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Abstract—This paper is concerned with the study of combined
sizing and energy management algorithms for electric vehicles
(EVs) endowed with batteries and supercapacitors (SCs). The
main goal is to find the number of cells of each source that
minimizes the installation and running costs of the EV, taking into
account the performance requirements specified for the vehicle
and the technical constraints of the energy sources. To tackle this
problem, two methodologies will be investigated. The first consid-
ers a filter-based approach to perform the power split among the
sources; it will be shown that, under some practical assumptions,
the resultant sizing problem can be posed as a linear program-
ming problem and solved using efficient numerical techniques.
The second methodology employs an optimal noncausal energy
management, which, when integrated with the sizing problem,
yields a nonlinear optimization problem. These two methodologies
will be then applied to size the storage unit of a small EV. The re-
sults indicate that the filter-based approach, although simple and
numerically efficient, generally requires an oversized storage unit.
Furthermore, it was also concluded that, if the range requirements
of the EV are not very high (below 50 km, in our case study), the
use of SCs enables energy savings of up to 7.8%.

Index Terms—Batteries, electric vehicles, hybrid energy storage
system, supercapacitors, sizing.

I. INTRODUCTION

IN spite of the environmental benefits provided by elec-
tric vehicles (EVs), the main obstacle to the affirmation

of electric propulsion still lies in the energy storage system
(ESS). The success of this new transportation option will only
be achieved if the ESS offers sound features, such as long
life cycle, reasonable cost, fast charge times, and high power
and energy densities [1]. However, given the current state of
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Fig. 1. Block diagram of the HESS considered in this paper.

technology, these features are difficult to combine into a single
class of storage and remain distant from the energy capacity
offered by internal-combustion-engine-based vehicles. For in-
stance, batteries, even taking into account the most recent Li-
ion chemistries, are generally bulky and relatively expensive,
and withstand a limited number of charges/discharges [2].
Although they remain the most popular choice for the ESS of
pure EVs, the specific energy (in watthours per kilogram) of
today’s batteries is still, roughly, 100 times lower than gasoline
[3], which poses important constraints on the driving range
of the vehicle. Alternatively, supercapacitors (SCs) support a
much larger number of charge/discharge cycles and have a good
ability to cope with high current peaks, due to their reduced
energy losses, but the very low energy density hampers their
cause [4]. Fuel cells (FCs) are another attractive energy source
but suffer from the limited ability to satisfy power peaks and
are still at an early stage of commercial development, facing
many practical challenges associated with hydrogen storage and
refuelling [5].

Consequently, in the absence of an ideal power source, sev-
eral energy source hybridization strategies have been proposed
in the literature [4], [6]–[8], which are driven by the idea of
combining storage technologies with complement features. As
pointed out by [2] and [4], in the majority of these hybridiza-
tions, there is main energy storage with relatively high energy
capabilities (e.g., FC or batteries), which is aided by a peaking
power source (e.g., SCs). This combination generally leads to
a stress reduction in the main source [9], which contributes
to its lifetime extension. In addition, due to the low energy
losses of the peak power source, the energy efficiency is also
increased [10].

This paper is concerned with the hybridization of batteries
and SCs, connected to the dc bus through an active parallel
arrangement (see Fig. 1). More specifically, the main goal is
to investigate how the SCs and batteries should be sized to:
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1) provide enough power and energy to fulfill the EV specifi-
cations, such as the range, maximum speed and acceleration,
climbing capabilities, etc., and 2) explore the complementary
features of the sources to optimize a given performance index,
such as the installation costs, energy efficiency, or battery
degradation. For ESS composed of a single source, it is, in
general, not too difficult to size the storage unit capable of ful-
filling these fundamental requirements. For instance, in battery-
powered EVs, we can easily pick a minimum battery pack that
is able to provide the necessary energy and peak power required
by the vehicle. However, for an ESS composed of more than one
source, i.e., a hybrid ESS (HESS), the selection process is not
that straightforward because the operating points of each source
are dependent on how the power is split among them. In other
words, there is interdependence between the energy manage-
ment algorithm and the sizing task. This matter is further com-
plicated by the different costs, energy efficiencies, degradation
properties, and lifetime that each source presents. Notice that,
while the energy management for the hybridization of batteries
and SCs has been widely investigated in the last few years (see,
e.g., [9], [11], and [12]), the sizing task for this particular HESS
configuration has received less attention in the literature. In
[13]–[15], preliminary studies on the battery–SC sizing task are
presented, but these fail to provide an accurate account of the
energy losses in the powertrain components and/or ignore the
important coupling between the sizing and energy management.
With regard to this last factor, recent studies on the design
of FC–battery [16], [17], hybrid [18], and plug-in [19] EVs
have shown that, to maximize the benefits of hybridization, it
is imperative to take into account the coupling between the
sizing and the energy management. Accordingly, this paper
extends these previous studies by contemplating the combined
sizing/energy management problem for the hybridization of
batteries and SCs. To gain some insight on this issue, we
will start by designing the HESS under the assumption that
the power allocation between the sources is performed with a
frequency-based strategy, i.e., employ the SCs to handle the
high-frequency power peaks, while the batteries provide the
low-frequency demands. Despite being simple and numerically
efficient, the frequency-based sizing only provides rough esti-
mates. This factor prompted us to develop a second method-
ology, relying purely on an optimization framework (both for
sizing and energy management), which, as will be shown in
the latter part of this paper, outperforms the frequency-based
approach. A preliminary version of this paper was presented
in [20] and is extended here in two directions. First, a detailed
energy loss model of the powertrain’s components was incorpo-
rated in the problem formulation, which contributes to a more
realistic sizing setting. Second, the optimization problem was
also modified to allow the designer to explore tradeoffs between
installations costs and energy efficiency of the HESS.

The remainder of this paper is organized as follows.
Section II introduces the mathematical model of the energy
sources, the loss model in the powertrain’s components, and
the power and energy requirements for the sizing problem.
The filter-based sizing is given in Section III, which is then
followed in Section IV by the optimal-based sizing. These
two approaches are then applied in Section V to size the

HESS of a small EV. Finally, the conclusions are presented in
Section VI.

II. ENERGY STORAGE SYSTEM MODEL

AND REQUIREMENTS

A. Simplified Model for the Cells

As shown in Fig. 1, this paper considers that each energy
source in the EV is composed by a string of identical nj cells,
j ∈ {bat, sc}. For each cell, a simplified voltage-resistor model
is employed [1]

dQj(t)

dt
= − ij(t) qj(t) =

Qj(t)

Qj

(1a)

ṽj (qj(t)) = aj + bjqj(t) (1b)
vj(t) = ṽj(t)−Rjij(t) (1c)

where Qj represents the cell’s charge, Qj represents the max-
imal charge, and qj represents the state of charge (SOC). The
internal voltage ṽj is considered an affine map, with the SOC
as input, offset aj , and gain bj ; the cell’s output voltage vj is
obtained by subtracting the voltage drop in Rj (the equivalent
internal resistance of the cell). The power delivered by the
HESS can be expressed as

Pin(t) = Pbat(t) + Psc(t) =
∑

j∈{bat, sc}

nj ṽj(t)ij(t). (2)

By integrating this relation, we can determine the energy
consumption of the vehicle (Ein =

∫ T

0 Pin(t) dt). Although
more precise models for the SCs [21] and batteries [22] are
available, the simplified representation considered in this paper
is a sufficient means to analyze the main energy phenomena,
enabling us to gain some insight regarding the optimum siz-
ing and energy management, without introducing unnecessary
complexity into the mathematical structure of the problem. In
fact, this approach is widely used in the literature related to the
energy management of hybrid sources [16], [18], [19], [23].

1) Extraction of the Cell’s Parameters: The battery and SCs
under consideration here were selected having in mind the
hybridization of the energy source of the uCar EV (see [24] for
additional details on this vehicle). The selection process of the
cells was constrained by a reduced budget and a very limited
set of supplier options. These constraints ended up confining
our choice to NiMH batteries, based on the cells of the module
NHE 10–100 [25] (nominal voltage of 1.2 V, 100 Ah), and the
SCs BCAP1500 [26] (1500 F@2.7 V).

The identification of the battery parameters θ̂bat =
[ abat bbat Rbat ] was carried out with the help of a
weighted least squares method, which seeks to approximate
the cell’s discharge curve with the linear model (1). This fitting
problem can be defined as

min
θ̂bat

NI∑

k=1

̺k

(

vbat(tk)− [ 1 qbat(tk) −ibat(tk) ] θ̂bat

)2

(3)

where vbat(tk), qbat(tk), and ibat(tk) are the battery voltage,
SOC, and current measures acquired during the discharge test
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Fig. 2. Discharge curves of the battery cell with nominal temperature and
different rates.

of the cell respectively, and NI is the number of samples.
Weight ̺k was included in the fitting problem to decrease
the contribution of the samples where the nonlinearity effects
are more pronounced, i.e., when qbat reaches the operation
extremes. Given that the battery under consideration presents an
almost linear behavior for qbat ∈ [0.2, 0.8] (see Fig. 2), weight
̺k was selected as

̺k =

{

1, if 0.2 ≤ qbat(tk) ≤ 0.8
0, otherwise.

(4)

As shown in Fig. 2, the identified model obtained with (3)
renders a very reasonable approximation for the linear region of
the discharge curve, showing a maximum fitting error of only
0.02 V for qbat ∈ [0.2, 0.9]. Notice that, to prevent the early
degradation of the cells, it is a common practice to avoid the
battery use when qbat is too low/high; therefore, this means that,
the linear range aforementioned ends up representing the bulk
of the cell’s working range.

Regarding the parameters of the SCs, i.e., θ̂sc =
[ asc bsc Rsc ], we recall the fundamental relation between
the SCs internal voltage, capacitance C and charge

ṽsc(t) =
1
C
Qsc(t) =

Qsc

C
qsc(t) = vscqsc(t) (5)

where vsc is the SC voltage when fully charged. Equating the
previous relation with (1b), we have asc = 0 and bsc = vsc;
since the nominal SC voltage vsc and internal resistance Rsc

are generally given in the datasheet, parameters θ̂sc can be
straightforwardly determined using the information provided
by the SC’s manufacturer. The values of θ̂bat and θ̂sc, together
with the cost (cj) and mass (mj) per cell, are defined in Table I.

B. Nominal Driving Cycling, Power, and Energy Demand

In terms of vehicle performance specification, the HESS
should be designed to satisfy the power and energy demands
of a given nominal driving cycle, with speed profile V (t);
road angle α(t), t ∈ [0, Tdc]; and duration Tdc. There are two
main approaches to characterizing the driving cycle’s variables.
The first approach follows a stochastic setting and considers
that the variables V (t), α(t), Tdc have a nonnegligible degree
of uncertainty, which can be characterized by probabilistic

TABLE I
VEHICLE AND POWERTRAIN PARAMETERS

models, such as the Markov chains [27], [28]. This approach
is particularly useful for general-purpose vehicles, where the
exact mission profile is not known in advance and is affected by
difficult-to-model factors, such as road type, traffic conditions,
etc. On the other hand, the second approach regards the driving
cycle’s variables V (t), α(t), Tdc as deterministic, i.e., without
uncertainty, and is suitable for vehicles in which the mission has
a well-defined pattern. Collection trucks [29], buses [19], mail
delivery, and similar vehicles, represent a class of vehicles in
which the deterministic approach is acceptable. In this paper,
we will assume that the uCar vehicle operates with a well-
defined driving cycle, and the HESS will be sized within a
deterministic setting. It is also worth pointing out that the typ-
ical performance metrics employed at the vehicle design stage,
such as top speed, minimum acceleration times, maximum
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Fig. 3. Velocity and power request associated with the ARTEMIS road
cycle (considering α(t) = 0), which is regarded as the nominal driving cycle
throughout this paper.

gradability, and vehicle range, can be easily incorporated in the
V (t) and α(t) profiles.

Using the nominal driving cycle information, together with
the application of Newton’s law, the power requested to the
HESS can be defined as (see [30] for additional details)

Pout(t) = V (t)

(
1
2
ρaCdAfV (t)2

)

︸ ︷︷ ︸

Pa(t)

+M

(

gfr cos (α(t)) + g sin (α(t)) +
dV (t)

dt

)

V (t)

︸ ︷︷ ︸

∆P (t)

(6)

where M is the vehicle total mass, g is the acceleration due to
gravity, Pa is the power due to aerodynamic drag, and M∆P

is the power due to inertial, grading, and rolling resistance
forces (The definition and value of the remaining parameters
are presented in Table I).

Since M is also affected by the HESS mass, i.e., M =
m+ nbatmbat + nscmsc, where m is the vehicle mass without
the storage units, Pout can be further decomposed into two
components, i.e.,

Pout(t) = Pa(t) + ∆P (t)m
︸ ︷︷ ︸

P0(t)

+∆P (t)(nbatmbat + nscmsc)

=P0(t) + ∆P (t)(nbatmbat + nscmsc) (7)

where P0(t) (in watts) is the nominal power, and ∆P (t) (in
watts per kilogram) is the power increase due to the HESS
mass. This power decomposition is shown in Fig. 3 for the

ARTEMIS road cycle, which is regarded as the nominal driving
cycle throughout this paper.

The energy requested to the HESS can be obtained by direct
integration of Pout(t)

Eout(t) =

t∫

0

P0(s)ds

︸ ︷︷ ︸

E0(t)

+(nbatmbat + nscmsc)

t∫

0

∆P (s)ds

︸ ︷︷ ︸

∆E(t)

=E0(t) + ∆E(t)(nbatmbat + nscmsc) (8)

where E0 (in wattseconds) is the nominal energy, and ∆E

(wattseconds per kilogram) is the energy increase due to the
HESS mass. Although one may question the need to contem-
plate the influence of the HESS mass in the power/energy
required by the driving cycle, it is important to have in mind
that this parameter is unknown at the start of the sizing phase.
Furthermore, for light EVs, which is the type of vehicle under
consideration here, the HESS represents an important portion
of the global vehicle’s mass and, as will be shown later on, has
a nonnegligible impact on the energy consumption of the EV.

C. Power Losses

The power delivered by the HESS must take into account
not only the power required by the driving cycle Pout but also
the power losses in the powertrain components, such as the
transmission (Pl,TR), the electric motor (Pl,EM), the dc/dc
converters (Pl,DCDC), and the HESS (Pl,ESS). As a result, the
following power balance constraint must be respected:

Pin =Pout + Pl =

{
Pout + Pl, if Pout ≥ 0
−|Pout|+ Pl, otherwise

(9)

Pl =Pl,ESS + Pl,DCDC + Pl,EM + Pl,TR. (10)

Here, a brief review of practical loss model for the powertrain
components is presented, targeting its final incorporation in the
sizing problem.

Under the assumption that the HESS response can be ap-
proximated by the voltage-resistor model presented in (1), the
energy losses in this component are given by

Pl,ESS(t) = nbatRbatibat(t)
2 + nscRscisc(t)

2. (11)

Both batteries and SCs are connected to the dc bus via
two bidirectional boost converters (see Fig. 1), with identical
characteristics. According to [31]–[33], the energy losses in the
dc/dc converters (see Fig. 4) are due to: 1) conduction losses
in the semiconductors; 2) switching losses; and 3) losses in the
passive elements (inductor and capacitor). These three types of
losses can be compactly expressed as

Pl,DCDC(t) =
∑

j∈{bat, sc}

C0+
(

C1+C2d̃(vj(t), ij(t))
)

|ij(t)|

+
(

C3 + C4d̃ (vj(t), ij(t))
)

ij(t)
2

d̃(vj , ij) =

{
1 −

vj

vout

, if ij ≥ 0
vj

vout

, otherwise
(12)
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Fig. 4. Summary of the energy losses in the HESS and powertrain
components.

Fig. 5. Power losses and efficiency of the dc/dc converter (C0 = 191.9, C1 =
1.69, C2 = −0.1, C3 = 0.026, C4 = 0.001, and vout = 200 V). The dashed
line represents the quadratic approximation of the losses, obtained with (13).

where vout is the converter output voltage, and Cm, m =
0, . . . , 4, is the parameters of the loss model, which are de-
pendent on the converter’s components, e.g., equivalent series
resistance of the inductor, the insulated-gate bipolar transistor,
and the diode, energy dissipated in the turn on and off of
the semiconductors, etc. (For a detailed account of the model
derivation and its physical interpretation, see [31]). Fig. 5 shows
the power losses of the dc/dc converter under consideration for
the uCar vehicle, which is based on the SKM 600GB066D
power semiconductor and an inductor with approximately
25 mΩ of equivalent series resistance. From these results,
it is interesting to point out that, although the efficiency of
the converter is dependent on the input voltage, the absolute
value of the power losses appears to be little affected by the
input voltage. Furthermore, one can also verify that, for this
particular converter, the power losses seem to be dominated by
the quadratic term of (12). Motivated by these observations,
and to facilitate the incorporation of the converter losses in
the (optimal) sizing problem, Pl,DCDC(t) will be approximated
with the following quadratic model:

Pl,DCDC(t) ≈
∑

j∈{bat, sc}

D0 +D1i
2
j (t). (13)

As shown in Fig. 5 (dashed lines), the errors introduced by this
approximation are negligible.

After increasing the source’s voltage to the levels required
by the dc bus, the next stage is to generate the torque/force
necessary for the EV motion. As shown in Fig. 4, this torque
is produced through the electrical motor and its value adjusted
by the dc/ac power converter (also known as the inverter).
Although the energy losses of these components can be analyt-
ically determined (see, e.g., [34] and [35]), this paper follows
a more pragmatic approach, based on efficiency maps. Accord-

Fig. 6. Power losses and efficiency of the electric motor plus inverter, which
is based on a 25-kW permanent-magnet motor retrieved from the QSS library
[36]. The dashed line in the left plot represents the losses approximation
obtained with (14).

ingly, we will fit the efficiency map of the motor plus inverter,
provided by the manufacturer or extracted from experimental
tests, using the following approximation function:

Pl,EM(t) =M
Tϕ (T (t), ω(t)) (14a)

ϕ(T, ω) = [ 1 |ω| |T | |Tω| T 2 ω2 ] (14b)

ω(t) =
G

r
V (t) T (t) =

Pout(t) + Pl,TR(t)

ω(t)
(14c)

where T is the motor torque, ω is the motor speed, G is the
reduction ratio between the motor and the wheel, r is the wheel
radius, and M ∈ R

6 is the parameter of the loss model. Similar
to the dc/dc converter, the majority of the parameters in M

have physical meaning, e.g., M5 is associated with the copper
losses, M2 with hysteresis losses, and M6 with eddy current
losses [34]. Fig. 6 shows the efficiency map and power losses
for the motor plus inverter considered for the vehicle, as well as
the power losses resulting from the approximation (14). Despite
the existence of some fitting errors, these are relatively low and
still acceptable for sizing purposes.

The final element in the vehicle powertrain is the transmis-
sion, which, from a practical perspective, can be modeled as a
constant efficiency component, i.e., [30]

Pl,TR(t) ≈ |Pout(t)| (1 − ηTR) (15)

where ηTR is the transmission efficiency.

III. FILTER-BASED SIZING

After establishing the simplified source’s models, the first
methodology for the HESS sizing will now be described. As
mentioned in Section I, the sizing process is dependent on
the energy management strategy employed to split the power
among the sources. There are many possibilities for perform-
ing this division, ranging from optimal approaches [9], [10],
machine learning [11], and simple heuristics, such as the filter-
based allocation [12], [37], [38]. Here, the sizing of the HESS
will be performed supposing that the power blending among
the sources is based on low/high-pass filters. The filter-based
allocation policy is normally motivated by the complementary
features presented by each source. For instance, SCs generally
have high peak power capability and low energy, whereas
batteries display opposite features (higher energy storage
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capability and moderate peak power). These intrinsic features
cause the SCs to be regarded as an auxiliary source that
should provide the power peaks during the acceleration/braking
transients, which can be seen as the high-frequency content
of Pout, whereas the batteries are responsible for ensuring the
steady-state power delivery, associated with the low-frequency
content of Pout. It is based on this line of reasoning that the
frequency-based power allocation emerges as one of the most
simple and appealing strategies for the real-time managing of
HESS’s [12], [37], [38], and which motivated us to use it in the
first sizing approach. Based on this allocation policy, our goal
here is to find the number of batteries (nbat) and SCs (nsc) that
minimize the cells’ acquisition costs, satisfying both the power
and energy required by the nominal driving cycle.

A. Problem Formulation

As a starting point, consider the decomposition of the power
requested to the HESS as a sum of low-frequency and high-
frequency signals, i.e.,

Pout(t) = Lτ {Pout(t)}+Hτ {Pout(t)} (16)

where Lτ and Hτ are the first-order low-pass and high-pass op-
erators, respectively, with time constant equal to τ (in seconds),
and are defined as

Lτ {x(t)} = {y(t) | τ ẏ(t) + y(t) = x(t)} (17a)
Hτ {x(t)} =x(t)− Lτ {x(t)} . (17b)

By exploring the linear property of these operators, and taking
into account (7), the power decomposition can be further ex-
panded as

Lτ{Pout} =Lτ {P0(t)}+Lτ {∆P (t)} (nbatmbat + nscmsc)

=PL
0 (t) + ∆L

P (t)(nbatmbat + nscmsc) (18)

where PL
0 , and ∆L

P are the low-pass components of P0 and
∆P . Likewise, Hτ{Pout(t)} can be represented using the
“high-pass” components PH

0 and ∆H
P , omitted here for brevity.

Regarding the energy of the driving cycle, a similar decompo-
sition can be established, i.e.,

Eout(t) =

t∫

0

(
PL
0 (s) + ∆L

P (s)(nbatmbat + nscmsc)
)
ds

+

t∫

0

(
PH
0 (s) + ∆H

P (s)(nbatmbat + nscmsc)
)
ds

=EL
0 (t) + ∆L

E(t)(nbatmbat + nscmsc) + EH
0 (t)

+ ∆H
E(t)(nbatmbat + nscmsc) (19)

where EL
0 , EH

0 , and ∆L
E , ∆H

E are the low-pass and high-
pass components of the driving cycle’s energy E0 and energy
increments ∆E .

Now, suppose that: 1) the maximum energy provided by each
cell ej (in wattseconds per cell), as well as its peak power
capability pj (in watts per cell), are known; and 2) the energy

losses of the powertrain components, presented in Section II-C,
can be lumped together, and approximated as a single equiva-
lent component with constant efficiency η̂PT.

Remark 1: It is important to mention that the aforementioned
approximations normally carry with them nonnegligible mod-
eling errors. For example, in practice, it is well known that
the power capability of the SCs is strongly dependent on its
SOC and that the powertrain’s energy efficiency depends on
the vehicle’s operating point, which varies in time. Despite
these strong assumptions, our interest here is just to develop a
simple tool that allows the designer to gain quick insight on the
fundamental issues and tradeoffs related to the sizing of HESS.

Spurred by the frequency-based power allocation, we will
constrain the admissible number of cells of batteries and SCs
to the following set:

Φ(τ)= {(nbat, nsc) :pbatnbatη̂PT

≥ PL
0 [k]+∆L

P [k](nbatmbat+nscmsc)pscnscη̂PT

≥ PH
0 [k]+∆H

P [k](nbatmbat+nscmsc)ebatnbatη̂PT

≥ EL
0 [k]+∆L

E [k](nbatmbat+nscmsc)escnscη̂PT

≥ EH
0 [k]+∆H

E [k](nbatmbat+nscmsc)

k=0, . . . , N, 0≤ nbat≤nbat, 0≤nsc≤nsc}

where •[k] = •(kTs), Ts is the sampling time, N is the number
of points employed in the driving cycle discretization, and nbat,
nsc is the maximum number of cells. Inspecting the formulation
of this set, one can find that the first two linear inequalities
specify that the battery (SC) should provide the low (high)
frequency content of the driving cycle, whereas the third and
fourth inequalities are concerned with similar arguments but
are applied to the energy requirements. The time constant τ
employed in the frequency splitting also plays an important role
in the construction of the Φ(τ), and to some extent, it can be
seen as a parameter that controls the degree of hybridization in
the ESS [see Fig. 7(a)]. In fact, it is interesting to note that,
as limit cases, we have ESS’s where only batteries (τ = 0)
or SCs (τ = ∞) are employed. Furthermore, the power and
energy constraints of Φ should be, in theory, evaluated for
all the time instants of the driving cycle. However, from a
practical point of view, it is expected that the set Φ will be
dominated by the power and/or energy peaks required by the
EV. Consequently, to quickly approximate Φ, we can replace
PL
0 [k], ∆

L
P [k], P

H
0 [k], ∆H

P [k], E
L
0 [k], ∆

L
E [k], E

H
0 [k], and∆H

E [k]

by their upper bounds (e.g., PL
0 = maxk P

L
0 [k]), which enables

us to reduce the number of inequalities to only four. Usually,
we found that this simplification generally introduces negligible
errors [see, e.g., the blue constraints in Fig. 7(b)].

Based on this setting, it is our intention to find the triplet
(nbat, nsc, τ) ∈ Φ(τ)× [τ , τ ] that minimizes the cells’ cost,
which can be posed as

min
nbat,nsc,τ

cbatnbat + cscnsc

s.t. A(τ)

[
nbat

nsc

]

≤ B(τ)

τ ≤ τ ≤ τ (20)
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Fig. 7. (a) Typical example of the domain Φ(τ). (b) Inequality constraints
employed in the construction of Φ(τ) set during the ARTEMIS road driving
cycle. (Gray lines represent the power and energy inequalities for all the points
in the driving cycle; the dominant inequalities are shown in blue).

where A ∈ R
p×2 and B ∈ R

p×1 represent the matrix notations
of the p inequalities that can be extracted from (20). This
problem depends on τ in a nonlinear way, which may pose
some challenges to the numerical solver. To attenuate this
issue, we will solve the optimization problem in a two-step
process. First, notice that, for a fixed τ , both the constraints
and cost function are linear in (nbat, nsc); therefore, (20), as
long as τ is constant, can be treated as a linear programming
problem. Based on this observation, we can straightforwardly
evaluate (20) for a possible list of admissible time constants
[τ1, . . . , τM ], generating a family of sizing results and cost
function, parameterized in τ , i.e., JA(τ), nbat(τ), nsc(τ). The
optimal solution can be then readily extracted by selecting the
JA(τ) with minimum cost, which represents the second and
final steps in the solving process. In the numerical optimization
literature, this approach is also known as the “optimizing over
some variables” technique [39, Ch. 4].

Fig. 8. JA(τ), nbat(τ), nsc(τ) when sizing the HESS to satisfy the
ARTEMIS road cycle.

Fig. 9. Evaluation of JA(τ), nbat(τ), nsc(τ) for the ARTEMIS road driving
cycle (repeated several times to increase the range requirements).

B. Sizing Example and Discussion

With the purpose of preliminarily evaluating the filter-
based sizing, we will now apply this methodology to build
a battery–SC ESS capable of meeting the requirements of
the ARTEMIS road cycle (the parametric details of the EV
and energy sources are described in Table I). Fig. 8 shows
the intermediate results associated with the first step in the
resolution of (20), i.e., JA(τ), nbat(τ), nsc(τ). These results
confirm that the parameter τ indirectly controls the degree
of hybridization of the ESS: 1) for τ ≈ 0, we have the case
where only batteries are employed, showing a relatively high
installation cost (11.8 k$); 2) as we increase τ , it is apparent that
the cost decreases, reaching a minimum at τ = 13 s (9.8 k$);
and 3) ultimately, for τ > 13 s, the usage of SCs becomes more
relevant, which again raises the costs. A second sizing example
is shown in Fig. 9, for the case where the driving cycle’s
range increases progressively up to 138 km. Looking at the JA
evolution, it is worth noting that, for EV ranges between 17 and
69 km, the degree of hybridization remains almost constant,
having minimum cost for τ = 13 s. On the other hand, when
the range requirements exceed 69 km, the SCs’ use becomes
less beneficial (from an installation cost point of view), and
the degree of hybridization, as well as the number of SCs, is
reduced. This behavior suggests that there is a range threshold
where the hybridization of battery–SCs provides the maximum
gains (in this example, the threshold is 69 km).

In conclusion, the filter-based sizing presented here is a
simple numerically efficient tool, offering a rapid way to deter-
mine an order of magnitude estimate for (nbat, nsc). Further,
by playing with the τ parameter, we can also gain valuable
insight on the tradeoffs associated with the SCs’ inclusion in the
HESS. However, due to some simplifications (see Remark 1),
this approach only provides a rough approximation of the ideal
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sizing. Perhaps, the most notorious drawback is the assumption
of constant peak power and energy-per-cell metrics (ej and
pj). In practice, it is well known that these metrics are hardly
constant and depend on the source’s SOC and the load power
being requested. Given that these factors were, so far, neglected,
conservative estimates of ej and pj have to be applied, which,
as we will see later, generally limit the performance of the filter-
based sizing.

IV. OPTIMAL SIZING

To overcome the limitations of the filter-based sizing, a
second sizing methodology, based entirely on an optimiza-
tion framework, will now be developed. As already discussed,
the sizing process is intrinsically connected to the strategy
employed in the energy management of the sources. From
a theoretical standpoint, the energy management is, in its
essence, an optimal control problem, i.e., the goal is to find
a power division between the sources that minimize a given
performance criterion (e.g., energy losses [10] or the battery
stress [9]). Similarly, the sizing process can also be posed as an
optimization problem, targeting, for example, the minimization
of the source’s installation costs. Consequently, since both the
sizing and the energy management are naturally formulated
within an optimization setting, it is convenient to consider both
tasks simultaneously. In other words, the main idea here is to
combine the HESS sizing with the (optimal) energy manage-
ment algorithm.

A. Problem Formulation

As a performance index, our goal is to minimize a weighted
version of the total cost of ownership of the EV, including the
cells’ acquisition costs (cbatnbat + cscnsc) and the charging
cost of the EV during its expected lifetime. This latter cost is
defined as

JR = γ

Tdc∫

0

(Pout(t) + Pl(t)) dt

≈ γTs

N−1∑

k=0

(Pout[k] + Pl[k]) (21)

with N being the number of points employed in the driving
cycle discretization and γ (in $/Ws) being a constant parameter
that translates the vehicle’s energy consumption to an economic
cost. One possible way to define the parameter γ is to consider

γ =

Ny∑

y=1

lyαy (22)

where Ny is the estimated lifetime of the HESS (in years), ly is
the number of journeys that the vehicle is expected to perform
in the year y ∈ [1, 2, . . . , Ny], and αy is the cost ($/Ws) of the
electricity in the year y. Naturally, ly and Ny should be selected
having in mind the limitation of charge/discharge cycles of
the HESS.

The combined sizing/energy management problem is de-
fined as

min

⎛

⎝w
∑

j∈{bat, sc}

cjnj

⎞

⎠+ γTs

N−1∑

k=0

(Pout[k] + Pl[k])

s.t. qj [k + 1] = qj [k]− ij [k]
Ts

Qj

, qj [0] = qj,0

ṽj [k] = aj + bjqj [k]
∑

j∈{bat, sc}

nj ṽj [k]ij [k] = Pout[k] + Pl[k]

P0[k] + ∆P [k]
∑

j∈{bat, sc}

njmj = Pout[k]

M
Tϕ (T [k], ω[k]) + |Pout[k]| (1 − ηTR)

+
∑

j∈{bat, sc}

D0 + (D1 + njRj) (ij [k])
2 = Pl[k]

T [k] =
Pout[k] + |Pout[k]| (1 − ηTR)

ω[k]

qj ≤ qj [k] ≤ qj , 0 ≤ nj ≤ nj

ij ≤ ij [k] ≤ ij ,
1

N + 1

N∑

k=0

ij [k]
2 ≤ χ2

jI
2
rms,j

k ∈ {0, . . . N}, j ∈ {bat, sc} (23)

where qj,0 is the initial SOC, qj/qj is the minimum/maximum

allowable SOC, ij/ij is the minimum/maximum peak currents

of each source, and Irms, j is the maximum RMS current. By
examining the problem constraints, one can readily verify that
the first two are the result of the discretization (with the Euler
method) of the battery/SC cells’ model, defined in (1). The
third, fourth, and fifth impose the balance between the power
delivered by the HESS, the powertrain losses, and the vehicle
load. The sixth establishes the operating point of the electric
motor, which is important to calculate its losses, whereas the
last set of constraints is related to the SOC and current limits.
The problem also contains parameter χj ∈ [0, 1] that can be
explored by the designer to reduce the RMS current in the cells.
This is particularly useful to limit the stress in the battery pack.
As for the cost function, it is worth highlighting the presence
of the tradeoff factor w ∈ [0, 1], which enables the designer to
pursue different goals, such as the following:

• w = 1, which aims to minimize the total cost of the vehicle
(cells’ cost plus running costs);

• w = 0, which focuses only on the minimization of the
vehicle’s running costs = γEin, which are directly related
to the vehicle’s energy consumption Ein;

• w ∈ (0, 1) constitutes a tradeoff between the cells’ cost
and the energy consumption of the EV.

To a certain extent, it is expected that the two goals under
consideration, cells’ cost and energy efficiency, will conflict
with each other. For example, if the aim is to build an EV with
low energy consumption (w = 0), then it is predictable that the
number of SCs, i.e., the most energy efficient and lighter source,
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will be higher, which may lead to a significant increase in the
cells’ cost. Conversely, if the total cost of the HESS is the main
concern (w = 1), it is expected that the number of batteries
and SCs will be reduced, which, in principle, will increase the
energy losses, particularly Joule losses. In this context, it is the
designer’s responsibility to decide, through the parameter w,
an appropriate tradeoff between cost and energy efficiency that
best suits the requirements for the HESS.

Remark 2: Fixing, a priori, the number of cells nbat, nsc in
(23) produces the typical “benchmark” problem for the optimal
power allocation between multiple sources.

B. Solving Methodology

To handle the optimization problem (23) we start by trans-
lating it to the A Mathematical Programming Language lan-
guage [40], an environment dedicated to modeling large-scale
optimization problems. The main advantages in using this
environment are as follows: 1) The formulation is carried out
in an almost natural language, making it very easy to specify
and modify the decision variables, constraints and all the other
elements in the problem; 2) it allows the user to interface with
different types of numerical solvers (linear, nonlinear, open
source, commercial, etc.); and 3) it automatically generates
the gradient information for the problem, based on automatic
differentiation strategies [41], which is critical for the con-
vergence of the numerical optimization methods. After the
problem’s translation, we employed the IPOPT solver, an open-
source nonlinear programming solver, to numerically extract
the solution for the problem (see [42] for a detailed account
of the inner details of the algorithm).

In addition to the numerical solver and the gradient infor-
mation, the initial guess for the decision variables represent
another key aspect of the algorithm performance. To cope with
this challenge, we start by determining an initial estimative for
the number of cells (n̂bat, n̂sc), using the output of the filter-
based sizing, discussed earlier. The value of the remaining de-
cision variables are then estimated by solving the “benchmark”
power allocation, mentioned in Remark 2, i.e., (23) is relaxed
by fixing the number of cells (n̂bat, n̂sc). As will be shown later,
we found this initialization procedure to be very effective and
able to successfully handle longer driving cycles (N > 8000).

At this stage, it is worth discussing some of the shortcomings
of the optimization-based sizing adopted in this paper. First,
notice that, while the cost function and the majority of the con-
straints are linear, the power balance constraints have equalities
involving the product of decision variables (e.g., nj ṽj [k]ij [k]),
as well as quadratic terms in the current, which makes the
problem nonconvex (recall that a convex problem only accepts
affine equalities [39]). Thus, the resulting optimization problem
is nonlinear and nonconvex, which poses some numerical chal-
lenges to obtain global optimal solutions. Nevertheless, we will
show later that these (locally optimal) solutions still perform
better than the solutions obtained with the simplified filter-
based sizing.

Second, the sizing process is performed under the assump-
tion of an ideal energy management, with advance access to
the driving cycle profile. Since this information will hardly be

Fig. 10. Combined costs (cells plus energy charge of the EV) for different
ESSs: 1) battery only; 2) HESS, sized with the filter; and 3) HESS, sized with
the optimal approach (w = 1). The ARTEMIS road was used as the nominal
driving cycle.

available during the real-time operation, the sizing solutions
may be slightly optimistic. In any case, the optimal sizing is
still of practical interest, as it allows us to obtain a benchmark
solution, establishing the maximum gains that can be achieved
with the ESS hybridization.

Third, the problem formulation also assumes that the num-
bers of cells, nbat, nsc, are real numbers, whereas in practice,
it must belong to an integer range. This approximation brings
important advantages to the numerical solution of the problem
since it allows us to avoid the use of more complicated mixed-
integer nonlinear programming solvers. In addition, as the
HESS is normally composed of a large number of batteries and
SCs, it is expected that the rounding errors in nbat, nsc will
have a minor impact in the final solution [19].

V. CASE STUDY EXAMPLE

The two sizing methodologies described earlier will be ap-
plied here to design the HESS of a future version of the uCar
vehicle (see Table I for the parametric details). The ARTEMIS
road cycle [43] will be used as the basic speed profile that
the EV should meet, which means a top speed of 111 km/h,
maximum accelerations up to 8.5 km/h/s2, and a minimum
range of 17.23 km, as illustrated in Fig. 3. To investigate
different demands in terms of the EV autonomy, the ARTEMIS
road cycle was repeated several times (up to eight times). For
comparison purposes, we also evaluated the case where the
battery is used as the single source of the EV [i.e., fixing
nsc = 0 in (23)], which is referred to as the “battery only”
solution hereafter.

A. Minimization of Vehicle’s Total Costs

1) Filter-Based Sizing versus Optimal Sizing: Figs. 10 and
11 show the sizing results for the situations with: 1) battery
only; 2) filter-based sizing; and 3) optimal sizing, targeting
the minimization of the vehicle’s total cost (w = 1). Broadly
speaking, the filter-based solution displays a similar trend to
that of the optimal sizing, i.e., as the range increases, the
number of SCs is reduced and the batteries increase. However,
due to the conservative estimates of ej , pj , and η̂PT discussed
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Fig. 11. Performance comparison between different ESS: 1) battery only; 2) HESS, sized with the filter; and 3) HESS, sized with the optimal approach (w = 1).
The ARTEMIS road was used as the nominal driving cycle. (a) Sizing results. (b) Energy metrics, (Ein = Eout + El)

in Section III-B, the filter-based solution normally generates an
oversized HESS, requiring a greater number of cells and instal-
lation costs. Regarding the energy losses shown in Fig. 11(b), it
is interesting to note that, in comparison with the “battery only”
solution, the HESS, sized with the optimal approach, shows a
slight increase in the powertrain losses (El). At first glance, one
might expect that the “battery only” solution would be a less
efficient storage system, given that no auxiliary aid is provided
by the SCs. Nonetheless, the fact remains that, as this ESS
configuration entails a larger number of battery cells (105–120,
depending on the range), the Joule losses tend to be reduced.
This larger number of battery cells also raises the input voltage
of the dc/dc converter, which contributes to higher operation
efficiency for this component (see Fig. 5). Notice that, at this
stage, our goal is centered on the minimization of the cells and
running costs of the EV (w = 1.0), and not on the vehicle’s
energy efficiency (which will be discussed later on).

Finally, these results also reveal that the filter-based sizing is
the solution with minimum energy consumption and losses (as
a result of being oversized).

2) Detailed Analysis of the Optimal Sizing (w = 1.0): Since
the optimal sizing provides better overall performance (see
Fig. 10), we will now discuss in more detail the results obtained
with this method. Referring again to Fig. 11(a), it can be
verified that, if the desired range per charge of the EV is below
50 km, the inclusion of the SC in the HESS, i.e., sized with
the optimal approach, contributes to a significant downsize of

the battery pack (from ∼105 cells to only ∼63 cells). This
downsize has positive and negative consequences. On the plus
side, we can see that the cost of the cells is significantly
reduced: using a single battery pack to meet the 50-km range
needs an investment of ∼10.3 k$, while the HESS only requires
∼8 k$. This represents a 22.2% reduction in the cells’ costs.
Another advantage of the battery downsize is the decrease in
the ESS storage mass [see Fig. 11(c)], which then contributes
to a reduction of 3% in the energy required by the driving cycle
Ein, as shown in Fig. 11(b). The main inconvenience associated
with the battery downsize is the increase in the energy losses El,
the causes of which were already discussed. Nonetheless, these
higher energy losses are compensated for by the energy savings
resulting from the lighter ESS, and in the end, the overall energy
consumption of the vehicle Ein is little affected; as shown in
Fig. 11(b), for the HESS sized with the optimal approach, Ein

exhibits a small increase in the range of 0.2%-0.9%.
On the other hand, when the EV range requirements increase

above 50 km, there is a decline in the number of SC cells, and
the HESS sizing ends up converging to the situation where only
batteries are employed. To explain this trend, it is helpful to
look at the final SOC value of the battery (qbat(Tdc)), shown
in Fig. 11(d). From these results, it can be concluded that, for
driving ranges inferior to 50 km, the battery is not completely
discharged at the end of the driving cycle, which suggests that
the (peak) power constraint is the dominant factor in the ESS
sizing. Thus, given the high power capability of the SCs, there
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Fig. 12. Energy management results for the optimal approach (w = 1.0); the range requirement for this simulation was set at 52 km, and the ARTEMIS road
was used as the nominal driving cycle. (a) Full driving cycle. (b) “Cruising speed.” (c) Strong acceleration periods. (d) Stopping periods.

is more freedom to reduce the battery power stress, which
results in its downsize. However, as the EV autonomy increases
above 50 km, the energy constraint becomes more relevant
(notice that qbat(Tdc) is close to the minimum limit), and the
sizing is dominated by the energy demand. Since the SCs have

very low energy densities, the benefit of this source, from an
installation cost perspective, diminishes as the range demand
increases. As a side note, it is worth mentioning that this
trend was also predicted by the filter-based sizing, exemplified
in Fig. 9.
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Fig. 13. Tradeoff between cell cost and energy efficiency, when sizing the HESS with the optimal approach. The ARTEMIS road (50 km) was used as the
nominal driving cycle.

3) Energy Management With Nominal Driving Cycle: In
addition to the sizing task, the optimal approach also enables
us to determine the ideal power split between the batteries and
SCs. For example, Fig. 12 shows the power sharing between
the sources, obtained when using (23) to size the storage unit
for a range of 50 km (nbat = 63, nsc = 46). Analyzing these
results, one can find that, when the vehicle is traveling at
“cruising” speed, the battery should provide (roughly) the low
frequency content of the driving cycle power, whereas the SCs
should respond to the high frequencies [see Fig. 12(b)]. This
remark turns out to be very important for the development
of causal allocation strategies: since the low/high frequency
decomposition can be easily emulated through low/high-pass
filters, the use of power allocation based on filters has become
one of the most popular methods for the real-time managing of
HESS [12], [37], [38].

Inspecting Fig. 12(c) reveals that, during acceleration and
braking transients, the SC provides important assistance to the
batteries. From a practical perspective, the main challenge in
managing these transients is to decide when to deploy the
limited charge of the SCs. For example, for transients with
short duration, the SCs should be used as soon as the vehicle
is accelerated [see, e.g., Fig. 12(c), zone 1]. On the other
hand, for longer acceleration periods [see, e.g., Fig. 12(c),
zones 2 and 3] the SC deployment should be reserved to the
latter part of the transient, where its usage is more helpful to
limit the peak power requested to the battery, as well as its
losses. Predicting the duration of these acceleration transients,
although easy for the noncausal setting proposed in (23), is
extremely difficult for causal control systems and remains one
of the ultimate challenges in the real-time energy management
of HESS. Finally, one can also find that it is advantageous to
keep charging the SCs during the period when the vehicle is
stationary [see Fig. 12(d)].

B. Tradeoff Between Installation Cost and

Energy Consumption

Up to now, the sizing of the HESS favored the economic fac-
tor by targeting the minimization of the total costs of ownership
of the EV. However, the optimal sizing formulation contains a
tuning parameter w that allows the designer to explore tradeoffs
between cells’ cost and energy efficiency. To illustrate how this

tradeoff can be realized in practice, Fig. 13 shows the influence
of w when sizing an HESS for a range of 50 km. Qualitatively,
these plots show that, if we pretend to decrease the EV’s
energy consumption, then the number of cells (particularly
the SCs) and the corresponding costs must be raised, which
is in accordance with our engineer intuition. Additionally, in
comparison with the “battery only” solution, the tradeoff curve
of the HESS shows the following.

• using the same investment in cells as the “battery only”
solution, the HESS reduces the energy consumption by 4%
(see Fig. 13, point B);

• With the same energy consumption as the “battery only”,
the HESS can decrease the cells’ costs by 22% (see
Fig. 13, point A).

In conclusion, these results demonstrate that, with the
optimal-based sizing, the designer has the option of selecting
a tradeoff point that best suits the system requirements and the
available budget for the EV construction.

1) Energy Management With Nonnominal Driving Cycles:

Although the sizing task was carried out under the assumption
of a nominal driving cycle, it is also worth investigating how
the resulting HESS performs when the driving conditions de-
viate from nominal conditions. With this goal in mind, several
numerical simulations were carried out for some typical driving
cycles, such as the ECE15, ARTEMIS Urban, NYCC, FTP75,
and SFTP S03 [43]. For each driving cycle, three types of
ESS were considered: 1) battery only (nbat = 109, nsc = 0);
2) HESS (nbat = 63, nsc = 46), targeting the minimization of
the vehicle’s costs, w = 1; and 3) HESS (nbat = 78, nsc = 61),
targeting a tradeoff between cost and energy efficiency, i.e.,
w = 0.016, which corresponds to point B in Fig. 13. In all the
cases, the ESS was sized using (23) for a range of 50 km.

Fig. 14 shows the overall results of the various configurations
under study. It can be seen that, in all the nonnominal driving
cycles, the inclusion of the SCs reduces the energy consumption
(Ein) between 3% and 7.8%, being higher in the urban driving
cycles (NYCC and ARTEMIS urban). To some extent, these
results were expected since, in urban scenarios, with short
distances and where the start/stop patterns are frequent, it is
reasonable to expect that the aid provided by the SC will be
more beneficial to the energy consumption of the EV.
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Fig. 14. Normalized energy consumption metrics of the HESS, when subject to nominal (ARTEMIS Rural, 50 km) and nonnominal driving cycles.

Another factor that deserves to be highlighted is the influence
of parameter w. It was already verified that, when sizing
the HESS with minimum cost (w = 1), the energy savings
in Ein throughout the nominal driving cycle are almost null.
However, this property cannot be generalized to nonnominal
driving cycles, as shown in Fig. 14. By the same token, the
HESS sized with w = 0.016, although providing 4% energy
savings in the nominal driving cycle, evidences higher energy
consumption (in comparison with w = 1) for the urban driving
cycles. The reason for this apparent contradiction is related to
the interplay that exists between energy losses El, the driving
cycle’s energy Eout, and the duration of the driving cycle,
which is shown in Fig. 14. In particular, the lighter HESS
(w = 1) seems to pay off in urban scenarios (despite the higher
energy losses), whereas the more energy efficient,1 HESS (w =
0.016) is penalized by the heavier cells’ mass; the opposite
behavior is verified when the cycle’s range increases (see, e.g.,
the consumption for the FPT75 case).

VI. CONCLUSION

In this paper, two methodologies for the sizing of HESS
composed of batteries and SCs have been developed. The
main attractiveness of these methods resides in the combination
of the energy management problem together with the sizing
task. The first method, called filter-based sizing, employs a
simple frequency power decomposition to manage the HESS
and assumes that the peak power and energy capabilities of
each source are known. This approach, formulated as a linear

1In the sense that the energy losses are minimial.

programming problem, is numerically efficient, and it provides
insight into the basic mechanisms associated with battery–SC
hybridization. However, due to the approximations and simpli-
fications adopted in the formulation, it is only able to provide
a rough estimate of the ideal sizing. To increase the accuracy
of the sizing process, a full optimization-based approach, i.e.,
for both energy management and sizing problems, was then
proposed. This second method allows us to incorporate more
accurate energy loss models of the powertrain components in
the sizing task and also enables pursuing the tradeoffs between
installation costs and energy efficiency. For the particular para-
metric configuration under study and assuming that the daily
ranges inferior to 50 km, it was concluded that, by adding SCs
to the ESS, the overall costs (installation plus charging) of the
EV can be reduced by almost 20%. In addition, depending on
the type of driving cycle, the HESS showed energy savings of
up to 7.8%, representing an important contribution toward an
increase in the vehicle’s range.

As future work, it is our intention to incorporate additional
performance metrics in the sizing problem, such as the battery
stress and degradation. Further, we also plan to tackle the real-
time energy management problem, i.e., the design of a power
split strategy for the HESS without having prior knowledge of
the vehicle’s speed profile.
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