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Abstract

Background: Most of our knowledge about the remarkable microbial diversity on Earth comes from sequencing

the 16S rRNA gene. The use of next-generation sequencing methods has increased sample number and sequencing

depth, but the read length of the most widely used sequencing platforms today is quite short, requiring the researcher

to choose a subset of the gene to sequence (typically 16–33% of the total length). Thus, many bacteria may share the

same amplified region, and the resolution of profiling is inherently limited. Platforms that offer ultra-long read lengths,

whole genome shotgun sequencing approaches, and computational frameworks formerly suggested by us and by

others all allow different ways to circumvent this problem yet suffer various shortcomings. There is a need for a simple

and low-cost 16S rRNA gene-based profiling approach that harnesses the short read length to provide a much larger

coverage of the gene to allow for high resolution, even in harsh conditions of low bacterial biomass and fragmented DNA.

Results: This manuscript suggests Short MUltiple Regions Framework (SMURF), a method to combine sequencing results

from different PCR-amplified regions to provide one coherent profiling. The de facto amplicon length is the total length of

all amplified regions, thus providing much higher resolution compared to current techniques. Computationally, the method

solves a convex optimization problem that allows extremely fast reconstruction and requires only moderate memory. We

demonstrate the increase in resolution by in silico simulations and by profiling two mock mixtures and real-world biological

samples. Reanalyzing a mock mixture from the Human Microbiome Project achieved about twofold improvement in

resolution when combing two independent regions. Using a custom set of six primer pairs spanning about 1200 bp

(80%) of the 16S rRNA gene, we were able to achieve ~ 100-fold improvement in resolution compared to a single region,

over a mock mixture of common human gut bacterial isolates. Finally, the profiling of a Drosophila melanogastermicrobiome

using the set of six primer pairs provided a ~ 100-fold increase in resolution and thus enabling efficient downstream analysis.

Conclusions: SMURF enables the identification of near full-length 16S rRNA gene sequences in microbial communities,

having resolution superior compared to current techniques. It may be applied to standard sample preparation protocols

with very little modifications. SMURF also paves the way to high-resolution profiling of low-biomass and fragmented DNA,

e.g., in the case of formalin-fixed and paraffin-embedded samples, fossil-derived DNA, or DNA exposed to other degrading

conditions. The approach is not restricted to combining amplicons of the 16S rRNA gene and may be applied to any set of

amplicons, e.g., in multilocus sequence typing (MLST).
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Background
Bacteria are the most diverse domain on our planet [1],

playing a crucial role in numerous ecosystems as well as

an inseparable role in human health and disease. With the

advent of next-generation sequencing technologies, mo-

lecular identification has replaced traditional culturing,

allowing a window into the diversity of microbial commu-

nities. Most of these studies are based on sequencing of

the 16S rRNA gene, which has several highly conserved

regions interleaved with variable regions. Conserved

regions serve as “anchors” for designing polymerase chain

reaction (PCR) primers while sequencing the variable

regions identifies the bacteria.

Such PCR primers are required to be “universal,” i.e.,

amplify most bacterial 16S rRNA gene sequences, while

maximizing the phylogenetic resolution, namely, the

ability to distinguish among different bacteria based on

the amplified sequence (for a comparison between differ-

ent regions see [2] and references therein). However, the

main design criterion for many current 16S rRNA gene

primers is to increase the universality under the constraint

of amplifying a region that matches the read length avail-

able by the sequencing platform (e.g., V3-V4 primers for

Illumina paired-end sequencing [3–6]). Hence, the reso-

lution is limited since many bacteria may share the same

short amplified sequence.

High-resolution identification of bacteria in mixtures

may prove highly useful in subsequent analysis, especially

when follow-up studies require isolation and monoculture

experiments. The basic aim is, therefore, to allow an exact

identification of each bacterium in a mixture, or at least

minimize the ambiguity, i.e., the number of bacteria that

share the same 16S rRNA gene “footprint.”

Using short reads over a long amplicon to increase

resolution

The main reason for matching the amplicon length to the

read length is technical and not biological. In recent years,

several computational methods that allow higher resolution

profiling based on an amplicon longer than the read length

have been proposed [7–12]. These methods receive short

reads that originate from one long amplified region and

solve some optimization problem that seeks a combination

of bacteria that best explains the set of reads in the experi-

ment. Different methods vary in their fine details, represen-

tation, applied cost function, and optimization method.

This approach, which we term the “single long-region

framework,” suffers from several drawbacks:

(i) Non-standard 16S rRNA gene sample preparation:

Prior to sequencing, a long amplicon requires

shearing (e.g., by sonication) followed by size

selection and adaptors’ ligation. Apart from being

quite labor-intensive and time-consuming, both size

selection and ligation steps cause significant

material loss that could be detrimental when

detecting low-frequency bacteria in complicated

biological mixtures. An additional PCR step is

required to compensate for such material loss,

hence additional PCR bias introduced.

(ii)Primers are far from being universal: Current

primers for amplifying the whole 16S rRNA

gene (e.g., 8F and 1492R [13]) significantly

improve resolution, compared to sequencing

a short region; however, they are highly

non-universal. To increase universality, some

mix of primer pairs is required.

(iii)Sequencing fragmented DNA may not be feasible:

Increasing resolution via sequencing a long

amplicon implicitly assumes that available DNA

molecules are long enough. Although this is often

the case, there are conditions in which molecules

are fragmented, e.g., when DNA is extracted from

formalin-fixed and paraffin-embedded (FFPE)

blocks, fossil-derived DNA, or DNA exposed to

harsh environments (radiation, reducing agents,

etc.). An average length of a DNA molecule in

this case may be shorter than needed for amplifying

a long region, and thus, amplification may not

be possible. Moreover, sometimes, even standard

primers may not be suitable since the molecules’

lengths are too short (if the average molecule

length is about 200 bp then also custom V3-V4

primers may not be applied).

Short multiple-regions framework

Here, we propose a different approach that allows high-

resolution profiling. The method is based on independent

PCR amplification and sequencing of several regions

(actually any number of regions) along the 16S rRNA

gene, which are computationally combined to provide a

joint estimate of the microbial community composition

(Fig. 1). We term this method “Short MUltiple Regions

Framework (SMURF).” Since several regions are amplified,

the de facto amplicon is large allowing for a high reso-

lution similar to the single long-region framework, while

having the following advantages:

(i) Availability of custom primers and standard sample

preparation: SMURF can be applied to any

combination of common primer pairs (e.g., V1-V3,

V3-V5, V4) without the need for designing custom

long-amplicon primers. Also, DNA shearing, size

selection, and ligation steps needed in the

long-amplicon case are not required. Basically,

the approach allows high resolution without the

need for modifying experimental procedures
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(namely, library preparation is independently

performed for each primer pair, as in standard

protocols).

(ii)“Mix-and-match” primers to increase primers’

universality and resolution: Increasing universality

and resolution in SMURF amounts to amplifying

additional regions until the required universality

and resolution are achieved. Rather than aiming

to improve universality [14] or searching for the

single and optimal set of primers [2], SMURF

allows to combine any set of “sub-optimal” primers

to achieve both superior universality and resolution

compared to each of these primers applied by it.

Results would evidently depend on the properties

of the chosen set of primers, and therefore, a wise

selection would yield more accurate profiling.

(iii)SMURF allows sequencing fragmented DNA:

The “building blocks,” i.e., the amplicons, are

short and thus allow amplification also in case

of highly fragmented DNA.

(iv)Multiple regions tend to “average” PCR bias:

PCR amplification may have a different efficiency

for different bacteria [15, 16], which results in

considerable differences in profiling depending on

primer choice [17–20]. Moreover, Gohl et al. [21]

have shown that the same primer pair may yield

different profiling results depending on the specific

library preparation protocol. Since SMURF

reconstruction is performed based on several

amplified regions, and assuming that biases are

independent in every region, reconstruction

tends to average the effects of such biases.

(v)Algorithmic advantages: The mathematical

formulation of SMURF is analogous to the one

formerly suggested for the long-region methods

[7, 12]. However, there are several computational

advantages of SMURF that stem from combining

short regions. First, long-region methods require

aligning reads to reference genomes before estimating

bacterial frequencies. This time-consuming and

error-prone step (e.g., via Bowtie [22] or BWA [23])

is not needed in SMURF since each read is readily

associated with its primer and then matched to the

corresponding region’s k-mer database (a k-mer in

this context is a bacterial sequence from the amplified

region whose length matches the read length).

Second, data representation in this case is much

more efficient. The number of k-mers representing

a bacterium is orders of magnitude smaller than for

the long-region framework (a bacterium is repre-

sented by one or two k-mers per region as opposed

to the long-region framework, where the number of

k-mers is equal to the region’s length). Consequently,

optimization does not require handling huge matrices,

which together with fixed-point iteration formula

results in an extremely fast reconstruction. The

third computational advantage is that the SMURF

cost function is convex, and thus, convergence to

a global optimum is guaranteed.

The manuscript presents the improvement in resolution

achieved by SMURF and demonstrates the advantages of

detecting near full-length 16S rRNA gene sequences. The

work is divided into several parts: (i) First, using in silico

simulations, we show a marked increase in resolution as a

function of the number of amplified regions; (ii) second,

the correctness of the method is assessed and verified via

analysis of several mock mixtures. In the first experiment,

a mock mixture was sequenced using a new set of six pri-

mer pairs each amplifying about 200 bp of the 16S rRNA

gene. The experiment allowed us to confirm the increase

in resolution as a function of the number of applied pri-

mer pairs. Next, we re-analyzed a mock mixture from the

Human Microbiome Project combining reads originating

a b

Fig. 1 A schematic description of SMURF. a A comparison between single and multiple region profiling. b The SMURF flow diagram describing

the internal steps of a typical analysis
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from two regions (V1-V3 and V3-V6). Apart from correct

reconstruction and improvement in resolution when

combining two regions, this experiment displayed the

applicability of SMURF to available data acquired via

standard protocols; finally, (iii) a real-world experiment

characterizing a dynamic change occurring in the complex

D. melanogaster microbiome was analyzed. We demon-

strate the correctness of SMURF’s results and describe

how high-resolution profiling was essential for efficient

downstream analyses.

Methods
Steps in SMURF are detailed (Fig. 1b), followed by a

description of simulations and experiments performed (a

Matlab code of SMURF is available at https://github.-

com/NoamShental/SMURF).

Database preparation

Database

The basic database used was the Greengenes (GG) 16S

rRNA gene database (May 2013 version) [24] (other data-

bases, e.g., SILVA [25], can also be used as described in the

SMURF software package). Sequences containing ambiguity

were duplicated by all possible sequence values (up to 64

combinations per sequence; sequences that contained more

than three ambiguous nucleotides were discarded). Conse-

quently, the basic database consisted of 1,402,801 unique

16S rRNA gene sequences. Preparing an ad hoc, protocol-

specific database: Given the sequencer’s read length, k, and

each region’s primer pair, a list of all possible k-mers in each

region was generated based on the basic database. A bacter-

ium was termed “amplified” in a specific region if each of

the forward and reverse primers had at most two mis-

matches with the bacterial sequence. Data was presented

using a database matrix, M, where Mhj is the probability of

observing the k-mer h in bacterium j, Mhj = Pr(kmer = h|

bacterium= j). The matrix M holds the information of all

regions (i.e., for all J bacteria and H possible k-mers). In

(the rare) case that the same k-mer appears in two regions,

M holds a separate line for each.

For paired-end sequencing, each bacterial sequence may

contribute a single k-mer per region (the k-mer is a concat-

enation of two bacterial sequences of length k that begin

from the two ends of the amplicon). Hence, Mhj = 1/Rj,

where Rj is the number of regions amplified for bacterium

j, which also equals the number of k-mers originating from

bacterium j. For single-end sequencing, there are two

possible k-mers per amplified region (one from each ampli-

con ends), i.e., Mhj = 0.5/Rj. Hence, the maximal matrix size

is the number of bacterial sequences in the database multi-

plied by twice the number of regions, which is orders of

magnitude smaller than for single long-region framework,

which greatly simplifies algorithm complexity and run time

(e.g., the analogous matrix M in COMPASS [9] contains ~

100-fold more rows).

Read matching

Reads were assigned to a region by the primer sequence,

and hence, “alignment” amounts to counting the number

of mismatches between a read and the list of k-mers in

that region (compared to applying complicated and costly

alignment algorithms such as Bowtie required in the long

region approach). A read is termed “matched” to a k-mer

if there were at most two mismatches between the read

and the k-mer after excluding the primer sequence.

Following alignment of read i, it was assigned a probability

that it originated from a k-mer h, Eih. Assuming a constant

error probability per nucleotide pe, and independence

between different locations along the read, then,

Eih ¼ Pr read ¼ ijkmer ¼ hð Þ ¼
pe
3

� �ne
1−peð Þ L−neð Þ

where ne is the number of mismatches between the k-mer

and the read (results were almost independent of the

selected value of pe (Additional file 1: Figure S4), and thus

pe = 0.005 was used [26]).

Data preprocessing

Two filters were applied:

Filtering low frequency reads: Reads that appeared

less than 10−4 times the number of reads in a region

were discarded. The filter sets the lowest detectable

frequency (0.01%) while significantly decreasing false

positive detections resulting from reads errors. The

threshold value, 10−4 , may be lowered if the number

of reads per region is high enough, and bacteria whose

frequencies are lower than 0.01% are sought. To

decrease false positive detections in such case, a

read de-noising algorithm [27, 28] may be applied

prior to SMURF.

Filtering candidate bacteria: In case no reads were

aligned to a bacterium in a region for which there

was a perfect match between the bacterial sequence

and the primers, this bacterium was not considered

in subsequent analysis.

Reconstruction algorithm

For reconstruction, we followed the maximum likelihood

probabilistic framework suggested in [7, 12].

Given Mhj and Eih, using the law of total probability,

the probability of a read i given a bacterium j, is given

by Qij ¼ Pr read ¼ ijbacterium ¼ jð Þ ¼
PH

h¼1 EihMhj .

The probability of observing the read is pi ¼
PJ

j¼1 Qijπj ,

where πj is a probability of selecting a read belonging to

bacterium j. The likelihood of the N reads is given by
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Pr yð Þ ¼
QN

i¼1 pi , which is a convex function of the

unknown read proportion vector, π . Hence, using the

expectation-maximization algorithm [29], an iterative

procedure for the estimation of π was derived.

π
tþ1ð Þ
j ¼ π

tð Þ
j

1

N

X

N

i¼1

Qij
PJ

j¼1 Qijπ
tð Þ
j

The above procedure is similar to the one used in [12],

while assuming constant error probability, which results

in a convex cost function and a highly efficient fixed

point iteration formula.

The frequency of bacterium j, xj, was estimated by

normalizing πj by the number of k-mers originating

from this bacterium j, which was simply the number of

regions, Rj, amplified in bacterium j,

xj ¼

πj

Rj
PJ

j¼1
πj

Rj

Resolution, ambiguity, and the definition of a group

SMURF results in a list of reconstructed bacteria (i.e.,

full-length 16S rRNA gene sequences) and their frequen-

cies. Some of these sequences may be indistinguishable

by SMURF since they share the same sequence over all

amplified regions. A set of reconstructed sequences that

shares the same “footprint” over the amplified regions

was defined as a “group.”

A bacterium may also correspond to several recon-

structed groups, e.g., due to several distinct 16S rRNA

gene operons or because of profiling errors. Hence, in

order to measure resolution, we define “ambiguity” as the

effective number of 16S rRNA gene sequences that were

“assigned” to a bacterium. In case a bacterium corre-

sponds to a single group, ambiguity is in fact the group’s

size. To quantify ambiguity, we used the exponent of the

Shannon entropy [30, 31]. Although ambiguity is actually

a standard alpha diversity measure, we decided to use this

term to emphasize the fact that lower values, which

correspond to higher resolution, are preferred.

Resolution may not necessarily be associated with

changes in taxonomy. In many cases, even a single

region allows species-level identification; however, sub-

species may not be decided. Hence, studies that require

a unique identification of full-length 16S rRNA gene

sequences would benefit from applying SMURF.

In silico simulations

Performance of SMURF was first evaluated by in silico

simulations. Bacterial communities of 100 bacteria were

randomly selected from the database, where their fre-

quency followed a power law distribution (1/x). Profiling

such a mixture is challenging since most bacteria have

very low frequencies (half of the bacteria in the mixture

have a cumulative frequency of 13%). The set of six pri-

mer pairs, later used in our experimental mock mixture,

was applied in our simulations (the total amplicon

length was about 6 ∙ 200bp). The simulated number of

reads over all regions was 200,000, where the sequencing

error model was adopted from [9]. Results are based on

1000 simulated communities.

Effect of the number of regions

Each simulated mixture was reconstructed six times, start-

ing from a single region and adding one region at a time

(the order of regions was set so as to maximize the number

of unique groups in the ad hoc database at each step). The

total number of reads was kept the same (200,000) in all

cases, i.e., the number of reads per region decreased when

increasing the number of regions.

Simulation performance measures

The performance was measured by an adaptation of

weighted precision and weighted recall defined in [9],

quantifying the true discovery rates (i.e., one minus false

discovery rate (1-FDR)) and true positive rate, respectively.

Sequences in the simulated mixture were compared to

sequences in the reconstructed mixture (comparison was

performed over the whole 16S rRNA gene sequence).

Whenever a perfect match occurred between a simulated

bacterium m and reconstructed bacterium r, the indicator

functions Im = 1 and Ir = 1 were assigned. Even a single

mismatch between r and m was considered as an error.

Weighted recall, i.e., the probability that a bacterium

belongs to the reconstructed mixture given it appeared

in the simulated mixture was
P100

m¼1 f m∙Im , where fm was

the frequency of a bacterium in the simulated mixture.

Weighted precision, i.e., the probability that a bacterium

belongs to the simulated mixture given it appeared in

the reconstructed mixture,
PNR

r¼1 xr∙Ir , where xr is the

frequency of bacterium r in reconstructed mixture, and

NR is the total number of reconstructed bacteria.

Experimental profiling of a mock mixture

Primers

To test the method, a set of six primer pairs was designed

(Table 1). Each primer pair was selected to maximize the

number of bacteria amplified in a region while satisfying

some desired primers’ characteristics (e.g., GC content, melt-

ing temperature). Amplicon length was about 200–250 bp.

Mock mixture-sample preparation

Genomic DNA from ten bacterial strains, Akkermansia

muciniphila ATCC BAA-835, Lactobacillus casei ATCC

334, Bacteroides caccae ATCC 43185, Bacteroides fragilis

ATCC 25285, Bacteroides ovatus ATCC 8483T, Eggerthella
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lenta DSM2243, Eggerthella lenta FAA 1-3-56 (both

Eggerthella lenta strains have the same 16S rRNA gene

sequence), Escherichia coli BL21, Eubacterium rectale

ATCC 33656, and Lactobacillus plantarum ATCC 8014,

was isolated using the UltraClean® Microbial DNA Isolation

Kit (MO BIO Laboratories, Inc.), quantified using the

Qubit™dsDNA BR Assay Kit (ThermoFisher Scientific), and

mixed in equal proportions.

PCR amplification of six predefined regions was per-

formed using the primers described above, and their prod-

ucts were mixed. Samples were then cleaned on column

(Promega, Fitchburg, WI), concentration was measured

using NanoDrop (NanoDrop Technologies, Wilmington,

DE), and diluted to 50 ng/ul. Subsequently, the sample

went through standard Illumina library preparation and

sequenced on an Illumina HiSeq2000 sequencer using

paired-end 100 bp reads (the sample was sequenced

together with many other samples). The number of reads

per region varied between 800,000 to about 2,000,000.

Analysis

Preprocessing reads

The barcodes (7 bp) and the primers (18 bp) were

removed from the reads resulting in 76 bp long reads

assigned to each region. Reads were discarded in three

cases (i) a Phred score of less than 30 in more than 25%

of nucleotides, (ii) more than three nucleotides having a

Phred score of less than 10, or (iii) when containing one

or more ambiguous base calling (e.g., “N”).

Postprocessing SMURF results

All reconstructed 16S rRNA gene sequences were classified

via the Ribosomal Database Project (RDP) Sequence Match

engine [32], and results were combined (i.e., frequencies

added) for bacteria sharing the same RDP assigned species.

Combined groups having a total frequency lower than 0.1%

were discarded, and the relative frequencies of the remaining

groups were renormalized. Since both Eggerthella lenta

strains share the same 16S rRNA gene sequence, their com-

bined frequency was shown.

Evaluating the effect of the number of regions

The sample was reconstructed six times, starting from a

single region and adding one region at a time in the

same order as described in the simulations section.

Estimating resolution

The resolution was separately estimated for each bacterium

in the mock mixture, using the exponent of the Shannon

entropy [30, 31]. For each bacterium in the mock mixture,

all groups whose RDP classification matched the bacterium

were considered in this ambiguity calculation.

Re-analyzing Human Microbiome Project mock mixture

To further demonstrate the advantages of SMURF, we ex-

amined a microbial mock community used to validate the

protocols of the Human Microbiome Project (HMP) [33].

This “even mock mixture” sample (https://www.ncbi.nlm.-

nih.gov/sra/SRX020130) containing 21 known bacterial

strains was independently profiled over regions V1-V3

(SRR42565 and SRR42567) and V6-V9 (SRR42570 and

SRR42571). Reads from the two experimental repeats for

each region were pooled together for reconstruction. The

total number of reads that passed a quality filter was

56,000 and 27,000 for V1-V3 and V6-V9, respectively.

SMURF was used to combine results of these two regions

to display the increase in resolution. Reads were trimmed

to length 170 nt. Preprocessing the reads and postproces-

sing SMURF results were performed as described for the

experimental mock mixture. To display the increase in

resolution, reconstruction was performed based on each

region separately and for combining the two regions.

Profiling of a Drosophila microbiome

Drosophila stocks

A hairy-GAL4 line was obtained from the Bloomington

Stock Center.

Extracting bacterial DNA

Flies were reared either on standard medium or medium

containing 400 μg/ml of the G418 toxin (Sigma). For each

experiment, seven to ten third stage larvae were collected,

Table 1 The set of six primer pairs used in this study. The number of Greengenes sequences (out of the total 1,402,801 sequences)

that have a perfect match with each primer pair. The primers’ sequences and their median start locations along the forward strand

are shown. The set of primers was used for profiling our mock mixture, the D. melanogaster samples, and for in silico simulations

Region # amplified Forward primer Reverse primer

Sequence Position Sequence Position

1 196415 5′-TGGCGGACGGGTGAGTAA-3′ 74 5′- CTGCTGCCTCCCGTAGGA-3′ 315

2 1122118 5′-TCCTACGGGAGGCAGCAG-3′ 316 5′- TATTACCGCGGCTGCTGG-3′ 484

3 660912 5′-CAGCAGCCGCGGTAATAC-3′ 486 5′- CGCATTTCACCGCTACAC-3′ 650

4 660342 5′-AGGATTAGATACCCTGGT-3′ 752 5′- GAATTAAACCACATGCTC-3′ 911

5 591604 5′-GCACAAGCGGTGGAGCAT-3′ 901 5′- CGCTCGTTGCGGGACTTA-3′ 1057

6 783882 5′-AGGAAGGTGGGGATGACG-3′ 1143 5′- CCCGGGAACGTATTCACC-3′ 1336

Fuks et al. Microbiome  (2018) 6:17 Page 6 of 13

https://www.ncbi.nlm.nih.gov/sra/SRX020130
https://www.ncbi.nlm.nih.gov/sra/SRX020130


their gut dissected, and total bacterial DNA was extracted

via the “chemagic DNA Bacteria” kit (Chemagen).

Sample preparation and sequencing

PCR was performed using the set of six primer pairs

described. Sample preparation was performed similarly to

our mock mixture described above and sequenced on the

same lane. The number of reads per region varied between

~ 300,000 to ~ 1,800,000.

Isolation and growth of commensal bacteria

Ten male flies were shaken in 1 ml of PBS buffer at room

temperature for 30 min. One hundred milliliter of this

fluid were serially diluted, spread on yeast peptone

dextrose (YPD) agar plates, and colonies were grown at

room temperature for 3 days. Several colonies were

picked, underwent three additional rounds of isolation,

grown overnight at 30 °C in liquid YPD, and stocked in

35% glycerol at − 80 °C.

Sanger sequencing of colonies

The 16S rRNA gene was PCR-amplified from bacterial

DNA using universal primers 8F (AGAGTTTG

ATCCTGGCTCAG) and 1492R (GGTTACCTTGTT

ACGACTT) [13]. The PCR product was cloned into

PGMT plasmid, sequenced, and compared to SMURF

predicted sequences.

Results

Using the set of six primers pairs, the theoretical in-

crease in resolution as a function of the number of re-

gions is first presented. Second, SMURF’s results of both

in silico simulations and an experimental mock mixture

using this set of primer pairs are shown. Third, we dis-

play the effect of applying SMURF to re-analyze an

HMP mock mixture. Finally, we present the advantages

of increasing resolution in detecting specific bacterial

strains in a real-world example of D. melanogaster

microbiome undergoing a change.

Theoretical effect of combining short regions

To assess the potential improvement in resolution when

combining several short regions, we calculated the group

size of each bacterial sequence in the Greengenes (GG)

database using our six primer pairs. Namely, the number

of GG sequences that share the same sequence over the

relevant regions and are thus indistinguishable were calcu-

lated (the group’s size coincides with the ambiguity in this

case and hence measures the resolution by which a bacter-

ium may be identified). This procedure was repeated six

times, starting from a single region and adding one region

at a time as described in the “Methods” section. For

comparison, data for variable region 4 (V4) is also shown

(using standard forward and reverse primers: 5′-GTG

CCAGCMGCCGCGGTAA-3′, 5′-GGACTACHVGGG

TWTCTAAT-3′).

Figure 2a shows the fraction of GG sequences that be-

long to a group of up to a certain size, for one and six re-

gions and for the V4 region (results for two to five regions

were omitted for clarity and appear in Additional file 1:

Figure S1). For example, 13% of the GG sequences belong

to a group of size one, i.e., were uniquely identifiable using

a single region. Using V4, the fraction of uniquely identifi-

able sequences was 21%, while for six regions, the fraction

was doubled to about 40%, which displays the potential

increase in resolution using a larger number of regions.

The same phenomenon occurred also for sequences that

were not uniquely identifiable and belong to larger group-

s—much more sequences belonged to smaller groups when

using six regions compared to V4, corresponding to a sig-

nificant increase in resolution. Although our single region

provided inferior resolution compared to V4 (which uses a

set of 20 oligonucleotides instead of just a single pair in our

case), using merely two regions was sufficient for better

performance than V4 (Additional file 1: Figure S1).

a b

Fig. 2 Theoretical resolution and in silico simulation results. a The resolution for one region and six regions. b Weighted precision/recall of

simulated communities in six regions, one region, and V4
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In silico simulations

Figure 2b shows reconstruction performance when simu-

lating 200,000 reads from a mixture of 100 bacteria ran-

domly selected from the GG database, having a power law

frequency distribution. Weighted precision and weighted

recall were plotted for one and six regions and for using

V4 primers (results for two to five regions were omitted

for clarity and appear in Additional file 1: Figure S2).

Weighted recall (i.e., the chances that a bacterium from

the simulated mixture appeared in the reconstruction)

was very high in all cases. The 200,000 reads were divided

among regions, and hence simulating six regions used six-

fold less reads per region, resulting in slightly lower per-

formance detecting the low-frequency sequences. These

differences became more pronounced when simulating a

lower number of reads (Additional file 1: Figure S2).

Hence, a certain minimal number of reads per region was

required in order to maintain high recall performance.

Weighted precision (i.e., the chances that a bacterium

from the reconstructed community appeared in the ori-

ginal mixture) greatly improved when using six regions

compared to a single region and to V4. Improvement in

precision was mainly achieved by a reduction in the

groups’ sizes, due to the longer effective amplicon. The

probability of correctly detecting a bacterium which is

uniquely identifiable, i.e., belongs to a group of size one,

was about 39% when applying six regions, while being

13 and 21% for a single region and V4, respectively

(similar results appeared in the former section describ-

ing the theoretical effects).

Since results may vary depending on the selected regions,

performance was also tested over all singleton regions as

well as over pairs of regions, triplets etc. (Additional file 1:

Figure S3). Results varied significantly among singleton

regions, yet performance was consistently better and more

homogeneous when combining regions (e.g., variability in

recall/precision among triplets was smaller than for pairs).

Ambiguity also monotonically decreased with increasing

the number of regions. However, unlike precision and

recall, ambiguity highly depended on the specific selected

regions and displayed more than a twofold difference

between the worst and best combinations.

Experimental mock mixture

Reconstruction accuracy

Figure 3a shows SMURF profiling of our experimental

mock mixture, based on one and six regions (results for

two to five regions were omitted for clarity and appear in

Additional file 1: Figure S5). All bacteria were detected,

i.e., there were no false negative detections (100% recall),

a

b c

Fig. 3 Experimental mock mixture. a Frequency (percent) of correctly detected bacteria and of false positive detections (one and six regions).

b Ambiguity as a measure of resolution (one and six regions). c The average ambiguity (~ 100fold smaller for six regions vs. one region)
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independent of the number of regions applied. There were

several false positive detections, mainly Enterococcus

faecium and Propionibacterium acnes which are known

contaminations from our lab, and Wolbachia pipientis

which was a contamination originating from Drosophila

melanogaster samples prepared and sequenced in con-

junction. The remaining false positive detections, which

may also result from contaminations, sum to about 1%, i.e.,

precision was 99%. For some bacteria, frequencies varied

between one and six regions (Additional file 1: Figure S5).

For some bacteria, the reconstructed frequency was differ-

ent from the expected 10% frequency, even after adjusting

for the number of 16S rRNA gene copies (Additional file 1).

These differences can be attributed to PCR amplification

biases; specifically, the lower frequency estimates were

related to primers mismatches (e.g., Eubacterium rectale,

Additional file 1: Table S1). Results were almost identical

when using the SILVA database instead of the Greengenes

database (Additional file 1: Figure S6).

Resolution as function of the number of regions

Figure 3b shows the ambiguity of species detected in

one and six regions (results for two to five regions

appear in Additional file 1: Figure S5). Ambiguity, mea-

sured by the exponent of Shannon’s entropy, measures

the effective number of 16S rRNA gene sequences that

were associated with a specific bacterium. For example,

the ambiguity of E. coli BL21 was 5384 based on one

region and significantly dropped to 25 when using six

regions. Hence, if we were to follow up on the exact E.

coli sub-strain, we would have had 200-fold less hypoth-

eses to check, as we show later on in the “Profiling a

Drosophila microbiome” section. Ambiguity was smaller

than 100 for all bacteria, and was lower than ten for six

of them, when using the six regions protocol. For com-

parison, using a single region, ambiguity was larger than

100 in nine out of the ten bacteria, while being larger

than 1000 for a five of them. Overall, the increase in

resolution using six regions was ~ 100-fold better com-

pared to a single region (Fig. 3c).

Re-analyzing an HMP mock mixture

Reconstruction accuracy

Figure 4a shows SMURF’s profiling results of an HMP

mock mixture containing 21 species (SRX 020130). All

species were detected in both regions, apart from Methano-

brevibacter which neither regions amplified [34]. Although

mixed so as to create an equal number of 16S rRNA gene

copies per bacterium, some species were nearly undetect-

able (e.g., E. coli and Helicobacter pylori) while others were

significantly overrepresented (e.g., Staphylococcus aureus).

As in our mock mixture, these biases result either from

PCR amplification biases [35] or from specific library prep-

aration steps [21].

Combining regions increases resolution

As in former cases, the major effect of combining regions

was related to increasing resolution. When reconstructing

the community jointly from two regions, the resolution

improved compared to both single regions for 11 bacteria

out of 20 detected in the mixture (Fig. 4b). For example,

ambiguity for H. pylori using regions V1-V3 and V6-V9

was 137 and 76, respectively. However, combing regions

resulted in a significantly smaller ambiguity, of seven H.

pylori 16S rRNA gene sequences, which included the cor-

rect sequence. Similarly, for E. coli, resolution increased

from an ambiguity of 1892 and 1705 in V1-V3 and V6-V9,

respectively, to 602 for the combined solution in which

the correct sequence was included. For eight other bac-

teria, resolution of the combined solution improved with

respect to one of the regions but was inferior to the other.

This is due to sequencing errors and PCR amplification

biases that promote inclusion of sequences with similar

amplicon or sequences amplified only in one of the

regions to account for the differences in read counts

between the regions (see Additional file 1 for an illustrat-

ing example). For the bacterium Actinomyces odontolyti-

cus, ambiguity was equal (1) for either regions and for

their combination, making it invisible on the logarithmic

scale. In total, the average ambiguity for the V1-V3 and

V6-V9 regions was 261 and 216, respectively, while when

combining the two regions ambiguity reduced to 131

sequences per species, corresponding to a ~ 2-fold

increase in resolution (Fig. 4c).

Profiling a Drosophila microbiome

We previously showed that toxic stress in specific tissues of

fly larvae can induce developmental phenotypes that persist

for multiple generations in non-exposed offspring. An ex-

posure to a G418 toxin led to a delay in larval development,

induced the expression of neoGFP, and modified the adult

morphology [36]. The former two phenotypes persisted in

subsequent generations of non-exposed offspring.

Since G418 is a broad spectrum antibiotic, this experi-

ment sought to investigate the impact of the G418 toxin

on the Drosophila microbial composition and its implica-

tions on the inheritance of induced responses (this section

presents unpublished data from our project [37]).

Reconstruction accuracy

Profiling results using one and six regions showed roughly

the same microbial composition, namely that G418 lead

to a depletion of Acetobacter species and to an increase in

the frequency of Lactobacilli (Fig. 5a, b and [37]).

SMURF enables highly efficient downstream analysis

To check whether the observed change in the host’s

microbiome played a role in the induction or inheritance

of the reported phenotypes, we needed to functionally test
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a

b
c

Fig. 4 Re-analysis of an HMP “even” mock mixture. a Reconstruction of either V1-V3 or V6-V9 or the two regions jointly. b Ambiguity when using

V1-V3 or V6-V9 regions and by their combination. c Average ambiguity is reduced ~ 2-fold when combining the two regions

a

c d

b

Fig. 5 Reconstruction of bacterial populations in D. melanogaster following toxic treatment. a Naïve flies using six regions (left) and one region

(right). b Same for flies reared on medium containing the G418 toxin. c Ambiguity of the three most abundant species. Profiling based on a

single region (hollow bars) and six regions (full bars). d Similarity between L. plantarum predicted strains and the Sanger sequence of the strain

isolated from the detected colony (top 100 sequences)
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whether these phenotypes were induced upon the removal

of each of the strains present in naïve flies, and whether the

inheritance of the phenotypes was interrupted upon

reintroduction of these strains to G418 treated flies. Hence,

exact strain isolation and identification were required. To

achieve that, a set of 16S rRNA gene sequences predicted

by SMURF (i.e., hypotheses regarding exact strain iden-

tities) was used to design strain-specific PCR/qPCR primers

[37], later applied to colonies of individually isolated bac-

teria in order to identify the various strains. This approach

was feasible due to the low ambiguity of SMURF’s pre-

dicted strains, i.e., 4, 3, and 33 for Lactobacillus,Wolbachia,

and Acetobacter, respectively (Fig. 5c, solid). Using a single

region, there were 887 possible strains for Lactobacillus,

610 for Wolbachia, and 130 for Acetobacter (Fig. 5c,

hollow). Hence, based on a single region, such an approach

for detecting specific colonies would have been impossible

since hundreds of primers should have been used. In such a

case, one would have to Sanger sequence each of the

hundreds of colonies which would have been slow, labori-

ous, and quite expensive.

To assess the correctness of SMURF’s predictions, we

Sanger sequenced the full 16S rRNA gene of bacteria from

individual colonies identified by the abovementioned PCR

primers to verify their identity. As an example of one such

colony, the overlap between the Sanger sequence of a

strain of Lactobacillus and the predictions based on one

and six regions is presented (Fig. 5d, only the top 100 pre-

dictions for the single region were shown). One of the se-

quences indeed correctly identified the strain, using both

one and six regions, while the rest were wrong. Figure 5d

emphasizes a tremendous advantage of the multiple re-

gion approach whose number of false positive detections

was orders of magnitude smaller, thus allowing identifica-

tion of the specific strain present in the sample quickly

and efficiently.

Finally, we used the different isolated bacteria to func-

tionally test the strains and to uncover two strains hav-

ing an interesting biological activity [37]. The G418

toxin led to a heritable selective depletion of commensal

Acetobacters and explained the heritable developmental

delay. Reintroducing Acetobacters, detected by SMURF,

prevented this inheritance.

Discussion

The two main approaches for inferring the composition

of an unknown mixture of bacteria are either 16S rRNA

gene sequencing or whole genome shotgun sequencing.

Although sequencing whole genomes provides much

more information and does not require bias-prone PCR

amplification, sequencing the 16S rRNA gene has several

advantages. First, most computational methods for

analyzing sequencing results of either the 16S rRNA

gene or of whole genome sequencing rely on a database

of sequences. Although current databases of bacterial

genomes are growing fast, they still contain about an

order of magnitude less sequences than 16S rRNA gene

databases. Consequently, a species may be identified

when sequencing the 16S rRNA gene while being missed

when analyzing shotgun sequencing results since its

genome has not yet been deposited in the databases. A

second potential advantage of 16S rRNA gene-based

methods is related to profiling samples having a low bac-

terial biomass which makes it imperative to amplify

bacteria-related sequences and renders shotgun methods

highly inefficient (e.g., sequencing without prior amplifi-

cation would result in an overwhelming number reads

originating from the host’s DNA and almost no bacterial

sequences). Third, 16S rRNA gene sequencing allows for

multiplexing of far more samples per lane compared to

shotgun sequencing and thus yields a much lower cost

per sample. Hence, we view 16S rRNA gene-based pro-

filing as a complementary approach to whole genome

sequencing, where each approach should be chosen

according to the experimental setting.

In this work, we focused on 16S rRNA gene sequencing

and sought to improve upon the state of the art in the

field. Sequencing the 16S rRNA gene faces three main

challenges that eventually hamper the accuracy of profil-

ing and its reproducibility. The first challenge is limited

resolution of current primer pairs, i.e., many bacteria

share the same sequence over the amplicon, and thus, the

exact identity of bacteria in the community cannot be

inferred. The second challenge is “partial” primer univer-

sality, i.e., different primers pairs amplify certain subsets

of all bacterial 16S rRNA gene sequences [18–20], and

hence, primer choice governs profiling results. Primers

may also be biased towards amplifying certain genera

because of the sequence composition of the database used

for their design [38]. The third challenge in 16S rRNA

gene profiling is PCR-related errors and biases, which may

result from several sources, e.g., primers’ mismatches [35],

adding sample indices (i.e., ‘barcodes’) to the primer

sequence [21, 39], or other library preparation steps [21].

In this work, we present a novel analysis framework

termed SMURF that directly addresses the first two

problems via computationally combining multiple 16S

rRNA gene short amplicon sequencing data and thus

improving upon current best approaches. The last issue

of sample preparation biases is only indirectly addressed

in this work. Although combining results from different

regions tends to average the effects of such biases and

errors, it is certainly beneficial to carefully choose the

set of primers (Additional file 1: Figure S3) and to mod-

ify library preparation procedures so as to reduce such

errors and biases [21].

The set of six primer pairs used in this study should

be considered a first trial that served for presenting the
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advantages of combining regions. Since accurate profil-

ing evidently depends on the properties of the chosen

set of primers, it would be interesting to seek an optimal

set. Also, it should be noted that accuracy and resolution

are limited by the number of sequencing reads. Hence,

in order to assure accurate profiling of low-frequency

bacteria, a sufficient number of reads should be allocated

to each region. The latter also dictates the number of

samples that may be multiplexed per lane.

Conclusions

Short MUltiple Regions Framework (SMURF) represents

a new approach in bacterial community reconstruction. A

significant improvement in resolution is achieved as has

been displayed theoretically, using in silico simulations

and by analyzing two mock mixtures and real-life samples.

In many cases, microbial profiling at the genus or even

species level may be achieved using standard primers (e.g.,

V4 primers) and does not require combining regions.

However, in cases where downstream analyses are re-

quired, increasing resolution via SMURF, i.e., reducing the

reported number of full-length 16S rRNA gene sequences

per profiled bacterium, is crucial as demonstrated by our

D. melanogaster experiments.

SMURF can be applied to standard sample preparation

with very little modifications at the PCR stage (i.e., sample

preparation is independently performed using each primer

pair) and allow re-analysis of samples that were profiled

using several primer pairs. Apart from increased reso-

lution, the effects of PCR biases will tend to be “averaged”

and hence be less pronounced. Also, the basic algorithm

which is an adaptation of [12] allows fast convergence and

avoids the necessity to align reads, and hence, the compu-

tational overhead in applying SMURF is small.

SMURF paves the way for high-resolution profiling of

fragmented DNA in low biomass samples, e.g., FFPE

blocks, which are abundant and relatively easy to acquire

(compared to snap frozen samples); hence, SMURF may

be highly beneficial in, e.g., cancer microbiome studies.

Additionally, it would be beneficial to optimize a set of

primer pairs so as to support a multiplexed PCR reaction.

Although such optimization requires significant one-time

labor, it would eventually save precious material and allow

highly efficient profiling.

SMURF is not restricted to amplicons of the 16S rRNA

gene and can be seamlessly adapted to combine any set of

amplicons, e.g., in multilocus sequence typing (MLST).

Such profiling may be required when the 16S rRNA gene

is not sufficient to provide the required resolution.

Additional file

Additional file 1: Supplementary Results. (DOCX 642 kb)
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