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Abstract

Over 600 near stationary orbits of five high altitude communications satel-
lites have been examined for the strong effects on them of low degree earth
gravity harmonics. The accelerated drift of these 12 and 24 hour orbits, due to
the earth's anomalous potential, has been measured at 50 longitude locations.
From these accelerations, 5 low degree earth gravity harmonics which resonate
with these orbits have been calculated (10 gravity coefficients). The best de-
termined harmonic is felt to be H,,, which dominates the accelerated drift of
the three 24 hour satellites (SYNCOMS 2, 3, and Early Bird) and the two 12 hour
satellites (Molniya 1 and Cosmos 41). The constants found for this harmonic
are (Normalized): 10°C,, = 2.40 # .03, and 10°S_,= -1.43 + .03. The other
four harmonics in decreasing order of their estimated strength of absolute de-
termination are: H,,, H,,, H;, and H,,. Their normalized coefficients are
found to be: 106032 = 0.69 + 0.20, 106S;, = -0.53 + 0.20, 10°C,, = 0.02,
10°8,,= 0.70, 10°C,, = 0.16, 10°S,, = 1.10, 10°C,, = -0.42, and 1058, =-1.58
The measured drift accelerations themselves have been compared to accelera-
tions calculated from a number of recently published satellite and combined
satellite-surface gravity geoids. The "best'" geoid representing these accelera-
tions is a 1967 S.A.O. determination of Walter Kohnlein.



INTRODUCTION

The refinement of knowledge about the gravitational field of the earth is
still a subject of great interest to geophysicists. The unique contribution of
satellite geodesy in this effort is well recognized. That contribution is princi-
pally to the accurate detection of large scale anomalies in the field.

The first major contributions in satellite geodesy have been towards the
precise definition of the axisymmetric, or zonal, part of the potential, down to
about the 10th degree harmonic. This definition has been principally due to the
work of Kozai in Japan 1 and King-Hele's group in England. 2,3 These early
efforts have been successful because of the ready availability of many different
satellites whose orbits and orbit planes are strongly rotated over long periods
of time by the zonal components of the field. Because of the averaging effect of
the rotation of the earth, no such easily observed effects, due to the non-zonal
part of the potential, are obtained from satellites, except from those in so called
resonant orbits. These are the orbits whose periods are commensurate with
the earth's rotation period.

Yet, in spite of the difficulties of extracting non-zonal geodetic information
from observing small short period variations in the great majority of satellite
orbits, much progress has already been made in this area too. It is generally
recognized that the large scale geoid features due to non-zonal gravity anom-
alies are now fairly well established from independent and parallel studies of
general satellite orbits at the Smithsonian, 4 Johns Hopkins, 5 the Naval Weap-
ons Laboratory, 6 and by Bill Kaula. 7 Nevertheless, our knowledge of the de-
tails of the non-zonal field is still much less secure than that of the zonal field.
In particular, while the discrimination of the zonal field has been accomplished
(to a fairly high degree now) by dynamic satellite geodesy alone, the equivalent
discrimination of the much more complex non-zonal field has required and will

continue to require many different sources of accurate information and methods
of analysis.

Among these important supplementary sources of information are the strong
long term perturbations of the special resonant orbit satellites. Unfortunately,
except for the class of eccentric 24-hour satellites, these cannot tell us about
the whole non-zonal field. But the limited parts they do measure, they measure
exceedingly well because of the amplification possible on a resonant orbit.

Many of the recent non-zonal satellite and combined satellite-surface grav-
ity geoids already incorporate some resonant orbit information. In this report,
I will present acceleration data reduced from long term observations on five
high altitude satellites in resonant orbits. This data is strongly relevant to the




solution for the terms of low degree in the longitude (non-zonal) gravity field of
the earth.

OBSERVATION DATA AND CONDITION EQUATIONS

In Table 1 is listed 50 reduced long term longitude accelerations of the five
24 and 12-hour communications satellites 1963 - 31A (Syncom 2), 1964 - 47A
(Syncom 3), 1965 - 28A (Early Bird), 1964 - 49D (Cosmos 41), and 1965 - 30A
(Molniya 1). The longitude acceleration measured () ) is essentially that of the
nearly stationary ascending equator crossings of these commensurate orbit
satellites. In those cases where the geographical drift rates of the ground tracks
were appreciable, the accelerations were derived by differentiating a smoothing
function best fit to drift rate data. Details of the theory governing the drift of
these deeply resonant orbits, under the influence of the earth's longitude har-
monics, are to be found in papers by Allan, 8,9 Wagner, Gedeon
et. al., 12 and in Kaula's book. 13  The 24-hour data summarized in Table 1
comes directly from a recent analysis by Wagner. 14 The 12-hour acceleration
data has been derived from the gravity results of a recent study of the drift of
the Russian communication satellites. 11

The definition of the earth's gravitational potential I use comes from
Kaula's book: 13
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where 1 is the Gaussian gravity constant of the earty (3.9860 x 10° km3/sec?),

r is the distance to the satellite from the earth's center of mass, a_ is the mean
equatorial radius of the earth, ¢ is the geocentric latitude and A the geographic
longitude of the satellite, (elsewhere A stands for the satellites ascending equa-
tor crossing longitude) and the Py 's are associated LeGendre functions. The
non-dimensional gravity constants C;_and Sy  in this spherical harmonic series
are unnormalized constants. From the above definition, Co, =1, C, = C
=8,, =0;and C,,;, S,, = 0, since the North Pole (the latitude reference axis)
is very nearly a principal axis of inertia for the earth.

In reporting numerical values of gravity coefficients in this series, it has

become conventional to report normalized values C, S related to the unnormalized
coefficients of (1) by:
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where:
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for m # 0, or the longitude terms. The normalized coefficients are better in-
deces of the true magnitude of physical effects than the unnormalized ones.

From the theory of resonant orbit perturbations ,10’ 11 the observations
in Table 1 are related to the relevant longitude harmonics of the potential by
(for the 24-hour data, zero eccentricity orbits):
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and, (for the 12-hour data, orbits of any eccentricity):
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The (FG);_ and the y; are the amplitudes and phase angles of composite
harmonic vectors which depend on the inclination, eccentricity and argument of
perigee of the resonant orbits. For the eighteen 12-hour observations, these
orbit-harmonic functions are listed in Table 1 for the relevant harmonics (H4,,)
through degree five: H,,H,,,H,,,H,,H,, and H,,. In equations (3) and (4),
a is the semimajor axis of the satellite's orbit in earth radii, and i is its in-
clination. The observation data in Table 1, along with the condition equations
(3) and (4), is suitable for incorporation into existing solutions for the gravity
field if the data is weighted according to the given estimates of their standard
deviations. These estimates are felt to be quite realistic. They take into ac-
count many sources of small non-resonant gravity model errors including sun
and moon effects and atmospheric drag. In fact, I have solved (in a weighted
least squares sense) for a set of ten low degree coefficients from this data using
equations (3) and (4). The characteristics of this solution are discussed in the
next section.

SOLUTION FOR TEN GRAVITY COEFFICIENTS

Previous calculation has shown 15 that resonance effects of degree higher
than four should have negligible influence on the 24-hour satellite. Similarly,



considering the higher errors for the observations on the Russian satellites, it
appears that the rapid decline in the anomalous potential at 12-hour altitudes
will result in small or negligible effects for 5th and higher degree harmonics.
Detailed calculations show that of the two harmonics of 4th degree resonant on
these satellites, H,, should at best be only barely discernible from the data,
while H a4 should have strong influence on the 12-hour observations. Murphy
and Victor, 16 though have measured the influence of the 5th degree harmonics
H,, and H,, on the 12-hour satellites and it seems that though their effects are
small, at least H,, should be included in future solutions from observations on
these objects.

In Table 2, I list the results of the weighted least squares solution of equa-
tions (3) and (4) according to the data in Table 1. The solution is for the ten un-
normalized resonant coefficients which appear to be most sensitive to this data:
(C,8) 4, (C,8) 31, (C,8) 35, (C,8) 33 and (C,S)44. The internal quality of this solu-
tion can be gauged by comparing the accelerations computed from it (as shown
in Table 1 in the column labeled "Wagner 1968') with the actual observations.
The residuals of the solution, shown in Table 1 also, are normalized with respect
to the estimated standary deviation of the measured observations. These nor-
malized residuals are also displayed against the data longitude in Figure 1. The
normalized solution is listed in Table 3, and displayed in Figure 2 for compari-
son of individual coefficients with other recent combined-data geoids.

For two cases I have computed drift accelerations for these satellites as
predicted (according to equations (3) and (4)) from the published geoids of
Kohnlein-SAO 1967, 4 and Kaula 1966.7 The results and residuals of these
predictions are also listed in Table 1 and displayed in Figure 1. These com-~
parison computations included the effects of H 42 ON the 24-hour but not on the
12-hour data. However, inclusion of these effects on the 12-hour satellites, as
well as those of 5th and possibly higher degree, is not expected to alter the
major results of this study.

DISCUSSION OF THE SOLUTION

The chief point to be made about the solution presented in the last section is
that it agrees quite well overall with the recent satellite-surface gravity results
for the low degree field. On the other hand, it is also clear from the excess of
large residuals, that the full field geoid investigations would benefit from an
incorporation of the acceleration data presented here. These comparison resid-
uals (TFigure 1) show no glaring bias with respect to longitude, except perhaps
for the very well determined Early Bird observations, but do average about
twice the residuals of the resonant solution, The Kohnlein-1967 solution is
marginally superior to that of Kaula. This is interesting because the Kohnlein
solution does not incorporate any high altitude resonant orbit data while the Kaula




solution does, albeit with small weight. It also appears that the Bjerhammar-
1967 solution (Table 3 and Figure 2) is of about the same quality as the Kohnlein
and Kaula geoids with respect to this resonant data. The Bjerhammar field 17
was constructed by combining, accumulating and solving normal equations rep-
resenting satellite data from the work of Kozai, Anderle and Gaposhkin, and uses
the same surface gravity data as in Kaula's studies.

The concordance of the resonant solution with the recent comparison geoids
appears best with regard to H,, and H,, and worst with regard to H,, and H,,
(see Figure 2). It is interesting, and perhaps significant, that the strongest cor-
relation coefficient in the resonant solution, 0.84, is between C,; and S, (see
Table 2). This attests to the relative uncertainty of the discrimination of these
harmonics by this data. Other than this, all other correlations have absolute
values less than 0.60. Absolute bounds (10) only on H,, and H;, are found in
Table 3. They are somewhat greater than those given by the statistics of the
solution (Table 2). They appear justified by the resonably low correlations in
the resonant solution and by the good agreement with the new, independently
derived geoids.

There is some evidence from Murphy and Victor's study 17 that the amp-
litude of H,, for the resonant solution will be reduced when the effects of H,, on
the 12-hour data are considered. If true, this would improve the agreement of
this harmonic and the 12-hour residuals with respect to the recent more com-
plex geoids. Future gravity data reductions of these high altitude resonant orbit
observations will include the effects (either as known or as solved for) of all
relevant harmonics through at least the 5th degree.

CONCLUSIONS

Data reduction of over 600 orbits of 12 and 24-hour satellites has established
a set of drift accelerations which appear to be strong determinants for many
components of low degree in the geopotential. Recent complex geoids, inde-
pendently derived, are quite compatible with most of this data. But inclusion of
the best of the high altitude resonant orbit accelerations in the complex geoid
solutions should result in considerable improvement in the overall precision
and accuracy of those solutions.
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Figure 1. Observation Residuals for 12 and 24 Hour Satellite Accelerations From Recent Geoids.
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