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Abstract

Effective buffer management is crucial for efficient in-

memory and streaming XQuery processing. We propose a

buffer management scheme which combines static and dy-

namic analysis to keep main memory consumption low. Our

approach relies on a technique that we call active garbage

collection and which actively purges buffers at runtime

based on the current status of query evaluation. We have

built a prototype system for a practical fragment of XQuery

which employs our buffer management scheme. The exper-

imental results demonstrate the significant impact of com-

bined static and dynamic analysis on reducing main mem-

ory consumption and running time.

1 Introduction

Over the past years, XQuery has evolved into a powerful
and widely accepted query language for XML processing.
Various in-memory XQuery engines have been developed
[3, 6, 11, 13, 19] and it has been repeatedly observed that
main memory consumption remains a crucial bottleneck in
XQuery evaluation. In particular when XQuery is evaluated
on streams, the input cannot be completely buffered prior to
query evaluation. Here, good buffer management becomes
the key prerequisite to performance.

Ideally, the buffer manager of a streaming XQuery en-
gine will (1) only put data that is relevant for query evalu-
ation into the buffer, (2) not keep data buffered longer than
necessary, and (3) not keep multiple copies of the data in
buffers. These goals are conflicting, for instance, a system
optimal for (1) would have to be able to check satisfiabil-
ity of XQuery expressions, an undecidable problem (this is
implicit e.g. in [2]).

We claim that in order to come closer to meeting these
three desiderata, a combination of static analysis and dy-
namic buffer minimization techniques is needed. In vir-
tually all current systems, the decisions regarding what
to buffer and when to delete from buffers are made at
compile-time only, based on purely static query analysis
[3,6,11,12,16]. Let us review the buffer management strate-
gies of some existing XQuery engines.

Among the early work on XQuery buffer management is
the static projection technique implemented in Galax [13],
and refined in [3, 4], where only the parts of the input rel-
evant to query evaluation are loaded into memory. Yet as
the projected document is computed before query evalua-
tion can start, buffer management during query evaluation
is not an issue.

While Galax is an in-memory XQuery engine, other sys-
tems have been specifically designed to operate on XML
streams [11, 12]. These works evaluate parts of the query
on-the-fly with no or only little buffering, using static anal-
ysis of data dependencies and schema information [11], if
available. However, for many practical queries involving
blocking operators or descendant axes and wildcards, little
can be evaluated on-the-fly [1, 5, 11, 12].

In the above systems, the decision when buffers are
purged is made at compile-time. In the case of the FluX-
Query engine [11] and similarly in [12], the lifetime of a
buffer is associated with the scope of an XQuery variable.
While buffers can be conveniently deleted once the scope
of the associated variable ends, it becomes difficult to avoid
that data is buffered twice. Such situations can arise if an
XML node is bound by different variables, e.g. as is re-
quired for checking a condition and for producing output. In
particular for queries with descendant axes and wildcards,
it may become difficult to avoid duplicate buffering.

We argue that in order to come closer to satisfying
desiderata (1) through (3), both static and dynamic analysis
are required: Based on static query analysis, we can incre-
mentally compute a projection of the input document, thus
buffering only data that is relevant to query evaluation [13].
In addition, we can statically infer the moments during
query evaluation when buffered nodes have become “irrele-
vant” for the remaining query evaluation, namely each time
that a query subexpression has been evaluated. Yet to delete
nodes from the buffer early on during query evaluation, dy-

namic analysis is required which takes into account the cur-
rent buffer contents, the state of query evaluation, and the
progress made in reading the input. Obviously, we may ex-
pect the impact of combined static and dynamic analysis on
main memory consumption to be greater than what can be



n1 : /

n2 : /bib

n3 : /∗

n4 : /price[1] n5 : dos::node()

n6 : /book

n7 : /title/dos::node()

Figure 1. Projection tree.

achieved by static analysis alone.

Garbage Collection in XQuery Engines. In this paper,
we propose active garbage collection, a novel buffer man-
agement technique for XQuery engines in which both static
and dynamic analysis are exploited.

Garbage collection [20] is a well-understood technique
for automatic memory management in programming lan-
guages. The basic principle of any garbage collector is to
determine which data objects in a program will not be ac-
cessed in the future, and consequently, to reclaim the stor-
age used by these objects. A simple yet effective garbage
collection strategy is reference counting where every object
counts the number of references to it. When a reference
is created to an object, its reference count is incremented.
Likewise, the reference count is decremented when a refer-
ence is removed. Once the count reaches zero, the object is
deleted and its memory is reclaimed. A major advantage of
this approach is that the memory overhead is small.

Our approach is strongly related to reference counting
insofar as each node in the buffer keeps track whether it is
still relevant to the remaining XQuery evaluation. Instead
of counting references, we employ the concept of roles

which are assigned to nodes. Intuitively, a role serves as
a metaphor for the future relevance of a given node. While
a traditional garbage collector is passive in the sense that
it is invoked whenever there is no more space to allocate
new objects, our approach differs in that it is active. That
is, we purge buffers from irrelevant nodes early on. In fact,
garbage collection is invoked whenever the scope of a vari-
able ends. Thus, both the high watermark and the average
main memory consumption remain low.

The basic idea behind active garbage collection is clean
and simple: From the path expressions in the XQuery we
statically derive a set of roles. While reading the input
stream, the tokens are matched against the set of possible
roles. A node can be assigned several roles when it is used
in the query in several different contexts. Moreover, a role
can be assigned to a node several times; this can happen if
queries involve XPath expressions with descendant-axes.

At compile-time, we determine the moments during
query evaluation when nodes lose roles. At runtime, the
buffer manager is then notified that all nodes reachable via
a path w.r.t. the current variable binding lose a certain role.
Once a node has lost all of its roles, it can be safely deleted
if none of its descendants is assigned any roles.

step input buffer output
stream contents stream

1 〈r〉

2 〈bib〉 bib{r2}

3 〈book〉 bib{r2}

book{r3 ,r5,r6}

4 〈title/〉 bib{r2}

book{r3 ,r5,r6}

title{r5,r7}

5 〈author/〉 bib{r2}

book{r3,r5,r6}

title{r5,r7} author{r5}

6 〈/book〉 bib{r2}

book{r3,r5,r6}

title{r5,r7} author{r5}

〈book〉
〈title/〉
〈author/〉

〈/book〉

7 bib{r2}

book{r6}

title{r7}

Figure 2. Active garbage collection.

Example. The following XQuery expression first outputs
all children of the bib node for which no price exists. Next,
book titles contained in the document are output.

<r> {

for $bib in /bib return

((for $x in $bib/* return

if (not(exists $x/price)) then $x else ()),

for $b in $bib/book return $b/title)

} </r>

We refer to the for-loop introducing variable $bib by
for$bib, and likewise use for$x and for$b.

In static analysis, we derive the projection tree with
nodes n1, . . . , n7 shown in Figure 1. In the following we
use the abbreviation “dos” for descendant-or-self. The pro-
jection tree defines the parts of the input that are copied into
the buffer. For instance node n4 (which refers to the if-
condition in the query) defines that only the first price node
– without descendants – needs to be buffered. However,
due to n5, we are forced to buffer all children of the bib
node with their complete subtrees.

Each projection tree node ni is assigned the role ri.
While parsing the input stream, the nodes of the document
will be incrementally projected into the buffer and marked
with roles on-the-fly. Further, signOff -statements are stati-
cally inserted into the query. At runtime, these statements
notify the buffer manager that certain nodes lose their roles.



<r> {

for $bib in /bib return

((for $x in $bib/* return

(if (not(exists $x/price)) then $x else (),

signOff($x,r3), signOff($x/price[1],r4),
signOff($x/dos::node(),r5))),

(for $b in $bib/book return

($b/title,

signOff($b,r6),
signOff($b/title/dos::node(),r7))),

signOff($bib,r2))
} </r>

The query is sequentially evaluated on the buffer until input
is required that has not been buffered (yet). In this case,
the query evaluator blocks and requests further input, upon
which the input stream is read until a token is found that is
matched by the projection tree (or the stream is exhausted).
As soon as a matching token t is found, we assign for each
matched projection tree node ni the role ri to token t. Next,
the token is loaded into the buffer and query evaluation is
resumed. In contrast to projection as implemented in Galax
[13], where the whole document is projected into the buffer
before starting evaluation, in our pull-based approach the
buffer is filled incrementally during evaluation, as needed
by the evaluator. Whenever the query evaluator encounters
a signOff -statement, it notifies the buffer that certain nodes
lose their roles. The buffer then performs the role updates
and invokes active garbage collection.

Let us consider the evaluation of the query on the input
stream 〈bib〉〈book〉〈title/〉〈author/〉〈/book〉 . . . . Figure 2
shows for several steps what has been read from the input
stream, the current buffer contents, and the output produced
so far. In step 1, the opening tag 〈r〉 is output. Next, the
query evaluator tries to evaluate for$bib, but has to block
as the required input is not yet available in the buffer. In
step 2, 〈bib〉 is read. As it is matched by projection tree
node n2, this document node is copied into the buffer and
assigned role r2. The query evaluator evaluates for$bib and
binds variable $bib to the buffered node. Next, it tries to
evaluate for$x, but has to block as relevant data is missing.

In step 3, 〈book〉 is matched by several projection tree
nodes, and hence is buffered and assigned the roles r3, r5,
and r6. Now variable $x is bound to the book node,
but the evaluation of the next query subexpression “if
not(exists($x/price)) then $x else ()” has to wait for input.
In step 4, the bachelor tag 〈title/〉 is read. As matched by
the projection tree, they will be buffered and annotated with
roles r5 and r7. The evaluation of the if-expression blocks
again, also after reading the author node.

In step 6, 〈/book〉 is read. The if-expression can be eval-
uated and the node to which $x is bound is output. Next,
the sequence of signOff -statements is evaluated. For in-
stance, execution of “signOff($x, r3)” causes the buffered
book node to lose role r3. The author node loses its single
role r5 in the course of evaluating the signOff -statements
and, as it has no descendants, can be purged from the buffer.
Each of the remaining nodes carries a role which marks it
as relevant for the future evaluation of for$b. Now query

evaluation again returns to evaluating for$x and blocks until
the next token has been loaded into the buffer.

Contributions

• This paper proposes the first buffer manager for stream-
ing XQuery engines which employs static and dynamic

analysis to reduce main memory consumption.

• We introduce the notion of assigning roles to buffered
nodes. Roles serve as a metaphor for the relevance of a
node for query evaluation. We show how roles are as-
signed to nodes, how nodes lose roles during query eval-
uation, and when nodes can be deleted from buffers.

• We extend the well-established technique of static docu-
ment projection [3, 13] so that roles are assigned to doc-
ument nodes on-the-fly during projection.

• We propose active garbage collection as a novel buffer
management technique for streaming XQuery engines.
We explore our technique for the practical fragment of
composition-free XQuery [10].

• Our prototype implementation shows the significant im-
pact of active garbage collection on main memory con-
sumption and query evaluation time. As confirmed by
our experiments with XMark data and queries, combined
static and dynamic analysis outperforms systems which
rely on static analysis alone [11].

Structure. We provide the preliminaries in Section 2 be-
fore introducing our XQuery fragment in Section 3. The
static analysis presented in Section 4 forms the groundwork
for active garbage collection at runtime, which is presented
in Section 5. Implementation and optimizations in our pro-
totype system are introduced in Section 6. We conclude
with the discussion of experimental results in Section 7.

2 Preliminaries

Let Tag be a set of node labels (or “tags”) and let Char

be a set of characters. We consider XML without attributes
as our data model. This poses no substantial restriction as
attributes can be handled in the same way as children of
a node. Each XML document has a root node, which we
refer to by root. We will repeatedly switch between the
dual views of XML documents as unranked, ordered, and
node labeled trees over the two-sorted domain of nodes
(with tagnames from Tag) and values (strings over alphabet
Char), and streams of opening and closing tags, and char-
acter sequences. The depth-first left-to-right traversal of
the tree in document order yields the corresponding XML
stream, while the stream encodes an unranked labeled
tree. For a document tree T , let dom be the set of nodes.
When comparing node-sets, i.e. sets over domain dom, we
compare node-identifiers only. |T | denotes the size of T .

Definition 1 Let T be a document tree and let dom be
the set of nodes in T . Let S ⊆ dom be a node-set with
root ∈ S. The projection of T w.r.t. S, denoted ΠS(T ), is
the document tree consisting of the node-set S, and with the
ancestor-descendant and following relationships as in T . �



n1 : a

n2 : c n3 : d

n4 : b

n5 : a

n1 : a

n4 : b n5 : a

n1 : a

n3 : d

n4 : b
document tree T Π{n1,n4,n5}(T ) Π{n1,n3,n4}(T )

Figure 3. Document projection.

n1 : a

n2 : a

n3 : b

n4 : b

v1 : /

v2 : .//a

v3 : .//b

a{r2}

a{r2}

b{r3,r3}

b{r3}

document projection tree t and T ′ = ΠPJtK(T )(T )
tree T rπ(v2) = r2, rπ(v3) = r3

(a) (b) (c)

v1 : /

v2 : .//a v3 : .//b

a{r2}

a{r2}

b{r3}

b{r3}

projection tree t′ and T ′′ = ΠPJt′K(T )(T )
rπ(v2) = r2, rπ(v3) = r3

(d) (e)

Figure 4. Projection and role assignment.

Figure 3 shows an XML document tree T with node-set
{n1, . . . , n5} and tag names {a, b, c, d}, and the projected
trees Π{n1,n4,n5}(T ) and Π{n1,n3,n4}(T ).

The goal in document projection is to preserve only those
parts of the input document that are relevant for query eval-
uation, while discarding the rest. Previous work on project-
ing XML includes [3,4,13] and is based on projection paths
to specify the nodes relevant for query evaluation. In [3,13],
all document nodes which are matched by some prefix of a
projection path and their ancestors are preserved, while in
our approach ancestors of matched nodes need not always
be kept. For instance, when projecting for XPath expres-
sion //b on tree T from Figure 3, we only preserve node n4,
rather than the projected document Π{n1,n3,n4}(T ).

Our approach is more effective in reducing the size of the
projected documents when descendant axes are involved,
For instance, consider the document tree from Figure 4(a).
The projected documents for XPath expressions /a/b and
/a//b are shown below.

n1 : a

n4 : b

n1 : a

n3 : b n4 : b
projection for /a/b projection for /a//b

Yet if we simultaneously project for both XPath expres-
sions, e.g. as both occur in an XQuery expression, then we
need to preserve the complete input tree in this example.
Discarding node n2 would promote node n3 to a child of
n1, and the evaluation of XPath expression /a/b on the pro-
jected document would produce an incorrect result.

A set of projection paths can be summarized in a pro-
jection tree. For instance, the projection tree in Figure 5(a)
contains the XPath expressions /a/b and /a//b. Here, non-
leaf nodes reflect the XPath (sub)expressions, while the leaf
nodes are labeled with “dos” (descendant-or-self) and de-
note that, in projecting the document, descendant nodes of
/a/b and /a//b must not be discarded.

Formally, a projection tree is an unranked, unordered
tree where the root is labeled “/” (which denotes that all
paths are absolute) and the inner nodes are labeled with lo-
cation steps axis::x[p] where axis is an XPath axis child,
descendant, or descendant-or-self, and x is either the sym-
bol “∗”, a tagname, or the wildcard node(). Predicate
[p] is either “[true]”, in which case it can be omitted, or
[position() = 1]. We will employ the position information
for existence checks in XQuery expressions, where we are
only interested in the first witness of a node. We use com-
mon XPath abbreviations, e.g. //bib for /descendant::bib,
and shorten descendant-or-self to dos.

v1 : /

v2 : ./a

v3 : ./b

v4 : dos::node()

v5 : ./a

v6 : .//b

v7 : dos::node()

q0

q1

a

q2

a

q3

b

q4

b

(a) (b)

Figure 5. Projection with a lazy DFA.

Similar to processing XPath on streams [9], we realize
stream preprojection with a lazily constructed deterministic
finite automaton (DFA). Due to our restriction to a fragment
of forward XPath [15], the decision whether to discard a
document node can be already made when reading its open-
ing tag from the input stream.

For instance, while projecting the input document from
Figure 4(a), we compute the DFA in Figure 5(b). There is
a straightforward mapping from DFA states (which reflect
paths in the input document) to multisets of projection tree
nodes. In detail, a DFA state q maps to a projection tree
node v if the XPath representation of v (the path from root
“/” to v) matches the input document path described by q.
The multiplicity of the projection tree node in the multiset
is defined as the number of possible path step assignments
that lead to matches, e.g. XPath expression //a//b matches
path /a/a/b in two variations, either with path step //a bound
to the first or to the second a in the path.

Example 1 For the projection tree in Figure 5(a) and the
DFA in 5(b), q0 maps to the singleton set {v1}, q1 maps to
{v2, v5}, state q2 maps to the empty set, state q3 maps to
{v6}, and state q4 maps to {v3, v6}.

Consider the same DFA and the projection tree in Fig-
ure 4(b). Here, state q3 maps to the multiset {v3, v3}, as the
XPath representation //a//b of v3 matches path /a/a/b of q3

with multiplicity 2. �



The mapping is exploited at runtime. Assume we are
currently in a DFA state q and read an opening tag 〈t〉. We
identify two cases where XML nodes read in the input doc-
ument must be preserved. (1) There is a transition defined
from state q into a state p under label t, where the successor
state p maps to a node in the projection tree. (2) State q
maps to nodes v and w in the projection tree (which need
not be distinct), where v has a child labeled child::a and w
has a child labeled descendant::a for the same tagname a.
Intuitively, in case (1) the current node must be preserved
as it matches a projection path, whereas case (2) avoids er-
roneous promotion of descendant nodes.

Example 2 For the document in Figure 4(a), the projection
tree in 5(a), and the DFA in 5(b), a crucial point is reached
when we are in DFA state q1 and read node n2 with tag-
name a from the document. The first condition for node
preservation does not hold, as the successor state q2 does
not map to any node in the projection tree. Yet the second
condition is satisfied, as state q1 maps to v2 and v5 in the
projection tree, which have children labeled ./b and .//b. �

In general, given a projection tree t and an input doc-
ument T , we denote the set of nodes which are in the pro-
jected document tree as P [t](T ). For further examples, con-
sider the projection tree t′ in Figure 4 and the document
trees T and T ′ in Figure 3. Here, T ′ = ΠPJt′K(T )(T ) is a
projection of T w.r.t. t′.

Finally, we introduce the concept of roles, which forms
the basis of active garbage collection at runtime. Let roles

be a finite set of elements. A role-set is a multiset over roles,
defined as a function where m : roles → IN maps roles
to their multiplicity in the role-set. Naturally, multiplicity
zero means a role is not contained in a role-set. A role set
is empty if all roles have multiplicity zero. For syntactic
convenience, we denote the empty role-set by ∅. We anno-
tate nodes in document trees with role-sets, and introduce
the role-assignment function ρ : dom → m which yields
the multiset m of roles assigned to a given node. We further
introduce functions for adding and removing roles, i.e. for
a node n and a role r, let ρ(n) = m and m(r) = i. Then
after executing addρ(r, n), (ρ(n))(r) = i + 1. Likewise,
after executing remρ(r, n), if i > 0 then (ρ(n))(r) = i − 1,
and if i = 0, the removal of roles is undefined.

Role assignment is closely coupled to projection trees
and lazy DFAs. As we will show later, each projection tree
node v defines a role r. Assume we last recently processed
document node n while entering DFA state q, with q map-
ping to a non-empty set of projection tree nodes V . Then
the document node will be buffered, and, for each vi ∈ V ,
we will assign the corresponding role ri to n.

Example 3 Consider the mapping of the DFA from Fig-
ure 5 to the projection tree in Figure 4(b) (see Example 1).
Figure 4(c) shows the projected document with role assign-
ment for the document tree in 4(a). The multi-role r3 for
the first b node (in document order) has been assigned due
to the mapping from q3 to {v3, v3}. �

Q ::= 〈a〉q〈/a〉

q ::= () | 〈a〉q〈/a〉 | var | var/axis :: ν | (q, ... , q)
| (if cond then 〈a〉 else (), q, if cond then 〈/a〉 else ())
| for var in var/axis :: ν return q

| if cond then q else q

cond ::= true() | exists var/axis :: ν | var/axis :: ν RelOp

| var/axis :: ν RelOp var/axis :: ν
| cond and cond | cond or cond | not cond

axis ::= child | descendant

ν ::= a | ∗ | text()

RelOp ::= ≤ | < | = | ≥ | >

Figure 6. XQuery fragment XQ.

3 Query language

In this section we define our XQuery fragment XQ,
which comprises arbitrarily nested for-expressions, condi-
tions, and joins. As argued in [10], this XQuery fragment
covers most queries without aggregates that arise in prac-
tice. The abstract syntax of an XQ query Q is shown in
Figure 6 where a ∈ Tag, string denotes a string value, and
var is a set of XQuery variables $x, $y, . . . with the distin-
guished root variable $root, the unique free variable in any
query. We restrict our discussion to XQuery expressions
in which both cond expressions generated by line three are
syntactically equal, in order to assure well-formed XML
output. Our query fragment currently only supports atomic
equality [10] and no aggregations. However, we point out
that many syntactically richer fragments of XQuery can be
rewritten into our fragment, as in many practical queries,
let-expressions can be removed [10] and queries can be nor-
malized [11,13], thus rewriting where-conditions to if-then-
else expressions and replacing for-loops with multi-steps by
nested single-step for-loops (where possible).

Semantics of XQ. The semantics of XQ is the standard
XQuery semantics. However, as we are operating on XML
streams, we will interpret XQ expressions strictly sequen-

tially. In particular, our role update mechanism via sig-

nOff -statements relies on this evaluation order. We define
the evaluation of an XQ expression α with k free variables
using a function JαKk that takes a k-tuple of trees as input
(i.e., an environment for k variables). The symbol ⊎ de-
notes list concatenation, li the i-th element of list l, [. . . ] is
the list constructor, and [ ] denotes the empty list. A for-loop
is sequentially evaluated to a list of XML tokens as follows,

Jfor $xk+1 in $y/axis::ν return βKk(~e) :=
⊎

1≤i≤|l|

JβKk+1(~e, li) where l = J$y/axis::νKk(~e)

i.e. variable $xk+1 is bound successively to each node in the
list of nodes obtained from evaluating location step expres-
sion $y/axis::ν, and the body of the for-loop is evaluated
immediately for each new variable binding. For a listing of
the complete evaluation strategy of XQ, we refer to [10].



if X then α else β

(if X then α else (), if (not X) then β else ())
DECOMP

if X then (α1, ..., αn) else ()

(if X then α1 else (), ... , if X then αn else ())
SEQ

if X then 〈a〉 α 〈/a〉 else ()

(if X then 〈a〉 else (), if X then α else (), if X then 〈/a〉 else ())
NC

if X then for $x in $y/axis::nt return α else ()

for $x in $y/axis::nt return if X then α else ()
FOR

Figure 7. Pushing down if-expressions

Pushing if-Statements. Our approach relies on the as-
sumption that for each buffered node the number of ini-
tially assigned roles and the number of signOff-commands
received during query evaluation coincide. Role assign-
ment takes place while projecting the input stream. At this
time, conditions in if-expressions in general can not yet be
decided. As a consequence, for the execution of signOff-
statements inside the then or else parts of if-expressions no
guarantees can be made. We show in Section 4 that signOff-
statements always will be inserted at the end of for-loops.
By pushing all if-expressions down into for-loops, we guar-
antee that no signOff-command will be created inside an
if-expression.

The rewriting rules for pushing if-statements are shown
in Figure 7. In a first step, we apply rule DECOMP to each
if-then-else-expression in the query. The resulting query,
which contains only empty if-expressions with empty else

parts, is then rewritten by applying rules SEQ, NC and
FOR in arbitrary order, until a fixpoint is reached. Rule
SEQ pushes an if-expression inside the constituents of a se-
quence expression, while rule NC, which basically decom-
poses a node construct expressions, pushes if-expressions
inside node constructs. Rule FOR completes the set of rules,
and pushes if-expressions inside for-expressions. In prac-
tice, we might decide to process only those if-expressions
with a for-loop as a subexpression.

Introducing signOff-Statements to XQ. In implement-
ing garbage collection, we assign roles to buffered nodes.
Nodes lose roles when they have become irrelevant for the
remaining query evaluation. Hence, we need a mechanism
for signalling the buffer manager at runtime that certain
nodes lose their roles. To this end, signOff -statements are
inserted into queries at compile-time.

A signOff -statement is an expression of the form
signOff($x/π, r) where $x is a variable, π is a relative path
expression, and r is a role. Let T be a document tree and
let ρ be the role-assignment function. Let ~e be an envi-
ronment of k variables, let $x be a variable in ~e, and let
r be a role, then the semantics of JsignOff($x/π, r)Kk(~e)
is the following: First, we define a node-set S. Let x

be the node to which variable $x is currently bound, so
x = J$xKk(~e). If π = ǫ, then S = {x}, otherwise S is
the set of nodes reachable from node x via XPath expres-
sion π, i.e. S := PJπK(x). Next, we remove role r from all
nodes n in S.

We state two requirements for the safe evaluation of an
XQuery with signOff -statements: (1) All node removals at
runtime are defined, and (2) after the query has been evalu-
ated, all roles have been removed. These conditions enforce
that exactly as many instances of roles are assigned to doc-
ument nodes as are removed during query evaluation.

Example 4 Consider the following query and a version ex-
tended with signOff -statements for the roles r1 and r2.

<q> {for $a in //a
return
<a>
{for $b in $a//b
return <b/>}

</a>}
</q>

<q> {for $a in //a
return
((<a>

{for $b in $a//b
return (<b/>,
signOff($b,r2))}

</a>),
signOff($a,r1))}

</q>

The evaluation of this query on document tree T ′ from Fig-
ure 4 is safe, but not on T ′′. �

Roles and Dependency Paths. For two query expres-
sions α and β, we write α � β (resp., α ≺ β) to denote
that α is a subexpression (resp., proper subexpression) of β.

Let VarsQ denote the set of variables occurring in query
Q. For two variables $x, $y ∈ VarsQ, we say $y is the
parent variable of $x, denoted parVarQ($x) = $y if there

exists a for-loop expression “for $x in $y/axis :: ν return
α” in Q. We say $y is an ancestor variable of $x, denoted
$x <Q $y, if either (1) $y = parVarQ($x) or (2) there

exists a variable $z such that $x <Q $z and $z <Q $y. We
write $x ≤Q $y if either $x = $y or $x <Q $y.

The variable tree of a query summarizes the parent-child
relationships between variables. Variable trees are unranked
and unordered, and are defined over the nodes VarsQ and
with the edge relation parVarQ. The variable tree for the
query from the introduction is shown in Example 5.

Given two variables $x <Q $y, the variable path be-
tween $y and $x is defined recursively as follows. For $x =
$y, varpathQ($y, $x) = ǫ. Otherwise, varpathQ($y, $x) =
axis :: ν/varpathQ($z, $x) where $z is a variable such that

$x ≤Q $z <Q $y with the query expression “for $z in
$y/axis :: ν return α” in Q.

Let rQ : XQ → roles be an injective function assign-
ing a role to each XQ expression. We define dependencies
dep($x) as sets of tuples 〈$x/π, r〉 where $x is a variable, π
is a path expression, and r is a role. Informally, dependen-
cies contain paths relative to the binding of variable $x. In
particular, in evaluating existence checks on XML streams,
we are only interested in the first witness, while in output
and comparison expressions, we are interested in the rele-
vant nodes together with their subtrees.



Definition 2 Let Q be a query in XQ and $x ∈ VarsQ. The
set of dependencies of variable $x, denoted dep($x), is de-
fined as follows. Let β � Q with rQ(β) = r, then

• 〈axis::ν[1], r〉 ∈ dep($x) if β =“exists($x/axis::ν)”,

• 〈axis::ν/dos::node(), r〉 ∈ dep($x) if β is either an
output expression of the form “$x/axis::ν” or a condi-
tion expression of the form “$x/axis::ν RelOp χ” or
“χ RelOp $x/axis::ν ”, and

• 〈dos::node(), r〉 ∈ dep($x) if β =“$x”. �

4 Static Analysis

In the static analysis phase the projection tree is com-
puted from the query, so that at runtime, a projected version
of the XML input stream can be computed. Each projection
tree node defines a role. As described in Section 2, these
roles are assigned to buffered nodes while preprojecting the
document. By statically inserting signOff -statements into
the query, buffered nodes finally can be deleted at runtime,
once they have become irrelevant to query evaluation. We
can make the following guarantees.

Theorem 1 (Correctness) Let Q be an XQ query, T be

the input document tree, Q′ be the rewritten query Q with

signOff-statements, and let T ′ be the projected document

tree with assigned roles. Then JQK1(T ) = JQ′K1(T
′).

Deriving Projection Trees. Given an XQuery Q in our
fragment, we now show how to derive the projection tree
that will be used to compute the projected document. The
key ideas of our approach are the following. For existence-
checks in conditions, it suffices to keep the first witness for a
path, as any further witnesses are irrelevant for query evalu-
ation. Whenever a node is output or compared in conditions,
the node and all of its descendants need to be contained in
the projected document tree. Finally, when for-loops iterate
over node-sets, the nodes to which the variables bind are
relevant to query evaluation, yet their subtrees are irrelevant
for the variable bindings per se. These considerations are
captured by the dependencies (see Def. 2).

Given query Q, we derive the projection tree t and a
mapping rπ from nodes in t to roles in three steps: First, we
construct the variable tree of Q. Next, the variable tree is
extended by nodes labeled with path expressions: For each
variable $x and for each 〈$x/π, r〉 ∈ dep($x), we add a
node n with label “π”, an edge from $x to n, and we de-
fine rπ(n) := r. As a final step, the root node is relabeled
“/” and for each variable node n labeled $x with the corre-
sponding for-loop β =“for $x in $y/axis::ν return α”, we
relabel n with “axis::ν” and define rπ(n) = rQ(β).

Example 5 Consider the query from the introduction with
its variable tree and dependencies as shown below.

$root

$bib

$x $b

depQ($x) = {〈/price[1], r4〉,
〈/dos::node(), r5〉}

depQ($b) = {〈/title/dos::node(), r7〉}

The final projection tree is shown in Figure 1. �

Rewriting XQ Queries. At runtime, the goal is to issue
signOff -statements as early as possible so that the size
of the main memory buffer remains small. At the same
time, update commands must never be issued too early,
as this could corrupt the query result. The insertion of
signOff -statements into queries must assure the latter.

Definition 3 Let Q be an XQ query and let $z ∈ VarsQ.
Variable $z is straight if either $z = $root or there is a
query expression β =“for $z in $y/axis::ν return α” such
that (1) $y is straight and (2) there is no for-loop expres-
sion γ =“for $u in $v/axis′::ν′ return α′” where $u is no
ancestor variable of $z and β ≺ γ � Q. �

Definition 4 Let Q be a query and let $x ∈ VarsQ. The
first straight ancestor variable of $x is defined as

fsaQ($x)
def
:=

{

$x if $x is straight

fsaQ(parVarQ($x)) otherwise. �

Example 6 Variables $a and $b in the queries from Exam-
ple 4 are straight, i.e. fsaQ1

($a) = $a and fsaQ1
($b) = $b.

In the queries from Figure 9, variable $b is not straight, in
particular, fsaQ2

($b) = $root. �

We are now in the position to state the rules for inserting
signOff -statements into queries. Informally, at the end of
the scope of each variable $x, all nodes that depend on
$x and for which $x is the first straight ancestor variable
lose their assigned roles. The static XQ rewriting rules

shown below use algorithm suQ (Figure 8). This algorithm
computes all signOff-commands for a given variable, i.e.
(1) for each variable $x different from $root the role
update for all document nodes variable $x will be bound to
is emited, and (2) for each dependency of the variable, a
corresponding signOff -statement will be created.

β : 〈a〉 α 〈/a〉

〈a〉 (α, suQ($root)) 〈/a〉

`

β = Q
´

β : {for $x in $y/σ return α}

{for $x in $y/σ return (α, suQ($x))}

`

β ≺ Q
´

The first rule applies to the query Q itself and inserts the
corresponding signOff -statements for variable $root. The
second rule inserts signOff commands for the remaining
variables, always at the end of their introducing for-loops.

Example 7 Let Q (Q′) denote the query (rewritten query)
from Example 4. Each buffered document node to which
a variable $a or $b is bound loses its role once the scope
of the respective variable ends. We denote the result of
evaluation query Q against document tree T with variable
$root bound to the document root by JQK1(T ). For doc-
ument trees T and T ′ from Figure 4, we can verify that
JQK1(T ) = JQ′K1(T

′). �

Example 8 Let Q (Q′) denote the query (rewritten query)
from Figure 9. Figure 4 shows the projection tree t′ for Q
and the annotated projection of T . The role updates for the
b nodes are issued with the end of the scope of variable $a.
Here, JQK1(T ) = JQ′K1(T

′′). �



Algorithm suQ(variable $x):

begin

if ($x 6= $root) then

begin

let $x be defined in β :“for $x in $y/axis::ν return α”;
emit “signOff($x, rQ(β))”;

end

for each variable $z in VarsQ such that fsaQ($z) = $x
begin

let σ = varPathQ($x, $z);
for each 〈π, r〉 ∈ depQ($z) emit “signOff($x/σ/π, r)”;

end end

Figure 8. Static query rewriting.

<q>

{for $a in //a

return

<a>

{for $b in //b

return <b/>}

</a>

} </q>

<q> ({for $a in //a

return

((<a>

{for $b in //b

return <b/>}

</a>),

signOff($a,r1))},

signOff($root//b,r2))

</q>

Figure 9. Inserting signOff -statements.

5 Active Garbage Collection
Active garbage collection relies on the correct interplay

of (1) the assignment of roles to buffered document nodes
and (2) the timely removal of roles and ultimately, docu-
ment nodes from the buffer. A buffered node is called ir-

relevant if neither the node itself nor any of its descendants
carry a role. In the following discussion we assumes that
the buffer contains the projected input document and that
buffered nodes for which the closing tag has not yet been
read are marked “unfinished”. At runtime, streaming doc-
ument projection and role assignment are coupled, so that
document nodes are always copied into the buffer together
with their corresponding roles.

Normally, traditional garbage collectors start searching
for memory that can be freed whenever there is no more
space to allocate new objects. Our approach differs in that
garbage collection is active. That is, we purge buffers from
irrelevant nodes every time a signOff -statement is issued by
the query evaluator. As the garbage collector is invoked
quite often, it is desirable to restrict the search space for ir-
relevant nodes within the buffer. Figure 10 shows how we
handle signOff -statements and perform a localized garbage
collection: After a node has lost a role due to a signOff -
statement, the garbage collector checks whether it can be
deleted. If this is possible, the garbage collection proceeds
bottom-up in the tree. Thus, deletion of nodes from the
buffer can propagate up to the document root node. The
treatment of “unfinished” nodes in the buffer requires extra
care. An unfinished node is not deleted to avoid buffer cor-
ruption. Instead, it is marked deleted and ultimately purged
from the buffer once the corresponding closing tag is read
from the input stream.

Algorithm signOff($x/π, role r):

begin

let x be the node to which $x is bound;
let node-set S be defined as follows:

if (π = ǫ) then S := {x} else S := PJπK(x);

for each node n in S
begin

execute remρ(r, n); // remove role from nodes in S
while (n 6= root and n is irrelevant) // local search

begin

let p be the parent node of n;
if (n is finished) then delete n;
else mark n as deleted

and ultimately delete n when its closing tag is read;
n := p;

end end end

Figure 10. Localized active garbage collec-
tion.

Figure 11. System architecture.

Our experiments confirm that the overhead imposed by
the buffer cleanup algorithm is small in practice. A key pre-
requisite to this small overhead is that in algorithm signOff

for each updated node, buffer updates start at the local po-
sition of the update and stop as soon as the first irrelevant
node is detected. The concepts of aggregate roles and elimi-

nation of redundant roles presented in Section 6 will further
reduce the computational overhead of buffer cleanup.

6 System Implementation
We have implemented active garbage collection for a

prototype XQuery engine, the GCX system. GCX is im-
plemented in C++ which, in contrast to garbage collected
languages, gives direct control over memory allocation and
deallocation, a crucial aspect when designing a query en-
gine with low memory consumption.

System Architecture. The architecture of GCX com-
prises three components, the query evaluator, the stream

preprojector, and the buffer manager, as sketched in Fig-
ure 11. The interaction between the components is pull-

based as follows. (1) The query evaluator evaluates the
rewritten XQ expression until it has to block either because
a new node is required (e.g. when a variable is bound to the
next node in its for-loop) or a signOff -statement is encoun-
tered. In both cases, a request is issued to the buffer man-
ager, and query evaluation remains blocked until the buffer
manager has responded. (2) The buffer manager answers



n1 : /

n2 : /bib

n4 : / ∗ /price[1] n5 : / ∗ /dos::node() n7 : /book/title/dos::node()

Figure 12. Projection tree.

to the requests of the query evaluator. If data is required
that is not resident in the buffer, the buffer manager in turn
sends nextNode()-requests to the stream preprojector until
the data is available in the buffer or it has become evident
that the data does not exist in the input (e.g. as the input
has been exhausted). The reception of signOff -statements
triggers the active garbage collection, as discussed in Sec-
tion 5. (3) Once it has been activated by the buffer manager,
the stream projector processes the input stream until a token
relevant to query evaluation is detected. This token is then
copied directly into the buffer, together with its associated
roles. Via this chain of commands, the query evaluator in-
crementally reads the input stream and evaluates the query
on-the-fly. In the following, we discuss the design decisions
in GCX .

Buffer Representation. As our query fragment is
composition-free [10], all XQuery variables bind to nodes
in the document tree. Hence, there is a single buffer which
contains the (currently relevant) projected document tree.
Our buffer datastructure is simple, with parent-child and
next-sibling pointers between nodes, thus keeping the mem-
ory overhead for the tree representation small. Moreover,
we use a symbol table to replace tagnames by integers.

Early Updates. In the rewritten query from the introduc-
tion, “signOff($book/title/dos::node(), r7)” is issued after
the title node has been output. Yet if a book has more than
one title, garbage collection is only invoked after all titles
have been output. To avoid this suboptimal behaviour, we
rewrite all output expressions “$x/σ” to equivalent expres-
sions “for $y in $x/σ return $y” with new variable $y. In
the latter case, static query rewriting yields “for $y in $x/σ
return ($y, signOff($y, r))”, where r is a new role. Now,
titles lose role r7 immediately after they have been output.

Aggregate Roles. Each output expression involving a
variable induces a role that will be assigned to complete
subtrees rather than a single node, i.e. every node that will
be output as part of the expression is marked with the role.
In our implementation, the root node of the subtree is as-
signed an aggregated role instead, which implicitly is “in-
herited” by its descendants. This optimization reduces the
size of the role-set while it requires only minor changes to
the projection tree and the garbage collection mechanism.

Elimination of Redundant Roles. For many queries,
roles are introduced that actually are redundant. For in-
stance, consider the query from the introduction. If the pro-
jection tree is changed as shown in Figure 12 and the sig-

nOff -statements “signOff($x,r3)” and “signOff($b,r6)” are
removed from the rewritten query, then query evaluation
and active garbage collection are still executed correctly.

Redundant roles can be detected by inspecting projection
trees. If they are not assigned during stream projection, and
if the corresponding signOff -statements are removed from
the queries, then both main memory consumption and run-
time benefit from this optimization.

7 Experimental Results

Our implementation GCX was experimentally evaluated
using a number of XMark [21] queries. Our prototype was
implemented exactly as described in this paper. We empha-
size that no other optimizations were applied than described
in the implementation section.

As the XQ fragment introduced in Section 3 does not
cover the full XQuery standard, queries were adapted ac-
cordingly. In detail, for all benchmarks, we converted XML
attributes into subelements, replaced aggregations such as
count($x) by outputting the value of $x instead and rewrote
multi step paths in for-loops to single step paths. Q20 is
identical to Q20 from [7], with paths steps transformed
to single path step expressions. All systems were bench-
marked using the adapted streams and queries.

We considered XMark documents of sizes between
10MB and 200MB, generated with the XMark data gen-
erator. Benchmarks were carried out on a 3GHz CPU In-
tel Pentium IV with 2GB RAM, running SuSe Linux 10.0.
All Java-based systems were executed using J2RE v1.4.2.
As reference implementations we considered a broad spec-
trum of XQuery engines: The most appropriate systems are
Saxon v8.7.1 [18], FluXQuery [7], and QizX/open v1.1 [17]
(all three Java based), as they are capable of evaluating
XQuery on large input documents. In particular, the FluX-
Query engine has been designed for XML stream process-
ing. In our experiments, we provided the XMark DTD to
FluXQuery. Further, we considered the MonetDB system
v4.12.0 combined with XQuery-module v0.12.0 [14] which
relies on secondary storage. Finally, we used the in-memory
XQuery engine Galax v0.6.8 [8], a reference implementa-
tion for the XQuery standard. While Galax has not been de-
signed with XML stream processing in mind, it is often con-
sulted in XQuery benchmarks and – for this reason – also
included here. Note that the static projection of Galax [13]
could not be made to work.

The focus of our experiments is primarily on main mem-
ory consumption, but we also considered query execution
time. Main memory consumption was measured with the
Linux top command. For each system and query we set a
timeout of 1 hour. Figure 1 shows the results of our exper-
iments. For each system and size of the input document,
we measured the high watermark of non-swapped memory
consumption, and the total query evaluation time. “n/a” in-
dicates that the query could not be expressed in the language
supported by the specific engine, while “-” denotes failure,
e.g. caused by segmentation faults. With the Java-based en-
gines, we could observe that due to effects caused by auto-
matic memory management and the Java Virtual Machine,
memory consumption often increased with the document



Table 1. Benchmark results.

Query GCX FluXQuery Galax MonetDB Saxon QizX

10MB 0.18s / 1.2MB 1.59s / 50MB 5.45s / 186MB 0.86s / 30MB 1.48s / 80MB 1.20s / 38MB
XMark 50MB 0.92s / 1.2MB 3.96s / 111MB 42.33s / 880MB 3.69s / 98MB 4.29s / 292MB 3.74s / 195MB

Q1 100MB 1.87s / 1.2MB 6.94s / 111MB 02:07 / 1,8GB 7.19s / 225MB 7.96s / 547MB 6.56s / 285MB
200MB 3.53s / 1.2MB 12.27s / 111MB timeout 13.60s / 244MB 14.30s / 973MB 11.82s / 480MB

10MB 0.34s / 1.2MB n/a 7.66s / 240MB 0.98s / 29MB 1.73s / 82MB 1.56s / 33MB
XMark 50MB 1.68s / 1.2MB n/a 57.98s / 1.2GB 5.06s / 111MB 5.78s / 292MB 6.13s / 169MB

Q6 100MB 3.33s / 1.2MB n/a 5:08 / 2GB 9.94s / 253MB 10.85s / 622MB 11.74s / 484MB
200MB 6.42s / 1.2MB n/a timeout 19.95s / 337MB 20.14s / 1.2GB 20.33s / 805MB

10MB 13.15s / 9.8MB 18.04s / 128MB 01:04 / 377MB 02:56 / 407MB 6.61s / 145MB 9.89s / 148MB
XMark 50MB 05:13 / 43MB 06:51 / 169MB 33:08 / 1.8GB 03:26 / 1.35GB 02:02 / 352MB 03:38 / 265MB

Q8 100MB 22:07 / 86MB 27:01 / 216MB timeout - 08:39 / 650MB 14:27 / 397MB
200MB timeout timeout timeout - 32:43 / 1.15GB 52:05 / 636MB

10MB 0.17s / 1.2MB 1.60s / 52MB 5.92s / 182MB 0.80s / 31MB 1.53s / 48MB 1.26s / 28MB
XMark 50MB 0.85s / 1.2MB 3.98s / 111MB 43.91s / 899MB 3.64s / 98MB 4.45s / 292MB 3.85s / 195MB

Q13 100MB 1.69s / 1.2MB 7.00s / 111MB 02:04 / 1.8GB 7.34s / 224MB 8.35s / 547MB 6.81s / 285MB
200MB 3.24s / 1.2MB 12.33s / 111MB timeout 13.52s / 271MB 15.02s / 1.05GB 12.30s / 480MB

10MB 0.25s / 1.2MB 1.65s / 48MB 6.95s / 215MB 0.85s / 34MB 1.65s / 62MB 1.43s / 39MB
XMark 50MB 1.24s / 1.2MB 4.19s / 111MB 53.08s / 1,5GB 4.17s / 120MB 4.90s / 292MB 4.18s / 195MB

Q20 100MB 2.48s / 1.2MB 7.37s / 111B 03:14 / 2GB 8.47s / 247MB 9.13s / 622MB 8.71s / 350MB
200MB 4.74s / 1.2MB 13.14s / 111MB timeout 16.40s / 296MB 16.58s / 1.15GB 15.80s / 628MB

size even though the buffer size remained constant (e.g. for
FluXQuery).

The experimental results confirm our expectations,
namely the significant impact of combined static and dy-
namic buffer minimization on XQuery evaluation. Regard-
ing memory usage, even for small stream sizes, GCX out-
performs most competitors by a factor of 10 or more. No-
tably, FluXQuery can evaluate queries Q1 and Q13 with
very little buffering, yet GCX shows an overall good per-
formance for small and large documents.

For queries Q1, Q6, Q13 and Q20, memory consump-
tion of our prototype is independent of the input stream
size. Little has to be buffered at a time and we observe that
low main memory consumption coincides with low evalu-
ation time, also for the FluXQuery system. Note that Q6,
which contains descendant axis XPath expressions, is not
supported by FluXQuery. Q8 involves an XQuery join and
more nodes have to be buffered. However our system man-
ages to evaluate this query with low main memory con-
sumption. Similar to the FluXQuery system, joins are im-
plemented as naive nested loop joins, so runtime deterio-
rates for larger input documents on Q8. While runtime is
vital for practical systems, this is an orthogonal issue and
can be easily improved with standard database techniques.

In summary, the experiments confirm that our buffer
management approach via active garbage collection per-
forms well both w.r.t. main memory consumption and ex-
ecution time. For a large class of queries, we can even
outperform query engines which exploit schema informa-
tion [11].
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