
Combined Static and Dynamic Assertion-based
Debugging of Constraint Logic Programs

Germán Puebla, Francisco Bueno, and Manuel Hermenegildo

{german,bueno,herme}@fi.upm.es

Department of Computer Science,
Technical University of Madrid (UPM)

Abs t r ac t . We propose a general framework for assertion-based debug-
ging of constraint logic programs. Assertions are linguistic construc-
tions for expressing properties of programs. We define several asser-
tion schemas for writing (partial) specifications for constraint logic pro-
grams using quite general properties, including user-defined programs.
The framework is aimed at detecting deviations of the program behavior
(symptoms) with respect to the given assertions, either at compile-time
(i.e., statically) or run-time (i.e., dynamically). We provide techniques for
using information from global analysis both to detect at compile-time as-
sertions which do not hold in at least one of the possible executions (i.e.,
static symptoms) and assertions which hold for all possible executions
(i.e., statically proved assertions). We also provide program transforma-
tions which introduce tests in the program for checking at run-time those
assertions whose status cannot be determined at compile-time. Both the
static and the dynamic checking are provably safe in the sense that all er-
rors flagged are definite violations of the specifications. Finally, we report
briefly on the currently implemented instances of the generic framework.

1 Introduction

As (constraint) logic programming (CLP) systems [23] mature and larger ap-
plications are built, an increased need arises for advanced development and de-
bugging environments. Such environments will likely comprise a variety of tools
ranging from declarative diagnosers to execution visualizers (see, for example,
[12] for a more comprehensive discussion of tools and possible debugging sce-
narios). In this paper we concéntrate our attention on the particular issue of
program validation and debugging via direct static and/or dynamic checking of
user-provided assertions.

We assume that a (partial) specification is available with the program and
written in terms of assertions [5,3,13,14,24,27]. Classical examples of assertions
are the type declarations used in languages such as Gódel [22] or Mercury [29]
(and in functional languages). However, herein we are interested in supporting a
more general setting in which, on one hand assertions can be of a more general

http://upm.es

Fig. 1. A Combined Framework for Program Development and Debugging

nature, including properties which are undecidable, and, on the other hand, only a
small number of assertions may be present in the program, i.e., the assertions are
optional. In particular, we do not wish to limit the programming language or the
language of assertions unnecessarily in order to make the assertions decidable.

Consequently, the proposed framework needs to deal throughout with approx-
imations [6,10,20,19]. It is imperative that such approximations be performed
in a safe manner, in the sense that if an "error" (more formally, a symptom)
is flagged, then it is indeed a violation of the specification. However, while the
system can be complete with respect to decidable properties (e.g., certain type
systems), it cannot be complete in general, in the sense that when undecidable
properties are used in assertions, there may be errors with respect to such asser-
tions that are not detected at compile-time. This is a tradeoff that we accept in
return for the greater flexibility. However, in order to detect as many errors as
possible, the framework combines static (i.e., compile-time) and dynamic (i.e.,
run-time) checking of assertions. In particular, run-time checks are (optionally)
generated for assertions which cannot be statically determined to hold or not.

Our approach is strongly motivated by the availability of powerful and mature
static analyzers for (constraint) logic programs (see, e.g., [5,7,16,17,25] and
their references), generally based on abstract interpretation [10]. These systems
can statically infer a wide range of properties (from types to determinacy or
termination) accurately and efnciently, for realistic programs. Thus, we would
like to take advantage of standard program analysis tools, rather than developing
new abstract procedures, such as concrete [3,13,14] or abstract [8,9] diagnosers
and debuggers, or using traditional proof-based methods [1,2,11,15,30].

Figure 1 presents the general architecture of the type of debugging envi-
ronment that we propose.1 Hexagons represent the different tools involved and
arrows indicate the communication paths among such tools. It is a design deci-
sión of the framework implementation that most of such communication be per-
formed in terms of assertions, and that, rather than having different languages
for each tool, the same assertion language be used for all of them. This facilitates

1 The implementation includes also other techniques, such as traditional procedural
debugging and visualization, which are however beyond the scope of the work pre-
sented in this paper.

communication among the different tools, enables easy reuse of information, and
makes such communication understandable for the user.

Assertions are also used to write a (partial) specification of the (possibly
partially developed) program. Because these assertions are to be checked we will
refer to them as "check" assertions.2 All these assertions (and those which will
be mentioned later) are written in the same syntax [27], with a prefix denoting
their status (check, trust, ...). The program analyzer generates an approximation
of the actual semantics of the program, expressed using assertions with the flag
true (in the case of CLP programs standard analysis techniques -e.g., [17,16]-
are used for this purpose). The comparator, using the abstract operations of the
analyzer, compares the user requirements and the information generated by the
analysis. This process produces three different kinds of results, which are in turn
represented by three different kinds of assertions:

— Verified requirements (represented by checked assertions).
— Requirements identified not to hold (represented by false assertions). In this

case an abstract symptom has been found and diagnosis should start.
— None of the above, i.e., the analyzer/comparator pair cannot prove that a

requirement holds ñor that it does not hold (and some assertions remain in
check status). Run-time tests are then introduced to test the requirement
(which may produce "concrete" symptoms). Clearly, this may introduce sig-
nificant overhead and can be turned off after program testing.

Given this overall design, in this work we concéntrate on formally defming
assertions, some assertion schemas, and the notions of correctness and errors of
a program with respect to those assertions. We then present techniques for static
and dynamic checking of the assertions. This paper is complementary to other
more informal ones in which we present the framework from a more application-
oriented perspective. Details on the assertion language at the user-level can be
found in [27]. Details on the debugging framework and on the use of assertions
within it from a user's perspective can be found in [26] (which also includes a
discussion on the practicality of the approach) and in [21] (which also includes
a preliminary performance evaluation).

In this paper, after the necessary preliminaries of Section 2, we define for-
mally our notion of assertion and of assertion-based debugging and validation in
Section 3, and some particular kinds of assertions in Section 4. We then formalize
dynamic and static debugging in sections 5 and 6, respectively. Finally, Section 7
briefly reports on the implemented instances of the proposed framework.

2 Preliminaries and Notation

A constraint is essentially a conjunction of expressions built from predefined
predicates (such as term equations or inequalities over the reals) whose argu-
ments are constructed using predefined functions (such as real addition). We let

2 The user may provide additional information by means of "entry" assertions (which
describe the external calis to a module) and "trusf assertions (which provide infor-
mation that the analyzer can use even if it cannot prove it) [5, 27].

3L0 be the constraint 9 restricted to the variables of the syntactic object L. We
denote constraint entailment by |=, so that c\ |= c-i denotes that c\ entails c-¿.

An atom has the form p(t\, ...,tn) where p is a predicate symbol and the t,
are terms. A literal is either an atom or a constraint. A goal is a finite sequence
of literals. A rule is of the form H: -B where H, the head, is an atom and B, the
body, is a possibly empty finite sequence of literals. A constraint logic program,
or program, is a finite set of rules. The definition of an atom A in program
P, defrip(A), is the set of variable renamings of rules in P such that each
renaming has A as a head and has distinct new local variables. We assume that
all rule heads are normalized, Le., H is of the form p{X\, ...,Xn) where X\, ...,Xn

are distinct free variables. This is not restrictive since programs can always be
normalized, and it facilitates the presentation. However, in the examples (and
in the implementation of our framework) we use non-normalized programs.

The operational semantics of a program is in terms of its "derivations" which
are sequences of reductions between "states". A state {G I 9) consists of a goal
G and a constraint store (or store for short) 9. A state (L ::G\ 9) where L is a
literal can be reduced as follows:

1. If L is a constraint and 9 A L is satisfiable, it is reduced to {G I 9 A L).
2. If i is an atom, it is reduced to {B :: G I 9) for some rule (L:-B) £ defnp(L).

where :: denotes concatenation of sequences and we assume for simplicity that
the underlying constraint solver is complete. We use S ~>p 5" to indícate that
in program P a reduction can be applied to state S to obtain state S". Also,
S ~»p S" indicates that there is a sequence of reduction steps from state S
to state S'. A derivation from state S for program P is a sequence of states
5*0 ~>p Si ~>p ... ~>p Sn where So is S and there is a reduction from each
Si to S¿+i. Given a non-empty derivation D, we denote by currstate(D) and
currstore(D) the last state in the derivation, and the store in such last state,
respectively. E.g., if D is the derivation 5o ~^>*P Sn with Sn = {G\ 9) then
currstate(D) = Sn and currstore(D) = 9. A gwerj/ is a pair (£,#) where L is
a literal and 9 a store for which the CLP system starts a computation from state
{L I 9). The set of all derivations from Q for P is denoted derivations(P, Q). We
will denote sets of queries by Q. We extend derivations to opérate on sets of
queries as follows: derivations{P, Q) = \jQeQderivations(P,Q).

The observational behavior of a program is given by its "answers" to queries.
A finite derivation from a query (L, 9) for program P is finished if the last state
in the derivation cannot be reduced. A finished derivation from a query (L, 9) is
successful if the last state is of the form (nil \9'), where nil denotes the empty
sequence. The constraint 3¿0' is an answer to S. We denote by answers(P, Q)
the set of answers to query Q. A finished derivation is failed if the last state is
not of the form {nil I 9). Note that derivations(P, Q) contains not only finished
derivations but also all intermediate derivations from a query. A query Q finitely
fails in P if derivations(P, Q) is finite and contains no successful derivation.

3 Assertions and Program Correctness

We now provide a formal definition of assertions and of correctness of a pro-
gram w.r.t. a set of assertions. Our definition of assertion is very open. In the

next section we will provide several more specific schemas for assertions which
correspond to the traditional pre- and posteonditions.

Definition 1 (Condition on Derivations). LetV be the set of all derivations.
A condition on derivations is any boolean function f :D —¥ {true, false} which
is total.

Definition 2 (Assertion). An assertion A for a program P is a pair
(appA,satA) of conditions on derivations.

Conditions on derivations are boolean functions which are decidable for any
derivation. As an intuition, given an assertion A, the role of appA is to indicate
whether A is applicable to a derivation D. If it is, then satA should take the
valué true on D for the assertion to hold.

Definition 3 (Evaluation of an Assertion on a Derivation). Given an
assertion A = (appA, SCLÍA) for program P, the evaluation of A on a derivation
D, denoted solve(A, D, P), is defined as:

solve{A,D,P) = appA(D) -> satA(D).

Assertions have often been used for performing debugging with respect to
partial correctness, Le., to ensure that the program does not produce unexpected
results for valid queries, Le., queries which are "expected". The set of valid
queries to the program is represented by Q. We now provide several simple
definitions which will be instrumental.

Definition 4 (Error Set). Given an assertion A, the error set of A in a pro-
gram P for a set of queries Q is

E(A,P, Q) = {D e derivations(P, Q)\^solve(A,D,P)}.

Definition 5 (False Assertion). An assertion A is false in a program P for
a set of queries Q iff E(A, P, Q) ^ 0.

Definition 6 (Checked Assertion). An assertion A is checked in a program
P for a set of queries Q iff E(A, P,Q) = 0.

The definitions of false and checked assertions are complementary. Thus, it is
clear that given a program P and a set of queries Q, any assertion A is either false
or checked. The goal of assertion checking is to determine whether each assertion
A is false or checked in P for Q. There are two kinds of approaches to doing this.
One is based on actually trying all possible execution paths (derivations) for all
possible queries. When it is not possible to try all derivations an alternative
is to explore a hopefully representative set of them. This approach is explored
in Section 5. The second approach is to use global analysis techniques and is
based on computing safe approximations of the program behavior statically.
This approach is studied in Section 6.

Definition 7 (Partial Correctness). A program P is partially correct w.r.t.
a set of assertions A and a set of queries Q iff VA £ A A is checked in P for Q.

If all the assertions are checked, then the program is partially correct. Thus,
our framework is of use both for validation and for detection of errors. Finally,
in addition to checked and false assertions, we will also consider true assertions.
True assertions differ from checked assertions in that true assertions hold in the
program for any set of queries Q.

Definition 8 (True Assertion). An assertion A is true in program P iff
VQ:E(A,P,Q) = ®.

Clearly, any assertion which is true in P is also checked for any Q, but not
vice-versa. Since true assertions hold for any possible query they can be regarded
as query-independent properties of the program. Thus, true assertions can be
used to express analysis information, as already done, for example, in [5]. This
information can then be reused when analyzing the program for different queries.

4 Assertion Schemas

An assertion schema is an expression which, given a syntactic object AS, pro-
duces an assertion A = (appA, SÜÍA) by syntactic manipulation only. In other
words, assertion schemas are syntactic sugar for writing certain kinds of asser-
tions which are used very often. Assertions described using the given assertion
schemas will be denoted as AS in order to distinguish them from the actual
assertion A. In what follows we use r and r(0) to represent a variable renaming
and the result of applying it to some syntactic object O, respectively.

Condition Literals: In the assertion schemas pre- and postconditions will be used.
For simplicity, in the formalization (but not in the implementation) pre- and
postconditions in assertions are assumed to be literals (rather than for example
conjunctions and/or disjunctions of literals).3 We cali such literals condition
literals and assume that they have a particular meaning associated.

Definition 9 (Meaning of a Literal). The meaning of a literal L, denoted
\L\ is a set of constraints. If L is a constraint, we define \L\ = {L}. If L is an
atora we assume that a definition of the form \L'\ = {8i,... ,8n} is given s.t.
L = r(L'). Then\L\=r({91,...,9n}).

Intuitively, the meaning of a literal contains the "weakest" constraints which
make the literal take the valué true. A constraint 9 is weaker than another
constraint 9' iff 9' \= 9. We denote by M a set of meanings of literals.

Example 1. Consider defming \list(A)\={A = [],A = [B\C] A list(C)} and
\sorted{A)\={A = [],A = [B],A = [B,C\D] AB < C AE = [C\D]Asorted(E)}.

Definition 10 (Holds Trivially). A literal L holds trivially for 9 in M, de-
noted 9\=M L iff 39' G \L\ s.t. 9\=9' and 3c : (c A 9' £ false) A{9' Ac\= 9).

3 However, it is straightforward to lift up this restriction, and in the implementation
of the framework conjunctions and disjunctions are indeed allowed.

Example 2. Assume that 6 = {A = f) and M = {\list(A)\, \sorted(B)\}. Since
\/0' G |Zisí(.A)| : O \£ 6', as we would expect, 0 ^M list(A). Assume now that
0 = (A = [_\Xs]). Though A is compatible with a list, it is not actually a
(nil terminated) list. Again in this case Vé*' £ |Z¿si(A)| : 0 \£ 0' and thus again
0 y=M list(A). The intuition behind this is that we cannot guarantee that A is
actually a list given 0 since a possible instance of A in 0 is A = [_|/], which
is clearly not a list. Finally, assume that 0 = (A = [B] A B = 1). In such case
30' = (A = [B\C] A C = []) s.t. 0 \= 01 and 3c = (B = 1) s.t. (c A 6' ^
false) /\ (0' Ac\= 0). Thus, in this last case 0 \=M list(A).

Calis Assertions: This assertion schema is used to describe preconditions for
predicates. Given a program P and an expression AS = calls(p, Precond), where
p is a normalized atom and Precond a condition literal which refers to the
variables of p, we obtain an assertion A for program P whose appAS and SOÍAS

are defined as:

/ n \ _ / true if currstate(D) = {q :: G I 0) A q = r(jp)
apPcaiis{P,Precond){U) - \ false otherwise
satcaUs(PtPrecond)(D) = curr.store(D) \=M r(Precond).

Clearly, there is no way an assertion calls(p, Precond) can be violated unless
the next literal q to be reduced is of the same predicate as p.

Example 3. The procedure part i t ion(A,B,C,D) expects a list in A to "parti-
tion" it into two other lists based on the "pivot" B. Thus, the following assertion
states that it should be called with A a list. It appears in the schema oriented
syntax that we use herein, as well as in the program oriented syntax of [27].

: - c a l i s parti t ion(A,B,C,D) : l i s t (A) .
'/, { c a l i s (parti t ion(A,B,C,D) , l i s t (A)) }

Success Assertions: Success assertions are used in order to express postcondi-
tions of predicates. These postconditions may be required to hold on success of
the predicate for any cali to the predicate, Le., the precondition is true, or only
for calis satisfying certain preconditions. Given a program P and an expression
AS = success(p, Pre, Post), where p is a normalized atom, and both Pre and
Post condition literals which refer to the variables of p, we obtain an assertion
A for P whose appAS and SÜÍAS are defined as follows:

{ true if currstate(D) = (G\0) A 3q30'3r :
{q :: G I 0') G D A q = r(p) A ff \=M r(Pre)
false otherwise

VS = {q::GlO')£D s.t. 3r q = r(p) :
0' \=M r(Pre) —> currstore(D) \=M r(Post).

Note that, for a given assertion A and derivation D, several states of the form
(q :: G I 0') s.t. q = r(p) may exist in D in which the precondition, Le., r(Pre)
holds. As a result, the postcondition r(Post) will have to be checked several times
with different renamings r which relate the variables of p, and thus (some of)
those in Post, with different states in D.

(D)

SClTsuccess^pi)Pre^p0Sf^\U) -

Example 4- The following assertion states that if a procedure qsort(A,B) suc-
ceeds when called with A a list then B should be sorted on success.

: - success qsort(A,B) : l i s t (A) => sorted(B).
'/, { success (qsort(A,B) , l i s t (A) , sorted(B)) }

5 Run-Time Checking of Assertions

The main idea behind run-time checking of assertions is, given a program P, a
set of queries Q, and a set of assertions A, to directly apply Definitions 5 and
6 in order to determine whether the assertions in A are checked or false, Le.,
obtaining (a subset of) the derivations by running the program and determining
whether they belong to the error set of the assertions. It is not to be expected
that Definition 6 can be used to determine that an assertion is checked, as this
would require checking the derivations from all valid queries, which is in general
an infinite set and thus checking would not terminate. In this situation, and as
mentioned before, an alternative is to perform run-time checking for a hopefully
representative set of queries. Though this does not allow fully validating the
program in general, it allows detecting many incorrectness problems.

An important observation is that in constraint logic programming it seems
natural to define the meaning of condition literals as CLP programs rather than
as (recursive) sets. We thus restrict the admissible conditions of assertions to
those literals Lp for which a definition of the corresponding predicate p exists s.t.
answers(P, (Lp,true)) = \LP\. We argüe that this is not too strong a restriction
given the high expressive power of CLP languages.4 Note that the approach also
implies that the program P must contain the definitions of all the predicates p
for literals Lp used in conditions of assertions. Thus, from now on we assume the
program P contains the definition of M as CLP predicates. We believe that this
choice of a language for writing conditions is in fact of practical interest because
it facilitates the job of programmers, which do not need to learn a specification
language in addition to the CLP language they are already familiar with.

Example 5. Consider defining l i s t (A) and sor ted (A) of Example 1 as:

l i s t (D) . sor ted([]) . sorted ([_]) .
l i s t ([_ | L]) : - l i s t (L) . sorted([X,Y|L]) : - X = < Y , sorted([Y|L]) .

Once we have decided to define condition literals in CLP,5 the next question
is how to determine the valué of 9 \=M L using the underlying CLP system.
At first sight, one possibility would be to compute answers(P,(L,9)). Clearly,
if such set is empty, 8 \£M L. However, 9 \=M L is not guaranteed to hold if
answers(P, (L,9)) is not empty. This is why we introduce the definition below.

Definition 11 (Succeeds Trivially). A literal L succeeds trivially for 9 in P,
denoted 9 =^P L, ifJ39' € answers(P, (L,6)) s.t. 9 \= 0'.
4 Note that the scheme of [27, 26] allows approximate definitions of such predicates

and sufficient conditions for proving and disproving them.
6 Note that, given a logic expression built using literals, conjunctions, and disjunctions,

it is always possible to write such expression as a predicate definition.

Intuitively, a literal L succeeds trivially if L succeeds for 9 in P without
adding new "relevant" constraints to 9. Note that, if L is a constraint, this means
that L was already entailed by 9. For program predicate atoms, it means that 9
was constrained enough to make L succeed without adding relevant constraints
to 9. This means that we are considering condition literals as instantiation checks
[27,21]. They are true iff the variables they check for are at least as constrained as
their predicate definition requires. Note that the notion of L succeeding trivially
for 9 in P corresponds to 9 \=M L.

Lemma 1 (Checking of Condition Literals). Let L be a condition literal
in an assertion for program P. If answers(P,(L,true)) = \L\ then for any 9,
9^MLiff9^PL.

Proof 9 ^ M L => 9' G \L\ = answers(P,(L,true)) A 9 |= 9' => 9' G
answers(P, (L, 9'))A9 |= 9' => 0' G answers(P, (L, 9))A9 |= 9'. Conversely, 9 =^P

L=>0' G answers(P, (L,9))/\9 \= 9' => 9' |= 9A9 \= 9' => 9 G answers(P, (L,8))
=> 39" G answers{P, (L, true)) = \L\ 3c : (c A 8" ^ false) A (8" Ac\=8).

The lemma above allows us to use in a sound way the results of 8 =^p L as the
valué of 9 \=M L. Unfortunately, from a practical point of view, computing 9 =^p
L is problematic, since it may require computing answers(P, (L, 9)), which may
not terminate. Thus, unless we introduce some restrictions, run-time checking
may introduce non-termination into terminating programs.

Existing CLP systems do compute derivations(P, Q) using some fixed strat-
egy, which induces an ordering on the set of derivations. A strategy is determined
by a search rule which indicates the order in which the program rules that can
be used to reduce an atom should be tried, coupled with a strategy to decide
which of the unfinished derivations should be further reduced. The typical search
strategy is LIFO, which implies a depth-first search. We denote by SR a search
rule together with a search strategy, and by derivationssR(P, Q) the sequence
of derivations from Q in P under strategy SR.

Definition 12 (derivationsgR). Let P be a program and Q a query. We denote
by derivationsgR(P,Q) the prefix of derivations SR{P,Q) s.t.

1. If answers(P,Q) = 0 then derivationsSR(P,Q) = derivationsSR(P,Q).
2. Otherwise, let derivationsSR(P,Q) be the sequence Di :: ... :: Dn :: DS

s.t. Vi G { l , . . . , n — 1} : D¿ is not successful and Dn is successful. Then,
derivationSgR(P, Q) = Di :: ... :: Dn.

Definition 13 (Test). A literal L is a test iff y9 :

1. derivationsSR(P,(L, 9)) is finite, and if 9i is its answer then

2. W G answers(P, (L,0)) : (61 A 8' |= false V 9' \= 61).

Example 6. Literals sorted(B) and l i s t (B) for the predicates defined in Ex-
ample 5 are tests, since for every possible initial state the execution of, e.g.,
l i s t (B) , this literal either (1) fmitely fails if B is constrained to be incompat-
ible with a list, (2) succeeds once without adding "relevant" constraints if B is

constrained to a list, or (3) has a leftmost successful derivation which constrains
B to a list in such a way that this constraint is incompatible with the answers of
the rest of successful derivations. E.g., for l i s t (X) there is an infinite number
of answers X= [] , X= [_], X= [_ I _] , . . . , but they are pairwise incompatible (they
have no common instance).

Theorem 1. If L is a test then \/9 : 9 =^p L iff3 D G derivations^R(P, (L,6))
s.t. D is successful with answer 9\ and 9 |= 9\.

Proof. Since 9\ £ answers(P, (L,9)), if 9 |= 9\ then 9 =>p L. The converse also
holds. We prove it by contradiction. If 9 =^p L then 3 9' £ answers(P, (L,6)) :
9 \= 9'. Assume 9' is not 9\ and 9 \£ 9\. Then L cannot be a test, which is a
contradiction. If L was a test then either (1) 9' A 9\ \= false or (2) 9' \= 9\.
Since 9 |= 9' then (1) 9A9i \= 9' f\9\ \= false, which is impossible, since 9\ is an
answer for initial store 9 and therefore compatible with it, or (2) 9 |= 6i, which
is a contradiction.

Theorem 1 guarantees that checking of pre- and postconditions, which are
required to be tests, is decidable, since it suffices to check only for the first
successful derivation in a (sub)set of derivations (search space) which is finite.
Le., either there is a first answer computed in a finite number of reductions, or
there is no answer and the checking finitely fails. In our framework we only admit
tests as conditions in assertions which are going to be checked at run-time. This
guarantees that run-time checking will not introduce non-termination.

5.1 An Operational Semantics for CLP Programs with Assertions

We now provide an operational semantics which checks whether assertions hold
or not while computing the derivations from a query. A check literal is a syntactic
object check(L, A) where L is either an atom or a constraint and A (an identifier
for) the assertion which generated the check literal. In this semantics, a literal
is now an atom, a constraint, or a check literal. A CLP program with assertions
is a pair (P, A), where P is a program, as defined in Section 2, and A is a set of
assertions.6

In the case of programs with assertions finished derivations can be, in addition
to successful and failed, also "erroneous". We introduce a class of distinguished
states of the form (t I ̂ 4) which cannot be further reduced. A finished deriva-
tion D is erroneous if currstate(D)= (e I A), where A is (an identifier for) an
assertion. Erroneous derivations indicate that the assertion A has been violated.

Let A[L] denote a renaming of the set of assertions A where assertions for
the predicate of atom L have been renamed to match the variables of L. A state
(L :: G I 9)7 where L is a literal can be reduced as follows:

1. If L is a constraint and 9 A L is satisfiable, it is reduced to {G I 9 A L).
2. If L is an atom,

6 Program point assertions can be introduced by just allowing check literals to appear
in the body of rules [27]. However, for simplicity we do not discuss program point
assertions in this paper.

— if 3 A = calls(L, Cond) G A[L] s.t. 9 ^p Cond, then it is reduced to
(e\A).

- otherwise, let PostC = {check(S,A)\3A = success(L,C,S) € A[L]
A 9 =>p C}, if 3(L:-B) € defnp(L) then the state is reduced to
{B :: PostC :: G I 0).

3. If L is a check literal check(Prop, A),
- if 9 =^p Prop then it is reduced to {G I 9)
— otherwise it is reduced to (e I .¡4).

Note that we define PostC above as a set though it should actually be a
sequence of check literals. We do so since the order in which the check literals
are checked is irrelevant. We will use -^(p,^) to refer to reductions performed
using the above operational semantics of programs with assertions. Also, the set
of derivations from a set of queries Q in a program P using the semantics with
assertions is denoted derivations^(P, Q).

Theorem 2 (Run-time Checking). Given a program P, a set of assertions
A, and a set of queries Q,

A is false ifJ3 D G derivations A(P, Q) : curr state(D) = {e,A).

Proof. A is false o E(A, P, Q) ¿ 0 & 3D e derivations(P, Q) ^solve{A, D, P).
Let D = S ~>p Sn and let satA(D) be false. Let Sn = (G\9). It can be
proved that ->solve(A,D,P) o 3D' G derivationsA(P,Q) s.t. D' = S ^ P A)

S'n-! ^(P,A) {check(Prop, A)::G\ 9) ^(P)A) (e, A).

Theorem 2 guarantees that we can use the proposed operational semantics
for programs with assertions in order to detect violation of assertions. Moreover,
Theorem 3 below guarantees that the behavior of a partially correct program is
the same under the operational semantics of Section 2 and under the semantics
with assertions. If P is partially correct, it is straightforward to define a one-to-
one relation between derivations S ~>p Sn and derivations S ~~>\Pj\ S'n, so that
the two kinds of derivations only differ in the reductions of the distinguished
literals of the form check(L,Á). We denote the corresponding isomorphism be-
tween derivations of the two kinds by « .

Theorem 3. Let P be a program, A a set of assertions, and Q a set of queries.
If P is partially correct w.r.t. A then derivations(P, Q) « derivationsA(P, 0)-

Therefore, the semantics with assertions can also be used to obtain answers
to the original query. Even though this semantics can be used to perform run-
time checking, an important disadvantage is that existing CLP systems do not
implement such semantics. Modification of a CLP system with that aim is not
a trivial task due to the complexity of typical implementations. Thus, it seems
desirable to be able to perform run-time checking on top of existing systems
without having to modify them. Writing a meta-interpreter which implements
this semantics on top of a CLP system is not a difncult task. However, the
drawback of this approach is its inemeieney due to the overhead introduced by
the meta-interpretation level.7 A second approach, which is the one used in our
implementation, is based on program transformation.

An alternative approach is to reduce such overhead by partially evaluating the meta-
interpreter w.r.t. the program with assertions prior to performing run-time checking.

5.2 A P r o g r a m Transformation for Run-T ime Checking

We now present a program transformation technique which given a program
P , obtains another program P' which checks the assertions while running on a
standard CLP system. The meta-interpretation level mentioned above is elimi-
nated since the process of assertion checking is compiled into P'. The program
transformation from P into P' given a set of assertions A is as follows. Let
new(P,p) denote a function which returns an atom of a new predicate symbol
different from all predicates defined in P with same arity and arguments as p.
Let renaming(A,p,p') denote a function which returns a set of assertions identi-
cal to A except for the assertions referred to p which are now referred to p', and
let renaming(P,p,p') denote a function which returns a set of rules identical to
P except for the rules of predicate p which are now referred to p'. We obtain
P' = rtchecks(A, P), such that:

(, , , , m í rtchecks(A', P') iíA = {A} U A"
rtchecks(A,P) = i P if „4 = 0

where

A' = renaming(A" ,p,p')
P' = renaming(P,p,p') U {CL}
p' = new(P,p)
„ r _ J p:-check(C,A), p'. if A = calls(p,C)

~ \p:-(ts(C)->p',check(S, A) ;p'). if A = success(p,C,S)

As usual, the construct (cond -> then ; else) is the Prolog if-then-else.
The program above contains two undefined predicates: check(C,A) and ts(C).
check(C,A) must check whether C holds or not and raise an error if it does
not. ts(C) must return true iff for the current constraint store 0, 6 =^p C.
As an example, for the particular case of Prolog, check(C,A) can be defined
as "check(C,A) : - (ts(C) -> t r u e ; error(A)) . " where error(A) is a
predicate which informs about the false assertion A; ts(C) can be defined as
"ts(C) : - copy_term(C,Cl), c a l l (C l) , var ian t (C,C1) . " .

Note that the above transformation will introduce nested levéis of condition-
als when there are several assertions for the same predicate. This is prevented
in the implementation using an equivalent transformation, which avoids nesting
conditionals. However, the transformation presented is easier to prove correct.
The following theorem guarantees that the transformed program detects that an
assertion is false iff it is actually false.

Theorem 4 (Program Transformation) . Let P be a program, A a set of
assertions, and let P' = rtchecks(A,P). Given a set of queries Q, VA € A :
E(A,P, Q) T¿ 0 iff 3D e derivations(P', Q) s.t. 35 G D with S of the form
{error(A) ::G\6).

Proof. (Sketch) There is a direct correspondence between derivations(P', Q)
and derivations^(P, Q). The result then follows directly from Theorem 2.

6 Compile-Time Checking of Assertions

In this section we present some techniques for detecting errors at compile-time
rather than at run-time, and also proving assertions to hold, Le., (partially) vali-
dating specifications. With this aim, we assume the existence of a global analyzer,
typically based on abstract interpretation [10] which is capable of computing at
compile-time certain characteristics of the run-time behavior of the program. In
particular, we consider the case in which the analysis provides safe approxima-
tions of the calling and success patterns for predicates.

Note that it is not to be expected that all assertions are checkable at compile-
time, either because the properties in the assertions are not decidable or because
the available analyzers are not accurate enough. Those which cannot be checked
at compile-time can, in general, (optionally) be checked at run-time.

Abstract Interpretation. Abstract interpretation [10] is a technique for static
program analysis in which execution of the program is simulated on an abstract
domain (Da) which is simpler than the actual, concrete domain (D). An abstract
valué is a finite representation of a, possibly infinite, set of actual valúes in the
concrete domain (D). The set of all possible abstract semantic valúes represents
an abstract domain Da which is usually a complete lattice or cpo which is as-
cending chain finite. However, for this study, abstract interpretation is restricted
to complete lattices over sets both for the concrete {2D, C) and abstract {Da, IZ)
domains.

Abstract valúes and sets of concrete valúes are related via a pair of monotonic
mappings {«,7): abstraction a : 2D —1 Da, and concretization 7 : Da —• 2D,
such that Va; G 2D : 7(a(a;)) D x and Vy G Da : a(7(y)) = y. In general IZ
is induced by C and a. Similarly, the operations of least upper bound (U) and
greatest lower bound (l~l) mimic those of 2D in a precise sense:

VA, A' G Da : A Q A' <s> 7(A) C 7(A')
VAi, A2, A' G Da : Ai U A2 = A' «• 7(Ai) U 7(A2) = 7(A')
VAi, A2, A' G Da : \1n\2 = \'& 7(Ai) n 7(A2) = 7(A')

Goal dependent abstract interpretation takes as input a program P, an ab-
stract domain Da, and a description Qa of the possible initial queries to the
program given as a set of abstract queries. An abstract query is a pair (L,X),
where L is an atom (for one of the exported predicates) and A G Da an abstract
constraint which describes the initial stores for L. A set of abstract queries
Qa represents a set of queries, denoted 7 (Q a) , which is defined as 7 (Q a) =
{(L,#) I (¿ , A) G Qa A 6 G 7(A)}. Such an abstract interpretation computes a
set of triples Analysis(P, Qa,Da) = {{Lp,\

c, As) | p is a predicate of P } . For
each predicate p i n a program P we denote Lp a representative of the class
of all normalized atoms for p, and we assume that the abstract interpretation
based analysis computes exactly one tupie (Lp, AC,AS) for each predicate p.8 If
p is detected to be dead code then Ac = As = _L. As usual in abstract inter-
pretation, _L denotes the abstract constraint such that 7(-L) = 0, whereas T
8 This assumption corresponds to a mono-variant analysis. Extensión to a multi-

variant analysis is straightforward, but we prefer to keep the presentation simple.

denotes the most general abstract constraint, i.e., 7(T) = D. We now provide a
couple of definitions which will be used below for stating correctness of abstract
interpretation-based compile-time checking.

Definition 14 (Calling Context). Consider a program P, a predícate p and
a set of queries Q. The calling context ofp for P and Q is C(p, P,Q) = { 3LP9\

3D g derivations(P, Q) : currstate(D) = (Lp :: G\0) }.

Definition 15 (Success Context). Consider a program P, a predícate p, a
constraint store 9, and a set of queries Q. The success context of p and 9 for P
and Q is S(p,6,P, Q) = { 3Lp9'\ 3D e derivations{P, Q) 3G : {Lp :: G I 9) G D
and currstate{D) = (G I 0') }.

We can restrict the constraints in the calling and success contexts to the
variables in Lp since this does not affect the evaluation of calis and suc-
cess assertions. Correctness of abstract interpretation guarantees that for any
<Lp,A

c,As> in Analysis(P,Qa,Da), 7(A
C) D C(p,P,7(Qa)) and 7(AS) D

Uí/e7(A
c) S(p>@>P>'y(Qa))- I n order to ensure correctness of compile-time check-

ing for a set of queries Q, the analyzer must be provided with a suitable Qa

such that 7(QQ) 5 Q- I n o u r implementation of the framework, Qa is expressed
by means of entry assertions [27].

Exploiting Information from Abstract Interpretation. Before presenting the ac-
tual sufficient conditions that we propose for performing compile-time checking
of assertions, we present some definitions and results which will then be instru-
mental.

Definition 16 (Trivial Success Set). Given a literal L and a program P we
define the trivial success set of L in P as TS(L,P) = {3¿0 \9 =^p L}.

This definition is an adaptation of that presented in [28], where analysis
information is used to optimize automatically parallelized programs.

Definition 17 (Abstract Trivial Success Subset). An abstract constraint
^TSÍL p) ÍS an abstract trivial success subset of L in P iff IÍ^TSÍL p)) —
TS(L,P).

Lemma 2. Let A be an abstract constraint and let ^XS(L P) ^e an abstract trivial
success subset of L in P.

1. IfXQ \TS(L,P)
 then V e G T(A) •' ° ^P

 L-
2. / / A n A " s (i p) T¿ _L then 30 € >y(\) : 9 ^P L.

Proof. Let TS denote TS{L,P).

1. A C AyS => 7(A) C 7(A^5) C TS => V 9 e 7(A) :0GTS.

2. A n A y ^ l ^ - 7(A) n 7(A^5) # 0 => 3 0 e 7(A) : 9 £ 7(A^5) C TS.

Definition 18 (Abstract Trivial Success Superset). An abstract constraint
^TSÍL p) ÍS an abstract trivial success superset of L in P iff IÍ^J-SÍL p)^ —
TS(L,P).

Lemma 3. Let A be an abstract constraint and let ^XS(L P) ^e an abstract trivial
success superset of L in P.

1. If*TS(L,p) E A then V 9 : if9^PL then 9 G 7(A).
2. IfXn A + S (i p) = _L then V 0 G 7(A) : 9 ^P L.

Proof. Let TS denote TS(L,P).

1. A+5 C A => TS C 7(A+S) C 7(A) ^> V é> G T S : 0 G 7(A).
2. A n A+s = !_ =>• 7(A) n 7(A+5) = 0 => 7(A) n TS = 0.

In order to apply Lemma 2 and Lemma 3 effectively, accurate X^,S(L p. and
^TSÍL p) a r e re<lui red- It is possible to find a correct A j s (L p^, which may also
hopefully be accurate, by simply analyzing the program with the set of abstract
queries Qa = {(L, T)}. Since our analysis is goal-dependent, the initial abstract
constraint T is used in order to guarantee that the information which will be
obtained is valid for any cali to L. The result of analysis will contain a tupie of
the form {L, T, As) and thus we can take X^g,L p, = As, as correctness of the
analysis guarantees that As is a superset approximation of TS(L,P).

Unfortunately, obtaining a (non-trivial) correct A^S(L p, in an automatic way
is not so easy, assuming that analysis provides superset approximations. In [28],
correct A^ 5 (i ps for built-in predicates were computed by hand and provided to
the system as a table of "builtin abstract behaviors". This is possible because
the semantics of built-ins is known in advance and does not depend on P (also,
computing by hand is well justified in this case because, in general, code for
built-ins is not available since for efñciency they are often written in a lower-level
language -e.g., C- and analyzing their definition is thus not straightforward).

In the case of user defined predicates, precomputing X^S(L P) is not possible
since their semantics is not known in advance. However, the user can provide
trust assertions [27] which provide this information. Also, since in this case the
code of the predícate is present, analysis of the definition of the predícate p
of L can also be applied and will be effective if analysis is precise for L, Le.,
7(AS) = Ue7(A=) S(p,0,P, Q) rather than 7(AS) D \Jee^) S(p,9,P, Q)- ^ this
situation we can use As as (the best possible) A^S,L p,. Requiring that the analy-
sis be precise for any arbitrary literal L is not realistic. However, if the success set
of L corresponds exactly to some abstract constraint A¿, i.e., TS(L, P) = 7(A¿),
then analysis can often be precise enough to compute {L, Ac, As) with As = A¿.
This implies that not all the tests that the user could write can be proved to
hold at compile-time, but only those of them which coincide with some abstract
constraint. This means that if we only want to perform compile-time validation,
then it is best to use tests which are perfectly captured by the abstract domain.
An interesting situation in which this occurs is the use of regular programs as
type definitions (as with the property (type) l i s t defined in Example 5). There
is a direct mapping from type definitions (i.e., the abstract valúes in the domain)
to regular programs and vice-versa which allows accurately relating any abstract
valué to any program defining a type (i.e., to any regular program).

Checked Assertions. We now provide sufficient conditions for proving at compile-
time that an assertion is never violated. Detecting checked assertions at compile-
time is quite useful. First, if all assertions are found to be checked, then the
program has been validated. Second, even if only some assertions are found to
be checked, performing run-time checking for those assertions can be avoided,
thus improving efñciency of the program with run-time checks. Finally, knowing
that some assertions have been checked also allows the user to focus debugging
on the remaining assertions.

Theorem 5 (Checked Calis Assertion). Let P be a program, A =
calls(p, Precond) an assertion, Q a set of queries, and let Qa be s.t. "f{Qa) 5 Q-
Assume that (p, AC,AS) € Analysis(P,Qa,Da). A is checked in P for Q if
\c i— \ —
A i_ ^TS(Precond,P)-

Proof of theorem 5 is trivial since Ac is a safe approximation of the calling
context of the predicate of p. Thus, it provides a sufficient condition for a calis
assertion to be checked.

Theorem 6 (Checked Success Assertion). Let P be a program, A =
success(p, Pre, Post) an assertion, Q a set of queries, and let Qa be s.t.
l(Qu) 5 Q- Assume that (p, AC,AS) £ Analysis(P,Qa,Da). A is checked in
P for Q if (1) y n A + S (p r e p) =±or (2) A* Q X^s{Post¡P).

Theorem 6 states that there are two situations in which a success assertion
is checked. Case 1 indicates that the precondition is never satisfied, and thus
the assertion holds and the postcondition does not need to be tested. Case 2
indicates that the postcondition holds for all stores in the success contexts,
which is a safe approximation of the current stores of derivations in which the
assertion is applicable.

False Assertions. Our aim now is to establish sufficient conditions which ensure
statically that there is an erroneous derivation D e derivations(P, Q), i.e., with-
out having to actually compute derivations(P, Q). Unfortunately, this is a bit
trickier than it may seem at first sight if analysis over-approximates computation
states, as is the usual case.

Theorem 7 (False Calis Assertion). Assuming the premises of Theorem 5,
then A is false in P for Q if C(p, P,Q) ^ 0 and Ac n ^TS(Precond,p) = ±-

In order to prove that a calis assertion is false it is not enough to prove that
^TSíPrecond P) ^ ^° a s t^ ie c o n texts which viólate the assertion may not appear
in the real execution but rather may have been introduced due to the loss of
accuracy of analysis w.r.t. the actual computation. Furthermore, even if Ac and
^TSíPrecond P) a r e m c o m P a t i b l e , it may be the case that there are no calis for
predicate P in derivations(P, Q) (and analysis is not capable of detecting so).
This is why the condition C(j>, P,Q) ^ 0 is also required.

Theorem 8 (False Success Assertion). Assuming the premises of Theo-
rem 6, then A is false in P for Q if ^cnA~„(-Pre p, ^ _L and -^ snA+ s íp , p, = _L

and 3 0 e 7(AC n >q.s(PreiP)) •• S(p, 0, P, Q) ¿ 0.

Now again, As is an over-approximation, and in particular it can approximate
the empty set. This is the rationale behind the final extra condition.

If an assertion A is false then the program is not correct w.r.t. A. Detecting
the mininal part of the program responsible for the incorrectness, i.e., diagnosis
of a static symptom, is an interesting problem. However, such static diagnosis is
out of the scope of this paper. This is the subject of on-going research.

True Assertions. As with checked assertions, if an assertion is true then it is
guaranteed that it will not raise any error. From the point of view of assertion
checking, the only difference between them is that checked assertions may raise
errors if the program were used with a different set of queries.

Note that an assertion calls(p, Precond) can never be found to be true, as
the calling context of p depends on the query. If we pose no restriction on the
queries we can always find a calling state which violates the assertion, unless
Precond is a tautology.

Theorem 9 (True Success Assertion). Assuming the premises of Theo-
rem 6, then A is true in P if ^rSiPre P\ Q Ac and As IZ X^siPost P) •

The first condition guarantees that As describes any store which is a descen-
dent of a calling state of p which satisfied the precondition. The second condition
ensures that any store described by As satisfies the postcondition. Thus, any store
in the success context which originated from a calling state which satisfied the
precondition satisfies the postcondition.

Equivalent Assertions. It may be the case that some assertions are not detected
as checked or false at compile-time. One possibility here is to default to run-
time checking of the remaining assertions. However, it is possible that part of
the assertion(s) can be replaced at compile-time by a simpler one, i.e., one which
can be checked more efnciently.

Definition 19 (Equivalent Assertions). Two assertions A, A1 are equivalent
in program P for a set of queries Q iff E(A, P, Q) = E(A, P, Q).

If A and A' are equivalent but A' is simpler then obviously A' should be
used instead for run-time checking. Generating equivalent assertions at compile-
time by simplification of assertions can be done using techniques such as abstract
specialization (see, e.g., [28]). For simplicity, we do not discuss here how to obtain
simpler versions of assertions. However, the implementation of the framework
discussed below simplifies whenever possible those assertions which cannot be
guaranteed to be false ñor checked at compile-time.

7 Implementation

We have implemented the schema of Figure 1 as a generic framework. This gener-
icity means that different instances of the tools involved in the schema for dif-
ferent CLP dialects can be generated in a straightforward way. To date, we have
developed two different debugging environments as instances of the proposed

framework: CiaoPP [19], the Ciao system9 preprocessor and CHIPRE [26], an
assertion-based, type inferencing and checking tool (in collaboration with Pawel
Pietrzak from the U. of Linkóping and Cosytec). The type analysis used is an
adaptation to CLP(JT2?) of the regular approximation approach of [16]. CiaoPP
and CHIPRE share a common source (sub-)language (ISO-Prolog + finite do-
main constraints) and the Ciao assertion language [27],10 so that source and
output programs (annotated with assertions and/or run-time tests) within this
(sub-)language can be easily exchanged. CHIPRE has been interfaced by Cosytec
with the CHIP system (adding a graphical user interface) and is currently un-
der industrial evaluation. CiaoPP is a more general tool which can perform a
number of program development tasks including: (a) Inference of properties of
program predicates and literals, including types (using [16]), modes and other
variable instantiation properties (using the CLP versión of the PLAI abstract in-
terpreter [17]), non-failure, determinacy, bounds on computational cost, bounds
on sizes of terms, etc. (b) Static debugging including checking how programs
cali system libraries and also the assertions present in other modules used by
the program. (c) Several kinds of source to source program transformations such
as specialization, parallelization, inclusión of run-time tests, etc. Information
generated by analysis, assertions in system libraries, and any assertions option-
ally included in user programs are all written in the assertion language.11

The actual evaluation of the practical benefits of these tools is beyond the
scope of this paper, but we believe that the significant industrial interest shown
is encouraging. Also, it has certainly been observed during use by the system
developers and a few early users that these tools can indeed detect some bugs
much earlier in the program development process than with any previously avail-
able tools. Interestingly, this has been observed even when no specifications are
available from the user: in these systems the system developers have included a
rich set of assertions inside library modules (such as those defining the system
built-ins and standard libraries) for the predicates defined in these modules. As
a result, symptoms in user programs are often flagged during compilation sim-
ply because the analyzer/comparator pair detects that assertions for the system
library predicates are violated by program predicates.

References

1. K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes
through types to assertions. Formal, Aspects of Computing, 6(6):743-765, 1994.

9 Ciao [4] is a next-generation, GNU-licensed Prolog system (available from
ht tp : / /uww.c l ip .d ia . f i .upm.es /Sof tware) . The language subsumes standard
ISO-Prolog and is specifically designed to be very extensible and to support mod-
ular program analysis, debugging, and optimization. Ciao is based on the &-
Prolog/SICStus concurrent Prolog engine.

10 As mentioned before, for clarity of the presentation in this work we have only ad-
dressed a subset of the assertion language.

11 The full assertion language is also used by an automatic documentation generator for
LP/CLP programs, LPdoc [18], which derives information from program assertions
and machine-readable comments, and which generates manuals in many formats
including postscript, pdf, info, HTML, etc.

http://uww.clip.dia.fi.upm.es/Software

2. K. R. Apt and D. Pedreschi. Reasoning about termination of puré PROLOG
programs. Information and Computation, 1(106):109-157, 1993.

3. J. Boye, W. Drabent, and J. Maluszynski. Declarative diagnosis of constraint pro-
grams: an assertion-based approach. In Proc. of the 3rd. Int'l Workshop on Auto-
mated Debugging-AADEBUG'97, pages 123-141, Linkóping, Sweden, May 1997.
U. of Linkóping Press.

4. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla.
The Ciao Prolog System. Reference Manual. The Ciao System Documenta-
tion Series-TR CLIP3/97.1, School of Computer Science, Technical University of
Madrid (UPM), August 1997.

5. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

6. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. ofthe 3rd. Int'l Workshop on Au-
tomated Debugging-AADEBUG'97, pages 155-170, Linkóping, Sweden, May 1997.
U. of Linkóping Press.

7. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM TYansactions on Programming
Languages and Systems, 16(1):35-101, 1994.

8. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic
programs by abstract diagnosis. In M. Dams, editor, Analysis and Verification
of Múltiple-Agent Languages, 5th LOMAPS Workshop, number 1192 in Lecture
Notes in Computer Science, pages 22-50. Springer-Verlag, 1996.

9. M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic programs. In
L. Fribourg and F. Turini, editors, Proc. Logic Program Synthesis and Transforma-
tion and Metaprogramming in Logic 1994, volume 883 of Lecture Notes in Computer
Science, pages 440-450, Berlin, 1994. Springer-Verlag.

10. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of Programming Languages, pages 238-252,
1977.

11. P. Deransart. Proof methods of declarative properties of definite programs. Theo-
retical Computer Science, 118:99-166, 1993.

12. P. Deransart, M. Hermenegildo, and J. Maluszynski. Debugging of Constraint
Programs: The DiSCiPl Approach. In P. Deransart, M. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint Program-
ming. Springer-Verlag, 2000. To appear.

13. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The Use of Assertions in
Algorithmic Debugging. In Proceedings of the Intl. Conf. on Fifth Generation
Computer Systems, pages 573-581, 1988.

14. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with
assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming in Logic
Programming, pages 501-522. MIT Press, 1989.

15. G. Ferrand. Error diagnosis in logic programming. J. Logic Programming, 4:177-
198, 1987.

16. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proc. of the llth International
Conference on Logic Programming, pages 599-613. MIT Press, 1994.

17. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Transactions on Programming Languages and Systems, 18(5):564-615, 1996.

18. M. Hermenegildo. A Documentation Generator for Logic Programming Systems.
In ICLP'99 Workshop on Logic Programming Environments, pages 80-97. N.M.
State University, December 1999.

19. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program Analy-
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, pages 52-66, Cambridge, MA,
November 1999. MIT Press.

20. M. Hermenegildo and The CLIP Group. Programming with Global Analysis. In
Proceedings of ILPS'97, pages 49-52, Cambridge, MA, October 1997. MIT Press,
(abstract of invited talk).

21. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 161-192. Springer-
Verlag, July 1999.

22. P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge
MA, 1994.

23. J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19/20:503-581, 1994.

24. D. Le Métayer. Proving properties of programs defined over recursive data struc-
tures. In ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 88-99, 1995.

25. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

26. G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming. Springer-
Verlag, 2000. To appear.

27. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for De-
bugging of Constraint Logic Programs. In P. Deransart, M. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint Program-
ming. Springer-Verlag, 2000. To appear.

28. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Applica-
tion to Program Parallelization. J. of Logic Programming. Special Issue on Synthe-
sis, Transformation and Analysis of Logic Programs, 41(2&3):279-316, November
1999.

29. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. JLP, 29(1-3), October
1996.

30. E. Vetillard. Utilisation de Declarations en Programmation Logique avec Con-
straintes. PhD thesis, U. of Aix-Marseilles II, 1994.

