ψrel,t + vTsc0,t +TsΨ̇abs,t +w6,t (7b)

c0,t+1 = c0,t + vTsc1,t +w7,t

c1,t+1 = c1,t +w8,t

The variables (w1, . . . ,w8) are stochastic process noise.

V. Evaluation
A. Geometric comparison
From [1] we get the following guidelines for road con-
struction. For a 50 km/h road, the minimum radius is
140 meters and for a 90 km/h road it is 550 meters. The
recommended maximum clothoid parameters for these
curves are given by the formula

c1 =
k
v3

where k = 0.45 (m/s3) which is the maximum ”jerk”
and v the velocity, giving the clothoid 1.7 · 10−4 and
2.9 · 10−5 (1/m2) for the 50 km/h and the 90 km/h
curve respectively. In Figure 3 we have compared the
approximations with the exact transformation. Note that
on straight lines and on circle segments, Ta coincides with
the exact transformation.
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Fig. 3. Illustration of the different approximations. A road with edges
at y =−5 and y = 5 has been transformed with the three approximations
and with the true transformation, based on typical a 50 km/h curve.

B. Curvature estimate accuracy
To analyze the different models further, an extended
Kalman filter was implemented, based on the different
approximations. The accuracy of the lane geometry was
then evaluated during a test drive. A vehicle equipped
with a camera and a radar was used to record data. Lane
geometry measurements were given by the camera and
measurements of other vehicles were given both from
the camera and the radar. Some additional data from the
vehicle, such as velocity and yaw rate, were also collected.
The true values of the lane geometry were obtained from
a detailed map.

Four filters were then run on the same data, the three
approximations that was derived in Section III-C, plus
a completely decoupled model, i.e. tracking of obstacles
and lane geometry done separately.

Filter tuning

Filter tuning is the process of adjusting the entries in
the ”Q” and ”R” matrices, which are often interpreted
as process and measurement noise covariance. If we
constrain these to be diagonal, we have 14 parameters
to tune, as shown in Table I.

The tuning was started by first using ”physical” intuition
trying to judge errors in measurements and changes in
different states. This was then used as a starting point
for hours of manual tuning in order to get acceptable
performance from all three filters.



Host Obstacles
Process noise 5 3

Measurement noise 4 2

TABLE I

NUMBER OF TUNING PARAMETERS

After that, a more systematic approach was used. A scal-
ing parameter was applied to selected filter parameters.
For example, if the host states process noise covariance
matrix is called Qhost, the filters was run with this matrix
replaced with λQhost, where λ for example ranges from
10−2 to 102. Then the mean error in some parameter,
usually the curvature c0, was computed. This procedure
was then applied to different combinations of parameters
or single parameters. This is of course only a sub-
optimization in the 14 dimensional parameter space.
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Fig. 4. Curvature error during bad visibility. The measurement
noise of the road measurements has been scaled from 10−2 to 104. The
plot shows the error in the curvature estimate for the different filters.
This also includes a decoupled filter where the road geometry and the
obstacles are treated separately. Note that Approximation A becomes
unstable for high measurement noise values.

Results

Figure 4 and Figure 5 shows some preliminary results
of the performance of the different filters. The three
approximations have been compared to a decoupled linear
filter, where lane geometry and obstacles were tracked
separately. Figure 4 shows a data sequence recorded
during bad visibility. It shows that the performance can be
improved by using a combined filter, which has also been
demonstrated in for example [7] and [5]. Figure 5 shows a
data set recorded during good visibility. In this case, there
is only a small improvement by using integrated filtering.
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Fig. 5. Curvature error during good visibility. The measurement
noise of the road measurements has been scaled from 10−2 to 104. The
plot shows the error in the curvature estimate for the different filters.

To make the experiment more interesting, we have only
allowed the measurement noise of the road measurements
to vary between the two cases, all other parameters are
kept constant. It can be seen in the Figures 4 and 5 that
the optimal performance is reached at higher measurement
noise for the bad visibility case than the good visibility
case. This is intuitive, if bad visibility was detected by for
example the vision system, you would typically increase
the process noise of road measurements in the Kalman
filter in order to rely more on other measurements and on
the motion model.

It should be noted that the data in Figure 4 and Figure 5
are from different roads and during different traffic condi-
tions. Therefore, care should be taken before comparing
the performance in the two experiments.

Also, even though the curvature is important in many
applications, it is just one of many parameters. A more
thorough evaluation of the performance could be done if
the particular application of the filter was known.

In the next section we examine a property that is important
in many collision avoidance applications.

C. Lane assignment
Lane assignment is the problem of deciding in which
lanes the tracked vehicles are currently driving. This is
where the quality of the lane geometry estimate becomes
utterly important, even the slightest error in heading angle
or curvature will result in a significant lateral error for
vehicles at a long distance, say 70 - 100 meters.

All three model approximations from Section III-C were



Filter Bad visibility Good visibility
Approximation A 0.84 0.94
Approximation B 0.84 0.88
Approximation C 0.78 0.74

Decoupled 0.12 0.81

TABLE II

LANE ASSIGNMENT ACCURACY

run on the same data, again together with a decoupled
filter. Doing lane assignment when using these filters
becomes trivial due to the curved coordinate system. We
only need to consider the lateral position of each estimate,
i.e. the yi

t states, and the current lane width, Wt . We will
refer to this quantity as the estimated lane index, χ̂i

t . It is
defined as

χ̂i
t �




−1 yi
t < −Wt/2

0 −Wt/2 < yi
t < Wt/2

+1 Wt/2 < yi
t

This value then needs to be compared to the true value,
χi

t . This was obtained by placing the measured position
of other vehicles on the true map. This method is based
on the assumption that the error in the position of the
obstacles is small compared to the error in the lane
geometry.

We then compute the accuracy of the lane assignment
as the ratio of the correct number of assignments and
the sum of the total number of obstacles summed over
the entire data set, i.e. if ntot,t is the total number of
obstacles for time step t and ncorrect,t is the number of
correct assignments, we define

Lane assignment accuracy � ∑t ncorrect,t

∑t ntot,t

Results

The lane assignment accuracy of the different approx-
imations from Section III-C are shown in Table II. It
shows that the improvement achieved by integrated fil-
tering during the bad visibility case is significant. In the
case of good visibility, there is some improvement for
Approximation A and B.

VI. Summary and Conclusions
It is clear that combined lane prediction and target track-
ing can give better estimates and improve the accuracy of
state estimates and improve the performance of applica-
tions such as lane assignment. The integrated filter bring
non-linearities which needs to be approximated, and it has
been shown that there might be better alternatives than
linearizing the trigonometric functions, which is often
done.

Tuning the different filters is a very difficult task. The
performance of all three filters can probably be improved
if a more systematic tuning procedure is used. There are
also stability issues, all three filters tend to diverge for
certain, badly chosen, sets of tuning parameters. Stability
of the extended Kalman filter can never be guaranteed.

Despite this, the improvement in performance shown in
these experiments, cannot be overlooked, no matter which
approximation is used.
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