
Combining 3D and 2D for less constrained periocular recognition

Lulu Chen and James Ferryman

Computational Vision Group, School of Systems Engineering

University of Reading, Whiteknights, Reading, RG6 6AY, UK

{l.chen, j.m.ferryman}@reading.ac.uk

Abstract

Periocular recognition has recently become an active

topic in biometrics. Typically it uses 2D image data of

the periocular region. This paper is the first description

of combining 3D shape structure with 2D texture. A simple

and effective technique using iterative closest point (ICP)

was applied for 3D periocular region matching. It proved

its strength for relatively unconstrained eye region capture,

and does not require any training. Local binary patterns

(LBP) were applied for 2D image based periocular match-

ing. The two modalities were combined at the score-level.

This approach was evaluated using the Bosphorus 3D face

database, which contains large variations in facial expres-

sions, head poses and occlusions. The rank-1 accuracy

achieved from the 3D data (80%) was better than that for

2D (58%), and the best accuracy (83%) was achieved by

fusing the two types of data. This suggests that significant

improvements to periocular recognition systems could be

achieved using the 3D structure information that is now

available from small and inexpensive sensors.

1. Introduction

Identifying people using the region around their eyes,

known as periocular recognition, has recently become an

active research topic in biometrics. Background research

has been conducted to prove the importance and strength

of using the periocular region for biometric identification

tasks [13], in particular for situations where the facial re-

gion is largely covered or occluded and long-distance iris

capture fails. For these reasons, as a novel biometric trait,

periocular has primarily been considered for combination

with face [14, 15] and iris recognition [23, 17, 21, 16] to

enhance overall recognition accuracy.

Current research on periocular recognition has focussed

only on the 2D texture information captured under either

visible spectrum or near infrared. 2D images present ap-

pearance cues that can be used to distinguish identities.

However, in contrast to using a whole face, a single peri-

Figure 1. Examples of periocular region data in 3D and 2D [18],

top row: colour images, bottom row: rendered 3D images.

ocular region is much smaller, thus the appearance features

are limited. In particular, the appearance can be heavily af-

fected by factors including lighting conditions, eye makeup,

and natural skin aging. The reported recognition perfor-

mance from the literature has mainly focussed on ideally

captured periocular images [4].

3D information captured from a 3D scanner or a depth

sensor holds important cues to a person’s facial structure,

which can be used for person recognition. The 3D structure

of a human face is not affected by facial makeup and skin

changes, and 3D capture is more resistant to illumination

variation. New depth sensors, such as Microsoft Kinect,

have enabled applications for daily life, such as gaming, and

natural human-machine interaction with devices like com-

puters and TVs. More recently, Google launched Project

Tango [1] that has a depth sensor built into a mobile de-

vice, so that 3D information can be captured for real-time

tasks like 3D motion tracking and 3D environment recon-

struction. Affordable prices and decreases in size mean that

a 3D sensor could now be easily integrated into an existing

biometric system.

Similar to face recognition in general, periocular recog-

nition must address intra-class challenges, due to illumina-

tion variance, facial expression, eye movement, head pose,

eye makeup, partial occlusions, etc. and inter-class chal-

lenges from similarities between subjects. It is very diffi-

cult for 2D alone to cope with these variations, especially

when the captured periocular region is small. Therefore, we



Figure 2. Flow chart of the proposed fusion scheme of 3D and 2D

for periocular recognition.

believe combining 3D shape cues, which provide strong 3D

structural information of the eye region, and 2D appearance

cues, will lead to increased accuracy.

This paper presents the first study that combines 3D

global structure and 2D local texture for periocular recog-

nition. The proposed approach does not require training

which means that new subjects can be easily added into

the system, and it is simple to implement. The approach

was evaluated using cropped periocular regions from the

Bosphorus 3D face database. The recognition accuracy was

calculated for 2D alone, 3D alone, and score-level fusion of

both. The 3D was more robust than the 2D against vari-

ation in pose and facial expression. The best result was

achieved by fusing the two types of data. Figure 2 illus-

trates the workflow of the proposed fusion scheme of 3D

and 2D for periocular recognition.

The rest of the paper is organised as follows. A brief in-

troduction on the literature is presented in Section 1.1. The

proposed approaches for 2D, 3D and fusion are described in

Section 2, Section 3 and Section 4 respectively. The dataset

used, experimental results and evaluation are discussed in

Section 5. Finally, conclusions are drawn in Section 6.

1.1. Related work

The periocular region was recently introduced as a novel

biometric trait [13], and related research interest has grown

quickly since then. Park et al. applied local binary patterns

(LBP) and SIFT as descriptors for matching the periocu-

lar region. Later, 2D image texture features such as LBP,

HOG, Gabor and SIFT became popular for this task under

visible spectrum [4, 24, 7], near infrared [6, 22] and com-

bined cases [3, 20].

Many of the earlier works have only evaluated their per-

formance on a near ideal periocular dataset, where the sub-

jects face the camera and little variation is present. How-

ever, in practical situations the appearance around the eyes

will change under factors like illumination, pose, facial ex-

pression and occlusion, which make it more challenging to

develop a system that is robust for less constrained periocu-

lar recognition.

Padole and Proenca [12] first investigated the effect

of these factors on recognition performance, and showed

that the performance decreased accordingly. Recent works

have started incorporating unconstrained periocular images,

where the dataset contains this type of variation [8, 9] and

recognition is therefore more challenging. Mahalingam and

Ricanek presented a multi-scale hierarchical three-patch

LBP framework to address the challenges. The performance

was evaluated on several challenging datasets that contain

occlusions, variation in head pose and closed eyes. Their

proposed method outperformed the traditional LBP meth-

ods. Xu and Savvides [8] presented discrete transform en-

coded local binary patterns (DT-LBP) with subspace repre-

sentation analysis. They conducted several experiments and

evaluations on the FRGC v2 database which contains varia-

tion in illumination, distance, focus, hair occlusion, motion

blur and small degrees of facial expression.

The current state of the art in periocular recognition has

only been based on 2D image data. Recognition of the

whole face using 3D data has shown its advantages [2] dur-

ing the past decade. 3D sensing technology has been devel-

oped in recent years, and we believe that it is the right time

to introduce 3D sensing into periocular recognition.

In this work, the effectiveness of fusing 2D and 3D data

for periocular recognition is explored by combining a sim-

ple existing approach for 2D (LBP), with another estab-

lished approach from 3D whole-face recognition (ICP). The

two are fused using a simple weighted sum, which is easy to

implement. The experimental results showed that using 3D

data alone outperforms using 2D, in the presence of a large

selection of variations in facial expression and head pose.

And more importantly, fusing the two types of data gives a

better result than using either one alone.

2. Recognition using 2D texture

The Bosphorus face database contains face data in pairs:

a 2D colour image and a 3D point cloud. Figure 1 illustrates

a few examples of these pairs from the database, after the

periocular region has been cropped. As mentioned in the

section above, various texture descriptions have been used

for 2D periocular recognition. Because of LBP’s power in

texture analysis, and its wide use in biometric recognition,

in this work the extended circular LBP [10] is applied for

matching the 2D images.

2.1. Region of interest and normalisation

To obtain the 2D periocular region, the face images are

registered and cropped. An arbitrary neutral face image

from the database is selected as the reference face. The

faces in both gallery and probe sets are translated, rotated,

and scaled to align with the reference face. The transforma-

tion is calculated using facial landmarks at the outer corners

of the left and right eyes, and the nose tip. The full face



images are then cropped to create two separate periocular

regions of equal size (475 × 420 pixels), one for each eye.

2.2. Local Binary Patterns

Local Binary Patterns (LBP) [11] have been widely ap-

plied in biometric recognition. The literature describes vari-

ations of them used for face recognition, counter-spoofing,

and iris recognition, due to their discriminative power for

finding fine details on human skin, and their computational

efficiency. Thus, LBP is chosen in this work to create a

descriptor of the 2D periocular image.

Each periocular image is divided into a grid of 8×8 = 64
sub images. Circular LBP (CLBP) [10] histograms are

calculated for each sub image. The histograms are con-

catenated to form one long descriptor, to represent the 2D

image. To compute the similarities for each probe image

against the gallery images, a χ2-distance measure is used,

χ2

D(Hp, Hg) =
∑

i,j

(Hpi,j
−Hgi,j

)2

Hpi,j
+Hgi,j

, (1)

where Hp is the CLBP histogram descriptor for each probe

image and Hg is the equivalent descriptor for each gallery

image. i and j represent the i-th bin of the histogram and

the j-th sub image.

3. Recognition using 3D shape matching

Due to recent advances in 3D sensing technologies, 3D

recognition techniques have been applied to biometrics,

such as face recognition and counter-spoofing. 3D informa-

tion provides the real world geometric structure of the face,

which is more resistant to scaling, head poses and illumina-

tion changes than 2D images. Also, the 3D shape provides

more discriminative features for person recognition.

A common approach for 3D face recognition is to per-

form rigid face registration on the 3D point cloud. Each

probe face is aligned against each of the gallery faces, and

the sum of the point distances is calculated as the distance

measure. Iterative Closest Point (ICP) has been favoured

for this task in 3D face recognition. One of the main chal-

lenges in 3D face recognition is large degrees of facial ex-

pression. A rigid ICP method has limited ability to han-

dle dramatic non-rigid changes to the face shape. However,

the periocular region is only a small region of the face, and

the 3D structure around the eye presents less variation than

other parts of the face, such as the mouth region. Thus, ICP

is suitable for the small periocular region, even under non-

rigid expressions.

3.1. Normalisation

To perform ICP robustly against head poses, a rough

rigid 3D transformation is performed using facial land-

marks. Similar to the normalisation of the 2D images, an

arbitrary neutral 3D face from the database is selected as

the reference face. The other 3D faces from both gallery

and probe are translated and rotated rigidly to match the

landmark positions. This achieves a rough alignment of the

head pose relative to the neutral reference face. Singular

value decomposition (SVD) is applied for finding the opti-

mal rigid transformation in a least-squares sense.

The periocular region is then cropped using the corre-

sponding coordinates from the 2D images, which results in

the same cropped region for 2D and 3D for both left and

right eyes.

Figure 3. 3D rendered faces: with pitch rotation (left) and the neu-

tral face (right) to which it should be aligned.

3.2. Iterative Closest Point matching

Iterative closest point (ICP) is an algorithm for finding

the optimal alignment between two point clouds [5]. It has

been used in previous work for 3D shape registration for

whole-face recognition.

An initial rough pose is required for the probe point

cloud. In this work, this is a rigid transformation calculated

from the landmark points in the probe and gallery faces, as

described in Section 3.1 above. The periocular 3D point

cloud from the probe is then matched against each of the

gallery periocular 3D point clouds using ICP, which results

in a distance matching score for each one.

The steps for ICP are as follows:

1. For each point in a probe periocular point cloud, the

closest point in the gallery periocular point cloud is

found by iterating through the points.

2. A rigid transformation is estimated to minimise the

distances between all pairs of points, which can be

quickly computed using a least-squares solution.

3. The points in the probe periocular point cloud are

transformed using the estimated rigid transformation.

The algorithm iterates the steps until finds the optimal

rigid transformation for all pairs of points. The distance

metric, is then calculated using the sum of the distances

from the points in the probe point cloud to the nearest points

in the gallery point cloud. The distance measures how well



the two 3D point clouds fit, i.e. the smaller the distance is,

the closer the two point clouds match.

4. Fusion

One of the focusses of this work is to evaluate and com-

pare recognition performance of 3D versus 2D data. Also,

we would like to see if fusing these two modalities enhances

the overall performance. The fusion of 3D and 2D is per-

formed at the matching distance score level. The matching

distance scores obtained for each pair of 3D ICP distance

and 2D CLBP histogram distance are normalised using me-

dian values to make them comparable with each other and

reduce the influence of outliers. Then the fusion distance

df is calculated as a weighted sum:

df = α ∗ d2D + (1− α) ∗ d3D, (2)

where α is the fusion weight 0 ≤ α ≤ 1, and d2D and

d3D are the normalised distance scores for 2D CLBP and

3D ICP respectively.

5. Experimental results and analysis

The performance of the proposed approach was evalu-

ated on the Bosphorus 3D face database [18, 19], which

contains a total of 4666 face scans from 105 subjects. Each

one has a visible-spectrum image and a 3D point cloud. The

capture distance of the subjects is about 1.5 metres, with

resolutions of 0.3mm (x), 0.3mm (y) and 0.4mm (depth).

The high quality colour images were captured under homo-

geneous lighting by applying a 1000W halogen lamp in a

dark room. Most previous works have used an iris database

for testing periocular recognition, that is, most of the images

are frontal eye images without variations in pose and facial

expression. In comparison, the Bosphorus database con-

tains various head poses and facial expressions, and partial

occlusion.

One pair of neutral expression periocular data for each

subject was selected for the gallery pool. Thus, the gallery

pool consisted of 210 sets of 3D and 2D data, for the left

and right eyes of all of the subjects. A total of 7422 of the

remaining cropped eye regions were used as the probe.

5.1. 3D versus 2D

Performance was evaluated in 1 : N identification mode.

Rank-1 recognition accuracy for the ICP-based 3D ap-

proach, the LBP-based 2D approach, and the 3D+2D fusion

are shown in Table 1. Using 3D structure was over 20% bet-

ter than 2D texture. The periocular region is much smaller

than the whole face, thus 2D LBP texture can provide only

limited features for inter-class discrimination. Facial fea-

tures around the eye, like the eyebrow and eyelid, have

proved to be useful for periocular recognition [4]. However,

in practice, eye makeup and natural aging can easily change

the appearance of these features, which is a challenge to us-

ing 2D appearance. On the contrary, the 3D shape of the

periocular region is more robust and discriminative than its

appearance.

Approach Rank-1 accuracy

3D 80.48%

2D 57.44%

Fusion 3D+2D α = 0.25 83.35%

Table 1. Rank-1 classification results for 3D ICP, 2D LBP and fu-

sion of 3D+2D (α = 0.25).

Of all the probes, 3.25% failed using 3D but suceeded us-

ing 2D, whereas 27.51% failed using 2D but suceeded using

3D. Figure 6 gives some example for these two scenarios.

The left column shows two examples of failed cases using

the 2D approach while the middle column shows two ex-

amples for failed 3D cases. These demonstrated examples

all failed at rank-10 with one data type (2D or 3D), whilst

suceeding at rank-1 with the other. For 3D, most failed

cases were caused by occlusion by glasses. The glasses ob-

scure the 3D shape of the eye region which significantly de-

creases recognition performance. In contrast, 2D features

are less affected as the glass lenses are transparent. For the

2D approach, however, most failed cases are caused by fa-

cial expressions and head rotations.

The power of ICP is to achieve a rigid 3D surface align-

ment globally across the periocular region. Although under

facial expressions, the shape of local regions of the facial

surface will change, the overall 3D shape of the person’s

face cannot be significantly altered. Facial shape changes

under expressions are non-rigid, but they mostly affect the

bottom half of the face, and the recognition results suggest

that using ICP on the periocular region alone is accurate

enough, even in the presence of changes in expression.

5.2. 3D + 2D

The recognition results show that combining 3D and 2D

using a weighted sum led to a slight increase in accuracy.

Figure 4 plots the rank-1 recognition accuracy under dif-

ferent α values. When α = 0.25, fusion achieves the

best result of 83.35%. Figure 5 illustrates the Cumulative

Match Characteristic (CMC) results for 3D, 2D and fusion.

It shows that the fusion of global shape and local texture

appearance consistently delivers better accuracy than either

method alone.

The right column in Figure 6 shows two examples that

were correctly classified at rank-1 when combining 2D and

3D, but failed at rank-5 when using 2D or 3D alone. The re-

sults indicate that combining 2D and 3D features overcomes

the large variations in both facial appearance and 3D shape

caused by, for example, intense facial actions and expres-

sions around the eye region. Of all the cases when classifi-



Figure 4. Fusion curves of using different weights. α = 0 means

3D only, α = 1 means 2D only.

Figure 5. Cumulative Match Characteristic (CMC) results for 3D,

2D and fusion (α = 0.25).

cation failed using both 2D and 3D alone, 21.94% became

correctly classified when fusing 2D and 3D together.

5.3. Intra­class variations

The Bosphorus 3D dataset [18] contains pose variations,

facial expressions, eye wear, and illumination changes. Fig-

ure 7 shows some examples of the challenging cases, which

are close to real-life scenarios.

The low accuracy of the 2D approach indicates that using

a single neutral expression image is insufficient to handle

large appearance changes. In other words, with the pres-

ence of large variations in facial expression and head pose,

LBP texture description fails to interpret these challenging

Figure 6. Examples of classification results. Left: failed examples

for 2D only. Middle: failed examples for 3D only. Right: exam-

ples that were only successful when combining 2D and 3D.

less constrained scenarios, and would require more images,

which contain these variations per subject, to be put into the

gallery. In comparison, 3D structural data for the periocu-

lar region seems to give stronger cues, and be more robust

against these variations. The rigid ICP surface alignment

captures the global 3D shape, which gave better results.

Table 2 breaks down the recognition results by the

classes of variation in the dataset. Rank-1 accuracy is shown

for 3D and 2D on each class. Lower face actions (LFAU)

and action unit combinations (AUC), such as various mouth

movements, have negligible effect on the eye region, so

both 3D and 2D gave good performance for these classes

that is close to that on neutral expression and pose (N).

For upper face actions (UFAU) such as eye closure and eye

brow movements, emotional expressions (E) such as dis-

gust and surprise, and different head rotation poses (YR,

PR, CR), appearance changes on the eye region are signif-

icant. For these classes, 3D maintained reasonable robust-

ness, whereas 2D performance was significantly decreased.

Yaw rotations are left and right, pitch rotations are up and

down, and cross rotations are a combination of both. When

the eye region suffers partial occlusion from hair or glasses,

a large portion of the data is omitted, and both 3D and 2D

suffer from low accuracy.

6. Conclusion

3D sensors have become available and affordable for

consumer use, and have shrunk to a small and convenient

size, so they could now be integrated into existing biomet-

ric systems. This work presents the first study on combin-

ing 3D shape matching and 2D texture description for less

constrained periocular recognition. The approach was eval-

uated on a 3D face database with large variations in facial

expression and head pose, to test its suitability for real-life

applications. 3D provides geometric structure information,

which is more resistant to scaling, head poses and illumina-



Figure 7. Intra-class variations: examples of facial expressions and

head poses from a single subject in the Bosphorus dataset [18].

Facial action class 3D rank-1 2D rank-1

Neutral pose and expression (N) 96.39% 83.25%

Lower Face Action Unit (LFAU) 87.67% 73.79%

Upper Face Action Unit (UFAU) 68.29% 46.99%

Action Unit Combination (AUC) 93.49% 81.95%

Emotional expression (E) 69.09% 57.28%

Yaw Rotation (YR) 69.52% 9.96%

Pitch Rotation (PR) 88.76% 22.25%

Cross Rotation (CR) 59.09% 2.27%

Occlusion (O) 38.56% 45.13%

Table 2. Rank-1 classification results for 3D and 2D against facial

expressions and poses.

tion changes. Rank-1 recognition accuracy showed that the

3D significantly outperformed the 2D, which demonstrates

the strength of 3D structure over 2D images in overcom-

ing these variations. Moreover, the results suggest that for

the small periocular region, 3D shape around the eye region

is less affected by large degrees of facial expressions than

2D image appearance. Increased accuracy was consistently

achieved by fusing 3D and 2D using a weighted sum, show-

ing that a fusion of the two was better than either alone.

In future work, a 3D deformable model will be consid-

ered for dealing with further unconstrained variations that

could occur in real-life scenarios.
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