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Soil moisture is the basic condition required for crop growth and development. Gaofen-3 (GF-3) is the first C-band synthetic-
aperture radar (SAR) satellite of China, offering broad land and ocean imaging applications, including soil moisture monitoring.
,is study developed an approach to estimate soil moisture in agricultural areas from GF-3 data. An inversion technique based on
an artificial neural network (ANN) is introduced. ,e neural network was trained and tested on a training sample dataset
generated from the Advanced Integral Equation Model. Incidence angle and HH or VV polarization data were used as input
variables of the ANN, with soil moisture content (SMC) and surface roughness as the output variables. ,e backscattering
contribution from the vegetation was eliminated using the water cloud model (WCM). ,e acquired soil backscattering co-
efficients of GF-3 and in situ measurement data were used to validate the SMC estimation algorithm, which achieved satisfactory
results (R2

� 0.736; RMSE� 0.042). ,ese results highlight the contribution of the combined use of the GF-3 synthetic-aperture
radar and Landsat-8 images based on an ANN method for improving SMC estimates and supporting hydrological studies.

1. Introduction

Soil moisture content (SMC) is an important parameter in
hydrological, biological, agricultural, and other processes
[1, 2]. Lower SMC can cause an increase in the bare soil
surface, thus aggravating sandstorms [3–5]. Many techno-
logical advances now allow efficient acquisition of soil
moisture data. On the ground, the International Soil
Moisture Network (ISMN) provides a global network of
soil moisture in situ observations [6].,is network measures
soil moisture at specific locations; thus, the data are in the
form of discrete values as opposed to a soil moisture spatial
distribution, although they provide temporally continuous
observations [7]. Microwave synthetic-aperture radar (SAR)
collects data over a large area with high spatial resolution

and provides an effective technological means of monitoring
and assessing soil moisture.

Radar remote sensing is sensitive to soil moisture, due to
the differences in the dielectric constants of soil and water;
thus, the dielectric constant is one of the most important
factors in the radar backscattering coefficient [8]. Several
physical and statistical models have been developed to es-
timate soil moisture. ,e best-known physical model is the
Advanced Integral Equation Model (AIEM), which simu-
lates the radar backscattering coefficients from SAR and
various soil parameters (radar wavelength, polarization,
incidence angle, soil dielectric constant, and surface
roughness) [9]. Statistical models based on experimental
measurements are also widely used in soil moisture esti-
mations. For bare soils, the most popular statistical models
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are those developed by Oh et al., which include an inversion
diagram based on the cross-polarized ratio or copolarized
ratio [10–12]. ,e Dubois model uses HH and VV polari-
zation data from multipolarized radar observations to es-
timate SMC [13].

,e above-mentioned models are commonly applied to
bare soil and cannot be applied directly in vegetation cover
areas, due to the multiple scattering effects of vegetation
canopies [14]. ,e water cloud model (WCM), a semi-
empirical forward model, generally assumes that the vege-
tation canopy is a uniform layer of a cloud of water droplets
and has been widely used to separate out the contribution of
vegetation backscatter [15–18]. To minimize the effects of
vegetation, many researchers have attempted to utilize
optical remote sensing to obtain additional vegetation in-
formation [19–21]. Meanwhile, other studies have demon-
strated improved SMC estimation accuracy when optical
and SAR data are combined, compared to estimates solely
from SAR data [22, 23]. In addition, good performance for
soil moisture estimation has been achieved using only one
radar channel (one incidence angle and one polarization)
[24–26]; in one study, there was no significant improvement
in soil moisture estimation using two polarizations (HH and
HV, C-band) as opposed to one [27].

,e estimation of soil moisture is usually a nonlinear, ill-
posed, complex process [28], which makes it suitable for
artificial neural network (ANN) application. ANN is
a model-free estimator, as it does not rely on an assumed
form of the underlying data [29]. ,e most direct way to
train an ANN is using synthetic data generated by theoretical
or empirical surface scattering models. ,e effectiveness of
ANN inversion algorithms has been investigated in previous
studies [30–32]. Baghdadi et al. [33] tested the performance
of an ANN in retrieving soil moisture and surface roughness
for several inversion cases, with and without a priori
knowledge of soil parameters; the results were promising for
ANN soil parameter estimation. El Hajj et al. [34] developed
and validated neural networks using synthetic and real
databases; the application of both VV and VH showed re-
sults similar to those using VH only. Satalino et al. [35]
combined an Integral Equation Model (IEM) and neural
networks to retrieve SMC over smooth bare soils from ERS-
SAR data. Paloscia et al. [36] trained neural networks using
a backscattering coefficients database simulated from the
IEM and WCM for a wide range of soil parameters; a real
database composed of SAR, optical, and in situ measure-
ments was used to validate the developed neural networks,
and the results indicated a soil moisture estimation accuracy
of 2–5 vol.%. Santi et al. [37] developed ANN-based algo-
rithms for both active and passive microwave acquisitions;
the results demonstrated that ANNs are a powerful tool for
SMC estimation at both local and global scales.,ese studies
demonstrate the potential of ANNs for retrieving SMC
information from SAR remote sensing data.

Gaofen-3 (GF-3) is the first Chinese civil C-band SAR. To
date, there have been few soil moisture estimation methods
developed for the GF-3 satellite. ,erefore, we create an
inversion technique based on ANN to estimate SMC over
agricultural areas by combining GF-3 and Landsat-8 satellite

data. ,e WCM was first applied to eliminate the effects of
vegetation and to obtain the backscattering coefficients of bare
soil. ,en, the ANN was trained using a sample dataset
generated form the AIEM. Meanwhile, field SMC data in an
agricultural region with wheat as the main crop type were
used to evaluate the potential of the GF-3 sensor for retrieving
SMC data.

,e remainder of this paper is organized as follows:
Section 2 summarizes the study area and datasets. Section 3
discusses the ANN and the inversion methodology. ,e
results are presented in Section 4. Section 5 includes a dis-
cussion of our findings and conclusions.

2. Case Study Site and Data Description

2.1. Case Study Site. A study site located in the Luancheng
County of Shijiazhuang city (centered at 114.65°E and
37.88°N; Figure 1) was chosen to validate the approach for soil
moisture estimation. ,e site is relatively flat, and the main
crop type is wheat. ,e study area has a typical subhumid,
north temperate continental monsoon climate. ,e annual
average temperature is approximately 12.8°C, and the annual
average precipitation is approximately 474mm, which is
mainly concentrated in July and August. ,e top soil type of
the agriculture fields is cinnamon soil with a high nutrient
content, suitable for crop growth. Although the case study
area is not large, it has the representative characteristics of
crop-type distribution in the North China Plain.

GF-3 SAR and Landsat-8 OLI images were used in this
study. In addition, 38 agriculture fields were selected to
conduct in situ measurements, including those related to
both soil and vegetation characteristics.

2.2. Data Description. Microwave and optical satellite data
were fused to reduce the effects of vegetation cover on the
backscattering of soil moisture. Satellite data are listed in
Table 1.

2.2.1. GF-3 Data. In this study, one GF-3 SAR product
acquired in the Quad-Polarization Strip I (QPSI) mode,
processed up to level-1A SLC, was collected onMay 27, 2017.
Details of the QPSI model are listed in Table 2. ,e locations
of the collected GF-3 SAR data are shown in Figure 1.
PolSARpro software was used to calibrate the GF-3 image;
the calibration aims to convert the digital number values of
the GF-3 image into backscattering coefficients (σ°) in
a linear unit. In this study, we focused only on the copo-
larizations of HH and VV. To reduce the effect of speckle
noise, the mean backscattering coefficient of each sampling
point was calculated from a calibrated GF-3 image by av-
eraging the σ° values of five surrounding pixels. Meanwhile,
to reduce the impact of residential area on the soil moisture
mapping, a filtering method was used to mask houses (red
patches in Figure 1) to simplify the soil moisture map.

2.2.2. Landsat-8 Image. ,e NASA’s Landsat-8 satellite
carries two instruments: the Optical Land Imager (OLI)
sensor and the,ermal Infrared Sensor (TIRS). It images the
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land surface using 11 spectral bands in the optical and thermal
infrared domains with a spatial resolution of 30 to 100m and
a temporal resolution of 16 days [38]. �e Landsat-8 imagery
used in this study was downloaded from the United States
Geological Survey data archive (https://earthexplorer.usgs.
gov/).

We directly downloaded the land surface reflectance
product, in which the image had been preprocessed; pre-
processing included radiation calibration and atmospheric
correction.�e reflectance values of near-infrared (NIR) and
short-wave infrared (SWIR) bands were used to estimate the
normalized difference water index (NDWI) and VWC. Fi-
nally, Landsat-8 reflectance data were extracted from the
sample points and combined with field measurements to
build the relationship between vegetation water content
(VWC) and NDWI.

2.2.3. In Situ Measurement Data. Coincident with the GF-3
and Landsat-8 satellite overpasses, field campaign mea-
surements of soil moisture and roughness, as well as crop
biophysical parameters, were conducted over the 38 wheat
fields. For each field, three sampling points were randomly
selected (point separation 150m). Soil volumetric moisture
was measured using the oven-drying method (wet weight-
dry weight) at a depth of 0–5 cm, given that the C-band radar
signal is most sensitive to surface soil moisture. For each
sampling point, measurements were collected at three lo-
cations that were uniformly distributed over 8m (one pixel
of the GF-3 satellite).�e average soil moisture value of the
three locations was considered the soil moisture of the
sampling point. �e VWC collected from 1.0×1.0m squares
selected at random was determined by weighting before and
after oven-drying. Soil roughness was measured with a 1m
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Figure 1: Left image shows the geolocation of the Luancheng study area in Shijiazhuang city, and the right image is Gaofen-3 (GF-3) Quad-
Polarization Strip I (QPSI) data acquired on 27 May 2017. �e red patches are residential areas, and the green triangles indicate the field
measurement sampling points (point separation: 150m) in each field.

Table 1: Satellite data characteristics used in this study.

Type Sensor Spatial resolution (m) Date (dd/mm/yy) Retrieval purpose

Microwave GF-3 8 27 May 2017 Soil moisture
Optical Landsat-8 30 30 May 2017 Vegetation water content

Table 2: Main technical specifications of each imaging mode.

Imaging mode Incidence angle (°)
Resolution (m)

Imaging
bandwidth (km) Polarization mode

Nominal Azimuth Range Nominal Size

Quad-Polarization Strip I 20–41 8 8 6∼9 30 20∼35 Full polarization
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pin plate, including the root mean square height (S) and
correlation length (L) of each sampling point. In the 38
wheat fields, 19 fields (57 points) were chosen to complete
the VWC calculation and validate the WCM, and the
remaining 19 wheat fields (57 points) were used to validate
the soil moisture estimation model using GF-3 data.

3. Methodology

Our approach for the soil moisture estimation uses an ANN
technique that combines GF-3 and Landsat-8 satellite data
(Figure 2). ,e ANN was trained and tested on a training
sample dataset generated from the AIEM. First, the WCM
was used to eliminate the contribution of backscattering
coefficients caused by vegetation. ,en, the backscattering
coefficient of the soil was determined. ,e obtained soil
backscattering coefficients of GF-3 and in situ measurement
data were used to validate the SMC estimation algorithm.
Finally, SMC was estimated using the trained ANN.

3.1. Calculation of Backscattering Coefficient of Soil

3.1.1. Vegetation Water Content Calculation. VWC (kg/m2)
is one of the most important parameters for the successful
retrieval of SMC from microwave remote sensing obser-
vations [39]. Landsat-8 Operational Land Imager (OLI) data
and ground-based VWC measurements were used to es-
tablish relationships in our study based on remotely sensed
indices.

,eNDWI is a widely used and reliable indicator to assess
the vegetation water status, which is sensitive to changes in
VWC [40]. Gao first proposed the NDWI by combining
reflectance at 860 and 1240 nm to monitor VWC [41]. Be-
cause large-area VWC is more difficult to obtain, NDWI was
used in the current study. NDWI can be calculated as follows:

NDWI �
RNIR −RSWIR( )
RNIR + RSWIR( )

, (1)

where RSWIR is the reflectance or radiance corresponding to
the SWIR wavelength channel (1.2–2.5 µm) [42]. For
Landsat OLI, RNIR and RSWIR correspond to bands 5
(0.845–0.885 µm) and 6 (1.560–1.660 µm), respectively.

VWC was measured in 38 fields at the first sampling
point. ,e above ground biomass was removed, and fresh
and dry weights were used to compute the VWC. ,e re-
lationship between VWC and NDWI was generated based
on the least-squares fitting method, as follows:

VWC � aNDWI2 + bNDWI + c, (2)

where a and b are the coefficients and c is a constant cal-
culated based on Landsat-8 OLI land surface reflectance data
and ground-based VWC measurements.

3.1.2. Water Cloud Model. ,e WCM, introduced by
Attema and Ulaby [15], assumes that vegetation is a source
of homogeneous scattering. Radar backscattering coefficient
σ° from a canopy can be expressed as the sum of contri-
butions due to (i) volume scattering σ°canopy from the

vegetation canopy itself, (ii) surface scattering σ°soil by the soil
attenuated by the vegetation layer, and (iii) multiple in-
teractions σ°canopy+soil between the canopy and the ground
surface [14]. For a given incidence angle θ, the WCM can be
represented as follows:

σ° � σ°canopy + σ°canopy+soil + τ2σ°soil, (3)

where τ2 is the two-way vegetation transmissivity. ,e in-
teractions between vegetation and soil are neglected in the
WCM [18, 43]; therefore, the WCM can be reformulated as
follows:

σ° � σ°veg + τ2σ°soil,

τ2 � exp −2Bmveg sec θ( ),

σ°veg � Amveg cos θ 1− τ2( ),

σ°soil �
σ° −Amveg cos θ 1− exp −2∗Bmveg sec θ( )[ ]

exp −2∗Bmveg sec θ( )
,

(4)

where the backscattering coefficient of bare soil is simulated
based on the AIEM, which will be introduced in Section 3.2.
mveg is the VWC (kg/m2).,e incidence angle θ of GF-3 data
used in this study was 24°. A and B are parameters that
depend on the canopy type and sensor configuration, which
can be calculated by the least-squares method.

3.2. Generating the SMC Training Sample Dataset. Bare soil
backscattering depends on the dielectric constant and sur-
face roughness, as well as the SAR instrumental parameters
[44, 45]. ,e AIEM, a well-established theoretical model [9],
has been widely used as a forward model to simulate the
scattering coefficients and emissivity of bare soil surfaces
with various ground conditions, due to its precision [44–48].
,erefore, AIEM was selected to generate the SMC training
sample dataset.

,e Dobson dielectric model is commonly used to de-
scribe the relationship between the effective dielectric constant
of soil and soil moisture [49–51]. ,erefore, we combined
the Dobson model and AIEM to integrate soil moisture into
the training sample dataset during the generation process. ,e
equation can be conceptually represented as follows:

σ°soil− simu � AIEM–Dobson (f, θ, PP, SM, s, l,ACF), (5)

where f represents the satellite frequency (5.4GHz for the
GF-3 satellite), θ is the angle of incidence, PP denotes the
polarization state (includes HH and VV polarizations), ACF
is the autocorrelation function (an exponential ACF is
adopted), s is the root mean square height, and l is the
correlation length.

,e incidence angle ranged from 20° to 60° with an
interval of 1°. ,e s and l values were set based on field
measurements within 0.5–2.0 cm and 10.0–30.0 cm, re-
spectively. To reduce the number of parameters, surface
roughness is expressed as one parameter, Zs (s2/l), using an
exponential correlation function. Soil moistures ranged
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from 0.01 to 0.40m3/m3, with an interval of 0.01m3/m3. �e
training sample dataset was generated based on the AIEM
that included 551040 datasets.

3.3. Artificial Neural Networks Approach. ANNs can mimic
human learning and can build multivariate nonlinear re-
lationships; as such, they have been widely used for esti-
mating land surface parameters from remote sensing data
[52]. An ANN is made up of a number of hidden neurons or
nodes that work in parallel to convert data from an input
layer into an output layer. Each ANN has two modes of
operation: training and testing modes. In the training mode,
neurons are trained using part of the training sample dataset
as a particular input pattern to produce the desired output
pattern. In the testing mode, when an input pattern is
chosen, the ANNwill produce its associated output [53].�e

number of neurons associated with the hidden layer varies,
depending on the optimum neural network architecture.
Training is accomplished to obtain a minimum error be-
tween the ANN output and the input data by adjusting the
correlation weights between them [54].�e ANNmodel was
developed using the MATLAB software.

�e incidence angle and backscattering coefficient (HH
or VV) were the input variables; the corresponding SMC and
surface roughness were the output variables. �e ANN was
trained for HH and VV polarizations separately. One hidden
layer and 30 neurons provided accurate SMC estimation
within a reasonable computing time, by adding or removing
these components from the model for both HH and VV
polarizations. �erefore, the optimal ANN architecture
(Figure 3) was determined to be a three-layer network con-
sisting of an input layer (two neurons: incidence angle and
backscattering (HH or VV), one hidden layer (30 neurons),
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Figure 2: Flow chart for soil moisture content (SMC) estimation using an artificial neural network (ANN).
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and a two-output layer (SMC and surface roughness). Al-
though the structures for both HH and VV polarizations are
the same, the detailed ANN differs between the two. HH and
VV backscattering data were used separately as input pa-
rameters for their corresponding ANN. �e optimum ar-
chitecture has minimum error and maximum convergence,
avoiding any possible overfitting. �e training sample dataset
generated from the AIEM was randomly divided into two
parts: 90% of the cases were used for training the ANN and the
remaining 10% of the cases were utilized during the testing
process. �e Levenberg–Marquardt method, an alternative to
the Newton algorithm, was used to calibrate the synaptic
coefficients. Linear and tangent-sigmoid transfer functions
were associated with the hidden layer and output nodes,
respectively.

3.4. Soil Moisture Estimation and Accuracy Assessment.
GF-3 satellite data were preprocessed to obtain backscat-
tering coefficients of the agricultural area.�e backscattering
coefficients of soil were generated based on the WCM to
eliminate the backscattering contribution of vegetation. �e
SMC can be estimated using the trained ANN and the
backscattering coefficients of soil as the input parameter.
Direct comparison of in situ SMC measurements with SMC
estimations using GF-3 satellite data is a reliable way to
assess the accuracy of the proposed SMC estimation algo-
rithm. �e precision and accuracy of SMC were estimated
using two statistical indices: the R2 value of linear regression
and the root mean square error (RMSE). �e RMSE values
show how much the retrieval SMC values under- or over-
estimate the in situ measurements. For a perfect fit between
retrieval and field-observed SMC data, values of R2 and
RMSE should equal 1.0 and 0.0, respectively.

4. Results

4.1. Vegetation Water Content. Information about VWC is
an important parameter of the WCM, which is useful for
retrieving soil moisture from GF-3 satellite data. NDWI was
chosen to generate relationships withVWCbased on Landsat-
8 OLI land surface reflectance data and ground-based VWC

measurements.�en, coefficients (a and b) and constant (c) of
(2), 1.56, 1.27, and 0.49, respectively, were calculated using the
least-squares fitting method (R2� 0.771). �e VWC estima-
tion results using the proposed algorithm and Landsat-8 data
are shown in Figure 4. As for the spatial distribution, the large
VWC estimates were mainly distributed over the farmland,
and the VWC estimates at other areas were smaller. Due to the
different farmland areas, the growth of wheat is not the same,
so there are differences in VWC. �erefore, the VWC esti-
mates using Landsat-8 data could preliminarily indicate the
reasonability of the proposed VWC estimation algorithm.

4.2. Backscattering Coefficient of Bare Soil

4.2.1. Correlations between In Situ SMC and Corresponding
Total Backscatter σ°. A sensitivity analysis between the GF-3
total radar backscatter σ° (HH and VV polarizations) and in
situ SMCwas conducted based on all the field measurements
data to explore whether SMC could be retrieved directly
using regression methods, as shown in Figure 5. GF-3 total
radar backscatter σ° (HH and VV polarizations) was cor-
related with SMC, which is consistent with previous findings
[55], demonstrating the potential of GF-3 satellite data for
SMC retrieval. However, R2 between σ° and in situ SMC,
both with HH and VV polarizations, was lower than 0.146
(Table 3), thus indicating that simple regression methods
cannot achieve high-precision inversion of SMC. �e SMC
estimation under the vegetation cover area is affected by the
vegetation canopies, which scatter and attenuate electro-
magnetic radiation, which makes it difficult to discriminate
the radar return due to soil moisture [56]. �erefore, iso-
lating the contribution of vegetation from the total radar
backscatter is crucial for SMC estimation over agricultural
areas.

4.2.2. Bare Soil Backscattering Coefficients σ°soil. �e bare soil
backscattering coefficient σ°soil, which assumes vegetation as
a homogeneous scattering source, was calculated using the
WCM. �e simulated bare soil backscattering coefficient
σ°soil− simu was developed based on AIEM. �en, the pa-
rameters A and B of the water cloud model were calculated
through the least-squares method (Table 4).

�e backscattering coefficients of 19 wheat fields (57
points) were extracted to analyze changes in σ° and σ°soil
information (Figure 6). �e backscattering coefficient value
of each point was attenuated after the use of the WCM.
However, the degree of attenuation of each point was not the
same, mainly because the corresponding VWCwas different.

4.2.3. AIEM-Simulated Backscattering Data σ°soil− simu.
SMC estimation was achieved using an ANN method, in
which the training sample dataset was generated based on
the AIEM. Using the trained ANN, GF-3 satellite-measured
soil backscatter data were used as the input and SMC as the
output. To verify the reliability of the training sample
dataset, the consistency between the simulated backscat-
tering data (σ°soil− simu) and radar-measured soil

Incidence angle

HH or VV
Backscattering 

SMC

Surface
roughness

Input layer Hidden layer
(30 neurons)

Output layer

Figure 3: ANN architecture used for SMC estimation.
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backscattering data (σ°soil) was explored based on the
remaining 57 points, which is the different dataset used for
calibrating the WCM, as shown in Figure 7. �e results
showed that both HH and VV polarization-simulated
backscattering data from the AIEM agreed well with GF-3
satellite-measured soil backscattering data calculated using

the WCM (R2
� 0.894 for HH and R2

� 0.855 for VV).
�erefore, the training sample dataset generated from AIEM
was applied to the SMC estimation in this study.

4.3. Soil Moisture. �e soil moisture estimation results are
shown in Figure 8. �e remaining 19 wheat fields, which
contained 57 points, were used to directly assess the soil
moisture from GF-3 data using the proposed algorithm
(Figure 9). �ere was a good linear relationship between
field-measured soil moisture and estimated soil moisture.
�e soil moisture retrieval accuracy was satisfactory, with R2

and RMSE values of 0.7356 and 0.042 for HH polarization
and 0.7096 and 0.051 for VV polarization, respectively. �e
main reason for some of the larger differences between the in
situ SMC and the estimated SMC may be attributable to the
field sampling period being out of sync with the satellite
transit time, as the soil moisture could change over this time
period.

In summary, the differences between the measured soil
moisture and estimated soil moisture from GF-3 data were
small, and the soil moisture retrieval results were satisfac-
tory. �ese results indicate that the proposed soil moisture
method for GF-3 data is reliable and that GF-3 data could
achieve acceptable performance for soil moisture estimation.
�us, this approach shows the potential for providing the
high-resolution soil moisture dataset for agricultural ap-
plication, such as farmland soil moisture monitoring.

5. Discussion and Conclusions

We propose a soil moisture retrieval algorithm for agri-
cultural regions that uses GF-3 satellite and Landsat-8 data
based on the ANNmethod.�e ANN structure was trained
under a large range of land surface parameters, allowing the
algorithm to have better adaptability to a variety of un-
derlying conditions. �e retrieval results using field soil
moisture measurements obtained from an agricultural
region with wheat as the dominated crop type showed that
the proposed algorithm achieved satisfactory soil moisture
estimation accuracy (e.g., RMSE � 0.042). �e results in-
dicated GF-3 satellite data had good performance on soil
moisture retrieval, and the algorithm had potential to
operationally estimate soil moisture from GF-3 satellite
data. �e major conclusions of this study are summarized
as follows:

(1) VWC is an important factor for accurate retrieval of
soil moisture under the vegetation cover. In this
study, we combined microwave and optical remote
sensing data to eliminate the contribution of back-
scattering coefficients caused by the vegetation.
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Table 3: Linear fitting equations for in situ SMC and GF-3 radar
backscattering coefficient σ°.

Polarization Equation R
2

HH y� 0.125x− 13.884 0.146
VV y� 0.101x− 15.684 0.120

Table 4: Vegetation parameters in the water cloud model.

Polarization
Parameters

A B

HH 0.0023 0.142
VV 0.0019 0.127
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Landsat-8 OLI land surface reflectance data were
chosen to complete the VWC estimation. ,e re-
motely sensed NDWI was used to generate the re-
lationship with VWC through ground-based
observation data.

(2) An AIEM-Dobson model was built to simulate the
training sample dataset based on in situ measure-
ments and GF-3 satellite parameters. ,is dataset

includes the incidence angle, backscattering co-
efficients, and its corresponding SMC and surface
roughness. ,e WCM was used to calculate the bare
soil backscattering coefficient σ°soil. As the model’s
input parameters, the vegetation parameters A and B
were calculated using a least-squares method.

(3) ,e backscattering coefficients of GF-3 satellite data
were attenuated to different degrees compared to the
total backscattering coefficients after the use of
the WCM. Due to the different VWCs of each point,
the attenuation degree is also different. ,e effect of
vegetation contribution is large and must be re-
moved before the soil moisture retrieval process;
otherwise, it will influence the accuracy of soil
moisture retrieval.

(4) ,e optimal ANN architecture in this study was
determined as a three-layer network consisting of an
input layer (three neurons: incidence angle and HH
or VV backscattering), one hidden layer (30 neu-
rons), and a two-component output layer (SMC and
surface roughness). Our results and model sensitivity
highlight the contribution of combined GF-3 SAR
and Landsat-8 images using an ANN method for
improving SMC estimates. HH polarization showed
better SMC estimation performance than VV
polarization.

Although satisfactory soil moisture retrieval perfor-
mance was achieved, there were also several limitations to
this study. ,e field measurement had many uncertainties
that affected assessing soil moisture retrieval algorithms
using remote sensing data. Real soil moisture values from
ground-based measurements are difficult to match with
pixel-level soil moisture estimates, although averaging
multipoint measurements could reduce this error to a cer-
tain extent. Further work should focus on validating the
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Figure 6: Changes in the backscattering coefficient (a) before and (b) after the elimination of vegetation information.
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proposed soil moisture retrieval algorithm using field soil
moisture measurements with less uncertainty under various
land cover-type conditions.
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