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Abstract

The objective of the present study was to investigate the potential of a large aperture scintillometer (LAS) combined with a
simple available energy model to estimate area-averaged latent heat flux in difficult environmental conditions. The
difficulties are related to the sparseness of the vegetation, the heterogeneity of the soil characteristics, and, most importantly,
the heterogeneity in terms of soil moisture induced by the ‘‘flood irrigation’’ method. In this context, three sites (Agdal, R3
and Sâada) in the Tensift Al Haouz plain (region of Marrakech city, central Morocco) have been equipped with a LAS and
eddy covariance (EC) system (local scale measurements). Agdal and R3 are a flood-irrigated olive yard and wheat field,
respectively. Sâada is a drip-irrigated orange orchard. Due to the irrigation method applied, the Agdal and R3 sites shifted
from being almost homogeneous between two irrigations (dry conditions) and completely heterogeneous during the
irrigation events (large variability of soil moisture along the site), while Sâada was always heterogeneous, at least at the
scintillometer footprint scale. Consequently, the comparison between the sensible heat fluxes derived from both LAS and
EC showed a large scatter during the irrigation events, while a good correspondence was found in between two irrigations. It
was also found that combining LAS and an estimate of the available energy (using a simple model) can provide reasonable
large-scale evapotransipration estimates, which are of prime interest for irrigation management.

Keywords: Evapotranspiration, olive, orange, scintillation, semi-arid region, whea

Introduction

In southern Mediterranean regions, as well as other

arid and semi-arid regions of the world, water

availability is extremely limited due to poor and

irregular rainfall, high evaporation, and inadequate

water management (Centritto et al. 2000). Irrigated

agriculture represents the major water user (about

80–90% of total available water), with an efficiency

which does not exceed 50% (Chehbouni et al.

2008b). Therefore, sound and efficient irrigation

management is an important step for achieving

sustainable management of water resources in these

regions (Centritto et al. 2005; Tahi et al. 2007). In

this regard, estimates of evapotranspiration (ET) are

strongly needed over large and heterogeneous

surfaces (at the irrigation district scale). However,

obtaining ET at this scale is not a trivial task. Indeed,

the surface heterogeneity caused either by the

contrast in soil moisture or vegetation type and

cover generates a large spatial variability of fluxes

which limit the use of local scale measurement

devices such as the eddy covariance (EC) system,

unless one deploys a network of EC devices, which is

not always technically and economically feasible.

Optical satellite remote sensing can be considered

as a promising data source for deriving regional ET

at the time of satellite overpass. However, their

benefit for water management is limited, since solely

the instantaneous values of ET can be obtained from

satellite data, while the main interest of water

managers is the daily value of ET (Bastiaanssen
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et al. 2000). Such instantaneous estimates can be

combined with aggregation methods so that diurnal

values of regional ET can be derived (Chehbouni

et al. 2008c). Nevertheless, the effectiveness of this

approach cannot be fully assessed without a valida-

tion of the modeled fluxes using areally averaged

surface flux measurements under different condi-

tions which is, for the reasons mentioned above, not

always feasible on an operational basis.

In this context, scintillometry can be considered as

an attractive method for routinely measuring area-

averaged convective fluxes. Indeed, several studies

have demonstrated its potential to estimate the diurnal

course of the surface fluxes over natural (and thus

heterogeneous) landscapes (Chehbouni et al. 1999,

2000, 2008b; Lagouarde et al. 2002; Meijninger et al.

2002a; Asanuma et al. 2006; Ezzahar et al. 2007a).

Consequently, the large aperture scintillometer (LAS)

has recently become very popular especially since, in

contrast to EC systems, it requires little maintenance,

and its cost is very reasonable. The LAS provides

integrated sensible heat flux directly over several

kilometers; the latent heat flux can be obtained

indirectly as the residual term of the energy balance

equation providing estimates of available energy which

can be easily derived from remote sensing (Meijninger

et al. 2002b; Ezzahar et al. 2007b).

The present study reports the results of an

evaluation exercise aimed at combining LAS with

an estimate of available energy to derive ET over the

dominant crop types (olive, orange and wheat) in the

Tensift Al Haouz plain (region of Marrakech city,

central Morocco). The final purpose is to improve

water management at the irrigation district scale.

The challenge is then deriving the flux over orchards

that are characterized by tall vegetation and strong

soil moisture contrasts due to irrigation practices.

The data were collected within the framework of the

SUDMED (Chehbouni et al. 2008a) and IRRIMED

(http://www.irrimed.org) programmes.

Theoretical background

Estimation of sensible heat flux, HLAS, with LAS

In this section, we briefly recall the principles of the

determination of turbulent sensible heat flux with LAS.

For a complete description, the reader can refer to

Clifford et al. (1974), Hill et al. (1992) and Hill (1997).

The LAS provides a measurement of the structure

parameter for the refractive index (C2
n) along the

optical path. This C2
n can be related to the structure

parameter C2
T for temperature by (Wesely 1976):

C2
T ¼ C2

n

T2

gp

� �2

1þ
0:03

b

� ��2

; ð1Þ

where g is the refractive index coefficient for air

(7.861077 KPa71), p is the atmospheric pressure

(Pa), T the air temperature (K) and b the Bowen

ratio. The final bracketed term is a correction for the

effects of humidity. C2
n and C2

T are in (m72/3) and

(K2 m72/3), respectively.

Once C2
T is known, the sensible heat flux can be

derived from the Monin–Obukhov Similarity Theory

(MOST), which depends on the stability parameter z

(¼ (zLAS7 d)/LOB, where zLAS and d are the effective

height of the LAS above the surface and the

displacement height, respectively. LOB is the

Monin–Obukhov length (m) given by:

LOB ¼
Tu2�
kgT�

; ð2Þ

with k the von Karman constant (0.41), g the gravity

(9.81 ms72), T�ð¼ �w0T 0=u�; w’ and T’ vertical

wind speed and temperature fluctuations, respec-

tively) the temperature scale and u* the friction

velocity (ms71):

u� ¼ ku ln zLAS � dð Þ=z0ð Þ � cðzÞ½ ��1; ð3Þ

u is the wind speed and c is the integrated stability

function defined for unstable conditions (z50) as

(Panofsky & Dutton 1984)

cðzÞ ¼ 2 ln
1þ x

2

� �

þ ln
1þ x2

2

� �

� 2 arctanðxÞ þ
p

2
;

ð4Þ

with x ¼ 1� 16zð Þ1=4: ð5Þ

According to MOST, it is possible to link C2
T and

T* for unstable conditions, i.e. z50:

C2
T zLAS � dð Þ2=3

T2
�

¼ f zð Þ ¼ c1 1� c2zð Þ�2=3; ð6Þ

where c1 and c2 are empirical constants given by De

Bruin et al. (1993) as 4.9 and 9, respectively.

The sensible heat flux HLAS can be then computed

iteratively as:

HLAS ¼ �rcpT�u�; ð7Þ

where r and cp are the density and specific heat

capacity of the air, respectively.

During the iteration, b is calculated using HLAS,

net radiation (Rn) and soil heat flux (G):

b ¼
HLAS

Rn �G�HLAS

: ð8Þ
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In this study, d and z0 were calculated according to

the classical rule-of-thumb as follows:

d � 2h=3 and z0 ¼ 0:13h;

with h the vegetation height:
ð9Þ

1

Estimation of available energy

Net radiation. Net radiation (Rn), which represents

the balance of short- and long-wave radiation reach-

ing and leaving the surface, can be expressed as:

Rn ¼ 1� að ÞRg þ eSRa � Rt; ð10Þ

where a is surface albedo, Rg is global solar radiation

(Wm72), es is surface emissivity which has a almost

constant value (in practical work a value of 0.98 may

be taken for crop canopies (Ortega et al. 2000)), Ra is

atmospheric radiation (Wm72), and Rt is the

terrestrial radiation emitted by the surface (Wm72).

The radiative balance in the solar domain, (17 a)Rg,

is the principal component of Equation 10 during the

daytime. The radiation balance in the thermal

domain, esRa7Rt, usually has a lower value but it

is the only component of the net radiation at night.

Using the Stefan–Boltzman equation (Monteith &

Unsworth 1990), Ra and Rt can be expressed as a

function of air and surface temperatures, respec-

tively. Then, Equation 10 can be rewritten as:

Rn ¼ ð1� aÞRg þ eSsðeaT
4
a � T 4

surf Þ; ð11Þ

where ea is the atmospheric emissivity, Ta is the air

temperature (K), Tsurf is the surface temperature

(K), and s is the Stefan–Boltzman constant

(5.6761078 Wm72K74).

Many authors have proposed empirical relation-

ships which relate the atmospheric emissivity to the air

temperature (Angstrom 1918; Brunt 1932; Idso et al.

1981). In the current study, we used the expression

proposed by Brutsaert (1975) where ea is computed

from air temperature and vapour pressure as:

ea ¼ 1:24 ea=Tað Þ1=7;

with ea the air vapour pressure (hPa).

Soil heat flux. The soil heat flux is an important

component of the surface energy balance. Due to the

complexities of surface cover and physical processes

occurring in the soil, the soil heat flux is the most

difficult scalar to measure accurately at the appro-

priate space-scale. In the literature, G at the surface

is often estimated as a fraction of net radiation

(Brutsaert 1982; Stull 1988; Humes et al. 1994;

Kustas & Goodrich 1994; Villalobos et al. 2000).

In this study, we used the simple formula proposed

by Su et al. (2001) as follows:

G ¼ Rn �c þ 1� fcð Þ �s � �cð Þ½ � Wm�2
� �

; ð12Þ

in which they assume the ratio of soil heat flux to

net radiation �c¼ 0.05 for full vegetation canopy

(Monteith 1973) and �s¼ 0.315 for bare soil (Kustas

& Daughtry 1989).

Provided that sensible heat flux is measured by the

LAS, net radiation and soil heat flux are obtained

using the above formulas, and latent heat flux,

LvELAS, can be derived as the residual term of the

energy balance equation as follows:

LvELAS ¼ Rn �G �HLAS ð13Þ

Experiment

Site description

The region of interest is the Tensift Al Haouz plain

(region of Marrakech city, central Morocco), char-

acterized by a semi-arid Mediterranean climate, i.e.

the atmosphere is very dry, with an average relative

humidity of 56%. The evaporative demand is very

high [around 1600 mm/yr according to reference

evapotranspiration estimates (Allen et al. 1998 2)],

greatly exceeding the annual rainfall ranging from

192 to 253 mm year71. Most of the precipitation

falls during winter and spring, from the beginning of

November until the end of April. Major irrigated

vegetation types in the region include wheat, olive

and orange. The irrigation uses either ground water

or the water stored in the dams. In this study, three

sites named ‘‘Agdal’’, ‘‘R3’’ and ‘‘Sâada’’, have been

equipped with micrometeorological instruments.

Agdal site. The Agdal site is a flood-irrigated olive

yard, which is located in the southeast of the

city of Marrakech, Morocco (318360N, 078590W).

Figure 1a displays the area of interest on a very high

spatial resolution image acquired by the Quickbird

satellite (0.62 and 2.4 m in panchromatic and multi-

spectral, respectively). The experiment was set up in

the southern part of the Agdal site on an area, of

about 7006 800 m, surrounded by orange and olive

trees (Figure 1a). The average height of the olive

trees is 6 m with a mean fraction cover of about 55%,

as obtained from hemispherical canopy photographs

(using a Nikon Coolpix 9501 with a FC-E8 fish-eye

lens converter, field of view 1838).

Two water basins are used for irrigation. Water is

manually diverted to every tree through a ditch

network. Each tree is surrounded by a small earthen

levy which retains irrigation water, and ensures water

supply for every tree (Williams et al. 2004). Irrigation
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starts from the southern border of the field, and,

depending on available manpower, progresses to-

wards the northern border of the site over approxi-

mately 12 days. More details about the site and

experimental set-up are presented in Ezzahar et al.

(2007a) and Hoedjes et al. (2007).

R3 site. The R3 site is located approximately 45 km

east of Marrakech (318680N, 78380W) (Figure 1b). It

is an irrigated area, managed by the ‘‘ORMVAH’’

(Office Régional de Mise en Valeur Agricole du

Haouz) since 1999. The main crop grown in R3 is

wheat, which is generally sown between mid-

November and mid-January, depending on climatic

conditions and the start of the rainfall season. The

ORMVAHmanages the distribution of water starting

from December through May. The frequency and

the amount of water for each irrigation are pre-

determined according to the dam water level at the

beginning of the cropping season without any

consideration for the actual surface soil moisture

status and atmospheric demand. Additionally, flood

irrigation is the most widely used method in this

district. More details about the site are presented in

Duchemin et al. (2006) and Er-Raki et al. (2007).

Sâada site. Sâada is a drip-irrigated orange orchard,

which is located approximately 15 km west of

Marrakech (3183703600N, 0880903500W) (Figure 1c).

The density of the orange trees is about 70%, as

calculated from hemispherical canopy photographs

(using a Nikon Coolpix 9501 with a FC-E8 fish-eye

lens converter, field of view 1838). The average

height of the trees was about 3 m. The site was

maintained in well-watered conditions by daily

irrigation using pipelines placed close to each tree.

The site is divided into several sectors. More than

one sector situated in different places was irrigated at

the same time; those sectors are shown with the same

colour in Figure 2. With this irrigation network, the

site can be considered as heterogeneous, at least at

the scintillometer footprint scale.

Flux and micrometeorological measurements

The three sites were equipped with a set of standard

meteorological instruments to measure wind speed

and direction, air temperature and humidity. Ad-

ditionally, net radiation, soil heat flux, radiative soil

and vegetation temperatures and soil moisture were

also measured. The different micro-meteorological

instruments used in this study and their locations are

summarized in Table I. Measurements were sampled

at 1 Hz, averaged, and then stored at 30-min

intervals on a CR10X datalogger. Each site was also

345
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Figure 1. Overview of the three sites (Quickbird images). The LAS

path and the location of the EC system are shown (1a for Agdal, 1b

for R3 and 1c for Sâada). The main wind direction and the

irrigation are also shown.

Figure 2. Overview of the irrigation method at the Sâada site. The
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equipped with an EC system which provides high-

frequency measurements of the three dimensional

(3D) air velocity and temperature fluctuations (see

Table I). For site R3, the 10 Hz data were processed

directly online, and the half-hourly fluxes were

stored on a CR23X datalogger (Campbell Scientific

Inc., USA).

At the Agdal and Sâada sites, the raw measure-

ments recorded on a CR5000 datalogger were

processed to calculate sensible heat fluxes (using

the average of the covariance between vertical wind

speed and temperature fluctuations) and latent heat

fluxes (using the average of the covariance between

vertical wind speed and humidity fluctuations). This

calculation was performed at half-hour intervals

using the post processing ‘‘Ecpack’’ software pack-

age. This software was developed by the Meteorology

and Air Quality Group at Wageningen Agricultural

University (The Netherlands), and it is available for

download at http://www.met.wau.nl/. During proces-

sing, all required corrections are performed: planar

fit correction (Wilczak et al. 2001), correcting the

sonic temperature for the presence of humidity

(Schotanus et al. 1983), frequency response correc-

tions for slow apparatus and path length integration

(Moore 1986; Horst 1999), the inclusion of the

mean vertical velocity according to Webb et al.

(1980), and O2 correction for the O2-sensitive

Krypton hygrometer (Van Dijk et al. 2003).

LAS measurements were made over the three sites.

The LAS used here was built by the Meteorology and

Air Quality Group at Wageningen. It has an aperture

size of 0.15 m, and the wavelength of the light beam

emitted by the transmitter is 940 mm. At the receiver,

C2
n was sampled at 1 Hz and averaged over 1-min

time steps by a CR510 datalogger (Campbell

Scientific Ltd.). The path lengths were about 1050,

690 and 500 m for Agdal, R3 and Sâada sites,

respectively (see Figures 1a, 1b and 1c). Figure 3

presents the daytime wind direction during the

experiment for the three sites. The frequency analysis

of wind direction showed that the dominating

directions were north-west, north-east to east, and

north-west for Agdal, R3 and Sâada, respectively.

Results and discussion

Energy balance closure

One approach for testing data quality is to test for

closure of the surface energy balance (Wilson et al.

2002). By ignoring the term of canopy heat storage

(Scott et al. 2003; Testi et al. 2004) and assuming

the principle of conservation of energy, the energy

balance closure is defined as Rn7HEC7LvEEC7G

and should be close to zero (HEC and LvEEC are the

sensible and latent heat fluxes derived from the EC
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Table I. Overview of the different micrometeorological instruments used over the three sites.

Site Agdal R3 Sâada

Time Between DOY 212 and

243 (2003)

Between DOY 73 and

143 (2003)

Between DOY 139 and

174 (2004)

Air temperature and

relative humidity

Vaisala HMP45AC (9 m) Vaisala HMP45AC (2 m) Vaisala HMP45AC (4 m)

Wind speed and direction Young Wp200 (9 m) Young Wp200 (3 m) Young Wp200 (4 m)

Net radiation CNR1 radiometer (Kipp &

Zonen) (9 m)

Q7 net radiometer (REBS)

(2 m)

CNR1 radiometer (Kipp

& Zonen) (4.3 m)

Soil heat flux Heat flux plates (HFT3-L)

(1 cm)

Heat flux plates (HFT3-L)

(5 cm)

Heat flux plates (HFT3-L)

(1 cm)

Radiative soil and

vegetation temperatures

Precision Infrared temperature

sensor (IRTS-P) (1 and 7.15 m)

Precision Infrared temperature

sensor (IRTS-P) (2 m)

Precision Infrared

temperature sensor

(IRTS-P) (1 and 3.5 m)

Soil moisture CS616 water content reflectometer

(5 cm)

Theta probe CS616 water content

reflectometer (5 cm)

Sensible heat flux 3D sonic anemometer (Eddy

covariance method 9.2 m)

3D sonic anemometer (Eddy

covariance method 2 m)

3D sonic anemometer

(Eddy covariance

method 6.9 m)

Large Aperture Scintillometer (14 m) Large Aperture Scintillometer

(4.5 m)

Large Aperture

Scintillometer (9.2 m)

Latent heat flux Krypton hygrometer (KH20)

(Eddy covariance method 9.2 m)

Krypton hygrometer (KH20)

(Eddy covariance method 2 m)

Open-path infra-red gas

analyser (LICOR-7500)

(Eddy covariance

method 6.9 m)

Large Aperture Scintillometer

(energy balance equation)

(14 m)

Large Aperture Scintillometer

(energy balance equation)

(4.5 m)

Large Aperture

Scintillometer (energy

balance equation) (9.2 m)

Estimating of ET using the LAS and AE 5

http://www.met.wau.nl/.


system). The energy balance closure depends both

on the EC measurements and on the ability to

adequately quantify the available energy over an area

representative of the flux source area. Most results in

the literature have shown that independent measure-

ments of the energy balance flux components were

generally not consistent with the principle of energy

conservation. The sum of latent and sensible heat

fluxes measured by the EC system was often less than

the available energy (Twine et al. 2000; Hoedjes

et al. 2002; Testi et al. 2004; Chehbouni et al.

2008b).

Figure 4 shows the plot of AEmes¼Rn7G against

HECþLvEEC for the Agdal, R3 and Sâada sites under

daytime conditions. Table II presents the statistics of

the results associated with each site. In this table the

linear regression, coefficient correlation and the Root

Mean Square Error (RMSE), defined as the square

root of the averaged quadratic difference between

observations and simulations, are presented. Over all

fields, the available energy was systematically higher

than the sum of sensible and latent heat fluxes. The

absolute value of average closure was about 20% of

available energy over R3, 8% over Sâada and 8%

over Agdal. It can be seen that the difference in the

R3 site is larger than in Sâada and Agdal. Several

reasons can be suggested to explain this difference.

(a) A part of this difference can be related to the

use of the measured soil heat flux at 5 cm in

the R3 site, while in the two other sites, the

measurement depth of G was 1 cm.

(b) The measurements of (Rn7G) were made far

from the EC system (Figure 1b); consequently

the impact, in terms of the source area,

influences considerably the energy balance

closure. For the Sâada and Agdal sites,

(Rn7G) was measured close to the EC system.

(c) At the Agdal and Sâada sites, net radiation was

measured using the CNR1 radiometer (Kipp

and Zonen) which is more reliable than the

radiometer Q7 (REBS) used at R3, and this

may also have generated some error (Kustas

et al. 1998).

(d) The EC fluxes in R3 were processed directly

online on the CR23X datalogger. Only the

mean vertical velocity is included according to

Webb et al (1990). The effect of frequency

response on sensors, sensor separation, path-

length averaging and signal processing time

(Moore 1986) were not considered. Testi et al.

(2004) have shown that the sum of these

corrections indicate typically 11% of flux loss.

This could account for the obtained under-

estimates of the EC fluxes.

However, compared to what has been reported in

other experimental studies [the average error in

closure ranges from 10 to 30% according to Twine

et al. (2000)], the energy balance closure obtained
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Figure 3. The daytime wind direction over the three sites Agdal
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here can be considered acceptable especially if one

bears in mind the complexities of the study sites.

Comparison of sensible heat fluxes

During this study, Agdal and R3 sites shifted from

being almost homogeneous between two irrigations

(dry conditions) to completely heterogeneous during

the irrigation events (large variability of soil moisture

along the site), while Sâada was always heteroge-

neous, at least at the scintillometer footprint scale.

A comparison between LAS-based estimates of

sensible heat flux and those measured by the EC

method, in both homogeneous and heterogeneous

conditions, is made. We will solely consider the

unstable conditions (i.e. LOB50), since the beha-

viour of the temperature structure parameter is not

well known for stable conditions especially for tall

and sparse vegetation. The sensible heat fluxes from

LAS are obtained by iteration using Equations 1–7,

with the values of T, u, Rn, and G measured close to

the location of the EC system.

Homogeneous conditions (before an irrigation event). In

general the ‘‘source area’’ (the area for which the

surface flux measurements is representative) of the

EC is very small compared to that of LAS. This has

been investigated in more detail by Ezzahar et al.

(2007b) and Hoedjes et al. (2007). An example of

the dimensions of the source area of the EC and

LAS, calculated using the Footprint model (Horst &

Weil 1994), is presented in Figure 5. The theoretical

background of the calculation of the source area is

described in detail in Ezzahar et al. (2007b) and

Hoedjes et al. (2007).

In Figures 6a and 6b, the sensible heat fluxes

obtained from LAS (HLAS) are compared, under

homogeneous conditions (before an irrigation

event), with those measured by the EC (HEC) for

the Agdal and R3 sites, respectively. The statistical

results are shown in Table II. In spite of the

difference in the size of the source areas of the LAS

and EC system, results showed that the sensible heat

flux derived from LAS agreed fairly well with those

measured by the EC system for both sites. Therefore,

it can be concluded that the sites are relatively

homogeneous before an irrigation event. In addition,

the obtained results can be considered very encoura-

ging for the Agdal site, because the transfer processes

in such a field as Agdal, which is covered with tall

and sparse vegetation, are more complicated than

over short crops.

Heterogeneous conditions (irrigation event). The irriga-

tion is applied from the southern border of the site

and progresses slowly towards the northern border at

the Agdal and R3 sites. This causes the two source
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Figure 4. Comparison between measured available energy

(AE¼Rn7G) and the sum of eddy covariance measurements

(HECþLvEEC) over the three sites (4a for Agdal, 4b for R3 and 4c

for Sâada).
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areas of LAS and of the EC system to be no longer

comparable in terms of soil moisture and, thus

sensible heat flux. Figures 7a and 7b show the plot of

HLAS against HEC for the Agdal and R3 sites,

respectively. The statistical results are presented in

Table II. For Agdal, the irrigation is applied in such a

manner that, due to prevailing wind directions, the

small source area of the EC will be irrigated much

sooner than the large area of the LAS, which explains

the overestimation of the HLAS. As irrigation

proceeds, the EC source area starts to dry out before

the entire source area of LAS is irrigated, conse-

quently the HEC overestimates the HLAS. For site R3,

the irrigation is applied in a direction more or less

parallel to the main wind direction and the green

sector will be irrigated after the entire yellow sector is

irrigated (see Figure 1b). Therefore, the source area

of LAS will be a mixture of dry and wet surfaces,

while the small source area of the EC will be wet

when the irrigation arrives around the tower. Con-

sequently, during the irrigation, a difference in the

surface characteristics of the source areas of the two

methods will occur.

In addition, it can be noticed that the effect of

irrigation is clearer in the Agdal site than in the wheat

site. This is because, in the latter, 35 mm of rainfall

had fallen just before the irrigation event, and the

ORMVAH cannot stop the irrigation in order to

keep the order for the next irrigation event. For

Sâada, the irrigation method is different from that

applied in Agdal and R3 sites. As shown in Figure 2,

irrigation is applied in such manner that several

sectors, located in different places, were irrigated at

the same time; this can also generate large differences

in the soil moisture between the source areas of the

LAS and EC system. In Figure 7c, HLAS is compared

to HEC. The statistical results are presented in

Table II. In addition to the predicted discrepancy

between the LAS-based sensible heat fluxes and
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Figure 5. Source areas of the LAS and EC system are shown in red

(calculated using the footprint model of Horst & Weil 1994) and

the irrigation schedule in blue.

Table II. Statistical results of the comparison between

(a) measured available energy (AE¼Rn7G) and the sum of EC measurements (HECþLvEEC) over the three sites.

(b) LAS and EC sensible heat fluxes, HLAS and HEC, respectively, during homogeneous conditions (before an irrigation event) and during

heterogeneous conditions (irrigation event).

(c) Estimated (AEest) and measured (AEmes) available energy over the three sites.

(d) Measured (derived from the EC system LvEEC) and simulated (derived from LAS using the estimated available energy, LvELAS)

evapotranspiration.

Site R3 Agdal Sâada

Sensible heat flux

Homogenous

conditions

HLAS¼0.86HECþ14.63 HLAS¼0.81HECþ25

R2¼0.93 R2¼ 0.93

RMSE¼41.8 Wm72 RMSE¼33.6 Wm72

Sensible heat flux

Heterogeneous

conditions

HLAS¼ 0.81HECþ 28 HLAS¼ 0.60HECþ 65.26 HLAS¼ 0.68HECþ 79.67

R2¼0.8 R2¼ 0.55 R2¼ 0.61

RMSE¼41.27 Wm72 RMSE¼55.61 Wm72 RMSE¼ 63.28 Wm72

Energy balance closure HECþLvEEC¼ 0.77AEmesþ18.89 HECþLvEEC¼0.92AEmesþ 0.05 HECþLvEEC¼0.98AEmes7 20.3

R2¼0.84 R2¼ 0.88 R2¼ 0.82

RMSE¼ 98 Wm72 RMSE¼ 66 Wm72 RMSE¼ 74 Wm72

Avaible energy (AE) AEest¼0.9AEmes717.39 AEest¼ 0.94AEmesþ14.24 AEest¼1.01AEmesþ 7

R2¼0.92 R2¼ 0.98 R2¼ 0.96

RMSE¼ 74 Wm72 RMSE¼ 23 Wm72 RMSE¼ 42 Wm72

Latent heat flux LvELAS¼1.11LvEEC73.56 LvELAS¼ 0.91LvEECþ 25.6 LvELAS¼ 1.34LvEEC7 60.38

R2¼0.74 R2¼ 0.71 R2¼ 0.68

RMSE¼ 49 Wm72 RMSE¼ 56 Wm72 RMSE¼ 62 Wm72
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those measured by the EC system due to the

irrigation method, the comparison showed a large

overestimation of the HLAS for low values (within the

circle shown in Figure 7c). This is in large part

caused by the advection of dry, warm air from the

area surrounding the field (bare soil).

Comparison of latent heat fluxes

Since we are interested in the determination of the

latent heat flux from LAS (LvELAS) in an operational

context, a simple model for the estimation of the

available energy, AEest(¼(Rn7G)est), is proposed in

this study (see x 2.23 ). Thus LvELAS is estimated as

the residual term of the energy balance equation:

LvELAS¼AEest7HLAS. In order to quantify the
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Figure 6. Comparison of HLAS and HEC during homogeneous

conditions (before an irrigation event) for Agdal (a) and R3 (b) sites.

Figure 7. Comparison of HLAS and HEC during heterogeneous

conditions (the irrigation event) for Agdal (a), R3 (b) and Sâada

(c) sites. At Agdal the circles represent the days when the LAS

source area was dry and the EC source area was wet (irrigated); the

triangles represent the days when the EC source area started to dry

out and the LAS source area was wet (irrigated).

Estimating of ET using the LAS and AE 9



error associated to the estimated available energy

in the estimation of the LvELAS, a comparison

between AEest and AEmes was made over the three

sites. AEest was estimated using the following

considerations.

(a) The albedo and the global radiation were

calculated from the CNR1 which measures

the incoming and outgoing solar and far-

infrared radiation. For site R3, we used the

data taken from the CNR1 installed over

another wheat field. The fields were close by

and very similar.

(b) The surface emissivity is assumed to be 0.98

(Ortega-farias et al. 2002).

(c) The vegetation cover was calculated from

hemispherical canopy photographs. Further

details about this technique are given in Er-

Raki et al. (2007).

(d) The surface temperature, TSurf, was calculated

from the Precision Infrared Temperature Sensor

(IRTS-P). For Agdal and Sâada sites, TSurf was

estimated from measured soil (Ts) and canopy

(Tc) temperatures weighted by the fractional

area of vegetation (Norman et al. 1995):

Tsurf � fcT
4
c þ 1� fcð ÞT 4

s

� 	1=4
;

where fc is the vegetation cover.

Figures 8a, 8b, and 8c present comparisons between

AEest and AEmes for Agdal, R3 and Sâada,

respectively. The statistical results are presented in

Table II. The RMSE were 23, 74 and 42 W m72 for

Agdal, R3 and Sâada, respectively. By analysing

these results, it emerges that the comparison yields

more discrepancies at R3 than Agdal and Sâada.

This scatter was expected due to the climatic

conditions of the R3 site, which influence the

calculation of atmospheric emissivity. The latter

was derived using Brutsaert’s formula, which was

established for clear-sky conditions only. The R3

experiment was carried out during the rainy season,

therefore several cloudy days occurred, while most of

the days during the Agdal and Sâada experiments

were sunny. This was very evident when we

compared the solar radiation over the three sites

(not shown). Despite this scatter, it can be concluded

that the simple model used to estimate the available

energy works fairly well over the three sites, at least at

the local scale.

Finally, the LvELAS obtained as the residual term

of the energy balance equation, using the AEest and

HLAS, is compared with the LvEEC in Figures 9a, 9b

and 9c for Agdal, R3 and Sâada, respectively. These

comparisons include the homogeneous and hetero-

geneous conditions. The statistical results are pre-

sented in Table II. This discrepancy can be

explained by the combination of several factors.

Firstly, the use of the local estimated available energy

at the scintillometer footprint scale can introduce an

extra error. In practice, we need to aggregate the
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estimated AEest along the LAS path in order to fulfill

the required condition of energy conservation.

Secondly, the different characteristics between the

source areas of LAS and EC (due to the irrigation

method which created a large heterogeneity in soil

moisture) greatly influences the correspondence

between measured and simulated latent heat fluxes.

The third explanation can be related to the error

associated with the closure of the measured energy

balance, which can lead to errors in the simulated

LvELAS. Since the scintillometer-based LvELAS is

obtained as the residual term of the energy balance,

any difference between measured and simulated

available energy is directly translated into error in

the simulated LvELAS. Nevertheless, the results

showed that, at least under the prevailing conditions

at this study site, the combination of the LAS and the

estimate of available energy leads to reasonably good

estimates of area averaged latent heat flux over

heterogeneous surfaces.

Conclusions

In this paper, a combination of scintillometer

measurements and an estimate of available energy

has been used to simulate the latent heat flux over the

three dominant crops in the Tensift Al Haouz plain

in Morocco. A comparison between the EC- and

scintillometer-based estimates of the half-hourly

sensitive heat fluxes during the dry conditions

showed the potential of the large aperture scintill-

ometer for estimating the spatial averaged sensible

heat over both tall and sparse and short vegetation.

During the irrigation events, a large part of the

obtained discrepancy between HLAS and HEC can be

attributed to the difference in the characteristics of

the source areas of the LAS and EC system

generated by the irrigation method. The comparison

between the latent heat flux simulated by LAS (using

the estimated available energy) and that measured by

the EC system yields some discrepancies. However,

considering the effect of irrigation, which created a

large difference in the characteristics of the sources

areas of LAS and EC, the lack of the energy balance

closure of the EC measurements, and the uncertainty

of the model used to estimate the available energy,

the agreement between the simulated and measured

latent heat fluxes is encouraging.

The above results have promising implications for

practical applications. In fact one of the criteria for

assessing irrigation efficiency is that the ratio between

crop water requirement (ETc) and actual ET should be

as close to 1 as possible. Therefore, estimates of large-

scale ET is of great importance for improving irrigation

management, which will favourably impact the sus-

tainability of water management in semi-arid regions.
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