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Abstract
Background  Near 70% of hepatocellular carcinoma (HCC) recurrence is early recurrence within 2-year post surgery. 
Long non-coding RNAs (lncRNAs) are intensively involved in HCC progression and serve as biomarkers for HCC 
prognosis. The aim of this study is to construct a lncRNA-based signature for predicting HCC early recurrence.

Methods  Data of RNA expression and associated clinical information were accessed from The Cancer Genome 
Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database. Recurrence associated differentially expressed lncRNAs 
(DELncs) were determined by three DEG methods and two survival analyses methods. DELncs involved in the 
signature were selected by three machine learning methods and multivariate Cox analysis. Additionally, the signature 
was validated in a cohort of HCC patients from an external source. In order to gain insight into the biological functions 
of this signature, gene sets enrichment analyses, immune infiltration analyses, as well as immune and drug therapy 
prediction analyses were conducted.

Results  A 4-lncRNA signature consisting of AC108463.1, AF131217.1, CMB9-22P13.1, TMCC1-AS1 was constructed. 
Patients in the high-risk group showed significantly higher early recurrence rate compared to those in the low-
risk group. Combination of the signature, AFP and TNM further improved the early HCC recurrence predictive 
performance. Several molecular pathways and gene sets associated with HCC pathogenesis are enriched in the 
high-risk group. Antitumor immune cells, such as activated B cell, type 1 T helper cell, natural killer cell and effective 
memory CD8 T cell are enriched in patients with low-risk HCCs. HCC patients in the low- and high-risk group had 
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Introduction
The recent global cancer statistics study indicated that 
the new cases and deaths of liver cancer were 905,677 
and 830,187 respectively and rank sixth in terms of inci-
dence and third in terms of mortality [1]. Approximately 
75–85% of primary liver cancer cases are caused by hepa-
tocellular carcinoma (HCC) [1]. Although the main risk 
factors of HCC show regional differences, chronic hepa-
titis B or C infection remains the major causes of HCC [2, 
3]. Benefit from vaccination against HBV, the incidence 
of HCC in high-risk countries of Eastern Asia has been 
dramatically reduced [3]. However, incidence rates of 
HCC in regions like Europe, Northern and South Amer-
ica, Australia/New Zealand, which were low-risk regions 
display the opposite trend or remain at a high-level pla-
teau [4]. Thus, the overall global burden of liver cancer is 
increasing over time.

Long non-coding RNAs (lncRNA), a class of non-cod-
ing transcripts that exceed 200 nucleotides in length, 
have been identified as important regulators in the 
development of various cancers [5, 6]. Cancer-related 
lncRNAs are involved in genomic instability, sustained 
proliferation, activation of invasion and metastasis, and 
cell death resistance in cancer cells by means of diverse 
mechanisms [7] through binding with RNA, DNA, pro-
tein or encoding small peptides [8–10]. For example, 
lncRNA GHET1 promoted HCC cell tumorigenesis by 
activating H3K27 acetylation and regulating ATF1 [11]. 
LINC01234, a potential prognostic or therapeutic HCC 
marker, could modulate aspartate metabolic repro-
gramming and promote HCC progression [12]. Cancer-
associated fibroblasts secreted exosomal lncRNA TUG1 
facilitated HCC cell glycolysis, migration, and invasion 
via miR-524-5p/SIX1 axis [13]. LncRNA DANCR pro-
moted HCC stemness by regulating mRNA stabilization 
[14]. LncRNA PVT1 promotes HCC cell proliferation and 
stemness by stabilizing NOP2 [15]. Besides experimental 
evidences, more lncRNA-disease associations were elu-
cidated by powerful bioinformatics tools and models, 
which could help to underlie disease mechanisms at the 
level of lncRNA and facilitate the detection of biomark-
ers for diagnosis and prognosis, as well as disease preven-
tion and treatment [16, 17]. Therefore, several lncRNAs 
have been reported to serve as diagnosis and prognosis 
biomarkers for HCC. Lnc-PCDH9-13:1 was upregulated 
in HCC tissues, serum and saliva of the patients and 

could serve as a biomarker for detecting early HCC [18]. 
Circulating exosomal lncRNA-ATB was identified as an 
independent predictor HCC overall survival and disease 
progression [19]. A panel of serum circulating lncRNA 
LINC00153, UCA1 and AFP was reported to have satis-
factory sensitivity and specificity for HCC diagnosis [20]. 
A signature consisting of 50 lncRNA pairs could serve as 
an independent powerful prognostic indicator for HCC 
overall survival prediction [21]. Moreover, lncRNA sig-
natures associated with genome instability, macrophages 
[22, 23], pyroptosis, ferroptosis, tumor microenviron-
ment, m6A regulator, autophagy, hypoxia, glycolysis and 
EMT [24–31] were established for predicting overall sur-
vival in HCC.

Nearly 70% HCC patients had postsurgical recurrence 
in 5 years. Postsurgical recurrence is the primary limita-
tion for the improvement of HCC prognosis [32]. Clini-
cally, a recurrence within two years of surgery is referred 
to an early recurrence while a recurrence after two years 
is called a late recurrence [33]. Earlier studies has indi-
cated that near 70% of recurrence was early recurrence, 
and HCC patients with early recurrence had a signifi-
cantly lower 5-year overall survival rate compared to 
HCC patients with late recurrence [34]. Therefore, con-
struction of signature predicting HCC early recurrence 
would enable an improved surveillance strategy and 
prognosis.

In this study, we collected data from TCGA-LIHC 
databases to construct a 4-lncRNA prognostic signature 
for HCC early recurrence. Multivariate Cox regression, 
Kaplan-Meier, nomogram and ROC analyses were per-
formed to evaluate the predictive potential of this signa-
ture. KEGG, GO, GSEA were performed to explore the 
underlying mechanism of HCC early recurrence. Intra-
tumor immune infiltration status and drug response 
prediction analyses were used to evaluate the potential 
of this signature in predicting therapeutic responses. In 
addition, the significance of this signature was further 
validated in external HCC cohorts (Figure S1).

Materials and methods
Data mining for candidate recurrence related dysregulated 
lncRNAs in hepatocellular carcinoma
Liver cancer RNA expression data and associated clini-
cal features were downloaded from T﻿he Cancer Genome 
Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) 

differential sensitivities to various antitumor drugs. Finally, predictive performance of this signature was validated in an 
external cohort of patients with HCC.

Conclusion  Combined with TNM and AFP, the 4-lncRNA signature presents excellent predictability of HCC early 
recurrence.

Keywords  Long non-coding RNA signature, Hepatocellular carcinoma, Early recurrence, Machine learning
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database (https://portal.gdc.cancer.gov/projects/TCGA-
LIHC). The expression profile and clinical features of 314 
HCC patients with complete overall survival (OS) and 
disease free survival (DFS) record were reserved after 
carefully screening. These 314 patients were then ran-
domly divided into the training group (N = 157) and the 
validation group (N = 157) by R package “caret” [35]. Clin-
ical features of these patients including OS, DFS, TNM 
stages, cirrhotic status, vascular invasion, AFP, race, gen-
der and age have been summarized (Table S1). Next, the 
differentially expressed lncRNAs (DElncs) were analyzed 
between the training group (N = 157) and the non-tumor 
group (N = 50). Differentially expressed gene (DEG) 
analyses were conducted by R packages “DESeq2” [36], 
“edgeR” [37, 38] and “limma” [39] with the cut-off value 
of |log2FC| > 1 and FDR < 0.05. Venn plots were drawn to 
identify the common dysregulated lncRNAs in all three 
DEG methods by R package “VennDiagram” [40]. Batch 
DFS survival analyses of the above dysregulated lncRNAs 
in the training group were then performed by R package 
“survival” [41] with both log-rank [42] and cox [43] meth-
ods with a cut-off value of P < 0.05. Finally, 81 candidate 
recurrence related dysregulated lncRNAs were obtained 
from the intersection of two survival analyses methods.

Construction and validation for lncRNA-based prognostic 
signature for HCC recurrence
Dimensionality reduction of candidate lncRNAs used 
for signature construction were further conducted by 
three different machine learning methods including 
least absolute shrinkage and selection operator (LASSO) 
[44], random forest [45] and Support Vector Machine 
Recursive Feature Elimination (SVM-RFE) [46] in the 
training group with 81 candidate recurrence related dys-
regulated lncRNAs and DFS. LASSO, random forest and 
SVM-RFE were conducted by using R package “glmnet” 
[47], “randomForest” [45], and “e1071” [48] separately. 
More specifically, the cut-off values were lambda.min 
for LASSO, 5-fold cross validation with min(error) and 
max(accuracy) for SVM-RFE and top 30 DFS related 
lncRNAs for random forest. Venn plot was then drawn in 
three machine learning methods to identify 11 lncRNAs. 
Next, multivariate cox analysis of these 11 lncRNAs 
was performed in the training group (N = 157) with DFS 
by R package “survival” and 4 lncRNAs (AC108463.1, 
AF131217.1, CMB9-22P13.1, TMCC1-AS1) with a cut-
off value of P < 0.05 were finally obtained for signature 
construction. The coefficients of these 4 lncRNAs for 
signature construction were calculated by multivari-
ate cox analysis in the training group with DFS, and the 
risk score (RS) for each patient was calculated by the for-
mula riskscore =

∑
coefficient × expression (gene)

. Receiver Operating Characteristic (ROC) analysis was 
performed by R package “pROC” [49] to evaluate the 

performances of the 4-lncRNA signature and three clini-
cal features including AFP, TNM, as well as vascular 
invasion for HCC recurrence in the training group. All 
HCC patients were then further divided into the low- and 
high-risk group by median risk score from the training 
group.

Tissue samples and clinical information
A total number of 44 patients who had liver surgery and 
were diagnosed with HCC between October 2018 and 
December 2019 at Jinling Hospital were included. HCC 
and paracancerous tissues were collected and treated fol-
lowing the protocols (81YY-KYLL-19-05) approved by 
the Ethics Committee of Jinling Hospital and Shanghai 
University of Medicine and Health Sciences. In addition, 
clinical characteristics including age, gender, serum AFP, 
numbers of tumor, cirrhotic status, vascular invasion and 
T stage were collected or analyzed. The follow-up data 
of 24 patients with available overall survival and disease 
free survival record until March 2022 were enrolled for 
survival analyses (Table S5). All patients enrolled in this 
study signed the written informed consent.

Validation of the lncRNA-based prognostic signatures for 
HCC early recurrence
Since HCC early recurrence was defined as recur-
rence within 2 years in previous studies, those patients 
with follow-up time less than 24 months and no recur-
rence were excluded for the following studies of the 
4-lncRNA signature with HCC early relapse. The HCC 
patients were 112 in the training group, 111 in the valida-
tion group and 223 in the entire group from the TCGA-
LIHC cohort. To validate the prediction performance of 
the 4-lncRNA signature for HCC early recurrence, early 
recurrence cumulative event, cumulative hazard and 
probability were compared between the low- and high-
risk group by R package “survminer” [50] in the training, 
validation and entire group. Multivariate cox analyses 
were also conducted to study the independent roles of 
the 4-lncRNA signature along with clinical characteris-
tics like AFP, TNM stages, vascular invasion, gender and 
age. ROC analyses further identified that a combination 
model of lncRNA-based signature with AFP/TNM had 
the best prognostic prediction for HCC early recurrence. 
Nomogram was generated with the 4-lncRNA signature 
risk score, AFP and TNM stages and their corresponding 
coefficients from multivariate cox analyses, and the cali-
bration curves were drawn by R package “regplot” [51]. 
Since no public external HCC dataset was available, we 
did further validation in clinical HCC samples by detect-
ing the expression of 4 lncRNAs in clinical collected 
tumor and paired paracancerous tissues. Total RNA from 
44 paired HCC and paracancerous tissue samples were 
collected by Jinling Hospital. cDNA was synthesized from 

https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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total RNA by using the reverse transcription kit Rever-
Tra Ace® qPCR RT Master Mix with gDNA Remover 
(TOYOBO). Real-time PCR reaction was conducted 
in 20 µL solution with Takara CYBR Premix Ex TaqII 
(Takara) in ABI BiosystemsTM 7500 Real-Time qPCR 
System (Applied Biosystems) by following the manufac-
turer’s protocol. Primers for AC108463.1, AF131217.1, 
CMB9-22P13.1, TMCC1-AS1 and 18s (Table S2) were 
purchased from GENEWIZ. To calculate the relative 
expression of lncRNAs, qRT-PCR results were inter-
preted by 2−ΔΔCT method with 18s as the housekeeping 
gene. Furthermore, 24 HCC patients from Jinling cohort 
were enrolled for early recurrence analysis following the 
same criteria of TCGA-LIHC cohort.

Comprehensive functional analyses of the 4-lnRNA 
prognostic signature
Total 223 HCC patients were divided into the low- and 
high-risk group by setting the 4-lncRNA prognostic sig-
nature median risk score as the cut-off. DEG analysis was 
performed between mRNA expression from the low- and 
high risk group, and all mRNAs were then arranged by 
descending |log2FC| for functional analyses. Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [52], Gene 
Ontology (GO) and Gene Set Enrichment Analysis 
(GSEA) analyses were conducted by R package “cluster-
Profiler” [53]. The enriched KEGG pathways were deter-
mined by a cut-off value of |NES| > 1 and P < 0.05. The 
enriched GO terms included biological pathways (BP), 
cellular components (CC) and molecular functions (MF) 
were analyzed based on mRNAs with |logFC| > 1 and 
determined by a cut-off value of P < 0.05. GSEA analysis 
was performed with MSigDb C2: curated gene sets [54, 
55] and enriched GSEA gene sets were determined by a 
cut-off value of |NES| > 1.5 and P < 0.05.

Immune infiltration and clinical treatment response 
analyses
Single sample Gene Set Enrichment Analysis (ssGSEA) 
was chosen for studying immune infiltration with R 
package “GSVA” [56] and normalized enrichment score 
(NES) was calculated for 28 immune cell types in each 
223 HCC samples. The NES of 28 immune cell types were 
compared between the low- and the high-risk group, 
and the correlation between the 4-lncRNA signature 
risk score and cells NES score was conducted by R func-
tion “cor.test”. Immune therapy response prediction was 
conducted with Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm [57, 58] and SubMap modules of 
GenePattern [59] by mapping with a public dataset of 
immunotherapy responses of 47 melanoma patients [60]. 
Drug response prediction was performed by R package 
“pRRophetic” [61] with Genomics of Drug Sensitivity in 
Cancer (GDSC) pharmacogenomics database [60, 62]. 

Ridge regression was used for estimating the half maxi-
mal inhibitory concentration (IC50) and 10-fold cross val-
idation was used for predicting the accuracy.

Statistical analyses
The sensitivity and specificity between two ROC curves 
were compared by DeLong’s test. The differences 
between Kaplan-Meier curves, cumulative hazard and 
events curves of survival analyses between two groups 
were compared by log-rank test. Univariate and multivar-
iate analyses were conducted with the cox proportional 
hazards regression model. The comparisons of immune 
cells NES, drug IC50 and between the two groups, as well 
as the expression of lncRNAs between tumor and para-
cancerous tissue samples were analyzed by Wilcoxon 
test. The cut-off value of P < 0.05 was used for statistical 
significance.

Results
Identification of recurrence related lncRNAs
To construct a lncRNA signature to predict postsurgical 
recurrence of HCC, we started to identify dysregulated 
lncRNAs in the TCGA training group. According to the 
sequences of 16,193 annotated human lncRNAs in GEN-
CODE V30, we collected 10,795 lncRNAs for DEG analy-
sis after excluding those with extremely low expression. 
Three methods, DESeq2, edgeR and limma-voom, were 
employed to identify differentially expressed lncRNAs 
(DElncs) between the HCC samples of the training 
group (N = 157) and the liver tissues of the normal con-
trol group (N = 50) with cut-off value of |log2FC| > 1 and 
FDR < 0.05. Compared with normal controls, 2581 (2013 
upregulated and 568 downregulated), 3430 (2913 upreg-
ulated and 517 downregulated) and 1631 (824 upregu-
lated and 807 downregulated) DElncs were determined 
respectively (Figure S2). Venn diagram analysis revealed 
1164 (801 upregulated and 363 downregulated) common 
DElncs (Fig. 1A). The PCA plot and heatmap generated 
by the 1164 common DElncs could clearly distinguish 
HCCs from normal controls (Fig.  1B and C), suggest-
ing that the 1164 common DElncs might closely associ-
ate with the onset and development of HCC. To identify 
recurrence associated DElncs, the log-rank test and Cox 
regression analysis were performed in the training group 
to evaluate disease free survival (DFS). After combining 
the candidates from the log-rank test (149 DElncs) and 
Cox regression analysis (136 DElncs), 81 common DElncs 
were identified as recurrence related lncRNAs (Fig. 1D).

Construction of a 4-lncRNA prognostic signature for HCC 
recurrence
Based on the 81 recurrence associated lncRNAs, we 
then employed three classic machine learning meth-
ods, LASSO, Random Forest and SVM-RFE, to select 
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important DElncs for predicting DFS in the train-
ing group. The LASSO, SVM-REF and Random Forest 
analyses selected 26, 66 and 30 candidates respectively 
(Fig. 2A to C). Venn diagram analysis collected 11 com-
mon Delncs for further analysis (Fig.  2D). Multivari-
ate cox analysis of the 11 DElncs in the training group 
showed that 4 DElncs, AC108463.1, AF131217.1, 
CMB9-22P13.1, and TMCC1-AS1, are independent risk 
factors of DFS (Fig.  2E). We then constructed a prog-
nostic signature based on the 4 DElncs, and calculated 
the risk score of individual HCC patients according to 
the linear combination of the regression coefficients 
and expression values of each DElncs [63]. Risk Score = 
(-0.0918*exp[AC108463.1]) + (-0.1112*exp[AF131217.1]) 
+ (0.1484*exp[CMB9-22P13.1]) + (0.3737*exp[TMCC1-
AS1]) (Table 1).

The 4-lncRNA prognostic signature predicts HCC early 
recurrence
Since HCC patients’ poor survival is largely attributed 
to early recurrence within two years after surgery, we 
intended to investigate whether the 4-lncRNA signature 
could provide a prognostic indication of HCC patients’ 
early recurrence. After excluding the patients whose 
follow-up data were collected less than 2-year and with-
out recurrence records, 112 and 111 HCC patients were 
reserved in the training and the validation groups respec-
tively. By setting the median risk score as a cut-off, HCC 
patients were categorized into the low- and high-risk 
groups. Kaplan-Meier survival analyses demonstrated 
that HCC patients from the high-risk group had shorter 
2-year DFS in the training group (Fig. 3A, P < 0.0001), the 
validation group (Fig. 3B, P = 0.033) and the entire group 
(Fig.  3C, P < 0.0001). The HCC early recurrence rates in 
the high-risk group were up to 79% from all three groups 
(Fig.  3). In addition, cumulative event and cumulative 
hazard of the low-group patients were also compared to 

Fig. 1  Identification of recurrence related dysregulated lncRNAs. (A) Venn plot of dysregulated lncRNAs in three different DEG analyses methods includ-
ing DESeq2, edgeR and limma. Total 1164 dysregulated common lncRNAs (801 upregulated and 363 downregulated) were selected in TCGA training 
group; (B) PCA plot of 50 normal samples and 157 HCC samples of the training group based on the 1164 dysregulated common lncRNAs; (C) Heatmap of 
1164 dysregulated common lncRNAs in 50 normal samples and 157 HCC samples of the training group; (D) Venn plot of recurrence related dysregulated 
lncRNAs from log-rank test and Cox regression survival analyses. There were 81 common DElncs related with HCC recurrence
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Fig. 2  Candidate lncRNAs selection by survival analyses including LASSO, SVM-RFE and random forest. (A) Results of LASSO analysis, 26 lncRNAs were 
determined by lambda.min; (B) Results of SVM-RFE analysis, 66 lncRNAs were determined by 5-fold cross validation with min(error) and max(accuracy); 
(C) Top 30 lncRNAs related with disease free survival from random forest analysis; (D) Venn plot of selected lncRNAs from LASSO, SVM-RFE and random 
forest analyses, 11 lncRNAs were reserved for signature construction; (E) Multivariate cox analysis of 11 candidate lncRNAs with disease free survival in the 
training group, AC108463.1, AF131217.1, CMB9-22P13.1 and TMCC1-AS1 were independent risk factors for DFS
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those of high-risk group patients. HCC patients in the 
high-risk group showed the higher cumulative events 
and cumulative hazard from all three groups (Figure S3). 
Thus, the findings by survival analyses indicate that the 
4-lncRNA prognostic signature could predict HCC early 
recurrence within 2 years.

Combination of the 4-lncRNA signature risk score with AFP 
and TNM improves the prognostic performance for HCC 
early recurrence
To further evaluate the prognostic value of the 4-lncRNA 
signature, multivariate cox analyses of the risk score 
together with selected clinical features, including age, 
gender, AFP level, TNM stage and vascular invasion, 
were conducted in all 223 HCC patients with 2-year DFS. 
As shown in Fig.  4A, multivariate cox analyses suggest 
that the risk score (HR = 1.5, P = 0.015), AFP (HR = 1.74, 
P = 0.012) and TNM (HR = 2.01, P = 0.01 for stage III + IV) 
were independent risk indicators of HCC early recur-
rence. ROC analyses were then used for determining 
whether the combination of the independent risk indica-
tors could improve prognostic performance. As shown 
in Fig.  4B, the combination of risk score with AFP and 
TNM showed the largest AUC (72.02%) for HCC early 
recurrence compared to risk score alone (AUC: 64.89%), 
risk score + AFP (AUC: 66.85%), and risk score + TNM 

(AUC: 70.80%). Meanwhile, the signature risk score, AFP 
and TMN stages were selected to establish a nomogram 
(Fig. 4C). The C-index for 1-year and 2-year DFS of this 
nomogram were 0.643 and 0.647, respectively. Moreover, 
a calibration curve revealed that the nomogram was good 
at predicting 1-year and 2-year DFS (Fig. 4D).

Enriched KEGG pathways, GO terms and GSEA gene sets in 
the low- and high-risk groups
To further understand the functional differences between 
the low- and high-risk groups, KEGG, GO and GSEA 
analyses were conducted based on the differences of 
mRNA expression between the two groups. The rep-
resentative pathways activated in the high-risk group 
included “IL-17 signaling pathway”, “Pentose phosphate 
pathway”, “Pentose and glucuronate interconversions”, 
“Viral protein interaction with cytokine and cytokine 
receptor”, “NOD-like receptor signaling pathway” and 
“Transcriptional misregulation in cancer”, while the path-
ways suppressed in the high-risk group included “Aldo-
sterone synthesis and secretion”, “Alanine, aspartate and 
glutamate metabolism”, “Vascular smooth muscle con-
traction” and “Glycosaminoglycan biosynthesis - hepa-
ran sulfate/ heparin” (Fig.  5A). Several GO terms from 
biological process (BP), cellular component (CC) and 
molecular function (MF) were also significantly activated 

Table 1  The 4 DFS associated dysregulated LncRNAs in the training group patients from TCGA (N = 157)
Ensembl Gene Symbol P value Hazard 

Ratioa
Coefficientb associated diseases Description

ENSG00000230499 AC108463.1 0.011 0.91 -0.0918 gastric cancer [89] novel transcript

ENSG00000232855 AF131217.1 0.001 0.89 -0.1112 atherosclerosis [88] novel transcript

ENSG00000173727 CMB9-22P13.1 0.011 1.16 0.1484 lung squamous cell carcinoma, 
breast cancer, hepatocellular carci-
noma [90–93]

Finkel-Biskis-Reilly murine 
sarcoma virus (FBR-MuSV) 
ubiquitously expressed 
(FAU) pseudogene

ENSG00000271270 TMCC1-AS1 0.001 1.45 0.3737 hepatocellular carcinoma [94–97] TMCC1 divergent transcript
a, b Derived from the univariable Cox proportional hazards regression analysis

Fig. 3  2-year DFS Kaplan-Meier curves of HCC patients. (A) 2-year DFS Kaplan-Meier curve in the training group (N = 112), the recurrence probability was 
higher in the high-risk group than that in the low-risk group (P < 0.0001); (B) 2-year DFS Kaplan-Meier curve in the validation group (N = 111), the recur-
rence probability was higher in the high-risk group than that in the low-risk group (P = 0.033); (C) 2-year DFS Kaplan-Meier curve in the entire TCGA group 
(N = 223), the recurrence probability was higher in the high-risk group than that in the low-risk group (P < 0.0001). Statistical significance was tested by 
the Log-rank method
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or suppressed in the high-risk group. For example, trans-
porter complex was activated in the high-risk group, 
while apical plasma membrane, presynaptic membrane 
and carbohydrate binding were suppressed in the high-
risk group (Fig.  5B). Besides, GSEA analysis with C2 
gene sets revealed activated and suppressed gene sets 
in the high-risk group (Fig.  5C). The most significantly 

activated gene sets in the high-risk group were “BOSCO_
EPITHELI AL_DIFFEREN TI ATION_MODULE”, 
“CROMER_TUMORIGENESIS_DN” and “ANDERSEN_
CHOLANGIOCARCINOMA_CLASS2”, while the most significantly 
suppressed gene sets in the high-risk group were “REAC-
TOME_METALLOTHIONEINS_BIND_METALS”, 
“REACTOME_RESPONSE_TO_METAL_IONS”, “BOY-

Fig. 4  The combinations of the 4-lncRNA signature risk with clinical features. (A) Multivariate cox analysis of the 4-lncRNA signature risk score and clinical 
features with 2-year DFS in the entire group (N = 223). 4-lncRNA signature risk score, AFP and TNM stages are independent risk indicators for 2-year DFS 
(P < 0.05); (B) ROC analyses of model 1-4 with 2-year DFS. Model 1 (the combination of the 4-lncRNA signature risk score with AFP and TNM stages) had 
the largest AUC (72.02%) in all combined models; (C) Nomogram consisted of 4-lncRNA signature risk score, AFP and TNM stages for 1-year and 2-year 
DFS; (D) Calibration curves for integrated 4-lncRNA signature with AFP and TNM stages for 1-year DFS and 2-year DFS. RS: the 4-lncRNA signature risk score
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AULT_LIVER_CANCER_SUBCLASS_G6_UP”, “CHI-
ANG_LIVER_CANCER_SUBCLASS_CTNNB1_UP”, 
“BOYAULT_LIVER_CANCER_SUBCLASS_G123_DN” 
and “DESERT_PERIVENOUS_HEPATOCELLULAR_
CARCINOMA_SUBCLASS_UP”.

Therapeutic responses prediction by the 4-lncRNA 
signature
Immunotherapy, as a novel treatment approach, 
has shown advantages in improving OS and DFS in 
HCC patients [64]. To investigate the potential of the 
4-lncRNA signature in immunotherapy response predic-
tion, the immune infiltration were compared between the 
low- and high-risk groups by calculating the NES of 28 
immune cell types with ssGSEA. As shown in Fig.  6A, 
the intratumor infiltration of 10 immune cell types, 
including activated B cells, effector memory CD8 T 
cells, eosinophils, immature B cells, macrophages, mast 
cells, myeloid-derived suppressor cells, natural killer 
cells, regulatory T cells and type 1 T help cells, showed 
significantly higher NES in the low-risk group, whereas 
type 2 T help cells had significantly higher NES in the 
high-risk group. Correlation analyses illustrated that the 
NES of the above 10 immune cell types were negatively 
associated with risk scores (P < 0.05, Fig.  6B). Type 1 T 
helper cell, activated B cell and natural killer cell ranked 
the top3 negatively associated tumor infiltration lym-
phocytes (TILs) among them (|NES| > 0.25). However, 
although HCCs in the low-risk group showed greater 
immune cell infiltration, both TIDE predication and Sub-
map analyses failed to show significant response advan-
tages to anti-CTLA4 and anti-PD1 immunotherapy in 
the low-risk group (Fig. 6C). In addition, drug response 
prediction analysis indicated that the low-risk group 
HCC patients and high-risk group HCC patients showed 
significant differential responses to 27 drugs (Table S4). 
The low-risk group HCC patients may be more sensitive 
to AICAR, gefitinib and metforminin treatment, whereas 

the high-risk group HCC patients may better response 
to bexarotene, bleomycin, bortezomib, cisplatin, mito-
mycin C, paclitaxel, sorafenib, tipifarnib and vinorelbine 
(Fig. 6D). Thus, these findings indicate that the 4-lncRNA 
signature might act as a potential drug predictor.

Validation of the 4-lncRNAs prognostic signature in clinical 
HCC samples
Additionally, the expressions of these 4 lncRNAs were 
measured in a cohort of 44 paired HCC and their adja-
cent tissue samples. In line with our findings from 
TCGA-LIHC, AC108463.1, CMB9-22P13.1 and TMCC1-
AS1 are highly expressed, and AF131217.1 is suppressed 
in HCC tissues compared to matched normal tissues 
(Fig. 7A-D). Furthermore, multivariate Cox analysis was 
conducted in 24 HCC patients whose 2-year DFS infor-
mation was recorded. Results revealed that the 4-lncRNA 
signature risk score, T stage and AFP were independent 
risk factors for HCC early recurrence (Fig. 7E). Moreover, 
the 24 HCC patients were classified into low- and high-
risk groups based on the combined model of 4-lncRNA 
signature risk score with AFP and T stage, Kaplan-Meier 
analysis illustrated that patients in the high-risk group 
had significantly poorer DFS within 2 years compared to 
those in the low-risk group (Fig. 7F, P < 0.0001).

Discussion
In the current study, we developed a novel 4-lncRNA 
prognostic signature for early recurrence prediction in 
HCC by combining multiple DEG analysis methods, sur-
vival analysis methods and machine learning methods. 
This 4-lncRNA signature could fairly predict the early 
recurrence of HCC in TCGA-LIHC cohort, and the pre-
diction performance could be further improved by the 
combination of the 4-lncRNA signature with TNM stages 
and AFP. According to the risk scores derived from the 
signature, HCC patients could be categorized into low- 
and high-risk groups. Functional analyses including 

Fig. 5  Enriched KEGG pathways, GO terms and GSEA gene sets in the low- and high-risk groups. (A) Top 6 activated (upper 6) and top 4 suppressed 
(lower 4) KEGG pathways enriched in the high-risk group; (B) GO terms activated and suppressed in the high-risk group. BP: biological function, CC: cellular 
component, MF: molecular function; (C) GSEA C2 gene sets activated and suppressed in the high-risk group
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KEGG, GO and GSEA were conducted to reveal the 
underlying mechanisms for HCC early recurrence. More-
over, immune infiltration analysis was employed to find 
out the immune microenvironment differences between 
the two groups, and prediction analyses of immune ther-
apy and drug response provided useful information for 
differential clinical treatment. Finally, the prognostic per-
formance of this 4-lncRNA signature was evaluated in an 
external HCC cohort.

DESeq2, edgeR and limma-voom are three popularly 
adopted approaches for DEG analysis [65]. DESeq2 uses 
shrinkage estimators for dispersion and fold change 
[36], edgeR adopts a Poisson super dispersion model for 
account for both biological and technical variability [37], 
and limma-voom is based on the linear model [66]. In 
the current study, we employed all those three statisti-
cal methods with the same fold for detecting differential 
expressed lncRNAs (DElncs) between the HCC samples 
(N = 157) and normal samples (N = 50). The DEG analyses 
results showed that edgeR found the most DElncs (3430), 
while limma-voom found the least DElncs (1631). The 

purpose of time-to-event survival analysis was to find 
out the DElncs associated with disease free survival. We 
imported two common survival analyses methods, log-
rank and cox, and determined 81 DFS related DElncs [67]. 
Log-rank test is a non-parametric test for comparing the 
differences in survival between groups of patients [42], 
while cox proportional-hazards model is a semiparamet-
ric regression model for investigating the impact of vari-
ables on patient’s survival [43]. Further dimensionality 
reduction of DFS related DElncs was conducted by three 
different machine learning methods including LASSO, 
random forest and SVM-RFE. LASSO is a method for 
estimation in liner models with favorable properties of 
both subset selection and ridge regression [44]. Random 
forest constructs regression trees in the way of using 
the best among a subset of predictors randomly chosen 
at each node to be split [45]. SVM is a popular tool for 
nonlinear classification, regression and outlier detec-
tion [68], and SVM-RFE uses the weight magnitude as 
ranking criterion [46]. All these three machine learning 
methods have been universally used in gene selection 

Fig. 6  Immune infiltration analyses and clinical therapy response prediction of HCC patients in the low- and high-risk groups. (A) Immune cells NES com-
parisons between the low- and high-risk groups, 10 immune cells showed greater NES in the low-risk group (P < 0.05) and 1 immune cell showed greater 
NES in the high-risk group (P < 0.05); (B) Correlation between risk scores and immune cells NES, 10 immune cells were negatively related to risk scores 
(P < 0.05); (C) SubMap analysis of CTLA4 and PD-1 targeted immunotherapy in the low- and high-risk groups; (D) The predicted IC50 of clinical drugs in the 
low- and high-risk groups. The low-risk group patients had a lower IC50 in AICAR, gefitinib and metformin, while the high-risk group patients had a lower 
IC50 in bexarotene, bleomycin, bortezomib, cisplatin, mitomycin C, paclitaxel, sorafenib, tipifarnib and vinorelbine (P < 0.05 by Wilcoxon test)
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with their advantages [69–74]. For instance, Xiao et al. 
utilized random forest and SVM for screening prognostic 
gene in malignant pleural mesothelioma [71], Shen et al. 
applied SVM for evaluating selective mutant genes and 
constructing a model for predicting HCC DFS [70], Xiao 
et al. used SVM-RFE and LASSO for identify candidate 
hub genes related to colorectal cancer [72]. Our group 
had also developed a 25-lncRNA signature for predicting 
the early recurrence of HCC patients by LASSO, but 25 
lncRNAs are too many for further validation and clinical 
application [75]. Considering the individual advantage of 
LASSO, random forest and SVM-RFE, we have chosen 
these three popular machine learning methods for fea-
ture gene selection in this study.

Kaplan-Meier plot confirmed that the 4-lncRNA signa-
ture could successfully classified HCC patients into the 
low- and high-risk groups and predict early recurrence. 

Several previous developed lncRNA-based signatures 
were reported for HCC survival prediction and showed 
better performance than clinicopathological factors [76–
80]. For example, a 3-lncRNA signature by Gu et al. could 
well predict both recurrence free survival and overall 
survival in small HCC patients [76], a 15-lncRNA classi-
fier by Zhang et al. effectively identified HCC recurrence 
[77], a 7-lncRNA classifier by Lv et al. predict early recur-
rence within 2 years after surgical resection for HCC 
[78]. The prognostic performance of this 4-lncRNA sig-
nature is comparable to other developed lncRNA-based 
signatures [76–80], while the differences of selected 
lncRNAs in each lncRNA-based signature might be due 
to the specific feature gene selection strategy and differ-
ent training set. Moreover, the combined model of the 
4-lncRNA signature risk score, AFP and TNM stages fur-
ther improve the 2-year DFS prediction with an AUC of 

Fig. 7  The relative expression of 4 lncRNAs in clinical HCC and paracancerous tissue samples (N = 44). (A) The expression of AC108463.1 was higher 
in HCC samples compared to paired paracancerous samples (P = 0.0021); (B) The expression of AF131217.1 was lower in HCC samples compared to 
paired paracancerous samples (P < 0.0001); (C) The expression of CMB9-22P13.1 was higher in HCC samples compared to paired paracancerous samples 
(P < 0.0001); (D) The expression of TMCC1-AS1 was higher in HCC samples compared to paired paracancerous samples (P = 0.0059). Statistical comparison 
was calculated by Wilcoxon test. (E) Multivariate cox analysis of the 4-lncRNA signature risk score, T stage and AFP with 2-year DFS in an external clinical 
cohort (N = 24). The 4-lncRNA signature risk score, T stage and AFP are independent risk indicators for 2-year DFS (P < 0.05); (F) 2-year DFS Kaplan-Meier 
curve in the clinical cohort (N = 24), the recurrence probability was higher in the high-risk group HCC patients than that in the low-risk group HCC patients 
(P < 0.0001). The significance was compared by log-rank test
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72.02%. Functional analyses were performed to explore 
the differences between the low- and high-risk groups. 
Some KEGG pathways activated in the high-risk group 
are favorable in HCC pathogenesis. For example, IL-17 
was reported to promote hepatocellular carcinoma pro-
gression [81, 82], the pentose phosphate pathway (PPP) 
is one of the essential components of cellular metabolism 
and plays a key role in HCC [83, 84]. Immune infiltra-
tion analyses were performed with ssGSEA to elucidate 
the heterogeneous immune environment in the low- and 
high-risk group HCC patients. More immune cells had 
higher NES in the low-risk group and were negatively 
associated with the 4-lncRNA signature risk score. In 
addition, the top3 TILs which are negatively related to 
risk score, Type 1 T helper cell, activated B cell and natu-
ral killer cell, are well-known antitumor immune cells 
participated in cancer immune therapy process [85–87], 
further indicating that this 4-lncRNA signature could 
potentially predict HCC patients’ prognosis after surgery. 
Although this signature failed in predicting the response 
to cancer immunotherapy of HCC patients, drug 
response prediction suggested that the low-risk group 
patients are more sensitive to AICAR, gefitinib and met-
formin treatments, whereas the high-risk group patients 
are more sensitive to bexarotene, bleomycin, bortezomib, 
cisplatin, mitomycin C, paclitaxel, sorafenib, tipifarnib 
and vinorelbine.

In this study, the expression regulation of the 4 
lncRNAs has been validated in an external HCC cohort 
containing 44 paired tumor and matched normal sam-
ples. Multivariate cox analysis demonstrated that the 
risk score of this signature, T stage and AFP are three 
independent risk indicators for HCC early recurrence in 
this external cohort. An integrated model by combining 
this signature, T stage and AFP showed great prognos-
tic potential in predicting HCC early recurrence in this 
external cohort. Additionally, the 4 lncRNAs involved in 
this signature have also been previously studied in HCC 
or other diseases. For instance, AF131217.1 was reported 
as a fluid shear force-sensitive RNA, which plays a pro-
tective role in atherosclerosis process [88]. AC108463.1 is 
related to gastric cancer progression [89]. CMB9-22P13.1 
participates in the development of various cancer types 
including lung squamous cell carcinoma, breast cancer 
and hepatocellular carcinoma [90–92]. A recent study 
indicated that CMB9-22P13.1 could upregulate HOT-
TIP and activate HIF-1α/VEGF signaling, leading to 
enhanced hepatocellular carcinoma progression and 
angiogenesis [93]. The increase of TMCC1-AS1 facili-
tates proliferation, migration, invasion and EMT of HCC 
cells, resulting in poor outcome of liver cancer patients 
[94]. Given that the 4 lncRNAs have been selected to 
construct a prognostic signature for predicting HCC 
early recurrence, their roles in HCC progression should 

be intensively investigated. A variety of lncRNA database 
and developed computational models could be applied 
for lncRNA function and lncRNA-disease association 
prediction [9, 10, 16, 17], which may be further validated 
by experiments.

In conclusion, we developed a 4-lncRNA signature 
for predicting early recurrence in HCC. The integrated 
model of the 4-lncRNA signature risk score with TNM 
and AFP presents great prognostic performance for pre-
dicting HCC early recurrence. This signature might pro-
vide novel prognostic and therapeutic biomarkers for 
HCC and act to be a potential drug predictor.
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