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1 Introduction 

In this study, we quantify both the spatial and temporal convergence behavior 

simultaneously for various algorithms for the two-dimensional Euler equations 

of gasdynamics. Such an analysis falls under the rubric of verification, which is 

the process of determining whether a simulation code accurately represents the 

code developers description of the model (e.g., equations, boundary conditions, 

etc.) [l]. The recognition that verification analysis is a necessary and valu- 

able activity continues to increase among computational fluid dynamics practi- 

cioners [7]. Using computed results and a known solution, one can estimate the 

effective convergence rates of a specific software implementation of a given algo- 

rithm and gauge those results relative to  the design properties of the algorithm. 

In the aerodynamics community, such analyses are typically performed to  eval- 

uate the performance of spatial integrators; analogous convergence analysis for 

temporal integrators can also be performed. Our approach combines these two 

usually separate activities into the same analysis framework. 
To accomplish this task, we outline a procedure in which a known solution to- 

gether with a set of computed results, obtained for a number of different spatial 

and temporal discretizations, are employed to  determine the complete conver- 
gence properties of the combined spatio-temporal algorithm. Such an approach 

is of particular interest for Lax-Wendroff-type integration schemes, where the 

specific impact of either the spatial or temporal integrators alone cannot be 

easily deconvolved from computed results. Unlike the more common spatial 
convergence analysis, the combined spatial and temporal analysis leads to  a set 

of nonlinear equations that must be solved numerically. The unknowns in this 
set of equations are various parameters, including the asymptotic convergence 

rates, that quantify the basic performance of the software implementation of 
the algorithm. 
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While theoretical results for convergence properties of algorithms for the 

Euler equations are most frequently cited for smooth problems, there are some 

results for flows with discontinuities [4]. In this Abstract we present prelim- 

inary results for simultaneous spatio-temporal convergence properties of two- 

dimensional smooth problems involving linear fields. In later work we will ex- 

tend this approach to both smooth problems that involve nonlinear fields [2] as 

well as to  problems that develop discontinuous solutions (involving, e.g., shock- 

waves) [5]. 

2 Methodology 

The Euler equations summarize the conservation of mass, momentum, and en- 

ergy for a compressible fluid. For a single inviscid, compressible fluid, these 

equations in two-dimensional Cartesian coordinates are: 

+ t = 0 ,  

where p is the mass density, (u, v) are the components of the velocity vector in 

Cartesian coordinates (s, y), t is the time, E = e+$(u2+v2) is the specific total 

energy, e is the specific internal energy (SIE), and p = p(p, e )  is the pressure. 

To obtain numerical solutions, these continuum equations are approximated 

on a grid that is discrete in both space and time. We consider an Eulerian grid 

onto which Eq. 1 is discretized. The corresponding solution of the discretized 

form of Eq. 1 is indicated as where U = [p,pu,pv,pEIT is the array of 

conserved variables. The quantity corresponds to U(z i ,  yj; t i ) ,  the solution 

at  position (xi ,yj)  and time tl. We assume a unaform and equal spatial grid 

with Ax = Ay and unaform and equal timesteps At. 

Modern high-resolution numerical schemes for conservation laws (see, e.g., 
[3, 61) may not retain strict separation of spatial and temporal discretizations. 

For such methods, interaction of the spatial and temporal discretizations is at 
play. Such is the case for the algorithm we consider, which uses a Godunov-type 
method with Lax-Wendroff time differencing. In such an approach, the temporal 

dependence is interwoven with the spatial dependence through the self-similar 
solutions to  local Riemann problems. 

To characterize the combined spatio-temporal dependence of the error in the 

solution, we analyze the average per-cycle convergence properties by postulating 
the following error ansatz: 
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where is some functional of the solution (e.g, one component of U, say, p ) ,  

<* is the corresponding exact value, t: is the value computed on the grid of 

spatial zone size Axi with timestep Atl, I ( .  ( 1  is a norm that maps its argument 

to  a non-negative real number, Nat, is the number of time cycles taken to  

obtain the solution at the final time, A is the spatial convergence coefficient, p 

is the spatial convergence rate, I3 is the temporal convergence coefficient, q is 

the temporal convergence rate, C is the spatio-temporal convergence coefficient, 
and r + s is the spatio-temporal convergence rate. 

The relation in Eq. 2 averages out the position-to-position, cycle-to-cyle 

dependence of the computed results on Ax and At. In this expression, the 

solution norm, which is typically a discrete approximation to  some integral of 

its argument, can be interpreted as a spatial averaging operator; that is, the 

norm quantifies some mean measure of the spatial behavior of its argument. 

The ratio of this quantity with the number of computational cycles is effectively 

a temporal averaging operator; unlike the spatial norm, however, this operation 

produces a mean per-cycle measure. Additionally, two implicit assumptions 
have been made in Eq. 2: (1) the zeroth-order error in the computed solution is 

negligible, and (2) the exact solution <* can be evaluated at any grid location 

at the desired time. 

Equation 2 contains a total of seven unknowns: A ,  p ,  B ,  q, C, r ,  and s. 

To solve for these quantities, we require seven independent equations. To do so, 
we obtain computed solutions at  the same final time with the following seven 

combinations of spatial and temporal zoning: 

' 

where a > 1 is the ratio of the spatial grid sizes, and T > 1 is the ratio of 

the temporal grid sizes. This set of zonings is neither unique nor demonstrably 
optimal for obtaining solutions of Eq. 2; however, it does provide a sufficient set 

of independent information with which to obtain solutions for the unknowns in 
this equation. The set of computed solutions on these space-time grids satisfies 

3 



In these expressions, Ax:, = Ax is the coarse spatial grid size, Ax, = Ax/a 

is the medium spatial grid size, and Axf E Ax/a2 is the fine spatial grid 

size; similarly, At, At is the coarse timestep, At, 3 At/r is the aedium 

timestep, and At, = At/r2 is the fine timestep. Also, N,, Nm, and N f  
represent the number of time cycles involved in computing the solutions with 

the coarse, medium, and fine timesteps, respectively. 

Equation 4 can be written as f(a) = 0, where the element of f are indicated 

above and a = [ul, . . . , u7IT 3 [Alp, B, q, C, T ,  sIT. To obtain solutions to this set 
of nonlinear equations, we use a modified line-search based Newton’s method [8]. 

It is straightforward to obtain closed-form expressions for the elements of the 

corresponding Jacobian J ,  with elements Ji,j = d fi/daj , the inverse of which 

is typically evaluated numerically in Newton’s method-based routines. 

To obtain solutions to Eq. 4, one must obtain the calculated solutions of 

Eq. 1 at the fixed final time using the spatial and temporal grids specified, and 

assign an initial guess for the array of unknowns that is within the domain 

of convergence of the iteration. The former is a matter of computer resources, 

whereas the latter requires some a priori knowledge of the algorithm of interest; 

the obvious choice for initial guess consists of the algorithm’s theoretical con- 

vergence rate together with, say, estimates of the convergence parameter from 

a purely spatial convergence analysis. 

3 Results 

Our preliminary results for this technique are based on the evaluation of a 

smooth problem, i.e., one which posesses smooth initial conditions and that 
is allowed to  evolve to  a final time prior to the development of any discon- 

tinuities. The numerical solutions that we obtain with different spatial and 

temporal meshes are compared with the exact solution at  identical final times. 
The convergence properties of the coded algorithm are then inferred following 

the procedure outlined above. 

The two-dimensional, planar geometry initial conditions for this problem 
consist of a sinusoidal distribution of density with initially constant and uniform 

pressure, thermodynamically consistent specific internal energy, and uniform 
non-zero velocity (u~,q). The equation of state is chosen to be a polytropic 
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Y P 
1.4 2 + s i n 2 m  sin2ny 

Table 1: Initial values of the adiabatic exponent 7, nondimensional density p, 

pressure p, SIE e, 2-velocity u, and y-velocity w for the 2-D sinusoidal density 

advection problem. 

P e u w  

1.0 2.5/ (2 + sin2.rrx sin2ny) 1.0 1.0 

gas with adiabatic exponent y = 1.4. With periodic boundary conditions, this 

configuration advects the sinusoidal density and SIE distributions, which remain 

unperturbed, through the computational mesh. If we write the initial conditions 

as f (x ,  y), then the solution at any time t is given by f(x - uo t ,  y - wo t). The 

domain of interest is assigned to  be the square of unit dimension centered at  

the origin in Cartesian geometry, i.e., {(x, y) : -1/2 5 x 5 1/2  and - 1/2 5 
y 5 1/2}. The initial conditions for this problem are given in Table 1. 

One caveat to this problem is that it tests only the linear fields in the gov- 

erning equations. We plan to  evaluate both the smooth simple wave problem 

proposed by Cabot [2] and the nonsmooth 1-D shock tube problems [5], both 

of which exercise the nonlinear fields of Eq. 1. 

Calculations of all problems were carried out on uniform grids consisting of 

32 x 32, 64 x 64, 128 x 128, and 256 x 256 zones. Timesteps of 1/1600, 1/3200, 

1/6400, 1/12800 were used. Thus, both the subsequent spatial and temporal 

zone sizes used in computing the convergence properties were a factor of two 

smaller, i.e., CT = T = 2 in the nomenclature of the previous section. These 

timesteps are well below the CFL limit for this set of calculations. It must be 

emphasized that the solution values must be compared at  identical locations in 

space at exactly the same time. Interpolation of solutions provides values a t  

identical spatial locations and the choice of fixed timesteps allows solutions to  

be obtained at the identical final time, t = 0.1. 
Preliminary results of the suite of calculations conducted on 32 x 32, 64 x 64, 

and 128 x 128 grids are presented in Table 2, and results based on 64 x 64, 

128 x 128, and 256 x 256 grids are given in Table 3. As shown in these tables, 

the spatial, temporal, and combined spatio-temporal convergence rates (i.e., 

p ,  q, and r + s) are each approximately two in all cases. These results are in 

good agreement with the design characteristics of both the spatial and temporal 
integrators of the code, which are all nominally second order. 

4 Conclusion 

In this note we have performed convergence analysis simultaneously in both 
space and time on a smooth problem for a Godunov scheme using Lax-Wendroff 



At 

1/1600 

1/3200 

1/6400 

1/3200 

1/6400 

1/12800 

Table 2: Convergence quantities for the smooth advection problem calculated 

with 322, 64', and 1282 zones on the unit square with the indicated timesteps 

At and number of computational cycles N,. The other parameters are defined 
in the text. 

N, A x  l o 2  p 23 x l o 2  q C x lo2 T s 

160 

320 1.00 1.90 0.67 1.95 1.00 0.90 0.90 

640 ~ 

320 

640 1.00 2.00 0.24 1.89 1.02 1.00 1.00 

1280 

At 

1/1600 

1/3200 

1/6400 

1/3200 

1/6400 

1/12800 

Table 3: Convergence quantities for the smooth advection problem calculated 
with 642, 1282, and 2562 zones on the unit square with the indicated timesteps 
At and number of computational cycles N,. The other parameters are defined 
in the text. 

N ,  A X  10' p B X  10' q C x 10' T S 

160 

320 1.00 2.00 0.78 1.97 1.02 1.01 1.00 

640 

320 

640 1.00 2.00 0.28 1.89 1.05 1.01 1.00 

1280 
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time integration. The fundamental assumption of this analysis (Eq. 2) is that 

the mean per-cycle error in the computed solution varies as a polynomial in 

the computational cell size and computational timestep, with the exponents 

in this expression being the convergence rates. Unlike the direct evaluation of 

convergence properties for the standard spatial convergence analysis, the com- 

bined space-time analysis requires the numerical solution of a set of nonlinear 

verification equations. Obtaining solutions to this set of equations is more in- 

volved than directly obtaining the convergence results in the typical space-only 

or time-only convergence cases. 

An application of this analysis is provided using a smooth advection problem. 

The results of our study demonstrate that the underlying advection algorithm 

is indeed second order in both space and time at  all resolutions considered, in 

good agreement with the design characteristics of the numerical method. This 

combined spatio-temporal analysis provides concrete evidence supporting the 

claim of a verified implementation of the numerical algorithms. 

It remains to  examine this method for problems that exercise the nonlinear 

fields of the Euler equations. Additionally, it is of interest to  examine all the 

roots of the system of nonlinear equations that govern the convergence proper- 

ties. 
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