
Combined Task and Motion Planning

Through an Extensible Planner-Independent Interface Layer

Siddharth Srivastava Eugene Fang Lorenzo Riano Rohan Chitnis Stuart Russell Pieter Abbeel

Abstract— The need for combined task and motion planning
in robotics is well understood. Solutions to this problem have
typically relied on special purpose, integrated implementations
of task planning and motion planning algorithms. We propose a
new approach that uses off-the-shelf task planners and motion
planners and makes no assumptions about their implementa-
tion. Doing so enables our approach to directly build on, and
benefit from, the vast literature and latest advances in task
planning and motion planning. It uses a novel representational
abstraction and requires only that failures in computing a mo-
tion plan for a high-level action be identifiable and expressible
in the form of logical predicates at the task level. We evaluate
the approach and illustrate its robustness through a number of
experiments using a state-of-the-art robotics simulator and a
PR2 robot. These experiments show the system accomplishing
a diverse set of challenging tasks such as taking advantage of
a tray when laying out a table for dinner and picking objects
from cluttered environments where other objects need to be
re-arranged before the target object can be reached.

I. INTRODUCTION

In order to achieve high-level goals like laying out a table,

robots need to be able to carry out high-level task planning in

conjunction with low-level motion planning. Task planning

is needed to determine long-term strategies such as whether

or not to use a tray to transport multiple objects, and motion

planning is required for computing the actual movements that

the robot should carry out. However, combining task planners

and motion planners is a hard problem because task planning

descriptions typically ignore the geometric preconditions of

physical actions. In reality, even simple high-level actions

such as picking up an object have continuous arguments,

geometric preconditions and effects. As a result, the approach

of generating a sequence of tasks and then doing motion

planning for each task fails.

The main contribution of this paper is an approach that

provides an interface between task and motion planning (with

fairly minimal assumptions on each planning layer), such

that the task planner can effectively operate in an abstracted

state space that ignores geometry. Geometric constraints

discovered through reasoning in the continuous state space

are translated and communicated to the task planner through

our interface layer (Fig. 1).

We introduce the main ideas through a tiny example in R
2

(Fig. 2). In this problem, a gripper can pick up a block if it

is adjacent to the block and aligned with one of its sides; it

can place a block that it is currently holding by moving to a

target location and releasing it. The goal is to pick up block

b1. A discrete planning specification for this problem would

Computer Science Division, University of California, Berkeley CA 94720

Task Planner

Motion Planner

Updated initial state

Motion planning goals
 Trajectories or errors

Plan with pose references

Pose instantiation

Error generation,

state update
Interface

PDDL Domain

Environment Model

Fig. 1: Top: Outline of our approach. Bottom: Example test scenarios—
(L) A cluttered table where the dark object has to be picked (there is no
designated free space); (M) A dinner layout task where a tray is available
but not necessary for transportation; (R) The PR2 starting a dinner layout.

describe actions pick and place with the following precon-

ditions and effects: if the gripper is empty and pick(b1) is

applied, the gripper holds b1; if the gripper is holding b1 and

place(b1, S) is applied, the gripper no longer holds b1 and b1
is placed in the region S. However, this description is clearly

inadequate because b2 obstructs all trajectories to b1 in the

state depicted in Fig. 2, and pick(b1) cannot be executed.

S&

b1&

b2&

Fig. 2: Running ex-
ample in R2: the grip-
per needs to pick b1
after moving to the dot-
ted pose.

An accurate representation for this do-

main needs to include the geometric

locations of objects and the gripper.

The pick action’s true arguments in-

clude targetPose and traj, denoting the

target pose where picking should be

done, and the trajectory along which

the gripper should move to get to tar-

getPose. The preconditions for picking

b1 require that targetPose be valid a

gripping pose for b1 and there be no

obstruction in traj.

Task planning domain descriptions

require actions with discrete arguments and thus cannot

directly handle this new representation. Discretizing the

continuous variables for the high-level task planner is im-

practical, as even crude discretizations of the domains of

the continuous variables quickly lead to computationally

impractical problems.1

Our main contribution is an approach for communicating

1In a 2D world with only 10 sampled points along each axis, 5 objects,
and considering only Manhattan paths that don’t loop over themselves, we
would need to precompute the truth values of close to 50, 000 “obstructs”
predicates for the initial state. A similar discretization for one arm and the
base for a PR2 robot would require ∼ 1011 facts. Even if this is done, the
resulting problem instances will be too large to solve efficiently.

relevant geometric information to the task planner in terms

of logical predicates, without discretization. In order to

accomplish this we use symbolic references to continuous

values [1], such as “grasping pose for b1” and “trajectory for

reaching grasping pose for b1”. We use an off-the-shelf task

planner to produce plans of the form: “execute pick with a

target pose which is a grasping pose for b1 and has a feasible

motion plan.” Each of the symbols used in such plans needs

to be instantiated, or refined into numbers. The interface layer

does this by iterating through possible values for “grasping

pose for b1” and invoking the motion planner to compute

a plan corresponding to each of them, thereby instantiating

the trajectory reference (this constitutes the plan refinement

process). Often however, a feasible instantiation may not

exist. For instance, since b2 is obstructing the gripper’s path,

a task plan of picking b1 followed by placing it in the region

S has no feasible refinement. Such failures can occur only if

the geometric preconditions for a high-level action such as

pick were false when it was attempted. These preconditions

often concern the absence of obstructions, but may also refer

to torque limits, stability properties of assemblies, etc. The

key challenge is that the task planner cannot compute the

truth values of such properties and the effects of actions on

them. This is a natural consequence of using a representation

suitable for task planners, and our approach is designed to

handle it: it initializes the truth values of such properties to

a set of default values and updates them if needed, during

the plan refinement and generation process.

When a feasible instantiation is not found, the interface

layer iterates through possible instantiations for the pose ref-

erences. For each instantiation, it determines the conditions

preventing a motion plan. Depending on the capabilities of

the motion planner, a motion plan could also be selected so

as to minimize these errors. For instance, the interface layer

identifies b2 as an obstruction error by removing all movable

objects, invoking the motion planner, and identifying the col-

lisions in the obtained trajectory. It translates this information

into symbolic form, e.g. “b2 obstructs trajectory for reaching

grasping pose for b1” and updates the task level state with

it. A task planner is used to find a new plan for the updated

state, e.g. “execute pick with a target pose from where b2
can be grasped; execute place with a target pose from where

releasing b2 will place it on S; execute pick with a target pose

from where b1 can be grasped.” For this plan the interface

layer will find an instantiation of the continuous variables

for which the motion planner can find a feasible motion plan

and we are done. Effectively, our approach specifies a search

problem for the interface.

The following sections formalize our algorithm and de-

scribe experiments on a number of tasks, including laying

out a dinner table, which has millions of discrete states,

and picking objects while replacing several obstructions

on a tightly cluttered table. Videos of the experiments are

available at:

http://www.cs.berkeley.edu/%7Esiddharth/icra14.

II. BACKGROUND

A. Task Planning

The formal language PDDL [2] defines a fully observable,

deterministic task planning problem as a tuple 〈A, s0, g〉,
where A is a set of parameterized propositional actions

defined by preconditions and effects, s0 is an initial state of

the domain, and g, a set of propositions, is the goal condition.

For clarity, we will describe both preconditions and effects

of actions as conjunctive lists of literals in first-order logic,

using quantifiers for brevity. The discrete pick action could

be represented as follows:

pick(obj, gripper)
precon Empty(gripper)

effect InGripper(obj), ¬Empty(gripper)

A sequence of actions a0, . . . , an executed beginning in s0
generates a state sequence s1, . . . , sn+1 where si+1 = ai(si)
is the result of executing ai in si. The action sequence is a

solution if si satisfies the preconditions of ai for i = 0, . . . , n
and sn+1 satisfies g.

B. Motion Planning

A motion planning problem is a tuple 〈C, f, p0, pt〉, where

C is the space of possible configurations or poses of a robot,

f is a Boolean function that determines whether or not a pose

is in collision and p0, pt ∈ C are the initial and final poses. A

collision-free motion plan solving a motion planning problem

is a trajectory in C from p0 to pt such that f doesn’t hold for

any pose in the trajectory. Motion planning algorithms use

a variety of approaches for representing C and f efficiently.

Throughout this paper, we will use the term motion plan to

denote a trajectory that may include collisions. In some tasks,

we may be interested in finding motion plans that ignore all

of the movable obstacles. A solution that allows collisions

only with a given set of movable objects in an environment

may be obtained by invoking a motion planner by modifying

f to be false for all collisions with such objects.

III. ABSTRACT FORMULATION USING POSE

REFERENCES

Although high-level specifications like pick above capture

the logical preconditions of physical actions they cannot be

used in real pick-and-place tasks. A more complete repre-

sentation of the pick action can be written with predicates

IsGP, IsMP and Obstructs that capture geometric conditions:

IsGP(p, o) holds iff p is a pose at which o can be grasped;

IsMP(traj, p1, p2) holds iff traj is a motion plan from p1
to p2; Obstructs(obj’, traj, obj) holds iff obj’ is one of the

objects obstructing a pickup of obj along traj. The argument

obj need not be an argument in Obstructs; we include it for

clarity.

pick2D(obj, gripper, pose
1
, pose

2
, traj)

precon Empty(gripper), At(gripper, pose
1
),

IsGP(pose
2
, obj), IsMP(traj, pose

1
, pose

2
),

∀obj’¬ Obstructs(obj’, traj, obj)
effect In(obj, gripper), ¬Empty(gripper),

At(gripper, pose
2
)

As noted in the Introduction, we adopt an abstract represen-

tation in which the ”continuous” arguments—pose1, pose2,

and traj in this case—range not over the reals but over finite

sets of symbolic references to continuous values.

We propose an abstract representation where continuous

variables are replaced by ones that range over finite sets

of symbols that are references to continuous values. This

substitution can be viewed as a form of quantifier elimi-

nation (the full version presents a detailed analysis from

this perspective [3]). The initial state contains a finite set

of facts linking the references to plan-independent geometric

properties they have to satisfy. Continuing with the example,

pose variables range over pose references such as initPose,

gp obj
i
, and pdp obj

i
S for each object obj

i
. Intuitively

these references denote the gripper’s initial pose, a grasping

pose (gp) for obji and a put-down pose (pdp) for placing

obj
i

on surface S. For these references, the initial state

includes facts: at(gripper, initPose), IsGP(gp obj
i
, obji),

IsPDP(pdp obj
i
S, obj

i
, S), IsMP(traj pose1 pose2, pose1,

pose2), where pose1 and pose2 range over the introduced

pose references. The task planner can now use the pick2D

specification defined above, but with variables that range over

discrete, symbolic references to continuous variables. This

leads to immense efficiency in representation, compared to

discretization, and makes task planning practical.

Returning to the 2D example, the preconditions of place2D

require two new predicates: IsPDL(tloc, S) indicates that

tloc is a put-down location in S and PDObstructs(obj’, traj,

obj, tloc) indicates that obj’ obstructs the trajectory traj for

placing obj at tloc. In this simple example, we assert that

once an object is placed in the region S, it does not obstruct

any pickup trajectories.

place2D(obj, gripper, pose
1
, pose

2
, traj, tloc)

precon In(obj, gripper), At(gripper, pose
1
),

IsPDP(pose
2
, obj, tloc), IsMP(traj, pose

1
, pose

2
),

IsPDL(tloc, S),

∀obj′¬PDObstructs(obj’, traj, obj, tloc)
effect ¬ In(obj, gripper), At(obj, tloc), Empty(gripper),

At(gripper, pose
2
),

∀obj′, traj′¬Obstructs(obj, traj’, obj’)

As discussed in the introduction, the exact set of obstruc-

tions (or other geometric effects) caused by a high-level

action cannot be determined using the pose references and

logical reasoning capabilities available to the task planning

layer. In our formulation the effect list for an action only

needs to be sound: it needs to contain only those effects

that can be guaranteed as a result of the action. Thus,

when a free area is not available (as in our experiments)

the place2D action’s effects would not include a removal

of all obstructions to pickup trajectories. Such effects are

determined through the interface layer if needed (Sec. IV).

Further representational optimization is possible by removing

the action arguments that do not contribute any functional-

ity to the high-level specification. Such arguments can be

reintroduced in task plans prior to refinement. For instance,

the traj argument of pick2D doesn’t occur in its effects. It

is used in IsMP, which is not changed by any high-level

action and in Obstructs, which is changed by place2D for all

trajectories, so that the effect is independent of traj. In other

pr2Pick(obj1 gripper, pose1, pose2, traj)
precon Empty(gripper), RobotAt(pose1),

IsBPFG(pose1, obj),IsGPFG(pose2, obj),

IsMP(traj, pose1, pose2),

∀ obj’ ¬ Obstructs(obj′, traj, obj1)

effect In(obj1, gripper), ¬Empty(gripper),

∀obj′, traj′

¬Obstructs(obj1, traj
′, obj′),

∀obj′, traj′, tloc′

¬PDObstructs(obj1, traj
′, obj′, tloc′)

pr2PutDown(obj, gripper, pose1, pose2, traj, targetLoc)
precon In(obj, gripper) ∧ RobotAt(pose1),

IsBPFPD(pose1, obj, targetLoc),

IsGPFPD(pose2, obj, targetLoc)

IsMP(traj, pose1, pose2), IsLFPD(targetLoc, obj)

∀obj′¬PDObstructs(obj′, traj, obj, tloc)

effect ¬ In(obj, gripper), At(obj, targetLoc)
pr2Move(pose1, pose2, traj)

precon RobotAt(pose1), IsMP(traj, pose1, pose2)

effect ¬RobotAt(pose1), RobotAt(pose2)

Fig. 3: Action specifications for robots with articulated manipulators.

words, high-level solutions are not affected by this argument.

The domain specification can be optimized to remove such

arguments and predicates.

Our approach easily extends to real robots such as the PR2

(see Fig. 3). We can add predicates to capture base poses and

gripper poses for grasping (IsBPFG, IsGPFG) and and for

put-down (IsBPFPD, IsGPFPD). A base pose for grasping

is a pose from which there is a collision-free IK solution to

a gripper grasping pose if all movable objects are removed.

A significant point of difference in this model is that when

an object is picked up, it no longer obstructs any trajectories.

Further, the predicate IsLFPD determines whether or not a

location is one where objects can be placed. This can be true

of all locations on surfaces that can support objects.

The truth values of ground atoms over references like

Obstructs(obj10, traj pose1 pose2, obj17) are set to defaults

in the initial state. Domain-specific initializations can also

be generated automatically to facilitate completeness guaran-

tees [3]; during planning, interaction with the interface layer

may add or remove such atoms from a state.

Conditional Costs The approach presented above applies

seamlessly to actions whose costs depend on a finite number

of geometric predicates over possibly continuous arguments.

Further details can be found in the full version [3].

IV. TASK AND MOTION PLANNING

Before formally presenting our algorithm, we illustrate it

in action on a simple example to communicate the main

intuitions (Fig. 4). This example uses the specification in

Fig. 3. Consider an initial task plan obtained using a task

planner, and the search space for instantiations of the pose

references used in it (Fig. 4a). In scenario 1 the interface

layer finds instantiations that correspond to an error-free

motion plan, thus solving the problem (Fig. 4b). In scenario

2 the interface layer is unable to find such an instantiation

(Fig. 4c). It identifies partial solutions and attempts to extend

them using a task planner. In scenario 2a this succeeds with

the first partial motion plan (Figs. 4d). The interface layer

generates logical facts capturing reasons for the failure and

updates the high-level state where this failure occurred. It

Initial pose

Move(b , bpfg_b)
1
1

Pick(b , gpfg_b)
1
1

Instantiations

for bpfg_b
1

Instantiations

for gpfg_b
1

(a) On the left we show a task plan with pose references. On the right we
show the search space of possible instantiations of these references: each row
represents the space of possible instantiations for references in the preceding
action, and each arrow represents a motion planning problem. The initial pose
has a unique instantiation as that is the robot’s current pose.

Initial pose

Move(b , bpfg_b)
1
1

Pick(b , gpfg_b)
1
1

Instantiations

for bpfg_b
1

Instantiations

for gpfg_b
1

(b) In order to refine the task plan into a motion plan, the interface layer
needs to find instantiations for all pose references, such that there is an
error-free motion plan between each successive pair of poses. This subfigure
captures Scenario 1, where the interface layer finds a set of pose instantiations
for which there is an error-free motion plan. This completes the refinement
process and the problem has been solved for this scenario.

Initial pose

X
 X
 X
 X

X
 X
 X
 X

Instantiations

for bpfg_b
1

Instantiations

for gpfg_b
1

Move(b , bpfg_b)
1
1

Pick(b , gpfg_b)
1
1

(c) Scenario 2. The interface layer completes backtracking search and finds
no complete instantiation of poses with an error-free motion plan. The original
task plan cannot be refined into a motion plan.

Initial pose

Update state
 Instantiations

for bpfg_b
1

Instantiations

for gpfg_b
1

Move(b , bpfg_b)
1
1

Pick(b , gpfg_b)
1
1

b obstructs
2

(d) Scenario 2a. The interface layer selects the first possible pose instantiation
and invokes the motion planner, which finds a trajectory for the instantiation
corresponding to the first action but not for the second. The motion planner
is used to compute a trajectory allowing collisions (by removing movable
objects) and the interface layer computes obstructions along it (a motion
planner that reports possible collisions could also be used). The task level
state is updated with this information represented using symbolic references
(Sec. III), resulting in an updated high-level state.

Initial pose

Update state

New task plan

Move(b , bpfg_b)
1
1

Pick(b , gpfg_b)
1
1

Move(b , bpfg_b)
2
2

Pick(b , gpfg_b)
2
2

Pick(b , gpfg_b)
1
1

Instantiations

for bpfg_b
1

Instantiations

for gpfg_b
1

b obstructs
2

(e) Scenario 2a (ctd.). The interface layer invokes a task planner on the
updated state. The task planner generates a new plan, which now consists of
first moving b2 out of the way, and then picking b1. At this point the interface
layer will continue processing the new plan suffix, as described in (b).

Initial pose

table

obstructs

Update state

x

No solution

Move(b , bpfg_b)
1
1

Pick(b , gpfg_b)
1
1

Instantiations

for bpfg_b
1

Instantiations

for gpfg_b
1

(f) Scenario 2b. An alternate execution after scenario 2. The pose instantiation
is such that the motion planner can compute an error-free trajectory for
moving to bpfg b1, but not from there to gpfg b1. However, now the available
trajectory for moving to gpfg b1 is in collision with a table. The interface
layer invokes the task planner with the updated state as in 2a, but this call
fails because there is no high-level action for moving a table. The interface
layer will iterate over pose instantiations until it finds one corresponding to
a solvable high-level state. It will then proceed as in Scenario 2a.

Fig. 4: Illustration of the interface layer’s refinement process. Action arguments have been abbreviated.

uses a task planner to obtain a new plan to solve the updated

state (4e). In scenario 2b, the updated state is found to be

unsolvable and the interface layer continues to search for

a partial motion plan that corresponds to a solvable task

planning problem.

We now describe two algorithms that constitute the in-

terface layer. Alg. 1 describes the outer loop of refinement

and regeneration of task plans that continues until a resource

limit (e.g. time) is reached. The TryRefine subroutine (Alg. 2)

describes the process of refining task plans into trajectories

representing motion plans. The implementation of these

algorithms uses careful bookkeeping to ensure that Alg. 1 can

call TryRefine to either carry out an exhaustive search for an

error-free refinement of the entire plan, or to make a sequence

of calls to it, each returning a new partial refinement and the

errors corresponding to it.

A. Overall Algorithm For the Interface

Alg. 1 begins by invoking a task planner with the given

initial state of the task and motion planning problem to

get HLPlan. In each iteration of the while loop, TryRefine

(Alg. 2) is first called in line 6 in the error-free mode, which

searches for a feasible instantiation of the pose references

used in HLPlan. If this fails it is called in the partial

trajectory mode (line 8). In this mode, repeated invocations

of TryRefine return with the preconditions responsible for

failure (failCause) in finding a motion plan corresponding

to distinct pose instantiations. These errors are used to

update the task level state. This is done by applying the

effects of actions in HLPlan until failStep on the state for

which HLPlan was obtained, and then updating the resulting

state with failCause. In line 10 a task planner is invoked

with this new state. If this state is unsolvable, TryRefine

is used to compute the errors corresponding to the next

pose instantiations for the same HLPlan. If on the other

hand the state was solvable and newPlan was obtained,

the entire process repeats with the updated plan (line 6).

If an upper limit on the number of attempted refinements

for HLPlan is reached (line 14) the refinement process starts

over from the first action in the available plan after resetting

the PoseGenerator used in TryRefine, and removing facts

corresponding to pose instantiations.

Algorithm 1: Task and Motion Planning Algorithm

Input: State, InitialPose
if HLPlan not created then1

HLPlan ← callTaskPlanner(State)2

step ← 1; partialTraj ← None; pose
1
← InitialPose3

while resource limit not reached do4

if TryRefine(pose
1
, HLPlan, step, partialTraj,5

ErrFreeMode) succeeds then
return refinement6

repeat7

(partialTraj, pose
2
, failStep, failCause)8

← TryRefine(pose
1
, HLPlan, step,

partialTraj, partialTrajMode)
state ← stateUpdate(State, failCause, failStep)9

newPlan ← callTaskPlanner(state)10

if newPlan was obtained then11

HLPlan ← HLPlan[0:failStep] + newPlan12

pose
1
← pose

2
; step ← failStep13

until NewPlan obtained or MaxTrajCount reached
if MaxTrajCount reached then14

Clear all learned facts from initial state15

Reset PoseGenerators with new random seed16

Reset step, partialTraj, pose
1

to initial values17

B. Refining Task Plans into Motion Plans

We assume without loss of generality that all HLPlans are

zero-indexed lists with a NoOp in position 0.

1) TryRefine Subroutine: TryRefine (Alg. 2) can be in-

voked in two modes: in ErrFreeMode it carries out an

exhaustive, backtracking search for feasible refinements of

the input HLPlan; in PartialTrajMode it iterates through

the possible instantiations for each pose reference used

in HLPlan, and for each instantiation it returns the first

action that has no error-free motion plan and the reason for

infeasibility, which can include obstructions in motion plans

and general geometric preconditions of actions. The latter are

determined by dedicated modules. Such geometric properties

are converted into logical facts in terms of pose references

(independent of geometric values).

Starting with the input InitialPose, in each iteration of

the loop, TryRefine invokes action-specific PoseGenerators

to get a possible target pose for the next action (described

below). In each iteration, if the PoseGenerator for an action

runs out of possible poses, the algorithm backtracks (lines 8-

11). If another target pose for the next action is available, a

motion planner is called with it in line 12. If motion planning

succeeds in the error-free mode, the iteration proceeds to the

action after next. Otherwise, if ErrFreeMode holds, it obtains

another target pose for the next action. If PartialTrajMode

holds, it returns the reasons for failure (line 17).

As an optimization, our implementation of Alg. 2 invokes

a motion planner only if IK solutions exist.

2) Pose Generators: The PoseGenerator for an action

iterates over those values for pose references which satisfy

geometric preconditions of that action. Thus, the space of

possible values for pose generators can be constructed in

a pre-processing step in a manner similar to approaches for

Algorithm 2: TryRefine Subroutine

Input: InitialPose, HLPlan, Step, TrajPrefix, Mode
/* local vars, pose-gens persist across calls */

if first invocation or new HLPlan then1

index ← Step− 1; traj ← TrajPrefix2

Initialize pose generators3

pose
1
← InitialPose4

while Step− 1 ≤ index ≤ length(HLPlan) do5

axn ← HLPlan[index]; nextAxn ← HLPlan[index+1]6

pose
2
← poseGen(nextAxn).next()7

if pose
2

is not defined then8

poseGen(nextAxn).reset()9

pose
1
← poseGen(axn).next()10

index−−; traj ← traj.delSuffixFor(axn)11

else if GetMotionPlan(pose
1
, pose

2
) succeeds then12

if index = length(HLPlan)+1 then return traj13

traj ← traj + ComputedPath; index++14

pose
1
← pose

2
15

else if Mode = PartialTrajMode then16

return (pose
1
, traj, index+1, MPErrs(pose

1
, pose

2
))17

precomputation of grasping poses. It is important to note that

in our implementation these pose generators are not task-

specific: the pose generator for picking up a bowl remains

the same regardless of the planning goals, other actions and

the rest of the environment.

In our implementation, PoseGenerators iterate over a finite

set of randomly sampled values that are only likely to satisfy

these properties. The random seed for generating these values

is reset when MaxTrajCount is reached in Alg. 1. More

specifically, a PoseGenerator generates (a) an instantiation

of the pose references used in the action’s arguments and (b)

a target pose corresponding to each such instantiation. We

also allow the pose generator to generate a tuple of target

poses (waypoints) if needed, for multi-trajectory actions.

In this way, each PDDL action corresponds to a sequence

of poses generated by its PoseGenerator, interleaved with

gripper close and open events. The GetMotionPlan call in

TryRefine succeeds for an action with a multi-target pose

generator if it can generate a sequence of waypoints with

a feasible motion plan linking all. We discuss specific

examples of pose generators below.

PoseGenerator for pr2Pickup The pr2Pickup pose gener-

ator instantiates the pose references bpfg obj
i

and gpfg obj
i
,

which need to satisfy the geometric properties IsBPFG

and IsGPFG. For bpfg obj
i

it samples base poses oriented

towards obji in an annulus around the object. For gpfg obj
i
,

we need poses at which closing the gripper will result in a

stable grasp of the object. Computation of effective grasping

poses is an independent problem; we assume that such poses

are known for each object class (e.g., bowl, can, tray etc.),

and used an approach where every grasp pose corresponds

to a pre-grasp pose, and a raise pose. The pose generator

generates possible values for all of the intermediate poses as

waypoints, while the arm always returns to a side pose at the

end to enable an unobstructed view from the physical PR2’s

cameras. The latter could be avoided through a framework

incorporating partial observability.

PoseGenerator for pr2PutDown The pose generator

for pr2PutDown instantiates pose references of the form

tloc (an abbreviation for targetloc), bpfpd obj
i

tloc, and

gpfpd obj
i

tloc to satisfy the properties IsBPFPD and Is-

GPFPD. tloc values are sampled locations on supporting

surfaces within a certain radius of the current base pose;

values for bpfpd obj
i

tloc are obtained by sampling base

poses in an annulus around tloc and oriented towards it.

Gripper put-down poses of the form gpfpd obj
i

tloc are

sampled by computing possible grasping poses assuming the

object was at tloc.

C. Completeness

We present a sufficient condition under which our ap-

proach is guaranteed to find a solution if one exists.

Definition 1: A set of actions is uniform wrt a goal g and

a set of predicates R if for every r ∈ R,

1) Occurrences of r in action preconditions and goal are

either always positive, or always negative.

2) Actions can only add r-atoms with the same sign as

those used in preconditions and the goal g.

Theorem 1: Let P = 〈A, s0, g〉 be a planning problem

such that there are no reachable dead-end states w.r.t. g and

A is a set of actions whose descriptions are sound w.r.t.

continuous effects and uniform w.r.t. the g and the geometric

predicates used in the domain. Let G be the pose generator

for the pose references used in s0. If all the calls to the

motion planner terminate, then Alg. 1 will find a sequence

of motion plans solving P if one exists using the sound

descriptions and the pose references captured by G.

Intuitively, the result follows because under the premises,

every time a state update takes place, missing geometric facts

are added to the state and can only be removed by actions

but not added again. We refer the reader to the full version

[3] for the proof. Note that the conditions of Thm. 1 are not

necessary. In particular, our empirical evaluation shows the

algorithm succeeding in a number of tasks that do not satisfy

the uniformity condition.

V. EMPIRICAL EVALUATION

We implemented the proposed approach using the Open-

RAVE simulator [4]. In all of our experiments we used

Trajopt (multi-init mode), which is a state-of-the-art motion

planner that uses sequential convex optimization to compute

collision avoiding trajectories [5]. For every motion planning

query, Trajopt returns a trajectory with a cost. A wrapper

script determined collisions (if any) along the returned tra-

jectory. We used two task planners, FF [6] and the IPC

2011 version of FD [7] in seq-opt-lmcut mode, which

makes it a cost-optimal planner. FD was not appropriate for

the first two tasks described below since they used negative

preconditions and FD has known performance issues with

negative preconditions. Domain compilations for eliminat-

ing negative preconditions are possible but impractical as

they lead to large numbers of facts in the initial problem

specifications. Since our system can work with any classical

planner, we used FF for tasks where costs were not a concern.

All the problems (Fig. 5) used an ambidextrous version of

the PR2 actions shown in Fig. 3, with task-specific actions

such as placing items on a tray and opening a drawer.

All experiments were carried out on Intel Core i7-4770K

machines with 16GB RAM, with two tests running in parallel

at a time. All the success rates and times are summarized

in Table I. As a baseline, we attempted to solve these

problems using a discretization at the task level with all

the predicates set at defaults. This effectively removed all

geometric constraints. However the planners could not find

solutions to these problems after running for more than

25 minutes. The source code and videos for all tasks are

available at the URL noted in the introduction [8].

A. Object in a Drawer

In this domain the robot needs to open a drawer and

retrieve an object inside it. An object in front of the drawer

prevents its complete opening. The inner object’s placement

determines where the robot should place itself to avoid colli-

sions with the outer object, and whether it is possible to solve

the task without moving the outer object. This task illustrates

the generality of our approach in going beyond pick-and-

place tasks. We modeled it using an open-drawer action,

whose pose generator generates random bounded values for

the pull-distance. In the solution plans, our system chose to

position the robot so as to open the drawer and access the

inner object without moving the obstruction when possible.

The results show average solution times for situations where

removing the obstruction was optional (O) and necessary (N).

B. Cluttered Table

In this task, the objective is to pick up a target object

from a cluttered table. There is no designated free space for

placing objects, so the planning process needs to find spots

for placing obstructing objects. We increased the number of

objects up to 40 on a table of fixed dimensions. Fig. 6 shows

the table with 40 objects. In order to make the problem more

challenging, we restricted pickups to only use side-grasps.

The robot’s thick grippers create several obstructions and

many of the pose instantiations lead to cyclic obstructions.

Since placing objects adds obstructions, this task does not

satisfy the premises of Thm. 1. In addition to the summarized

results in Table I, Fig. 7 shows a histogram of the solution

times. To the best of our knowledge, no other approach has

Problem %Solved in 600s Avg. Solution Time for Solved (s)

Drawer (O) 100 34
Drawer (N) 100 185
Clutter-15 100 32
Clutter-20 94 57
Clutter-25 90 69
Clutter-30 84 77
Clutter-35 67 71
Clutter-40 63 68
Dinner-2 100 63
Dinner-4 100 133
Dinner-6 100 209

TABLE I: Summary of the results. All numbers except for the cluttered
table problem are from 10 randomly generated problems. Cluttered table
problems showed greater variance and are averages of 100 randomly
generated problems for each number of objects.

Fig. 5: Test domains from L to R: drawer domain, cluttered table with 40 objects where the dark object denotes the target object, and dinner layout. The
rightmost images show the PR2 using the tray and completing the dinner layout.

Fig. 6: Some of the grasps executed while solving an instance of the 40 object cluttered table with the dark object as the target.

1

10

Clutter 15

 3

30

Clutter 20

Clutter 25

0 100 200 300 400 500 600

1

10

N
u

m
b

e
r

o
f

P
ro

b
le

m
s

S
o
lv

e
d

 3

30
Clutter 30

0 100 200 300 400 500 600

Clutter 35

0 100 200 300 400 500 600

Clutter 40

Time (s) Time (s) Time (s)

0 0

Fig. 7: Histograms of solution times for problems solved within 600s in
the cluttered table domain. Y-axis is in log-scale.

been shown to perform at this level on randomly generated

constrained problems without using specialized geometric

reasoning routines.

C. Laying Out a Table for Dinner

The goal of this task is to lay out a dinner table. A

tray is available, but not necessary for transportation. We

modeled a scenario where the initial location of objects was

far from the target location by asserting that these locations

were in different rooms and associating a high cost to all

task-level moves across rooms. The geometric properties

in this domain were stackability and relative positions of

objects (see below). Stackability was determined using object

diameters. The test scenarios had 2, 4 and 6 objects (cups

and bowls with equal numbers of each), placed at random

locations on the table. Objects had random names to prevent

the task planner from favoring any particular stacking order.

The initial task planner specification allowed all objects to be

stacked on each other. Optimal task planning is hard in this

domain, as the number of reachable states exceeds 3 million

with just 6 objects. We used FD as the task planner since

plan cost was a consideration.

Our system appropriately used the tray to transport items.

It used inefficient movements when the robot picked objects

on its left with its right hand (and vice versa) as the task

planner chose hands arbitrarily. We made two modifications

to address this, both of which increase the complexity

of the task planning problem by increasing its branching

factor. We used a conditional cost formulation (Sec. III) to

penalize actions which accessed an object or a location on

the right (left) with the left (right) hand. We also added a

Handoff action in the domain, which transfered an object

from one hand to the other. The resulting behavior, though

not guaranteed to be optimal, showed the system determining

which hand to use for a particular grasp or putdown and

whether or not a handoff should be done. To the best of

our knowledge, no other approach has been shown to solve

task and motion planning problems with such large high-

level state spaces without using task-specific heuristics or

knowledge beyond the set of primitive task-level actions.

D. Real-World Validation

For real-world experiments we used ROS packages for

detecting object and table poses (ar track alvar) and

for SLAM (hector slam). A video of the PR2 laying out

the table using this system is available at the URL noted in

the introduction.

VI. RELATED WORK

Our approach builds upon the vast literature of related

work in robotics and planning. In particular, we leverage

the immense advances made in task planning and motion

planning. Various researchers have investigated the problem

of combining task and motion planning [9]–[11]. However,

few approaches are able to utilize off-the-shelf task planners

and motion planners and most rely on specially designed

task and/or motion planning algorithms. Existing approaches

do not address the problem of correcting inaccurate task

planning descriptions without resorting to discretization. In

contrast, our approach (a) represents geometric information

in a form that task planners can use and (b) corrects the task

planner’s representation with information gained through

geometric reasoning, without discretization.

Cambon et al. [1] propose a framework that bears sim-

ilarity to ours in using location references. The references

in their approach however are not developed into a sys-

tem for communicating geometric information to the task

planner. Their framework requires the motion planner to use

probabilistic roadmaps (PRMs) [12] with one roadmap per

movable object, and per permutation of a movable object in

each gripper for robots like the PR2. The utilization of task

plans is minimal: only their lengths are used as inputs in a

heuristic function for a separate search algorithm. However,

their algorithm is probabilistically complete. Kaelbling et

al. [13] present a regression-based framework. They utilize as

inputs a task hierarchy, action-specific regression functions

and generators, and inferential attachments for carrying out

limited logical reasoning. The overall framework is com-

plete if the domain is reversible (a necessary condition for

reversibility is that no dead-end state should be reachable

from the initial task planning state), and the primitive actions,

which include motion planner invocations, have sound and

complete precondition and effect specifications. However,

these conditions are only sufficient and not necessary.

Grasping objects in a cluttered environment is an open

problem in robotics. Dogar et al. [14] propose replacing

pick actions with push-grasps. This would be promising as a

primitive action in our overall framework. Techniques have

also been developed for navigation among movable obstacles

(e.g., [15]), but they do not address the general problem of

combining task and motion planning.

Reinvoking task planners relates to replanning for partially

observable or non-deterministic environments [16], [17].

However, the focus of this paper is on the substantially

different problem of providing the task planner with in-

formation gained through geometric reasoning. An alternate

representation for dealing with large sets of relevant facts in

the initial state would be to treat them as initially unknown

and use a partially observable planner with non-deterministic

“sensing” actions [18]. However, offline contingent solutions

typically don’t exist for all possible truth values of geometric

predicates. Wolfe et al. [19] use angelic hierarchical planning

to define a hierarchy of high-level actions over primitive

actions. Our framework could be viewed as using an angelic

interpretation: pose references in task plans are assumed to

have a value that satisfies the preconditions, and the interface

layer attempts to find such values. Planning modulo theories

(PMT) [20] and planning with semantic attachments [21]

also address related problems. In contrast to our objective

of utilizing arbitrary task planners, these approaches do not

use a discrete task planner. Instead, they include continuous

fluents in the task planning specification and utilize search al-

gorithms that make calls to external subroutines for comput-

ing the values of such fluents. Erdem et al. [22] also extend

the task planner (an ASP solver) with external predicates

implemented as arbitrary programs. They use a grid-based

discretized representation for representing the task planning

problem as well as for the geometric information gained at

the continuous planning level. In contrast, this paper was

focused on a method for communicating such information

to an arbitrary task planner, without discretization.

VII. CONCLUSIONS

We presented an approach for combined task and motion

planning that is able to solve non-trivial robot planning prob-

lems without using task-specific heuristics or any hierarchical

knowledge beyond the primitive PDDL actions. Our system

works with off-the-shelf task planners and motion planners,

and will therefore scale automatically with advances in

either field. We also presented a sufficient, but not necessary

condition for completeness. We also demonstrated that our

system works in several non-trivial, randomly generated tasks

where this condition is not met and validated it in the real

world with a PR2 robot.

ACKNOWLEDGMENTS

We thank Malte Helmert and Joerg Hoffmann for pro-

viding versions of their planners that were helpful in early

versions of our implementation. We also thank Ankush Gupta

for help in working with the PR2 and John Schulman for help

in setting up Trajopt. This work was supported by the NSF

under grants IIS-0904672 and IIS-1227536.

REFERENCES

[1] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” IJRR, vol. 28, pp. 104–126,
2009.

[2] M. Fox and D. Long, “PDDL2.1: an extension to PDDL for expressing
temporal planning domains,” JAIR, vol. 20, no. 1, pp. 61–124, 2003.

[3] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“A modular approach to task and motion planning with an extensible
planner-independent interface layer (full version),” 2013. [Online].
Available: http://www.cs.berkeley.edu/∼siddharth/icra14/full version.
pdf

[4] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, 2010.

[5] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization,” in RSS, 2013.

[6] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” JAIR, vol. 14, pp. 253–302, 2001.

[7] M. Helmert, “The fast downward planning system,” JAIR, vol. 26, pp.
191–246, 2006.

[8] “Source code and result videos.” [Online]. Available: http://www.cs.
berkeley.edu/∼siddharth/icra14/

[9] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
“The CLARAty architecture for robotic autonomy,” in Proc. of IEEE

Aerospace Conference, 2001, pp. 121–132.
[10] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic

action planning with geometric and differential constraints,” in ICRA,
2010, pp. 5002–5008.

[11] K. Hauser, “Task planning with continuous actions and nondeterminis-
tic motion planning queries,” in Proc. of AAAI Workshop on Bridging

the Gap between Task and Motion Planning, 2010.
[12] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, pp. 566–580,
1996.

[13] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011, pp. 1470–1477.

[14] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
RSS, 2011.

[15] M. Levihn, J. Scholz, and M. Stilman, “Hierarchical decision theoretic
planning for navigation among movable obstacles,” in WAFR, 2012,
pp. 19–35.

[16] K. Talamadupula, J. Benton, P. W. Schermerhorn, S. Kambhampati,
and M. Scheutz, “Integrating a closed world planner with an open
world robot: A case study,” in AAAI, 2010.

[17] S. W. Yoon, A. Fern, and R. Givan, “FF-replan: A baseline for
probabilistic planning,” in ICAPS, 2007.

[18] B. Bonet and H. Geffner, “Planning with incomplete information as
heuristic search in belief space,” in ICAPS, 2000, pp. 52–61.

[19] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation,” in ICAPS, 2010, pp. 254–258.

[20] P. Gregory, D. Long, M. Fox, and J. C. Beck, “Planning modulo
theories: Extending the planning paradigm,” in ICAPS, 2012.

[21] A. Hertle, C. Dornhege, T. Keller, and B. Nebel, “Planning with
semantic attachments: An object-oriented view,” in ECAI, 2012.

[22] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in ICRA,
2011, pp. 4575–4581.

