
Nature Genetics  VOLUME 45 | NUMBER 7 | JULY 2013	 767

A rt i c l e s

Unraveling the complex relationship between phenotype and geno-
type poses a formidable challenge for biomedical science. Despite 
considerable success in identifying genetic loci that contribute to 
quantitative variation and disease susceptibility in humans1, in most 
organisms, the causal genetic variants at loci that contribute to com-
plex phenotypes remain unclear2. Finding the responsible molecular 
changes would allow an understanding of how phenotypic variation 
arises and would confirm the identity of relevant genes.

In this report, we present results from an outbred rat heterogeneous 
stock (hereafter, NIH-HS) in a combined sequence-based and genetic 
mapping analysis of 160 phenotypes. The NIH-HS, established in the 
1980s at the US National Institutes of Health (NIH), is descended 
from eight inbred progenitors3—BN/SsN, MR/N, BUF/N, M520/N, 
WN/N, ACI/N, WKY/N and F344/N—containing segregating varia-
tion representative of that found in commonly used laboratory rats.

Heterogeneous stocks have three characteristics suited to genetic 
mapping: (i) quantitative trait loci (QTLs) can be resolved to megabase 
resolution; (ii) the complete sequence of genotyped heterogeneous-stock 
animals can be imputed with high accuracy from the progenitor genomes; 
and (iii) the population has a well-defined haplotype space that can be 
exploited to determine whether genetic association is caused by single 
sequence variants or by haplotypes4–6. The distinction between haplotypic 
and single-marker association is fundamental to understanding the signals 
from genome-wide association studies (GWAS), where it is unknown how 
often causality can be attributed to a single variant. In natural populations, 
it is rarely feasible to test for haplotypic effects because of the difficulty of 
estimating the large number of unknown rare haplotypes7.

Here we describe the sequence of the 8 progenitor strains, the 
development of a rat SNP array, the genotyping and phenotyping of 
1,407 outbred NIH-HS rats and the mapping of hundreds of QTLs. 
We use the haplotypic properties of the NIH-HS to investigate the 
molecular basis of these QTLs.

RESULTS
Sequence analysis
We generated SOLiD sequence data for the eight NIH-HS inbred 
founder strains equivalent to an average of 22× base coverage. 
After mapping sequence to the reference strain (BN/NHsdMcwi)8, 
we report our results with respect to the accessible genome, which 
represents ~88% of the reference genome (Table 1). We identified  
7.2 million SNPs (containing 19.8 million genotypes differing from the 
reference in at least 1 strain), 633,000 indels (<10 bp, with the major-
ity consisting of 1-bp (79.3%) or 2-bp (12.3%) changes) and 44,000  
structural variants.

We assessed the sensitivity and specificity of variant calls by com-
parison with 2.1 Mb of DNA from one non-reference strain, LE/
Stm, finished to an estimated accuracy of 1 error per 100,000 bp9. 
Although LE/Stm is not an NIH-HS progenitor strain, it is one of 
the few non-reference rat strains cloned into a library of BACs (and 
thus suitable for highly accurate clone-based sequencing)9 and one 
that similarly diverged from the reference strain (BN/NHsdMcwi). 
Comparison of SOLiD and capillary sequencing variant calls showed 
that 2.7% of SNPs, 2.2% of indels and 16.7% of structural variants 
were false positive calls. These error rates were independently con-
firmed in the NIH-HS strains by analysis of a randomly selected 
subset of variants using PCR-based resequencing, which confirmed 
all selected SNPs (84/84) and indels (80/80) and most structural 
variants (53/54). In contrast, false negative rates were much higher: 
17.2% for SNPs, 41.4% for indels and 65% for structural variants. 
Most false negative SNPs and indels are next to repeats (77.9% and  
80.8%, respectively).

We summarized the variation in each strain (Table 1). Excluding 
BN/SsN (which is a substrain of the reference and consequently has 
far fewer differences than the other strains), the average number of 
SNPs per strain was 2.8 million.
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Nucleotide diversity in NIH-HS progenitors
We examined sequence diversity among the NIH-HS progenitors  
(Fig. 1), identifying the following characteristics of this diversity. First, 
diversity between all pairs of strains was similar, such that there were no 
strains that were extremely sequence divergent (Supplementary Fig. 1). 
Second, in total, 29% of 7.2 million SNPs were private to a particular 
strain; hence, unique haplotypes are relatively common in the NIH-HS. 
Third, regions of low diversity were small (median of 400 kb), with no 
blocks over 35 Mb in length (Fig. 1a). Within divergent regions, there 
was a median of 151 differences per 100 kb (Fig. 1b).

In comparison with the eight inbred strains that founded the 
mouse heterogeneous stock4,10, the rat founders were less diverse  
(10.2 million SNPs in the mouse founders), but diversity was more 
homogeneous: in the mouse genomes, long tracts of identical haplo-
types alternate with segments of much greater diversity (Fig. 1a,b).

Phenotypes and genotypes
NIH-HS rats were phenotyped with a protocol that includes six  
disease models (anxiety, diabetes, hypertension, aortic elastic lamina 
ruptures, multiple sclerosis and osteoporosis) and measures of risk 
factors for common diseases (for example, lipid and cholesterol levels  
and cardiac hypertrophy)11 (Table 2). In total, 160 phenotypes were 
measured (Supplementary Table 1). We selected 1,407 animals 
and 198 non-phenotyped parents for genotyping together with the  
heterogeneous stock founders.

We designed a high-density Affymetrix SNP genotyping array 
(RATDIV), using sequences from 13 inbred strains, which inter-
rogated 803,485 SNPs. The SOLiD and RATDIV calls agreed at 
99.98% of the 560,000 SNPs segregating in the 8 NIH-HS founders. 
We genotyped the NIH-HS with this array and reconstructed the 
mosaics of NIH-HS founder haplotypes from 265,551 polymorphic 
high-quality SNPs. In the NIH-HS, the mean minor allele frequency 
(MAF) was 22% (Fig. 1c), and linkage disequilibrium (LD) fell below  
0.2 (median r2) within 1 Mb of autosomal SNPs (Fig. 1d). Four pairs 
of loci showed high interchromosomal LD, owing to misassembly of 
the reference sequence used here (Rnor3.4); these loci were excluded 
from the analysis (Supplementary Table 2).

QTLs
The NIH-HS contains individuals of varying relatedness that generate 
population structure in the genotypes and, hence, false positive genetic 
associations. We evaluated two strategies for dealing with related-
ness: mixed models in which the genotypic similarity matrix between 
individuals modeled their phenotypic correlation12 and resampling 
methods to identify loci that replicate consistently across multiple 
QTL models fitted on subsamples of the mapping population13. In 
both strategies, QTLs were detected by haplotype association14.

We compared the methods by simulation to determine which best 
controlled the false positive rate while retaining power. Mixed models 
performed better than resampling when phenotypes were simulated to 
have a normal distribution, but the reverse was true for phenotypes that 
did not have a normal distribution (that is, binary phenotypes and those 
with a negative binomial distribution). Because these methods have dif-
ferent advantages, we mapped all traits with both, but we only report those 
QTLs detected at false discovery rate (FDR) of 10% by the method that 
performed best for each trait (thresholds are given in Supplementary 
Table 1). A genome scan for one phenotype (platelet aggregation) is 
shown (Fig. 2) in which three loci were identified with FDR of 10%.

We identified 355 QTLs for 122 phenotypes, with a mean of 2.9 
QTLs per phenotype (Supplementary Table 3). The number of QTLs 
per phenotype and the QTL effect sizes (Fig. 1e) have markedly 
skewed distributions, with a median effect size of 5% (mean effect 
size of 6.5%). Large-effect QTLs were rare: only 22 QTLs explained 
more than 15% of the variance. We identified 28 QTLs that explained 
less than 2.5% of the phenotypic variance.

The correlation between heritability and the total variance explained 
jointly by the detected QTLs is shown (Fig. 1f). On average, the QTLs 
explained 42% of the heritable phenotypic variance. When consider-
ing QTLs mapped in other rat crosses in the Rat Genome Database, 
there was significant overlap with NIH-HS QTLs for the number 
of arterial elastic lamina ruptures, total cholesterol levels and heart 
weight (at a nominal P value of 0.05; Supplementary Table 4).

We estimated the confidence intervals for QTL locations by simu-
lating a large number of QTLs throughout the genome with various 
effect sizes, and we calculated the distribution of the widths of the con-
fidence intervals as a function of their significance (Supplementary 
Fig. 2). The median size of the 90% confidence interval was 4.5 Mb, 
on average containing more than 40 genes.

Incorporation of sequence with mapping data
We investigated the extent to which our near-complete catalog of seg-
regating sequence variants would identify genes and causative muta-
tions. The heterogeneous stock permits a test, called merge analysis6, 
of whether a variant is responsible for phenotypic variation, under the 
assumption that a single imputed variant or variants on a single pro-
genitor haplotype are causal. Because genetic variation segregates in 
the form of progenitor haplotypes in the heterogeneous stock, QTLs 
can always be explained by variation in the haplotypes. When a QTL 
corresponds to a single variant though, genotypic variation at that 
variant will explain phenotypic variation better than progenitor hap-
lotypes. To measure whether a single variant explained a QTL, we 
calculated difference (d) as log Pmerge–log Phaplotype, where log Phaplotype 
is the maximum negative log10 P value of the haplotype test of no asso-
ciation and log Pmerge is the maximum of all merge log10 P values of 

Table 1  Sequence variation in the eight progenitor strains of NIH-HS rats

Strain
Mapped  
data (Gb) Coverage

Inaccessible  
genome (%) SNPs Private SNPs Indels Private indels

Structural  
variants

Private  
structural variants

ACI/N 65.9 26.3 12.6 2,883,405 228,468 166,425 12,646 19,499 756

BN/SsN 54.4 21.7 9.4 71,038 563,308 0 14,839 27 4,203

BUF/N 62.3 24.9 12.7 2,748,633 125,202 172,934 7,195 22,176 1,002

F344/N 77.9 31.1 11.8 2,831,144 97,951 157,522 5,007 25,257 1,003

M520/N 72.5 28.9 12.3 2,836,898 89,277 170,031 5,008 24,090 915

MR/N 62.4 24.9 12.3 2,664,124 223,514 151,099 12,005 18,306 1,004

WKY/N 63.4 25.3 12.1 3,088,953 496,327 164,634 23,979 28,270 3,357

WN/N 62.3 24.9 12.2 2,698,493 249,563 154,769 13,541 18,563 700

Shown for each strain is the amount of sequence mapped to the reference, the coverage, the percent of the genome deemed inaccessible and the counts of the three classes of 
variants compared to the reference strain. Private variants are variants that distinguish a specified strain from all others; most of the alleles private to BN/SsN are reference alleles.
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variants included within the QTL. Any imputed variant with a merge 
log10 P value that exceeded the maximum haplotype log10 P value was 
termed a candidate variant. If d was <0, then no candidate variants 
existed at the QTL. We investigated the characteristics of candidate 
variants at 343 QTLs mapped using mixed models: at 131 QTLs (38%) 
we identified at least 1 candidate variant (Supplementary Table 3).

There are three ways in which focusing on these candidate vari-
ants helps identify genes at a QTL. First, we increase resolution by 
ruling out a causal role for the great majority of sequence variants 
(usually over 90%) within most QTLs. We found 28 QTLs at which 
only a single gene contained candidate variants (Table 3). One 
example was Ctnnd2 (encoding catenin δ2) at a QTL for an anxiety-
related phenotype (Fig. 3a). CTNND2 is a protein found in com-
plexes with cadherin cell adhesion molecules at neuronal synapses15.  

Another example involved a locus influencing heart weight, where, 
out of 82 coding genes within the QTL, only Shank2 contained can-
didate SNPs (Fig. 3b). Shank2 encodes a synaptic protein16 not previ-
ously associated with cardiovascular physiology.

Second, merge analysis identifies some candidate variants in coding 
regions. Those predicted to affect protein structure are more likely 
to be causal. Thus, we identified a potential causal nucleotide variant 
in a QTL for antibody recognition of CD45RC on CD4+ and CD8+ 
T cells (Fig. 3c). The antibody used binds to the CD45RC isoform, 
which expresses a C domain, encoded by exon 6, in which we found 
a candidate variant changing an amino acid (p.Arg114His).

At 43 out of 91 nonsynonymous candidate variants, where similar 
protein structures were available17, we predicted the structural conse-
quences of mutations (for a further 48 candidate variants, there were 
no homologies with known protein structures). Nine genes (Table 3) 
contained candidate variants for which structural evidence suggested 
that protein structure or interactions might be altered.

An example is shown (Fig. 3d) for the protein Tbx21, encoded by 
a gene within a QTL influencing the proportion of CD4+ cells with 
high expression of CD25. Here the candidate variant changed glycine 
to arginine (p.Gly175Arg). The substitution with arginine could alter 
the DNA-binding characteristics of this protein.

The crystal structure of human ABCB10, a mitochondrial trans-
porter induced by GATA1 during erythroid differentiation18,19, is 
shown (Fig. 3e). The candidate variant p.Thr233Met, predicted to 
influence mean red blood cell volume, mapped to a position in the 
protein structure where the side chain of the residue points to the 
center of the transporter channel (Fig. 3e). Threonine has a polar, 
uncharged side chain, whereas methionine has a hydrophobic side 
chain, and the difference between their structures probably results in 
altered transporter function.

Table 2  Summary of phenotypes collected

Phenotype Disease model
Number of  
measures

Age  
(weeks)

Coat color 4 7

Wound healing 1 7, 17

Fear-related behaviors Anxiety 10 8–10

Glucose tolerance Type 2 diabetes 6 11

Cardiovascular function Hypertension 2 12

Body weight Obesity 1 13

Basal hematology 26 13

Basal immunology 34 13

Induced neuroinflammation Multiple sclerosis 11 13–17

Bone mass and strength Osteoporosis 43 17

Arterial elastic lamina ruptures 6 17

Serum biochemistry 15 17

Renal agenesis 1 17
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Figure 1  Sequence diversity among progenitor strains and genetic  
architecture of the rat NIH-HS. (a) Regions of low diversity in rat  
and mouse heterogeneous stock (HS) founders. The x axis shows the  
length of genomic regions with little sequence divergence (less than  
13 SNPs/100 kb). The y axis shows the numbers of segments observed  
in the eight progenitors. (b) Sequence divergence in the founders.  
The x axis shows a measure of pairwise sequence diversity, the number of  
sequence differences observed in windows of 100 kb, and the y axis gives  
the number of observations. (c) MAF values in rat, mouse and human  
populations. The rat analysis was performed with the set of autosomal  
markers used to reconstruct haplotypes (261,684) as well as the complete  
set of 796,187 autosomal variants on the RATDIV array. The mouse analysis  
was performed with 12,226 autosomal markers used to reconstruct haplotypes.  
(d) The extent of LD (r2) in the rat NIH-HS. Distances between pairs of autosomal  
markers were binned (x axis). The y axis shows the median of the corresponding distribution of LD values. (e) The distribution of effect sizes for the 343 
loci mapped by mixed models in the rat NIH-HS. The x axis shows the proportion of phenotypic variance attributable to each locus. (f) The proportion of 
heritability that can be explained by the joint effect of the QTLs detected for each phenotype. Each data point represents a single phenotype, with the  
x axis showing the heritability and the y axis showing the joint QTL effect for that phenotype.
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Third, merge analysis eliminates candidate genes at a QTL that are 
distant from any candidate variant. This approach confirmed a well-
established relationship between a cluster of apolipoprotein genes at 
a QTL on chromosome 1 and cholesterol biosynthesis (high-density 
lipoprotein (HDL), low-density lipoprotein (LDL) and total cholesterol). 
Similarly, merge analysis identified a locus influencing platelet aggre-
gation on chromosome 4 that harbors the von Willebrand factor gene 
(Vwf), encoding a key glycoprotein involved in blood coagulation.

Merge analysis also contributed to an understanding of the patho-
genesis of experimental autoimmune encephalomyelitis (EAE), an 
autoimmune neuroinflammatory disease with clinical and pathologi-
cal similarities to multiple sclerosis20. The major histocompatibility 
complex (MHC) class II region on chromosome 20 (Eae1) is known to 
influence EAE susceptibility. However, attempts to identify the respon-
sible gene have had limited success. In this study, the two variants 
most likely to underlie the QTL effect on chromosome 20 (with the 
highest merge log10 P value) were a variant in an intron of Btnl2 and a 
variant 274 bp upstream of RT1-Db1, both in the MHC class II region.  
The human ortholog of RT1-Db1, HLA-DRB1, is associated with mul-
tiple sclerosis, with risk allele HLA-DRB1*15:01 (ref. 21).

Single variants rarely account for NIH-HS QTL genetic effects
Unexpectedly, 212 QTLs (62%) had no candidate variant (Fig. 4a). 
We considered four explanations for this observation: (i) causative 
variants were missing from the sequence catalog; (ii) haplotype map-
ping was biased toward QTLs without candidate variants; (iii) the 
merge analysis underestimated statistical significance compared to 
single-marker association analysis; and (iv) there were multiple causal 
variants at a single QTL.

First, causal variants may have been missed because our sequence data 
were incomplete. Despite LD extending over a few megabases, not all 
variants were tagged by a nearby variant with identical strain distribution 
pattern (SDP) in the founders. For example, only 50% of the structural 
variants were tagged by a SNP lying within 1 Mb of the variation.

However, because only a limited set of possible SDPs exist in the het-
erogeneous stock, we can test whether missing genotypes are respon-
sible for the inability to detect candidate variants. We generated SDPs 
for all possible diallelic and triallelic variants at every locus within the 
212 QTLs and tested each by merge analysis to determine how many 
would have been candidate variants. Only 44 QTLs had candidate 
diallelic variants, and 165 had diallelic or triallelic variants. Thus, 
if the effect for each QTL were attributable to a single diallelic vari-
ant that we had not sequenced, there would still be 168 QTLs (49%) 
without a candidate variant. If the effect were attributable to a diallelic 
or triallelic variant, the fraction would be reduced to 14%. However,  
triallelic SNPs are very uncommon and are therefore unlikely to 
explain the large number of QTLs without candidate variants.

Second, haplotype mapping might simply not be powerful enough to 
detect candidate variants or might be biased toward QTLs without can-
didate variants. We addressed the first possibility by simulation (Fig. 4a). 
We report the distribution of the d values for the differences between 
maximum log10 Pmerge and log10 Phaplotype values, where, for QTLs where 

candidate variants exist, d >0. When simulated QTLs arose from single 
causal variants, merge analysis did indeed identify candidate variants 
at almost all QTLs placed in random regions of the genome as well as at 
QTLs simulated in the same locations as the detected QTLs.

We also considered the performance of the method at QTLs where 
it was highly probable that a single variant was the causal variant, 
namely at cis-acting expression QTLs (eQTLs)22,23. We tested 1,398 
eQTLs detected in the hippocampus of heterogeneous stock mice24, 
finding that the merge analysis identified variants with P values that 
exceeded those of the haplotype-based test at 97% of QTLs (Fig. 4b). 
Notably, when we carried out the same analysis on trans eQTLs, the 
distribution of d values was similar to that seen for the rat phenotypic 
QTLs (Fig. 4b). This difference between cis and trans eQTLs was true 
across all log P values, indicating that the difference is not due to lower 
power to detect trans eQTLs.

Because mapping QTLs using haplotype analysis might bias results 
toward loci without candidates (a winner’s curse is likely to oper-
ate), we used merge analysis to map QTLs across the genome. The 
two methods did not identify the same QTLs (152 were unique to 
the merge method), but the merge method identified 16% fewer 
QTLs than the haplotype method. Notably, only 9% of the merge-
identified QTLs had no candidate variants (Supplementary Fig. 3). 
Consequently, we conclude that haplotype mapping overestimates the 
number of QTLs without a candidate variant, whereas merge analysis 
underestimates the number of these QTLs. Therefore, our best esti-
mate of the proportion of QTLs without candidate variants is obtained 
from combining both methods. In the set of QTLs identified by either 
merge or haplotype mapping, we found that 44% of QTLs could not 
be explained by single causal variants (compared to 62% when only 
the haplotype-based QTLs were considered). Thus, although a win-
ner’s curse does operate in favor of the haplotype analysis, it cannot 
account for all QTLs without a candidate variant.

The third explanation was that the merge analysis underestimates 
statistical significance. We compared the performance of the merge 
analysis with that of single-marker association analysis at genotyped 
SNPs. Across all phenotypes, r2 correlation between log P values was 
0.9; agreement was strongest for the most highly associated SNPs. This 
result indicates that merge analysis performs as well as SNP analysis.

Finally, we investigated the extent to which multiple variants at QTLs 
would account for our findings. We investigated the consequences of a 
variety of complex QTL architectures by simulation (Fig. 4a). Simulating 
multiple causal variants on different haplotypes reduced the frequency at 
which any single variant exceeded the maximum haplotype log P value, 
although this simulated complexity was still insufficient to mimic the 
observed frequency of QTLs without causal variants (Fig. 4a). Simulating 
irreducible haplotypic effects arising from the reconstructed haplo-
type mosaics in the heterogeneous stock (rather than from a selection 
of sequence variants) also led to fewer QTLs with candidate variants 
(Fig. 4a), although, again, the simulated proportion of QTLs without 
variants did not match that observed with the real QTL set. Our simu-
lations suggest that the presence of multiple causal variants at a locus 
accounts in part for the inability to identify candidate causal variants.
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Figure 2  Genome scan for platelet aggregation. 
The scan shows the results of a haplotype-based 
mixed model. The y axis shows the negative 
log P values for association with variation in 
platelet aggregation. The association peak on 
chromosome 4 harbors the von Willebrand factor 
gene that was identified through sequence 
analysis as the causative gene.
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Table 3  Summary of genes identified at QTLs and potential functional variants

Measure Chr. QTL location (Mb) Gene Gene description

Only gene  
with candidate 

variants  
in QTL

Amino acid 
change with 

potential effect
Location of the residue, 

potential effect

Mean response latency 2 80.23–84.83 Ctnnd2 Catenin δ2 + None −

Femur neck width 1 156.27–160.9 Fchsd2 FCH and double SH3 domains 
protein 2

+ None −

Distal femur total 
density

2 152.74–157.22 Kcnab1 Voltage-gated potassium channel 
subunit β1

+ None −

Femoral neck total 
density

5 4.03–8.22 Eya1 Eyes absent homolog 1 + None −

Femur midshaft  
cortical density

6 38.24–41.52 Lpin1 Phosphatidate phosphatase LPIN1 + None −

Femur midshaft total 
area

2 43.96–48.57 Ndufs4 NADH dehydrogenase (ubiquinone) 
iron-sulfur protein 4, mitochondrial

+ None −

Femur work to failure 8 21.57–26.17 Dpy19l1 Protein dpy-19 homolog 1 + None −

Lumbar trabecular 
area

20 21.1–25.75 F1LW02_RAT Uncharacterized protein + None −

Heart weight 1 202.15–206.63 Shank2 SH3 and multiple ankyrin repeat 
domains protein 2

+ None −

Area under glycemia 
curve over baseline

2 80.5–85.11 Ctnnd2 Catenin δ2 + None −

Hemoglobin  
concentration

12 1.62–5.77 Insr Insulin receptor subunit α, insulin 
receptor subunit β

+ None −

Mean platelet mass 1 193.98–197.88 Dock1 Dedicator of cytokinesis protein 1 + None −

Mean platelet mass 9 52.53–88.11 ErbB4 Receptor tyrosine protein kinase 
erbB–4ERBB4 intracellular domain

+ None −

Platelet clumps 8 100.57–104.81 Clstn2 Calsyntenin-2 + None −

Platelet count 11 14.47–18.54 Hspa8 Heat shock 70-kDa protein 8 + None −

Absolute CD25+CD4+ 
cells

19 50.71–54.96 Galnt2 Polypeptide  
N-acetylgalactosaminyltransferase 2

+ None −

Absolute CD8+ T cells 20 1.00–8.90 RT1-Db2 RT1 class II, locus Db2 + None −

Proportion of B cells 
in white blood cells

10 27.1–31.59 D3ZTU5_RAT Uncharacterized protein + None −

Proportion of B cells 
in white blood cells

20 1.00–2.66 Olr1687 Olfactory receptor Olr1687 + None −

Proportion of CD4+ 
cells expressing 
CD45RC

13 36.86–62.54 Ptprc Receptor-type tyrosine protein  
phosphatase C

+ None −

Proportion of CD4+ 
cells in T cells

20 14.83–19.43 RGD1559903 Uncharacterized protein + None −

Proportion of CD8+ 
cells expressing 
CD45RC

13 50.49–55.97 Ptprc Receptor-type tyrosine protein  
phosphatase C

+ None −

Proportion of CD8+ 
cells with high  
expression of CD25

19 52.29–56.8 Sipa1l2 Signal-induced proliferation- 
associated 1–like protein 2

+ None −

Lowest weight 3 121.45–126.25 Pak7 Serine/threonine protein kinase 
PAK 7

+ None −

Weight loss compared 
to day 0

2 169.79–174.4 Fam198b Protein FAM198B + None −

Serum alkaline  
phosphatase

3 18.49–23.11 Lrp1b Low-density lipoprotein–related  
protein 1B (deleted in tumors)

+ None −

Serum chloride  
concentration

9 32.72–36.5 Uggt1 UDP-glucose:glycoprotein  
glucosyltransferase 1

+ None −

Serum triglycerides 4 74.8–79.28 Dfna5 Deafness, autosomal dominant 5 + None −

Weight loss compared 
to day 0

20 2.48–7.07 RT1-Da RT1 class II histocompatibility  
antigen Da chain

− p.Thr182Ala Surface exposed, disturbed 
intermolecular interactions

Weight loss compared 
to day 0

20 2.48–7.07 RT1-Da RT1 class II histocompatibility  
antigen Da chain

− p.Thr182Met Surface exposed, disturbed 
intermolecular interactions

Weight loss compared 
to day 0

20 2.48–7.07 RT1-Bb RT1 class II histocompatibility  
antigen, B-1β chain

− p.His200Arg Surface exposed, disturbed 
intermolecular interactions

Weight loss compared 
to day 0

20 2.48–7.07 RT1-Bb RT1 class II histocompatibility  
antigen, B-1β chain

− p.Thr165Met Surface exposed, disturbed 
intermolecular interactions

Weight loss compared 
to day 0

20 2.48–7.07 RT1-Bb RT1 class II histocompatibility  
antigen, B-1β chain

− p.Gln162Arg Surface exposed, disturbed 
intermolecular interactions

(continued)
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Concordance between species
It is often assumed that the genetic loci underlying a phenotype in one 
species are homologous to those underlying the same phenotype in 

another and that natural variation within these loci will map to the 
same genes25–27. However, there have been no genome-wide tests of this 
hypothesis for natural variation. Our data allowed us to examine whether 

Table 3 C ontinued

Measure Chr. QTL location (Mb) Gene Gene description

Only gene  
with candidate 

variants  
in QTL

Amino acid 
change with 

potential effect
Location of the residue, 

potential effect

Expression on RT1B 
on B cells

17 26.63–27.55 Tbc1d7 TBC1-domain family member 7 − p.Ser116Leu Surface exposed, disturbed 
intermolecular interactions

Proportion of B cells 
in white blood cells

1 182.36–186.67 Itgal Integrin αL − p.Asn890Ser Abolished glycosylation

Proportion of CD4+ 
cells with high  
expression of CD25

10 84.27–87.32 Tbx21 T-box transcription factor TBX21 − p.Gly175Arg Surface exposed, additional 
interactions with DNA

Ratio of T cells to  
B cells

1 183.58–187.41 Rabep2 Rab GTPase–binding effector  
protein 2

− p.Ile336Thr Partially buried, disturbed  
oligomerization

Ratio of T cells to  
B cells

1 183.58–187.41 Itgal Integrin αL − p.Leu806Ser Surface exposed, disturbed  
intermolecular interactions

Mean corpuscular red 
blood cell volume

19 53.11–55.80 Abcb10 ATP-binding cassette, sub-family B 
(MDR/TAP), member 10

− p.Thr233Met Transport channel exposed, 
altered transport

Platelet count 12 1.00–7.47 Rfc3 Replication factor C (Activator 1) − p.Pro173Ala Surface exposed, alteration 
of the α helix

Proportion of  
monocytes in white 
blood cells

1 250.37–254.00 Pdcd11 Protein RRP5 homolog − p.Glu160Gly Surface exposed

Shown are the phenotype measured, the chromosome (chr.), the start and stop coordinates of the QTL, gene symbol and description, whether the gene is the only one at a QTL 
with candidate variants, whether a variant alters an amino acid and, if so, the residue changed and the potential consequences.
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Figure 3  Merge analysis to identify causative genes and sequence variants. (a–c) Analysis was performed for  
phenotypes of anxiety (a), heart weight (b) and the proportion of CD4+ T cells with high expression of CD25 (c).  
Left, whole-chromosome scans for each phenotype; the black lines represent the haplotype-based analysis,  
and the blue data points represent the results of merge analysis testing for association with all sequence variants  
identified in the progenitor strains. Right, enlargement of the highest peak showing the location of candidate variants  
and genes. Candidate variants are those whose significance in merge analysis exceeds that of the haplotype  
analysis (dark-blue data points above the highest value of the black line). Genes are shown by red arrows.  
(d) Shown are candidate variants on chromosome 10 for the proportion of CD4+ cells with high expression  
of CD25. The variant with the highest significance lies in the Tbx21 protein. The crystal structure of human  
TBX5-DNA complex (Protein Data Bank (PDB) 2X6V) maps the location of the rat Tbx21 p.Gly175Arg  
alteration to the DNA-binding domain. The structure of TBX5 (green) complexed with DNA (blue) is shown  
in ribbon representation. Gly93 is shown as spheres (green, carbon; red, oxygen; blue, nitrogen). Gly93 and  
the corresponding Gly175 residue in rat are conserved. The side chains of two arginine residues that mediate  
interactions with DNA are shown as sticks. (e) Shown is a candidate variant encoded in the Abcb10 gene on  
chromosome 19 for a locus influencing mean red blood cell volume. The structure of homodimeric human  
ABCB10 (PDB 4AYT) is shown in ribbon representation, with the monomers colored blue and green. Two ATP analogs (ACP) and the side chains of Thr268 
are shown as spheres (green, carbon; red, oxygen; blue, nitrogen; orange, phosphorus). Thr268 in the human protein corresponds to the conserved Thr233 
residue in the rat protein. The rat Abcb10 Thr286 alteration lies in the central cavity of the translocation pathway. Amino acid sequence identity of rat and 
human ABCB10 proteins is 84% (587 aligned residues). Black lines delineate the transmembrane region.
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genes and QTLs identified in the NIH-HS overlapped those found to 
underlie the same phenotypes in a mouse heterogeneous stock10.

In total, 38 measures were common to both studies and were 
mapped using the same mixed-model method. Only one measure, the 
ratio of CD4+ to CD8+ T cells, showed overlap (using an FDR of 10% 
and looking in the 90% QTL confidence interval), but this overlap 
was not significant (empirical P value of 0.1). We repeated the analysis 
using QTLs called at a lower significance threshold (20th percentile 
of the extreme value distribution for each measure) and expanding 
the width of each QTL to 8 Mb. Overlaps for eight phenotypes, only 
two of which were significant at an empirical P value of 0.05 (serum 
urea concentration and the ratio of CD4+ to CD8+ T cells), were found 
(Table 4). Overall, genetic variants in orthologous genes rarely con-
tributed to the same phenotype in the two populations.

To test whether QTL overlap existed within similar pathways, for 
each of the 38 measures we asked whether the same KEGG path-
ways were enriched for QTL-associated genes in both mouse and 
rat heterogeneous stocks28. For only one measure, the proportion of  
B cells in the total white blood cell population, were the same pathways  
enriched in both heterogeneous stocks (corrected P value < 0.05). 
Even at a more relaxed significance threshold of 0.05 (not corrected 
for multiple testing), only three measures showed the same KEGG 
pathways enriched in both heterogeneous stocks.

DISCUSSION
Using 1,407 outbred rats, we have mapped 122 phenotypes and identified 
355 QTLs at high resolution. We have shown how combining sequence 

with high-resolution mapping data can lead to the immediate identifica-
tion of candidate genes and, in some cases, to the identification of candi-
date causal variants at many QTLs. We highlight two examples here.

The locus on chromosome 10 regulating the frequency of 
CD25+CD4+ T cells and the frequencies of CD4+ and CD8+ T cells 
has previously been shown to control CD4+ and CD8+ T cell frequen-
cies in a cross between ACI and F344 rats29, both represented in the  
NIH-HS progenitors. The amino acid substitution at position 175 
(p.Gly175Arg) of the Tbx21 protein is a very strong causal candidate 
in this QTL because the affected protein domain is important for 
DNA interactions. Tbx21 has been implicated in the genetic control 
of regulatory T cells30, a subset of T cells with high surface expression 
of CD25, and might indirectly regulate the frequencies of CD4+ and 
CD8+ T cells through the transcriptional repressor Sin3a31,32.

We implicated Abcb10 in red blood cell differentiation. Evidence 
from mouse knockouts indicates that this gene is essential for 
erythropoiesis18,19,33. The p.Thr233Met alteration in Abcb10 positions 
a larger, bulkier residue in a protein region that is tightly packed in the 
open-outward conformation of ABC transporters, potentially interfer-
ing with the conformational changes that are essential for transport of 
the substrate.

Two noteworthy features of the genetic architecture of complex 
traits in the rat emerge from this study: (i) the contrast with find-

ings from human GWAS and (ii) the fact that 
about half of QTLs cannot be attributed to a 
single causal variant.

Rat and mouse heterogeneous stock experi
ments differ from human GWAS in two ways. In 
rodent GWAS, far fewer subjects are required to 
detect a significant effect, and fewer loci of larger 
effect explain more of the variance. In rats, the 
median proportion of heritability explained by 
joint QTLs is 39.1% (mean of 42.3%), and, in 
mice, the median proportion is 32.2% (mean of 
42.0%). In humans, the mean proportion of her-
itability explained is often less than 10%.

One explanation for these differences is the 
markedly different allele frequencies in these 
species. Human populations are character-
ized by a preponderance of rare alleles (with 
MAF of less than 1%), whereas heterogeneous 
stock populations have a relatively uniform 
distribution of MAFs (Fig. 1c). However, it is 
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Figure 4  Simulation of causal variants. (a) Plotted are the differences 
between the maximum negative log P values for association of imputed 
variants and the maximum haplotype-based log P values for the rat simulated 
and real QTLs. In cases where there is a single causal variant at a QTL, the 
log P values of some imputed variants will exceed the significance values 
from the haplotype analysis, such that the mean of the distribution of 
the differences between these log P values will be greater than zero (blue 
histogram). The distribution observed for the phenotypic QTLs (red histogram) 
has a mean less than zero. The results of simulating haplotypic effects are 
shown in yellow, and the consequence of simulating multiple causative 
variants are shown in orange. (b) Plotted is a set of 1,386 cis-acting and 
7,464 trans-acting eQTLs mapped in a mouse heterogeneous stock. The 
distribution of the differences in log P values for the cis eQTLs resembles that 
seen when simulating single causative variants. The distribution for the trans 
eQTLs is most similar to that for the phenotypic QTLs.

Table 4  Syntenic QTLs mapped in the rat and mouse heterogeneous stocks for the same 
measure
Phenotype Rat chr. Rat QTL (Mb) Mouse chr. Mouse QTL (Mb) P value of overlap

CD4+/CD8+ cell ratio 2 80.51–88.51 8 71.7–79.7 0.009

CD4+/CD8+ cell ratio 20 1.00–21.13 17 29.77–37.77 –

CD4+/CD8+ cell ratio 9 0.16–8.16 17 50.77–58.77 –

Serum urea  
concentration

3 42.22–50.22 2 62.25–70.25 0.017

Serum calcium  
concentration

12 32.82–40.82 5 122.62–130.62 0.082

White blood cells 10 57.69–71.77 11 64.92–72.92 0.115

White blood cells 20 47.41–55.24 10 40.74–48.74 –

T cell/B cell ratio 13 76.73–84.73 1 169.63–177.63 0.149

T cell/B cell ratio 20 37.59–45.59 10 36.25–48.68 –

Serum chloride  
concentration

9 30.61–38.61 13 2.91–15.19 0.22

Monocytes 20 0.17–8.17 17 21.00–29.00 0.301

Serum total cholesterol 4 17.09–25.09 5 12.52–20.52 0.598

Shown are the 8 measures (out of 38) that have syntenic QTLs, the QTL coordinates (chromosome, start and stop) 
and the P value of the overlap (one P value per measure).
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important to realize that mice and rats differ in the degree of segregat-
ing variation (in the rat NIH-HS, there are 7.2 million SNPs compared 
to 10.2 million in the mouse heterogeneous stock). In rats, there are  
2.8 million SNPs per heterogeneous stock strain, whereas the  
corresponding number in the mouse heterogeneous stock is  
4.4 million. In other words, total sequence variation in itself is not a crit-
ical determinant of the explanatory power of the QTLs. Furthermore, 
the heritabilities of homologous phenotypes in the rat NIH-HS and in 
heterogeneous stock mice are highly correlated (r2 = 0.6; P = 0.0002) 
(Supplementary Fig. 4), implying that the greater sequence variation 
in mice does not result in increased heritability.

The inability to detect a single candidate variant at half of rat QTLs 
was unexpected. We showed that, although reliance on haplotype-
based mapping can underestimate the number of QTLs without can-
didate variants, after taking this bias into account (by detecting QTLs 
with both merge and haplotype analysis), there is still a large fraction 
(44%) of QTLs without candidate variants. The contrast between the 
44% figure and the 97% that emerged from an analysis of variants at cis 
eQTLs is striking. It is also notable that the findings from trans eQTLs 
are very similar to those obtained in the analysis of rat phenotypes 
(Fig. 4), suggesting that cis eQTLs are atypical. Our simulations indi-
cate but have not proven that, in part, multiple causal variants at single 
QTLs are to blame. At present, we can only conclude that single causal 
variants are not always responsible for the genetic signal at a QTL. 
Whether the lack of single causal variants at many loci is a general 
feature of loci influencing complex traits remains to be determined.

One simple interpretation of human GWAS is that each locus repre-
sents the presence of a single, relatively common functional variant. Our 
results indicate that more complex models are required. Such alterna-
tive hypotheses exist, in which, for example, multiple alleles of varying 
frequency at the same or closely linked loci contribute to the association 
signal. Identifying the correct model of genetic action is critical for find-
ing causative variants, as incorrect assumptions about the number and 
mode of action of genetic variants reduce power and can lead to false posi-
tive results34. The extent and nature of sequence diversity may be partly 
responsible for the complex way that sequence variation acts at a QTL.

It was sometimes hoped that loci found in the rat could be typed 
and identified in humans, thus providing a cost-efficient way to find 
medically relevant genes. We observe some examples where the same 
loci act similarly in different species, the most notable example being 
for variation in the ratio of CD4+ to CD8+ T cells: the locus lies within 
the MHC in rats, humans35 and mice36, and its molecular nature in 
mice has been identified as a deletion in the promoter of the MHC 
class II gene RT1-Da36. However, formal tests for overlap between rats 
and mice at the gene or pathway level yielded little that was statisti-
cally significant. Because the amount of sequence variation segre-
gating within the two heterogeneous stock populations is relatively 
limited, the inability to detect shared loci may result from sampling. 
Also, the relatively small number of genes found for each phenotype 
reduces our power to detect pathways. We suspect that it is currently 
not possible to accurately assess overlap between the two species.

This study strengthens the rat’s role as a model organism in physiol-
ogy and disease. Our mapping and sequencing data provide an impor-
tant resource for addressing many biomedical questions.

URLs. Mapping data (see Supplementary Note for directions on  
how to explore the sequence data at each QTL), http://mus.well.ox.ac.
uk/gscandb/rat; variant calls and inaccessible regions, http://www.
hubrecht.eu/research/cuppen/suppl_data.html; DWAC-Seq v. 0.56, 
https://github.com/Vityay/DWAC-Seq; 1-2-3-SV v. 1.0, https://github.
com/Vityay/1-2-3-SV; Ensembl release 66, http://www.ensembl.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequence data for the eight heterogeneous stock 
founders are available from the European Bioinformatics Institute 
(EBI) Short Read Archive (SRA) under accession ERP001923. The 
LE/Stm BAC sequences are available in the NCBI Trace Archive 
(accessions FO181540, FO181541, FO117626, FO181542, FO117624, 
FO181543, FO117625, FO117627, FO117628, FO117629, FO117630, 
FO117631 and FO117632).

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Sequencing of heterogeneous stock founder genomes. Genome sequencing. 
DNA libraries for SOLiD sequencing were generated from genomic DNA 
from samples of the original rats that were used to create the heterogene-
ous stock population. Libraries were generated using standard protocols  
(Life Technologies) and had a median insert size of between 109 and 196 bp. 
All libraries were sequenced with fragment (50-bp) and paired-end (50+35-bp)  
runs using SOLiD 4 and SOLiD 5500 sequencers to a depth of at least 22× 
base coverage for each of the eight heterogeneous stock progenitors and for 
the LE/Stm strain, which was used to estimate error rates in comparison with 
hand-finished BAC sequence.

Sequence alignment. Sequence reads were mapped against contigs of the 
Rnor3.4 rat reference genome assembly (reference strain BN) using Burrows-
Wheeler Aligner (BWA) v0.5.9 (ref. 37) with parameters –c –l 25, –k 2 and 
–n 10. Alignments from different libraries of the same heterogeneous stock 
progenitor were combined into a single BAM file.

Variant calling. Variant calling was performed independently for each strain. 
SNPs and short indels (<10 bp) were called using a modified SAMtools38 pipe-
line: only unambiguously mapped reads were used. Sites with coverage below 
4× or over 2,000× were not used for SNP calling. Nucleotides with base quality 
of <30 were ignored. Duplicate reads starting at the same position and mapping 
to the same strand as another read were discarded as probable PCR artifacts. 
Each of the called alleles had to be supported by at least one read where the 
variant mapped within the seed part of the read (first 25 bases). Non-reference 
alleles called with fewer than three reads were set to missing. Variable sites with 
more than two alleles within one founder were set to missing. The remaining 
variants were considered to be homozygous non-reference alleles (frequency of 
the non-reference call of >2/3) or heterozygous alleles (frequency between 1/3 
and 2/3); however, we set to missing the small number of heterozygote calls, as 
these were probably artifacts caused, for example, by unknown duplications. 
We later attempted to call all the missing genotypes by imputation.

Copy number variants were called using a depth-of-coverage approach 
implemented in DWAC-Seq v. 0.56 using default parameters. Structural vari-
ants were called using discordant-pair mapping implemented in 1-2-3-SV v. 1.0,  
requiring unambiguous mapping of both paired tags and at least four tag pairs 
per structural variant. Structural variant calls identified by these tools were 
merged. Prediction of the functional effect of each variant was performed by 
the Variant Effect Predictor (VEP 2.1) tool39.

We defined inaccessible regions of the heterogeneous stock rat genomes 
in a similar way as for mouse genomes4. A base was considered to be acces-
sible if it did not overlap simple, tandem repeats or low-complexity sequence 
(defined by Dust, source: Ensembl release 66) and was not covered by more 
than 150 reads and if average mapping quality was at least 40. Nucleotide 
positions within 15 bp of indels were also considered to be inaccessible for 
SNP calling.

False positive and false negative rates. Thirteen BACs from the LE/Stm strain 
were sequenced using capillary methods, assembled and manually edited, pro-
ducing a total of 2.1 Mb of finished sequence. BAC sequences were aligned 
using BLAT40. For each BAC, a single contiguous alignment was obtained, 
which was used to extract single-base changes (SNPs), short indels (1–10 bp) 
and structural variants (100 bp and greater). False positive and false negative 
rates were estimated using the 1.9 Mb of genome sequence that was syntenic 
between BACs and the genome assembly, excluding low-quality BAC sequence 
(as defined by the BAC finishing team) and inaccessible regions. False positive 
and false negative rates within this 1.9 Mb were estimated on the basis of the 
discordance between our allele calls and those in the BACs.

Low false positive rates were independently confirmed by analysis of a ran-
domly selected subset of 96 SNPs and 96 indels using PCR-based resequencing. 
Oligonucleotide primers were selected to amplify 300-bp fragments around 
the candidate polymorphism. When amplification was successful (SNPs, 84; 
indels, 80), amplicons were sequenced on an Applied Biosystems ABI 3730XL 
sequencer using BigDye Terminator technology, and sequences were manually 
analyzed with PolyPhred software.

For copy number variants and structural variants, 184 variants were 
selected, and PCR primers were designed in such a way that the presence or 
absence of a PCR product (depending on the variation type) could confirm 
the presence of the variation. After PCR, samples were run on agarose gels and 

analyzed manually. Of the 184 variants, 93 gave a PCR product. Of these 93, 
a group of 39 variants that were predicted structural variants in the NIH-HS 
founders were also confirmed by PCR in BN/NHsdMcwi, indicating that these 
are probably assembly errors in the current reference genome (Rn3.4). Of the 
remaining 54 variants, 53 gave a banding pattern according to our expectation, 
and, in one case, the predicted variation type was not correct.

Sequence divergence. Genotypes and genome accessibility data for hetero-
geneous stock rats (this study) and heterogeneous stock mice4 were used to 
characterize patterns of nucleotide diversity in these two panels. We parti-
tioned each genome into non-overlapping windows such that each window 
contained 100 kb of accessible sequence (defined relative to the rat BN strain 
or mouse C57BL6 strain). The number of sequence differences per window 
was calculated for all windows and for all possible pairs of strains.

Low-diversity regions. We found that the spatial distribution of pairwise 
differences in the rat progenitors was bimodal, with modes at 0 and 150 SNPs 
per 100-kb window (Fig. 1b). On the basis of this distribution, we defined a 
region of low nucleotide diversity between two strains as consecutive windows 
with nucleotide diversity below 13 SNPs per 100-kb window.

Phenotyping. Animals. The rat NIH-HS originates from a colony established 
in the 1980s at the NIH3. Since its creation, the stock has been bred using a 
rotational outbreeding regimen to minimize the extent of inbreeding, drift 
and fixation.

Phenotyping. A full description of the phenotyping protocol is given in the 
Supplementary Note.

All procedures were carried out in accordance with Spanish legislation 
on the Protection of Animals Used for Experimental and Other Scientific 
Purposes and the European Community’s Council Directive (86/609/EEC) 
on this subject. The experimental protocol was approved by the Autonomous 
University of Barcelona ethics committee (permit CEEAH 697).

Quality control, covariate analysis and normalization of phenotypes. 
Phenotype data were uploaded to a database (Integrated Genotyping System)41 
in batches over the 3 years of data collection. All relevant covariates were 
evaluated for their effect on each measure. The final set of covariates and 
transformations applied to each phenotype, as well as the number of data 
points for each measure, is given in Supplementary Table 1.

Genotyping. The RATDIV array was developed as a general SNP genotyp-
ing array, applicable both to the rat heterogeneous stock project and other 
populations of laboratory rats. Full descriptions of the development of the rat 
array and of the selection of the 265,551 SNPs used in this study are given in 
the Supplementary Note.

LD analysis. LD between SNPs in the rat and mouse heterogeneous stocks 
was calculated using PLINK42 from the genotypes called for the 261,684 auto-
somal rat SNPs and 12,226 autosomal mouse SNPs10. In the rat heterogeneous 
stock, eight regions with very high interchromosomal LD were identified and 
excluded from subsequent analyses (Supplementary Table 2). Using the UCSC 
liftover tool43, we found that these regions mapped in the new rat reference 
genome assembly (RGSC 5.0) to the regions with which they were in high LD 
in the current assembly (Rnor3.4).

QTL mapping. Reconstruction of heterogeneous stock rat genomes as mosaics  
of founder haplotypes. All genetic analysis was performed using R44. We used 
the R HAPPY package14 to calculate descent probabilities from the 8 hetero
geneous stock founders for each animal at each of 265,551 intermarker inter-
vals and then averaged these probabilities over 90-kb windows, such that we 
eventually worked with 24,196 probability matrices. The density of the 265,000 
SNPs was much greater than the density of recombinants in the heterogene-
ous stock, meaning that averaging did not cause any reduction in mapping 
resolution (most QTLs mapped to intervals over 1 Mb in length and contained 
more than 10 90-kb intervals).

Accounting for confounding in the heterogeneous stock. Heterogeneous stock 
rats with different levels of relatedness were used in this study, including, 
for example, siblings, half-siblings, cousins, uncles and great-uncles. This 
unequal genome-wide genetic similarity meant that correlations existed in 
the heterogeneous stock between distant markers. These long-range correla-
tions (as opposed to short-range correlations due to physical linkage) can 
be responsible for false positive associations if not accounted for. We used 
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two methods to control for unequal relatedness: Resample Model Averaging 
(as implemented in BAGPHENOTYPE13) for phenotypes with a non-normal 
distribution and Mixed Models for phenotypes with a normal distribution. 
Information on the performance of the methods is given in the Supplementary 
Note. Because most of the phenotypes had a normal distribution and the merge 
analysis was run in the mixed-model framework, we present the mixed models 
briefly here. These models were implemented in R so that haplotype mapping 
could be carried out using the descent probabilities from HAPPY14. The model 
used to test for association between the ancestral haplotypes segregating at a 
locus L and phenotypic variation was

y x P s T ui c ic Li Ls i isc= + + +∑∑ b e( )

where yi is the phenotypic value of rat i and βc is the regression coefficient of 
covariate c and xic (the value of the covariate c in rat i). Notably, the covariates 
include a dummy intercept term. TLs is the deviation in phenotypic value that 
results from carrying one copy of a haplotype from strain s at locus L, and 
PLi(s) is the expected number of haplotypes of type s carried by rat i at locus 
L output by HAPPY14. ui and εi are random effects, with cov( , ) ,u u Ki j g i j= s 2  
and cov( , ) ,e e si j e i jI= 2  where s g

2 and s e
2 are estimated in the null model (no 

locus effect, TLs = 0) using the R package EMMA12. K is the genetic covariance 
matrix and is estimated from the genome-wide genotype data using identity 
by state (IBS, the proportion of shared alleles between any two animals). The 
IBS matrix was calculated using the R package EMMA12. I is the identity 
matrix. The total covariance matrix V K Ig e= +s s2 2  can be factorized as  
V = A2. Writing equation (1) in matrix form, gives

y = Xb + PLTL + u + e

Premultiplying equation (2) by A−1 gives a transformed equation

( ) ( ) ( ) ( )A y A X A P T A uL L
− − − −= + + +1 1 1 1b e

in which the variance-covariance structure of the random term A−1 (u + ε) 
is now proportional to a diagonal matrix and so can be fitted as a standard 
linear model.

Thresholds and confidence intervals. Calculations of the significance 
thresholds (when the phenotype was analyzed with mixed models), 
inclusion probability thresholds (when the phenotype was analyzed by 
resample model averaging) and confidence intervals are described in the  
Supplementary Note.

Incorporation of sequence into QTL mapping. Implementation of the merge 
analysis in the mixed-model framework. Merge analysis is a form of imputa-
tion appropriate to heterogeneous stock–type populations whose genomes 
are mosaics of known haplotypes. Merge analysis asks two questions at each 
imputed variant: is the variant associated with the phenotype? (a standard test 
of association), and is its association as significant as the association in the 
haplotype-based test in the locality of the variant? We implemented merge 
analysis6 in a mixed-model framework by comparing model (2)

y X P T uL L= + + +b e

and

y X M U uV V= + + +b e

where V is a sequence variant in interval L and MV is the merge matrix for the 
variant, formed by summing those columns of PL that carry the same allele at V  
(each column of PL represents one founder strain). This can be computed 
efficiently by defining a matrix BV that encodes the columns to be merged 
such that MV = PVBV. This test is applied at every variable site in the catalog 
of single-nucleotide variants that segregate between the eight heterogeneous 
stock founders. From a statistical point of view, there is no difference between 
two variants with the same strain distribution pattern at a locus; they will give 
the same merge analysis result.

(1)(1)

(2)(2)

(3)(3)

Because models (2) and (3) are nested, the best possible fit (in terms of vari-
ance explained) is obtained with haplotype model (2). If the QTL arises from 
variation at a single variant V, the fit of merge model (3) for variant V will be 
as good as the fit of model (2), and its significance will be greater, owing to the 
fewer number of degrees of freedom (for a diallelic variant, there is 1 degree 
of freedom for the merge model compared to the 7 degrees of freedom for the 
haplotype model). The merge model is fitted by multiplying by A−1.

Simulating all possible strain distribution patterns at a QTL. For each QTL 
lacking variants with a merge log P value exceeding the haplotype log P value, 
we looked for unobserved causal variants that might not have been sequenced. 
We simulated candidate variants with every possible SDP (127 possible SDPs 
for diallelic variants and 1,094 possible SDPs when allowing for 3 alleles). 
Simulated variants were repeated within each QTL interval.

Simulating different QTL architectures. To investigate the hypothesis that 
the inability to detect candidate variants by merge analysis reflected complex 
architecture of the QTLs, we simulated QTLs arising from a single causal vari-
ant, QTLs arising from multiple causal variants within the same locus and/or 
multiple causal variants at linked loci, and QTLs arising from haplotypic effects 
not reducible to individual variants. In all cases, the phenotypes were simulated 
from three components: a genetic random effect explaining 20% of phenotypic 
variation, uncorrelated errors explaining 75% of phenotypic variation and 
a single QTL explaining 5% of phenotypic variation. When multiple causal 
variants were simulated, each explained the same proportion of phenotypic 
variation (5% divided by the number of causal variants). The effect sizes cal-
culated a posteriori could be quite different from their target values owing to 
correlations between the different components of the simulated phenotypes. 
For the simulations reported in Figure 4a, either a single causal variant was 
simulated or nine causal variants were simulated in three linked loci (with 
each locus within 2 Mb of the central locus and distant by at least 200 kb 
from each other locus). Alternatively, the PL probabilities were used to simu-
late irreducible QTLs. We analyzed each simulation by merge analysis, and, 
when log (Phaplotype) was between 4 and 6 (to have a similar distribution of log  
P values to that of the rat QTLs), we calculated d as max log (Pmerge) – max log 
(Phaplotype). We compared the distributions of d from the different simulation 
sets to determine the probable genetic architecture of the QTLs.

eQTL mapping and merge analysis in the mouse heterogeneous stock. 
Hippocampus expression levels in 460 heterogeneous stock mice measured 
using 12,000 probes on the Illumina Mouse WG-6 v1 BeadArray24 were 
mapped to the mouse ancestral haplotypes in the mixed-model framework. 
QTLs were called in the same way as for the rat QTLs but using a confidence 
interval of 8 Mb and a significance threshold of 4. Cis eQTLs were defined as 
being within 2 Mb of the beginning of the probe, and trans eQTLs were defined 
as being on a different chromosome than that of the probe or being more than 
10 Mb away from it on the same chromosome. Merge analysis was carried out 
at each eQTL, and the difference between the maximum merge log P value 
and the maximum haplotype log P value was calculated.

Homology modeling. To assess the potential effects of mutations on protein 
structure, homology models of target proteins were constructed and analyzed. 
Amino acid sequences of target proteins were retrieved from the Ensembl or 
UniProt databases45 and were analyzed using the HHPred46 web server to 
identify structures with similar amino acid sequences in PDB17 for homology 
modeling with MODELLER47. The potential locations of the mutation-affected 
side chains (buried or surface exposed) and effects on the structure-function 
relationship (for example, disturbed hydrophobic core) were evaluated manu-
ally in PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4).

Genetic architecture. Heritability. Heritability was defined as the ratio of the 
genetic variance component to the sum of the variance components estimated 
in the null mixed model (covariates but no QTL).

QTL effect sizes and joint effect sizes. Effect sizes were defined as the ratio 
between the fitted sum of squares and the total sum of squares in a model with 
covariates and without genetic random component. Joint effect sizes were 
defined as the ratio between the fitted sum of squares and the total sum of 
squares in a model without genetic random component, including covariates 
and all the QTLs called for a given phenotype. Including the genetic random 
component would result in underestimation of most of the effect sizes because 
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part of the variance would have been attributed to it. Thus, the QTL effect sizes 
reported are probably overestimates.

Number of genes mapping to a QTL. The number of genes mapping to each 
QTL confidence interval was calculated using Ensembl protein-coding genes 
and genes coding for microRNAs (downloaded from BioMart48).

Overlap with rat genome database (RGD) QTLs and with QTLs detected in 
the mouse heterogeneous stock. The calculation of the overlap between RGD 
and rat heterogeneous stock QTLs as well as between mouse and rat hetero-
geneous stock QTLs is given in the Supplementary Note.

Pathway analysis for the QTLs detected in the rat and mouse heterogeneous 
stocks. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms 
were retrieved using the R KEGG.db package. We used INRICH49 to find 
enrichment of pathways in the mouse and rat phenotypic QTLs (as defined 
by the 90% confidence interval) called at a low significance threshold (20th 
percentile of the extreme value distribution). We report the empirical and 
corrected P values from INRICH.
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